
Widening the Time Horizon: Predicting the
Long-Term Behavior of Chaotic Systems

Yong Zhuang1∗, Matthew Almeida1∗, Wei Ding∗, Patrick D Flynn∗, Shafiqul Islam† and Ping Chen2‡
∗Department of Computer Science, University of Massachusetts Boston

Email: yong, malmeida@cs.umb.edu
†Department of Civil and Environmental Engineering, Tufts University

Email: Shafiqul.Islam@tufts.edu
‡Department of Engineering, University of Massachusetts Boston

Email: ping.chen@umb.edu

Abstract—The understanding of chaotic systems is challenging
not only for theoretical research but also for many important
applications. Chaotic behavior is found in many nonlinear
dynamical systems, such as those found in climate dynamics,
weather, the stock market, and the space-time dynamics of virus
spread. A reliable solution for these systems must handle their
complex space-time dynamics and sensitive dependence on initial
conditions. We develop a deep learning framework to push the
time horizon at which reliable predictions can be made further
into the future by better evaluating the consequences of local
errors when modeling nonlinear systems. Our approach observes
the future trajectories of initial errors at a time horizon to model
the evolution of the loss to that point with two major components:
1) a recurrent architecture, Error Trajectory Tracing, that is
designed to trace the trajectories of predictive errors through
phase space, and 2) a training regime, Horizon Forcing, that
pushes the model’s focus out to a predetermined time horizon.
We validate our method on classic chaotic systems and real-
world time series prediction tasks with chaotic characteristics,
and show that our approach outperforms the current state-of-
the-art methods.

I. INTRODUCTION

In many physical, biological, and human systems the gov-
erning equations are known with high confidence, but the
analytic solutions may not exist and reliable numerical solu-
tions are often prohibitively expensive because of nonlinearity,
feedback, and sensitive dependence on initial conditions [1],
[2]. Developing reliable numerical solutions that integrate
short length and fast time scales is a long-standing problem.
As this class of governing equations arises in many varied
applications, means to improve the ability to make meaningful
predictions of their future states are of great practical impor-
tance.

Moreover, many of these highly complex dynamic systems
exhibit chaotic behaviors that are highly sensitive to initial
conditions. A small observational error—even truncation error
caused by binary representation of values tens of digits past
the decimal—can grow exponentially in time. As Lorenz [3]
aptly noted, for this class of nonlinear systems, approximately
close present states do not necessarily map to approximately
close states in the future. More importantly, a small predictive

1Equal contribution
2Corresponding author. Ping.Chen@umb.edu

error (from a point in a system’s phase space, ut0 to ut0 + e,
where e is a small error vector) at a time step t0 may result
in exponentially larger future error than that resulting from a
larger initial error (in magnitude) in another direction (from
ut0 to ut0 − 2e, for example) at the same time step.

Machine learning and deep learning have become hot topics
in the context of computing and are widely applied in various
application areas [4], [5]. In the last few decades, some
Machine learning methods have been proposed for long-
term sequence prediction [6], [7], [8], [9]. However, under
these conditions, reliable prediction of state past a certain
time horizon remains extremely challenging, depending on
the parameterization of the system and the lead time of the
prediction. Our research goal is to push out the time horizon
at which reliable predictions can be made as far as possible
utilizing new developments from machine learning , and our
study has obtained promising results as shown in Figure 1.
More specifically, while there can be theoretical bounds for
the accuracy of future prediction given an initial error of some
size for certain systems (e.g. [1] gives an analysis for the
Lorenz ’63 system), important performance gain is possible
to achieve by training a model to avoid local mistakes that
result in dramatic changes to future phase space trajectories.
In doing so, we avoid the greatest sources of error, and
keep the predicted trajectories as close to the ground truth
as possible and the predictions relevant in practice. Any such
progress could represent a significant step forward in real-
world problem domains.

In this work, we present a new deep learning method
for prediction in chaotic systems: it takes the form of a
recurrent architecture set up for error trajectory tracing and an
accompanying training regime, Horizon Forcing, which allows
a neural network to both model the system’s state transition
function and use it to trace the evolution of its mistakes. By
using both in tandem a model is able to properly evaluate
the consequences of local mistakes as the underlying system
evolves toward the time horizon. We make the following
contributions:

• We introduce a new recurrent architecture for error tra-
jectory tracing (ETT) in chaotic systems. It is designed
to improve the prediction of such systems by allowing



(a) Lorenz ’63 system, a classic example of chaotic systems (b) Ground-truth and predicted trajectories

Fig. 1: (a) The Lorenz attractor, an exemplary chaotic system, with an example trajectory pictured in orange. Trajectories move
quickly from their initial (randomly initialized) state to the attractor and follow a chaotic orbit around two-lobes. (b) Ground-
truth (blue) and predicted (orange) trajectories for our Horizon-Forced model (top) and Teacher Forcing baseline (bottom). For
readability y-axis is the y-axis of the Lorenz system and the x-axis indicates trajectory steps scaled to Lyapunov time (defined
to be the inverse of the largest Lyapunov exponent, the amount of time to accrue error e. In the Lorenz system, this is ≈ 1

0.906 ,
or 1.103).

the model to optimize its parameters based on the true,
longer-term compounding consequences of small initial
prediction errors; how the trajectories beginning at the
predicted states evolve forward to the time horizon.

• We present Horizon Forcing, a new training regime for
optimizing our ETT models. We optimize our cost func-
tion based on short-term predictions first, then shift focus
to the long term as training progresses. By doing this
with shared weights between layers, we further improve
the single-step error (a proxy for the system’s transition
function) because minimizing long-term error necessi-
tates controlling short-term error in chaotic systems.

• We extensively validate our method on a well-studied
chaotic system with known dynamics and a set of real-
world time series prediction tasks.

II. RELATED WORK

Enormous effort has gone into the understanding and mod-
eling of chaotic nonlinear dynamical systems using observed
data [10]. With the explosion of interest in deep learning
and proliferation of powerful computing hardware, focus has
shifted to the use of powerful models to recreate complex
chaotic dynamics. Some recent works [11], [12], [13] directly
model the derivatives of the system such that the model
learns the vector field over the phase space; other works
(including this one) attempt to model trajectories through
phase space in a sequence-to-sequence formulation [14], [15].
Below we examine current deep neural methods for chaotic
system prediction:

A. Recurrent Approaches

Recurrent Neural Networks (RNNs) have become compet-
itive methods to time series forecasting[12], [15]. They are

typically trained with teacher forcing, which feed ground-truth
values back into the RNN after each step, thus prevents errors
that compound over time from harming network convergence
while training. However, at inference ground-truth values are
not available, so the predictions from previous step must be
used, reintroducing the danger of error accumulating over time.
Scheduled Sampling [16] proposes to fix this by replacing the
teacher-forced ground truth inputs with the model’s predicted
values with a certain probability. However, [17] show that
this sampling method yields a biased estimator - the loss
function induced by Scheduled Sampling is not minimized
at the true input distribution. In [18], the authors introduce
Professor Forcing, which uses an adversarial discriminator to
minimize the difference between a model being run in teacher-
forced mode and free-running (or inference) mode, by using
the outputs of each mode and a function of some of the
internal states of the model. This method is difficult to train in
practice, requiring the optimization of several hyperparameters
[19]. Other methods include Zoneout [20], which is a dropout-
like training procedure that instead of setting activations to 0,
randomly sets a set of activations to be identical to those at the
previous time step. This is meant to regularize the transition
dynamics; we do not find this to be an appropriate method
for a chaotic system because sensitivity is necessary to fit the
system’s ground truth.

B. Transformer Architectures

Transformer architectures [8] have revolutionized language
modeling in recent years [21] and are now being applied to
long sequence prediction with success as well. [9]’s music
transformer modifies this architecture, introducing an efficient
relative attention implementation (O(N)) which they apply to
a music generation task.

jazz1
Highlight



(a) Maximal Lyapunov Exponent (b) Lyapunov Horizon Loss

Fig. 2: Motivating Figure: Maximal Lyapunov Exponent V.S. Lyapunov Horizon Loss. (a) Maximal Lyapunov Exponent: ù
presents a point generated by a starting point (ut) with a perturbation (red arrow) and t ∈ {1, 2, 3, 4, 5, 6}; (b) Lyapunov
Horizon Loss: ût is a prediction of ut with an small error (red arrow). In this example, t ∈ {1, 2, 3, 4} and k = 3.

More recently, Informer [22] was introduced explicitly for
long sequence forecasting. Informer utilizes a sparse imple-
mentation of attention which reduces memory complexity.
Informer utilizes a generative decoder to forecast a sequence
in parallel in order to avoid the problem of error accumulation.

Autoformer [23] uses an architecture similar to Informer
but with a modified efficient autocorrelation-based attention
variant and explicitly utilizes properties of timeseries (season-
ality and overall temporal trend), achieving similar memory
complexity to Informer. These models represent the state-of-
the-art for time series forecasting using deep learning, but
chaotic systems present unique challenges that our models are
designed to overcome.

C. The Broad Learning System and Extreme Learning Ma-
chines

In [24], the authors use a manifold constraint to make a
Broad Learning System (BLS) [6] model better suited for
learning manifolds and reconstructing attractors in chaotic sys-
tems. The BLS model is a single-layer architecture designed to
learn on a series of “wide” concatenated feature maps over the
data, which are themselves mapped to additional enhancement
nodes via a second mapping function to provide nonlinearity.

Extreme learning machines (ELMs) is another efficient tool
for nonlinear dynamic system modeling [7]. It is a single-layer
feed-forward architecture where the first weight matrix (which
multiplies the input) and biases are initialized randomly and
untrained; the post-activation weights are analytically solved
by calculating the pseudo inverse of the output matrix. The
problem with these two models is their architecture cannot be
“deep,” which is not able to represent complex dynamics in
chaotic systems.

Comparing with these existing methods, our approach has
two major advantages: (1) it assumes no prior knowledge of
the equations describing the underlying system, and (2) it
models how its errors evolve through the system’s complex
dynamics and accumulate over time. To the best of our

knowledge, no other work has attempted (2) without assuming
prior knowledge of system dynamics.

III. METHODS: ERROR TRAJECTORY TRACING AND
HORIZON FORCING

A. Problem formulation

Given N sequences states in a chaotic system

D =
{
u
(i)
1:T

}
=

{(
u
(i)
1 ,u

(i)
2 , ...,u

(i)
t , ...,u

(i)
T

)}
where i ∈ 1...N, t ∈ 1...T . u(i)

t presents the tth state of the ith
sequence. Each successive state u

(i)
t is a repeated application

of a unknown transition function F :

u
(i)
t = F(u

(i)
t−1)

The time series forecasting aims to predict the evolution
of the system, represented by the sequence of future states
u
(i)
T+1:T+Q =

(
u
(i)
T+1,u

(i)
T+2, ...,u

(i)
T+Q

)
given the past u

(i)
1:T .

It is a rolling process, that means when we forecast the future
states u

(i)
T+Q, we forecast one state at a time, and advancing

time by one step. A long-term forecasting setting means to
predict a long-term future, i.e. a larger Q.

B. Lyapunov horizon loss

In chaos theory, the maximal Lyapunov exponent is a
measure of the chaotic nature of a system [1], [25]. It can be
understood as the expected logarithm of the growth rate of unit
errors near a strange attractor (specific to the attractor, which
depends on the basin of attraction of initial condition u0): a
negative value of the Lyapunov exponent indicates stability (as
the growth rate is not exponential), while a positive exponent
indicates exponential increase in small deviations over time.

λmax = E
[
log

∥ù1
t − ut+1∥

∥ùt − ut∥

]
(1)

where ut and ùt are two nearby points in the phase space of
the system (see Fig. 2(a)) and ut+1 and ù1

t are the points they

jazz1
Highlight



transition into after one iteration. In practice, an attractor’s
λmax is estimated numerically by computing a huge number
of terms (109 or more, in some cases [25]).

λmax gives the degree of chaotic expansion of an entire
attractor as the expectation over terms that measure individual
local error growth rate. As such, λmax itself is too coarse
an estimate for us to use in our modeling process—but the
individual terms can provide a valuable measurement of the
behavior of the error locally.

We select a time horizon in the near future (by a number
of time steps, k) and track how errors at each time step
on the trajectory evolve from intermediate states (ut) to the
time horizon (ut+k) (Fig. 2(b)). By modeling how trajectories
starting at a predicted state evolve, we can penalize errors that
grow into large deviations at the time horizon more harshly
than errors of the same magnitude that stay close to the true
trajectory by adding a Lyapunov horizon penalty (Eq. 2) into
the training loss. This allows our models to not simply account
for error k steps ahead, but to optimize using the k-step
evolution of 1-step errors. The Lyapunov horizon loss is given
by

λt = log
∥ûk

t − ut+k∥
∥ût − ut∥

= log

∥∥dkt ∥∥
∥dt∥

(2)

where dkt is the distance from the predicted state to the true
state, k steps in the future from a given t.

C. Model architecture: Error Trajectory Tracing

In order to track how errors evolve from intermediate states
(ut) to ut+k and catch the laypunov horizon loss at time
horizon k, we employ deep recurrent neural network cells
as building blocks to model the transition function F , and
design a tower architecture as shown in Figure 2 to model
the future evolution of the chaotic system from the prediction
made after a single step. In such a way that we can calculate
and backpropagate the Lyapunov horizon loss. We incorporate
the Lyapunov horizon loss with squared error as overall loss
function, then the network parameters θ can be optimized as
shown in Eq. 3.

We tried different recurrent cells and empirically find Gated
Recurrent Unit (GRU, [26]) to be superior to LSTM and
feedforward units across hyperparameter settings, so consider
only those models here.

θ∗ = argmin
θ

L

= argmin
θ

N∑
i=1

[
T∑

t=1

(û
(i)
t − u

(i)
t )2 +

T−k∑
t=1

λ
(i)
t

]

= argmin
θ

N∑
i=1

[
T∑

t=1

(û
(i)
t − u

(i)
t )2 +

T−k∑
t=1

log
∥û(i),k

t − u
(i)
t+k∥

∥û(i)
t − u

(i)
t ∥

]

= argmin
θ

N∑
i=1

 T∑
t=1

(d
(i)
t )2 +

T−k∑
t=1

log

∥∥∥d(i),kt

∥∥∥∥∥∥d(i)t

∥∥∥


(3)

Model Training. Recurrent neural networks are usually
trained using Teacher Forcing, whereby the model receives
the ground truth ut as input at time t, thus can help to
minimize the one-step prediction error and force the RNN
prediction[16]. With Teacher Forcing, a GRU cell can be
formulated as:

zt = σ(Wzut + Uzht−1 + bz)

rt = σ(Wrut + Urht−1 + br)

st = ϕh(Whut + Uh(rt ⊙ ht−1) + bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ st

ût+1 = Wuht + bu

(4)

where zt is the update gate, rt is the reset gate, and
ht is the hidden state. The parameters {Wz,Wr,Wh,Wu,
Uz, Ur, Uh, bz, br, bh, bu} can be updated using backpropaga-
tion. Taking Wz as an example (the process is similar for the
others), the updates can be computed as follows:

∂Lt

∂Wz
=

∂Lt

∂ht

∂ht

∂Wz

=
∂Lt

∂ht

t∑
i=1

(
∂ht

∂hi

∂hi

∂Wz

)

=
∂Lt

∂ht

t∑
i=1

t−1∏
j=i

∂hj+1

∂hj

 ∂hi

∂Wz


(5)

where ∂hj/∂Wz is the gradient of ∂hj with respect to Wz

while taking ∂hj−1 as a constant. And ∂ht/∂ht−1 is,

∂ht

∂ht−1
=

∂ht

∂st

∂st
∂ht−1

+
∂ht

∂zt

∂zt
∂ht−1

+
∂ht

∂ht−1

=
∂ht

∂st

(
∂st
∂rt

∂rt
∂ht−1

+
∂st

∂ht−1

)
+

∂ht

∂zt

∂zt
∂ht−1

+
∂ht

∂ht−1

(6)

Error Trajectory Tracing. To force the GRU cells to learn
how the error evolves over time and reduce prediction devi-
ations at later steps, we build the Error Trajectory Tracing
architecture as follows (See Fig. 3): first, we build a bottom
(zero) layer in the form of a standard GRU RNN. But at each
step in this layer, we transfer the hidden state and output to
two other cells: the next cell in the zero layer and another



Fig. 3: Our error trajectory tracing architecture for time-horizon prediction. Each rounded rectangle represents a GRU cell, all
of which share weights. Arrows entering the side of cells represent hidden state (ht) transfer, arrows pointing up represent
prediction of the next state (an application of transition function F ), ût. The trajectories on the left represent modeled trajectories
(light blue) against the ground-truth (black), illustrating the improvement resulting from training on a model’s own predictions
from teacher forcing to horizon forcing. Each tower models the future evolution of the chaotic system from the prediction
made after a single step (lower orange-shaded box). Our first-stage training minimizes dt (from the longer red arrow at the
bottom of the figure to the arrow immediately above it). The upper orange-shaded box represents optimization at the time
horizon (k + 1 steps); the later training stage minimizes dkt (from the longer red arrow at the top of the figure to the arrow
immediately above it), the time horizon loss.

cell (the next level up on the diagram) representing the next
state in the trajectory starting at the prediction (the first step
on the error trajectory). We then extend each of these towers
of GRU cells until we reach the kth (horizon) layer. Each
of these GRU “towers” traces the evolution of the trajectory
starting with the initial 1-step predictive error from the original
trajectory. Each successive GRU cell in the tower represents
an additional application of the transition function F . Thus,
ut in Eq. 4 should be replaced by ût.

Using backpropagation through each GRU “tower”,
∂ht/∂ht−1 can be updated as follows (terms differing from
standard backpropagation through time are indicated from
below with brackets):

∂ht

∂ht−1
=

∂ht

∂st

∂st
∂ht−1

+
∂ht

∂zt

∂zt
∂ht−1

+
∂ht

∂ht−1

=
∂ht

∂st

 ∂st
∂ût

∂ût

∂ht−1
+
∂st
∂rt

 ∂rt
∂ht−1

+
∂rt
∂ût

∂ût

∂ht−1

+
∂st

∂ht−1


+

∂ht

∂zt

 ∂zt
∂ht−1

+
∂zt
∂ût

∂ût

∂ht−1

+
∂ht

∂ht−1

(7)

All of the GRU cells in this architecture share weights. By
tuning them with both the horizontal GRU and the forward
evolutions of the error from each step, we are able to use this
forward-looking training method to tune our representation to
have strong short-and-long-term performance. In next section

we will present a novel training procedure for optimal training
of our ETT architecture.

D. A novel training procedure: Horizon Forcing

A challenge remains to be addressed before the ETT can
be trained to incorporate the Lyapunov horizon loss. As k
increases, a predicted trajectory may gradually deviate from
the ground truth and then coincidentally approach the ground
truth again after some step j. If we set k equal to a step
that is greater than j and ∥dkt ∥ is small, this small ∥dkt ∥ will
mislead the training of ETT because the big errors before the
k-step are ignored. However, if we want to extend our model’s
prediction horizon as far as possible, we may need to let ETT
be trained well with a large k. Inspired by these, we apply
a novel training method to our ETT architecture for better
training results. See Fig. 3

1) First, we train the 0th layer (the bottom orange-shaded
box in Fig. 3) using standard teacher forcing to reach a
strong one-step-ahead baseline. When this layer is well
trained, the divergence d

(i)
t (in Eq. 3) will decrease and

the prediction trajectory will be tightened in to the ground
truth trajectory. This will reduce one-step prediction error,
the difference ∥û(i)

t − u
(i)
t ∥ in eq. 3.

2) After the d
(i)
t training task converges, we choose a small

k and start to train the horizon (kth) layer (the top orange-
shaded box in Fig. 3). This further reduces the (k + 1)

step prediction error d(i),kt , optimizing out the large future
errors that result from the small errors made by the
converged one-step model.

jazz1
Highlight



3) By using the resulting model from step 2 as a new
baseline, Step 2 can be repeated n times to further extend
the time horizon to n ∗ k,

A benefit of our Horizon Forcing approach is that when
we train the horizon (kth) layer, all of the GRU cells will
be updated because their weights are shared. All outputs and
states in the ETT architecture are updated during each training
session, so minimizing the (k + 1) step prediction error will
continue minimizing the one step prediction error, which is
difficult to achieve when training a standalone GRU.

IV. EXPERIMENTS

A. Compared Models

We validate the utility of the Horizon Forcing method
on a deep recurrent network architecture by using k = 5,
yielding a teacher-forcing model (1-step ahead), and Horizon-
Forced models with horizons at 5, 10, 15, and 20 time-steps
ahead for all experiments. The RNN architecture is a single-
layer GRU with 256 latent units. We compare our Horizon
Forcing training regime with Teacher Forcing and Scheduled
Sampling [16] regimes optimizing a standard GRU network
with the same cell dimensionality. We run Scheduled sampling
under two experimental settings: 1) where we generate a
full prediction vector and sample from it at each time step
with probability 1− ϵi (which leaves each sampled prediction
independent) and where we allow for early stopping identically
to other methods (called Scheduled Sampling - Early Stopping
or SSES in our results table) and 2) where errors are computed
sequentially (and thus are dependent) and we enforce that the
entire schedule of sampling probabilities must be completed
at training (and which we call Scheduled Sampling - Full
Schedule or SSFS). We run all SSFS models with an inverse
sigmoid decay schedule, which dramatically outperformed
linear or exponential schedules during validation. We also
benchmark against BLS, ELM, and three transformer-based
deep neural models: Music Transformer (MTF), Informer (IF),
and Autoformer (AF). Our BLS model has 100 latent units (5
windows and 20 latent units per window) and 31 enhanced
units; ELM has 500 latent units; the music transformer has
four stacked encoders, each with four attention heads (64
latent units per head). To avoid the influence of training
hyperparameters, we use 100 sequence time steps as input
across all experiments and only tune the learning rate, r. For
Informer and Autoformer, we train using the same architecture
shape and learning rate used in their papers, and feed each
model’s encoder 100 time steps to ensure all models are
working with the same amount of data at inference.

All experiments were performed on a private Linux GPU
server with 48 CPU cores, 1TB RAM, and 8 Nvidia 1080ti
GPUs (each with ∼11GB memory). Each model was trained
using a single GPU, and was implemented in Tensorflow
2.0. We use a batch size of 30 trajectories throughout all
experiments. The maximum epochs are set to 200 but early
stopping is employed to stop training if no improvement is
made after 15 epochs. We also reduce the learning rate by

TABLE I: Experiment Setting

Data set Vars Inference
steps δγ δζ δµ

Lorenz 3 200 3.1065 0.228 0.1105
Accelerometer 3 300 0.2935 0.3635 0.182
Roaming Worm 5 160 2.265 0.8575 0.4615
Gait Force 6 300 158.6875 0.501 0.2565
Electricity 1 300 121.54 0.219 0.0595

10% after 5 epochs of no improvement.

B. Datasets

We study datasets corresponding to a well-known Lorenz
systems and a suite of real-world time series compiled in [27].

1) Lorenz ’63 system: The Lorenz ’63 system is a dynam-
ical system presented by Edward Lorenz in [28] as a means
to study some of the chaotic aspects of the atmosphere in
tractable equations, see Fig.1 (a).

The system has three variables, X,Y, and Z, which are
related by the following system of differential equations (dots
denote the derivative of a variable with respect to time):

ẋ =σ(y − x)

ẏ =x(ρ− z)− y

ż =xy − βz

(8)

When generating data, we set σ, ρ, and β to 10, 28, and
8
3 . These values were presented in the original ’63 paper as
settings that yield chaotic dynamics, and are commonly used
in literature. We use ∆t of 0.05 for each step and a stride of
five to divide the sequence into 8,500 training examples and
1,201 testing examples.

2) Real-World Datasets: [27] compiles a suite of real-
world data time series for evaluation of chaotic attractor
reconstruction. We use the following data sets, with each
training sequence being 100 time steps, split on sequence
identifier (entire sequences are assigned to be in exactly one
of train or test):

• Roaming Worm is a time series that tracks the evolution
of the curvature of worm C. Elegans. We use a stride of
four to section the dataset into 5,000 training sequences
and 1,649 testing sequences.

• Accelerometer contains accelerometer readings from a
gait database for a study participant walking with a
smartphone. We use 5,500 train samples and 801 test
samples, generated with a stride of two.

• Gait Force includes gait force measurements for a walk-
ing subject. Univariate. We use 5,600 train samples and
1,023 test samples, with a stride of nine.

• Electricity is a time series of the mean power usage (in
kilowatts) by 321 clients of a Portuguese power company
from 2011 to 2014, sampled every 15 minutes. We used



a stride of 23 time steps to generate 5,000 train samples
and 1,081 test samples.

C. Evaluation and Metrics.

In terms of long-term prediction, minor errors from the
early steps tend to compound as the predicted horizon extends.
Furthermore, we observe that in some problem domains, the
error can accumulate to such a degree that past a certain
time step, any resemblance a predicted sequence has with
the true sequence (as quantified by an evaluation metric) is
coincidental and no longer the result of having a useful long-
term representation of the system’s dynamics.

For this reason, in this study we employ a set of commonly-
used evaluation metrics that compare a single predicted step
with a single ground-truth step (see table II), and monitor
their change over time. Because we value a model’s ability to
make useful predictions for as long as possible, we evaluate
the competing methods by the expected amount of predictions
(number of time steps into the future) that can be made before
an error of a certain magnitude (as measured by metric M )
occurs. We refer to this as the model’s Prediction Horizon
and formulate it as follows:

PM = min
t

{
t
∣∣∣ 1

N

N∑
i=1

M
(
u
(i)
t , û

(i)
t

)
> δM

}
(9)

Here PM is the prediction horizon as measured by metric
M for the model making predictions û

(i)
t .

δM denotes the threshold being used. A balance must be
struck with respect to this value: if δM is chosen to be too
low, the prediction horizon will be short and noisy and fail to
differentiate between methods that perform well and those that
perform poorly. If δM ’s value is taken to be too large, then
prediction horizon will be long and also fail to differentiate
strong from weak methods: in some cases, it’s possible that a
high δM could result in the threshold never being reached for a
given sequence, in which case that sequence’s contribution to
the predicted range would be its length, greatly increasing the
range value in a manner that is not meaningful for evaluation.
Therefore, we seek a low threshold that isn’t immediately
crossed in practice. We find that among the datasets we
use and methods we compare, setting δM to be the average
performance of the best and second-best methods meets our
criteria and allows us to avoid the use of arbitrarily selected
thresholds. We report the δM values used for each dataset in
table I, along with the number of variables and inference steps
used.

We compute prediction horizon with respect to three met-
rics: Root Mean Squared Error (RMSE), Mean Normalized
Error (MNE), and Symmetric Mean Absolute Percent Error
(SMAPE), the computation of which we detail in Table II; t
is the time step at which the metric is being calculated and D
is the number of dimensions at time step t, indexed by d.

TABLE II: Metrics.

Metric Expression
Symbols:

Expectation &
Prediction Horizon

RMSE γ
(
u
(i)
t , û

(i)
t

)
=

√√√√ 1

D

D∑
d=1

∥∥∥û(i)
t,d − u

(i)
t,d

∥∥∥2 Eγ ;Pγ

MNE ζ
(
u
(i)
t , û

(i)
t

)
=

1

D

D∑
d=1

∥∥∥û(i)
t,d − u

(i)
t,d

∥∥∥∥∥∥u(i)
t,d

∥∥∥ Eζ ;Pζ

SMAPE µ
(
u
(i)
t , û

(i)
t

)
=

1

D

D∑
d=1

∥∥∥û(i)
t,d − u

(i)
t,d

∥∥∥∥∥∥û(i)
t,d

∥∥∥+
∥∥∥u(i)

t,d

∥∥∥ Eµ;Pµ

We also report the expectation with respect to each metric,
computed as follows:

EM =
1

N × T

N∑
i=1

T∑
t=1

M
(
u
(i)
t , û

(i)
t

)
(10)

TABLE III: Ablation Study

Dataset M
Teacher
Forcing ETT20 HF20

Lorenz Eγ 3.944 8.061 3.053
Pγ 107 0 127
Eζ 0.289 0.589 0.224
Pζ 105 0 126
Eµ 0.141 0.32 0.108
Pµ 106 0 126

Roaming Eγ 3.215 3.225 2.212
Worm Pγ 29 0 60

Eζ 1.28 1.275 0.831
Pζ 27 0 61
Eµ 0.576 0.644 0.448
Pµ 32 0 61

Accelero− Eγ 0.333 0.742 0.260
meter Pγ 92 0 208

Eζ 0.413 0.985 0.320
Pζ 92 0 214
Eµ 0.207 0.472 0.162
Pµ 89 0 209

Gait Eγ 202.483 183.919 157.724
Force Pγ 93 109 140

Eζ 0.651 0.586 0.5
Pζ 90 112 143
Eµ 0.41 0.376 0.318
Pµ 58 85 120

Electricity Eγ 159.618 214.595 98.447
Pγ 111 0 207
Eζ 0.292 0.436 0.177
Pζ 114 0 209
Eµ 0.122 0.169 0.078
Pµ 29 0 100



Fig. 4: Error curves illustrating benchmark error accumulation over time for various approaches and a model using Horizon-
Forcing across each dataset and metric. We see that the Horizon-Forced models consistently have lower error over a longer
time than alternative methods (HF error curves tend to be bellow the others).

D. Ablation Study

1) Horizon-Forced Models and Baseline GRU: We first
present evidence of the efficacy of our Lyapunov horizon loss.
We compare the model training with and without Lyapunov
horizon loss, which are ETT with k = 5 trained with Horizon
Forcing 4 times (HF20) and a GRU model trained with
Teacher Forcing, respectively. The results across all datasets
are provided in Table III. As we expect, HF20 outperforms
the Teacher Forcing across all datasets.

2) Error Trajectory Tracing Without Horizon Forcing:
To demonstrate the need for Horizon Forcing to train our ETT
architecture, we run a set of experiments where, instead of
iteratively training k-step ahead models (where k = 5 in this
case) to work our way out to the desired horizon k steps at
a time, we directly train to the horizon (20 steps ahead). This
choice of k is large enough that the aforementioned challenge
apply and performance is poor. We have included these results
in Table III as ETT20, and compare them with HF20.

3) Choice of Horizon: Here, we compare various choices
of time horizons by repeating Horizon Forcing {1, 2, 3, 4}
times with k = 5, resulting in models trained with respect
to horizons at 5, 10,15, and 20 time steps. Results can be
found in Table IV. HF models show robustness to the choice
of training metric—with few exceptions, when an HF model
is best in one metric, it tends to also be best in others.

Generally, training with a larger time horizon improves
performance; on 3 of 5 datasets, HF20 is the best model.

When it is not, the results are fairly close across horizons
(prediction horizon within 1-2% of the other models), but on
those datasets where there are large differences the longer
horizon dramatically outperforms the others.

E. Benchmarking

We compare Horizon-Forced models with Broad Learning
System (BLS), Extreme learning machine (ELM), Scheduled
Sampling - Early Stopping(SSES), Scheduled Sampling - Full
Schedule(SSFS), Music Transformer (MTF), Informer (IF),
and AutoFormer (AF). Expected values of metrics and their
prediction horizon are presented in Table IV, and full error
sequences (average error over all test sequences at each time
step) are shown in Figure 4. Lower is better for all expected
values and higher is better for all prediction horizon. Horizon-
Forced models are consistently better than the alternative
methods, and the average error sequences (Fig. 4) show that
in some cases (the BLS model on gait force, notably) strong
performance in Table IV from another model is actually
indicative of a tradeoff with HF. The BLS model on gait
force has very strong initial predictive performance but has
a sharp increase in average error around 200 time-steps in the
future (this is smoothed out by SMAPE, which has BLS as the
clear best performer); if predictions beyond that horizon were
necessary in practice, Horizon-Forced models would still be
preferred. We can also see SMAPE strongly favoring another
method (again BLS) on the electricity dataset—BLS has very



TABLE IV: Benchmarking

Benchmarking (“-” indicates error greater than 103) Horizon Forcing

Dataset M BLS ELM MTF IF AF SSES SSFS HF5 HF10 HF15 HF20

Lorenz Eγ 7.201 – 8.206 7.305 7.442 3.806 5.619 3.206 3.007 2.975 3.053
Pγ 2 0 17 0 0 110 73 121 128 129 127
Eζ 0.519 – 0.610 0.530 0.537 0.279 0.409 0.235 0.221 0.219 0.224
Pζ 2 0 16 0 0 109 71 121 127 128 126
Eµ 0.295 0.38 0.294 0.307 0.307 0.135 0.201 0.114 0.107 0.106 0.108
Pµ 2 0 17 0 0 110 73 123 127 128 126

Roaming Eγ 2.228 4.283 4.164 2.294 2.813 3.449 2.240 2.333 2.302 2.239 2.212
Worm Pγ 52 14 22 49 14 32 53 53 55 58 60

Eζ 0.843 1.745 1.687 0.874 1.086 1.383 0.838 0.885 0.872 0.843 0.831
Pζ 52 12 22 49 12 31 56 54 56 59 61
Eµ 0.565 0.648 0.651 0.626 0.702 0.591 0.462 0.465 0.458 0.449 0.448
Pµ 42 18 23 30 11 33 55 57 59 61 61

Accelero− Eγ 43.834 0.353 0.592 0.280 0.502 0.312 0.362 0.294 0.293 0.281 0.260
meter Pγ 80 65 4 111 0 113 80 123 124 138 208

Eζ 59.822 0.457 0.769 0.341 0.635 0.388 0.439 0.366 0.361 0.345 0.320
Pζ 66 45 3 111 0 111 88 123 125 138 214
Eµ 0.312 0.231 0.399 0.177 0.355 0.196 0.222 0.184 0.180 0.173 0.162
Pµ 64 45 3 110 0 91 79 123 124 140 209

Gait Eγ 996.947 – 180.482 293.610 237.578 188.083 149.072 162.578 154.797 155.979 157.724
Force Pγ 189 18 109 0 0 105 159 136 144 143 140

Eζ 3.159 – 0.576 0.949 0.769 0.602 0.466 0.514 0.488 0.495 0.500
Pζ 186 18 112 0 1 107 167 139 147 145 143
Eµ 0.199 0.497 0.364 0.871 0.465 0.381 0.310 0.328 0.314 0.314 0.318
Pµ 195 93 80 0 0 77 126 115 120 122 120

Electricity Eγ – 497.149 330.938 618.958 200.252 184.876 208.360 123.850 119.230 112.004 98.447
Pγ 41 6 9 0 0 73 0 121 123 163 207
Eζ 27.871 0.818 0.652 0.939 0.369 0.338 0.403 0.223 0.215 0.201 0.177
Pζ 39 9 10 0 0 41 0 123 124 166 209
Eµ 0.026 0.425 0.229 0.886 0.16 0.139 0.165 0.096 0.093 0.088 0.078
Pµ 300 1 5 0 0 23 0 61 63 65 100

low expected SMAPE and the clear lowest SMAPE average
error sequence in Figure 4 (bottom row, far right plot), but
this is actually the result of a small number of predicted values
with very large error magnitude. The inclusion of the predicted
value in the denominator of SMAPE upper bounds its value
at 1, which limits the impact of the occasional error spikes on
the expected SMAPE, resulting in improved performance by
that metric. With its strong performance by SMAPE and weak
performance when measured with RMSE or Normalized Error,
the value of the model in such a situation would depend on the
details of the task and may be cause for concern in practice.

We additionally find that Scheduled Sampling run to its
full schedule (SSFS) performs worse than the version that we
allow to stop when validation loss stops decreasing (SSES)
on four of the seven datasets. SSFS outperforms SSES on the
Roaming Worm dataset (remaining lower than the HF models)
and on the Gait Force dataset, where its results are excellent
(only BLS is better) and HF underperforms. SSFS also fails to
properly converge on the Electricity dataset, which we believe
is due to the that dataset being a stable time series with the
presence of “spikes” in usage that can lead to high predictive
error (or not) at random based on sampling chance.

The transformer models (Music Transformer, Informer, and
AutoFormer) are not able to match the performance of our
Horizon-Forced models, with the improvement most notable

over the known chaotic systems. The strange wave-like error
curve AutoFormer produces on Lorenz is due to the double-
lobed trajectory of the attractor; AutoFormer is designed to use
autoregressive attention-based features to process seasonality
and trend, and so does not respond to the long trips out on the
wings. This cyclical error curve shows that behavior—when
the true trajectory is close to the center, the error is relatively
low, when the true trajectory is far out on a wing, the error
is high. Some transformer models perform at par with HF
on some datasets (Informer is excellent on the Accelerom-
eter data, Music Transformer performs well on Gait Force,
Informer and Autoformer both predict Roaming Worm well),
but it can be seen that the HF models are the most consistent
across datasets and metrics.

F. Discussion

We have shown our method effective for use in simulated
chaotic systems and real-world datasets. Here, we discuss the
situations in which our approach is most valuable.

HF/ETT is designed to iteratively optimize over error tra-
jectories every k steps in the future (i.e., optimizing 1-step,
k-step, 2k-step error, etc), which is ideal for systems with
exponential error growth and where trajectories starting at
initially close points (say, a ground-truth state in a phase
space and a good model prediction of that state) could diverge



dramatically (or not) in response to small changes in their
positions.

In such cases, creating an initial model of the dynamics
(1-step error), then using that model to sample the error at
increasingly distant horizons to enable the learning of the
compounding effect (that is known to be present in chaotic
systems) is an effective approach. However, systems could
exist (especially non-chaotic systems) where the monotonic
nature of the exponential divergence we picture in Figure 3
does not hold, and either 1) 1-step error is strongly correlated
with future error and HF/ETT is not necessary or 2) the error
evolves in such a way that sampling 1- and k-step errors are
not able to capture the behavior of, say, k+1

2 -step errors due to
periodicity or other correlations within the data. We do expect
this effect to be small in practice (especially for small values
of k).

V. CONCLUSION

Chaotic systems are found across many fields of study,
including climatology, biology, virology, and many others.
Improved methods to model the dynamics of such systems
have the potential to offer broad utility in a number of appli-
cations. Here, we have introduced a new recurrent architecture,
error trajectory tracing, and accompanying training regime,
Horizon Forcing, for prediction of chaotic systems; instead of
merely minimizing local error at each time-step, we monitor
how those errors evolve at a time horizon so the model can
optimize its parameters based on an estimation of the future
cost of a small present error. By comparing with state-of-
the-art machine learning methods, we validate our method
on a widely studied simulated system and show it to be
highly effective in making predictions on chaotic systems with
sensitive dependence on initial conditions, and further validate
against time series data from a number of real-world problem
domains.

VI. ACKNOWLEDGEMENTS

Funding for this research was provided by NSF grants IIS-
2008202 and IIS-2008276. This research was also partially
supported by the Oracle grant to the College of Science and
Mathematics at the University of Massachusetts Boston.

REFERENCES

[1] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry and Engineering. Westview Press, 2000.

[2] D. Wang, W. Ding, K. Yu, X. Wu, P. Chen, D. L. Small, and S. Is-
lam, “Towards long-lead forecasting of extreme flood events: a data
mining framework for precipitation cluster precursors identification,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2013, pp. 1285–1293.

[3] M. Mitchell, Complexity: A Guided Tour. USA: Oxford University
Press, Inc., 2009.

[4] D. Simovici and K. Hua, “Data ultrametricity and clusterability,” in
Journal of Physics: Conference Series, vol. 1334, no. 1. IOP Publishing,
2019, p. 012002.

[5] K. Hua and D. A. Simovici, “Dual criteria determination of the number
of clusters in data,” in 2018 20th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC). IEEE,
2018, pp. 201–208.

[6] C. P. Chen and Z. Liu, “Broad learning system: An effective and efficient
incremental learning system without the need for deep architecture,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 1, pp. 10–24, 2017.

[7] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501,
2006.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[9] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, I. Simon,
C. Hawthorne, A. M. Dai, M. D. Hoffman, M. Dinculescu, and D. Eck,
“Music transformer,” arXiv preprint arXiv:1809.04281, 2018.

[10] S. A. Billings, Nonlinear system identification: NARMAX methods in
the time, frequency, and spatio-temporal domains. John Wiley & Sons,
2013.

[11] S. H. Rudy, J. N. Kutz, and S. L. Brunton, “Deep learning of dynamics
and signal-noise decomposition with time-stepping constraints,” Journal
of Computational Physics, vol. 396, pp. 483–506, 2019.

[12] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos,
“Data-driven forecasting of high-dimensional chaotic systems with long
short-term memory networks,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 474, no. 2213,
p. 20170844, 2018.

[13] K. Hua and D. A. Simovici, “Long-lead term precipitation forecasting by
hierarchical clustering-based bayesian structural vector autoregression,”
in 2016 IEEE 13th International Conference on Networking, Sensing,
and Control (ICNSC). IEEE, 2016, pp. 1–6.

[14] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan,
and E. Ott, “Hybrid forecasting of chaotic processes: Using machine
learning in conjunction with a knowledge-based model,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 4, p. 041101,
2018.

[15] R. Wang, E. Kalnay, and B. Balachandran, “Neural machine-based
forecasting of chaotic dynamics,” Nonlinear Dynamics, pp. 1–15, 2019.

[16] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Advances in
Neural Information Processing Systems, 2015, pp. 1171–1179.

[17] F. Huszár, “How (not) to train your generative model: Scheduled sam-
pling, likelihood, adversary?” arXiv preprint arXiv:1511.05101, 2015.

[18] A. M. Lamb, A. G. A. P. Goyal, Y. Zhang, S. Zhang, A. C. Courville, and
Y. Bengio, “Professor forcing: A new algorithm for training recurrent
networks,” in Advances in neural information processing systems, 2016,
pp. 4601–4609.

[19] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 2891–2900.

[20] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R. Ke,
A. Goyal, Y. Bengio, A. Courville, and C. Pal, “Zoneout: Regulariz-
ing rnns by randomly preserving hidden activations,” arXiv preprint
arXiv:1606.01305, 2016.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[22] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of AAAI, 2021.

[23] J. Xu, J. Wang, M. Long et al., “Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[24] M. Han, S. Feng, C. P. Chen, M. Xu, and T. Qiu, “Structured manifold
broad learning system: A manifold perspective for large-scale chaotic
time series analysis and prediction,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, no. 9, pp. 1809–1821, 2018.

[25] J. C. Sprott, Chaos and time-series analysis. Citeseer, 2003, vol. 69.
[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[27] W. Gilpin, “Deep reconstruction of strange attractors from time series,”
Advances in neural information processing systems, 2020.

[28] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the atmo-
spheric sciences, vol. 20, no. 2, pp. 130–141, 1963.


