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Abstract—In this paper, we investigate jamming-resilient UAV
path planning strategies for data collection in Internet of Things
(IoT) networks, in which the typical UAV can learn the optimal
trajectory to elude such jamming attacks. Specifically, the typical
UAV is required to collect data from multiple distributed IoT
nodes under collision avoidance, mission completion deadline,
and kinematic constraints in the presence of jamming attacks.
We first design a fixed ground jammer with continuous jamming
attack and periodical jamming attack strategies to jam the link
between the typical UAV and IoT nodes. Defensive strategies
involving a reinforcement learning (RL) based virtual jammer
and the adoption of higher SINR thresholds are proposed to
counteract against such attacks. Secondly, we design an intelligent
UAV jammer, which utilizes the RL algorithm to choose actions
based on its observation. Then, an intelligent UAV anti-jamming
strategy is constructed to deal with such attacks, and the optimal
trajectory of the typical UAV is obtained via dueling double
deep Q-network (D3QN). Simulation results show that both
non-intelligent and intelligent jamming attacks have significant
influence on the UAV’s performance, and the proposed defense
strategies can recover the performance close to that in no-jammer
scenarios.

Index Terms—UAV path planning, IoT networks, jamming
attack, reinforcement learning.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) or drones are aircrafts
piloted by remote control or embedded computer programs
without human onboard. Owing to their mobility, autonomy,
and flexibility, UAVs are expected to be utilized extensively
in different use cases in the next decade [1]. For example,
they are considered as critical components in Internet of
Things (IoT) scenarios [2], in which devices often have
small transmit power and may not be able to communicate
over a long range [3]. In such cases, UAVs can be used to
assist IoT applications on e.g., data gathering [4], disaster
mitigation and recovery [5]. Efficient trajectory control enables
the UAV to achieve higher network performance with limited
terrestrial infrastructure [6], [7]. However, the broadcast nature
of wireless transmissions makes the UAV-enabled wireless
communication systems vulnerable to jamming attacks [1],
[8]–[10], leading to one of the major and serious threats to
UAV-aided communications, especially when the jammer is
mobile [11]. In addition, the trajectory control problem in
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hostile environments faces the following challenges, which
make the UAV path planning hard to perform: i) multiple
practical constraints should be jointly considered; ii) there
exists uncertainty in the information on the jammer; and
iii) malicious jamming makes the environment time-varying
and non-stationary, especially when intelligent and mobile
jammers are considered. Motivated by these observations, this
paper investigates the effective jamming-resilient policies to
safeguard UAV-enabled data collection networks by designing
the UAV trajectory under multiple practical constraints in
adversarial settings.

A. Related Works

Several studies have recently addressed ground jamming
attacks in UAV-enabled networks. Particularly, in [9], a re-
ceived signal strength based jammer localization algorithm is
proposed to help the UAV plan its path. In [10], by exploiting
the block coordinate descent (BCD) and successive convex
approximation (SCA) techniques, an iterative algorithm was
proposed to solve the anti-jamming three-dimensional UAV
trajectory design problem. In [12], the authors considered mul-
tiple ground jammers in a multi-UAV path planning problem,
and proposed two BCD based algorithms to obtain sub-optimal
solutions with the aid of slack variables, SCA technique and
S-procedure. In addition, the same method was constructed
to solve the UAV path planning in a uplink communication
system with turning and climbing angle constraints in [13].
The authors in [14] considered a UAV-enable relay network
under malicious ground jamming attacks, BCD and SCA tech-
niques were utilized to optimize the UAV trajectory and the
transmit powers of both the UAV and the source node. In [15],
by introducing the slack variables and leveraging the SCA
technique, the authors designed a trajectory planning method
to optimize the UAV’s 3D position, and cases with a single
jammer and also with multiple jammers were discussed. The
authors in [16] investigated UAV swarm communication in the
presence of jammers, an iterative algorithm was constructed
based on BCD and SCA technique to optimize the UAVs’
trajectories.

Above mentioned works all considered ground jammers and
mainly utilized traditional optimization techniques to solve
the UAV path planning problem. These optimization-based
methods typically require prior knowledge of the jammer, and
lack the ability to adapt to different jamming environments,
e.g., in which the jammer’s location is changed, or jamming is
performed in a time-varying fashion. To tackle this challenge,
the authors in [17] developed a reinforcement learning (RL)
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based automatic flight control algorithm to perform UAV
trajectory design in a coordinated satellite-UAV communica-
tion system in the presence of ground jamming attacks. The
jammer launched attacks according to a jamming probability.
However, this jammer was not smart either. The authors in [18]
designed a deep Q-network (DQN) based UAV trajectory and
power control scheme against attacks from a ground jammer,
which could change its path and transmit power levels. But
the jammer did not have an intelligent policy to adjust its
condition to perform adaptive attacks.

Due to the expanded application of UAVs, malicious jam-
ming attacks may also come from the sky. Consequently,
UAV jamming attacks have also been considered recently in
the literature. For instance, the authors in [19] formulated a
zero-sum pursuit-evasion game to compute optimal trajectory
strategies by a team of UAVs to evade the attack of an
aerial jammer on the communication channel between UAVs.
The authors in [20] considered a Bayesian Stackelberg game
to formulate the competitive relations between UAVs and
an aerial jammer, where the jammer and the UAVs aim
to complete their missions by selecting their optimal power
control strategies.

RL has also been utilized to obtain solutions against aerial
jamming attacks. For example, in [21], the authors utilized the
non-cooperative game theory to propose a Q-learning based
power control algorithm to obtain an adaptive policy against
a smart UAV jammer, which executes multiple attack types,
such as eavesdropping, jamming, and spoofing. In [22], a
static and smart attacker, which made subjective decisions to
choose the attack types was taken into account, and DQN
based UAV power allocation strategy was proposed against
the attack. In [23], the ground users aimed to learn the
optimal anti-jamming policy to protect its communication with
a ground base station. The optimal jamming trajectory and user
communication trajectory were obtained via deep recurrent Q-
network and DQN, respectively. In [24], the authors considered
a task-based anti-jamming scenario, in which a UAV swarm
cooperated to detect a fixed ground target, and a cluster of
UAV jammers cooperated to interfere with the area around the
target. A knowledge-based RL algorithm was proposed for the
UAV swarm to learn jamming-resilient trajectories. In [25], the
authors considered a maritime communication scheme, which
applied a UAV as relay to forward the message between ships
against smart aerial jamming attacks. Q-learning and dueling
neutral networks were utilized to select power control policies
for the jammer and the UAV, respectively. The authors in [26]
considered both a fixed jammer and a mobile UAV jammer
with a fixed trajectory. A modified Q-learning algorithm based
on multi-parameter programming was proposed for the UAVs
to tune antenna beam to improve the overall communication
quality.

In above mentioned related works, smart aerial jamming
attacks were considered. However, none of the studies con-
sidered jamming attacks in UAV data collection networks
with multiple practical constraints, e.g., collision avoidance
constraint, kinematic constraint, communication constraint,
flight duration constraint. An intelligent reflecting surface
(IRS)-assisted UAV data collection network under malicious

jamming was taken into account in [27]. An alternating
optimization based algorithm was proposed by leveraging
the Dinkelbach’s algorithm, SCA, and BDC method, which
requires prior knowledge of the jammer information. The
jammer in this work was on the ground and non-intelligent.
Also, collision avoidance and kinematic constraints were not
taken into account. Note that different networks require very
different algorithm designs.

B. Contributions
In this paper, different from prior studies, we consider a

general noncooperative multi-UAV setting and address de-
centralized UAV trajectory designs for data collection in the
presence of adversarial jamming attackers while also avoiding
collision with other non-adversarial UAVs and considering
multiple practical constraints. The main contributions are
summarized as follows:
‚ A practical environment involving multiple constraints is

considered. In particular, a practical setting that includes
a fixed/mobile jammer and multiple non-cooperative and
non-adversarial UAVs is addressed. Collision avoidance,
mission completion deadline, kinematic, and transmission
constraints are taken into account.

‚ A fixed ground jammer is designed with both continuous
jamming attack and periodical jamming attack strategies
to jam the link between the typical UAV and IoT nodes.
Information on the jammer (e.g., its location) and the
channel is unavailable to the typical UAV. Based on the
UAV path planning algorithm proposed in [28], defensive
strategies involving virtual jammers and higher SINR
thresholds are proposed against both attack strategies.

‚ An RL-based intelligent UAV jammer is designed, by
which the jammer follows the typical UAV and injects in-
terference. Subsequently, an intelligent jamming-resilient
strategy is constructed, with which the optimal trajectory
of the typical UAV is devised via dueling double deep
Q-network (D3QN) with designed state parameterization
process. Sophisticated reward functions is designed to
find the balance between the motion, mission and com-
munication performance.

We further note that the proposed anti-jamming algorithms
are completely based on observable data from the environment,
which is more realistic than that in previous studies that
assume the position of the jammer is fixed and known or part
of the channel information is known. In addition, practical
constraints including collision avoidance, mission completion
deadline and kinematic constraints are taken into account even
for the intelligent UAV jammer (in addition to the typical
UAV), leading to more realistic and practical models.

The remainder of the paper is organized as follows: Section
II provides the details of the considered system model. Section
III introduces the ground jamming attack strategies and the
RL-based anti-jamming algorithm. Section IV describes the in-
telligent mobile jamming attack algorithm. Section V presents
the details of defense algorithm against the intelligent jam-
ming attack. Section VI focuses on numerical and simulation
results to evaluate the performance of the proposed algorithms.
Finally, concluding remarks are provided in Section VII.
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II. SYSTEM MODEL

A. Network

We assume that the area of interest is a cubic volume, which
can be specified by C : XˆYˆZ and X fi rxmin, xmaxs, Y fi

rymin, ymaxs, and Z fi rzmin, zmaxs. There are multiple no-fly
zones (obstacles) in the area through which UAVs cannot fly.
And the no-fly zones are denoted as N : XN ˆ YN ˆ Z. An
illustration of the system model is provided in Fig. 1.

1) UAV: In the considered multi-UAV scenario, one UAV
is chosen as the typical one, whose mission is to collect data
from multiple ground IoT nodes. The UAV is modeled as disc-
shaped with radius r. Let pV “ rpx, py, HV s denote the 3D
position of the UAV, where HV is the altitude of the UAV.

The typical UAV’s information forms a vector that consists
of the UAV’s position, current velocity v “ rvx, vys, radius
r, destination pD, maximum speed vmax, and orientation φ,
i.e., sV “ rpV , v, r, pD, vmax, φs P R11. In this multi-UAV
scenario, there are also Jo other non-cooperative and non-
adversarial UAVs traveling within region C. None of the UAVs
communicate with each other. Therefore, the missions, des-
tinations, movements, and decision-making policies of other
UAVs are unknown. It is assumed that the typical UAV is
equipped with low-cost sensors, with which it is able to sense
the existence of other UAVs when they are closer than a certain
distance. The circular sensing region is denoted by O.

2) Jammer: One jammer also exists in the environment,
which transmits jamming signals to interfere the links between
the typical UAV and the IoT nodes. The jammer can be a
ground jammer with height HJ “ 0 or a moving UAV jammer
with height HJ .

3) IoT Nodes: In this UAV-assisted network, there are
N IoT nodes that need to upload finite amount data DL

n0

to the typical UAV via uplink transmission. The nth node
has transmit power Pn, and is located at ground position
pn “ rpxn , pyns. The IoT nodes have two modes: active mode,
if the node still has data to be transmitted; and silent mode, if
data upload is completed.

Fig. 1: An illustration of a UAV-assisted data collection network
with a jammer, which can be either a ground jammer or a moving
UAV jammer.

B. Channel Model

Due to the high UAV altitude, we assume that all links
between the typical UAV and IoT nodes, and link between the
typical UAV and the jammer are line-of-sight (LOS). Then,
the path loss can be expressed as

Lpdq “
`

d2 `H2
˘α{2

(1)

where α is the path loss exponent, d is the horizontal distance
between the typical UAV and a node or a jammer, and H is
the height difference between the typical UAV and the IoT
node (for which case we have H “ HV ) or a jammer (for
which case we have H “ |HV ´HJ |).

The IoT nodes and the jammer are assumed to have the
omni-directional antenna gains of Gn “ 0dB and GJ “ 0dB,
respectively. The UAVs are assumed to be equipped with a
receiver with a horizontally oriented antenna, and a simple
analytical approximation for antenna gain provided by UAV
can be expressed as [29]

GV pdq “ sinpθq “
H

a

d2 ` pHq2
(2)

where θ is elevation angle between the UAV and a node. We
note that even though specific antenna gains are considered
for the sake of being concrete, the subsequent analysis is
applicable to any type of antenna pattern.

C. Signal-to-Interference-plus-Noise Ratio (SINR)

The received signal from the nth node to the typical UAV
can be expressed as P rn “ PnGV pdnqL

´1pdnq. With this, the
SINR at the UAV if it is communicating with the nth IoT
node can be formulated as

SVn fi
PnGV pdnqL

´1pdnq

Ns ` IJ
(3)

where Ns is the noise power, and IJ is the interference from
the jammer, which can be expressed as

IJ “ P JGV pdJV qL
´1pdJV q (4)

where P J is the transmit power of the jammer, and dJV is
the horizontal distance between the UAV and the jammer.

D. Rate

The maximum achievable information rate if the typical
UAV is connected with the nth node is

Rmax
n “ log2p1` S

V
n q. (5)

To support data flows, UAV has to maintain a reliable commu-
nication link to the IoT nodes. To achieve this, it is assumed
that the SINR at the UAV when connected with a node should
be larger than a certain threshold T V

s . Then, the UAV can
communicate with the node successfully. Otherwise, the UAV
is not able to collect data from the node. Therefore, the
effective information rate according to the SINR threshold T V

s

can be given as

RVn “

#

Rmax
n , if SVn ě T V

s ,

0, otherwise.
(6)
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E. Scheduling

Standard time-division multiple access (TDMA) model is
adopted. Hence, the UAV can communicate with at most one
node at each time. Using qVn P t0, 1u to indicate the connection
with the nth node, we have

N
ÿ

n

qVn ď 1. (7)

The scheduling is according to the largest SINR strategy,
meaning that the UAV is connected with the active node
providing the largest SVn . We can mathematically express the
scheduling strategy as

qVn “

$

&

%

1, if n “ argmax
n1Ptactive nodesu

SVn1 ,

0, otherwise.
(8)

A summary of the notations are provided in Table I.

TABLE I: Table of Notations

Notations Description

C, N Area of interest; no-fly zones/obstacles

O The typical UAV’s sensing region

N , Jo The number of IoT nodes; the number of other non-
cooperative and non-adversarial UAVs

p˚ Position, where ˚ P tV, J, nu and V , J , n stand for
the typical UAV, the jammer, and the nth IoT node,
respectively

v˚, φ˚, r˚ Velocity, orientation, radius, where ˚ P tV, Ju

L,G˚ Path loss, and antenna gain, where ˚ P tV, J, nu

H˚ Flying altitude, where ˚ P tV, Ju

DL
n The amount of data left at the nth IoT node

P˚ Transmit power, where ˚ P tJ, nu

P r
n Received signal power from the nth IoT node

IJ Interference from the jammer

SV
n , R

V
n SINR and effective information rate of the typical UAV

when connected with the nth IoT node

qVn Connection indicator of the typical UAV with the nth IoT
node

S˚,A˚,R˚ State space, action space, reward, where ˚ P tV, Ju

T˚ Number of total time steps, where ˚ P tV, Ju

T V
s SINR threshold of the typical UAV

T ˚
t Mission completion time threshold, where ˚ P tV, Ju

T ˚
r Maximum rotation angle in unit time duration, where ˚ P

tV, Ju

v˚
max Maximum speed, where ˚ P tV, Ju

Ns The noise power

∆t One time step duration

π˚ Policy, where ˚ P tV, Ju

τ The jamming period in periodic jamming attack strategy

III. GROUND JAMMING ATTACKS AND DEFENSES

In this section, we consider a network with a fixed ground
jammer, which is located on the ground at pJ and is assumed
to have transmit power P J and omni-directional antenna
pattern with GJ “ 1 “ 0dB. Therefore, the interference
from the jammer to the typical UAV can be expressed

as IJ “ P J
`

d2JV `H
2
V

˘´α{2 HV?
d2JV `H

2
V

. Different non-

learning based attack strategies are designed for the jammer to
jam the links between the typical UAV and the IoT nodes, and
different defense strategies are also designed for the typical
UAV against these jamming attacks.

A. Ground Jamming Attack Strategies

1) Continuous Jamming Attack Strategy: It is designed that
the jammer transmits at a fixed transmit power P Jl at a fixed
location all the time.

2) Periodic Jamming Attack Strategy: It is designed that the
jammer works periodically at a fixed location with relatively
higher transmit power P Jh , and the jamming time duration is
τJh seconds per minute. For fairness in the comparison with
the continuous attack strategy, it is assumed that P Jl ˆ τJl “
P Jh ˆ τ

J
h , and τJl “ 60s.

Note that the jammer’s information and strategy are un-
known to the typical UAV.

B. Problem Formulation for Defense

The goal of the typical UAV is to design efficient trajec-
tories to maximize the collected data from the IoT nodes
under several constraints in the presence of jamming attacks.
Specifically, the optimization problem can be formulated as

pPVq : argmax
tpVt ,@tu

TV
ÿ

t“0

N
ÿ

n“1

qVnt∆tR
V
nt

s.t. ||pVt ´ pjt||2 ą rV ` rj ,@j,@t (PV.a)

TV ¨∆t ď T V
t (PV.b)

vVst ď vVmax,@t (PV.c)

|φVt ´ φ
V
t´1| ď ∆t ¨ T V

r ,@t (PV.d)
N
ÿ

n

qVn ď 1,@t (PV.e)

pV0 “ pSV , p
V
T “ pDV , (PV.f)

pVt R N,@t, (PV.g)

where pVt is the typical UAV’s position at t. In the above
formulation, we have collision avoidance constraints in (PV.a)
and (PV.g), which restrict that the distance between two UAVs
should be large than the sum of their radii all the time and the
typical UAV should not collide with the obstacles/no-fly zones.
Mission completion deadline in (PV.b) requires the typical
UAV to finish its mission in allowed time duration. Kinematic
constraints in (PV.c) and (PV.d) show the maximum speed
and maximum rotation angel in unit time duration limitations.
(PV.e) is TDMA constraint, and (PV.f) indicates the start and
destination locations constraint.

C. Reinforcement Learning Formulation

Typically, a sequential decision making problem can be
formulated as a Markov decision process (MDP) [30], which
can be described by tuple xS,A,P,R, γy, representing the
state space, action space, state-transition model, the reward
function, and a discount factor that trades off the importance
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of the immediate and future rewards. Therefore, the trajectory
optimization problem, as a sequential decision making prob-
lem, can be formulated as an MDP constructed as follows:

1) State Space SV : The state is sV jnt “ rsVt , sot , snt , sVtts
with the following components:

‚ sVt “ rpV , v, r, pD, vmax, φs is the typical UAV’s full
information vector at time step t.

‚ sot “ rrpxjt , pyjt , HV , vxjt , vyjt , rjs : j P t1, 2, ..., Jot us
is the joint information vector of observed other non-
cooperative and non-adversarial UAVs at the same height.
Jot ě 0 is the number observed other UAVs.

‚ snt “ rsnnt : n P t1, ..., Nus is the joint information vector
of all IoT nodes. snnt “ rpn, DL

nt, P
r
nts consists of the

location information pn, the amount of remaining data
DL
nt (which can be obtained from DL

n,t´1, P rnt, and the
scheduling parameter qVn ), and the received signal power
P rnt from each node.

‚ sVtt is the available time left for the given mission.

It’s worth noting that information of the jammer is unknown.
2) Action Space AV : The action aV is the index of

each velocity in a velocity-set, which consists of permissible
velocities sampled according to the kinematic constraints.

3) State-Transition Model PV : In an MDP, the state tran-
sition of an agent follows a Markov chain. Each agent takes
action according to the current state, and then turns into next
state after interacting with the environment. The transition
probability distribution is related to the applied algorithm.

4) Reward RV : The reward function of the typical UAV
in the considered scenario can be expressed as

RV
t “ RV

dt `RV
ct `RV

ot `RV
tt `RV

gt `RV
st. (9)

The first term RV
dt is related to the data collected from the

nodes during next time duration ∆t, and can be expressed as

RV
dt “ α1 ˆ

˜

N
ÿ

n“1

DL
nt ´

N
ÿ

n“1

DL
n,t`1

¸

. (10)

RV
ct indicates the “repulsive force” from other agents, and is

introduced to encourage the typical UAV to stay further away
from others to avoid collision, It is given by

RV
ct “

$

’

’

’

’

&

’

’

’

’

%

´α2, if dVtmin
ď rV ` rj ,

´α2 ˆ p1´
dVtmin

´rV ´rj

dVb
q,

if rV ` rj ă dVtmin
ď dVb ` r

V ` rj ,

0, otherwise,

(11)

where dVtmin
is the minimum distance from the typical UAV to

other UAVs at the same height during next time duration ∆t,
and dVb is a constant that denotes the distance buffer, inside
which the typical UAV will receive a penalty that depends on
dVtmin

. RV
ot is to penalize the collision with fixed obstacles or

entering non-fly zones, and can be expressed as

RV
ot “

#

´α3, if pVt`1 P N,

0, otherwise.
(12)

RV
tt represents the “attractive force” from the destination to

encourage the typical UAV to arrive at its destination within
the allowed duration of time, and can be formulated as

RV
tt “

#

α4 ˆ ps
V
t,t`1 ´ T

V min
g,t`1 q, if sVt,t`1 ă TV min

g,t`1 ,

0, otherwise,
(13)

where sVt,t`1 is the available time left for the given mission,
TV min
g,t`1 “ dVg,t`1{v

V
max is the minimum time duration needed

to reach destination, and dVg,t`1 is the distance to destination
at time step t` 1. RVgt is the reward given for arriving at the
destination, and

RV
gt “

#

α5, if pVt`1 “ pDV ,
0, otherwise.

(14)

The last term RV
st “ ´α6 is a step penalty for each movement,

and it is used to encourage fast arrival. Note that α1„6 are
positive constants, and can be varied to adjust the weight or
emphasis of each reward term to adapt to different mission
priorities.

RL is a class of machine learning methods that can be
utilized for solving sequential decision making problems with
unknown state-transition dynamics [31] [32]. RL can also be
utilized to develop a jamming-resilient method that does not
need to model the environment [26]. Dueling double deep Q-
network (D3QN) is a combination of dueling deep Q-network
(DQN) and double deep Q-network (DDQN), and is a more
effective and stable learning strategy. Thus, D3QN is used to
learn the typical UAV path planning policy.

D. Anti-Ground-Jamming Strategies

Due to the uncertainty in jammer’s location, the typical
UAV’s policy should be trained with consideration on the
influence from jamming attacks. Therefore, two D3QN-based
defense strategies are proposed as follows:

1) Defense with a Virtual Jammer in Training (VJ): With
this strategy, we assume that a virtual jammer exists in the
environment in training, which transmits all the time at a
fixed transmit power P J

1

at location pJ
1

. The location of the
virtual jammer can be chosen arbitrarily or randomly (and
this location does not need to match the location of the real
jammer, whose knowledge is assumed to be not available in
training). For instance, the virtual jammer’s location can be
chosen according to the distribution of the IoT nodes (e.g., the
geometric center of the IoT node groups). Then, a policy can
be learned in this environment with virtual jammer present.

2) Defense with Higher SINR Threshold (HST): As noted
before, the transmission is reliable when the experienced SINR
at the typical UAV is larger than a certain threshold, i.e., SV ě
T V
s . With this defense strategy, we impose, in training, an

SINR threshold T V 1

s that is larger than what is needed, i.e.,
T V 1

s ą T V
s , and we have the typical UAV learn a policy using

this higher SINR threshold T V 1

s . This leads to resiliency to
increased interference inflicted by the jammer.

The main algorithm is provided in Algorithm 1.
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Algorithm 1: UAV Path Planning Algorithm Against
Ground Jamming Attacks

Input: T V
s , T V

t , vVmax, T V
r

1 Initialize replay memory D
2 Initialize evaluation network ξ (including ξV and ξA)
3 Initialize target network ξ´ (including ξV´ and ξA´)

by copping from ξ
4 AV Ð sampleActionSpactpvVmax, T V

r q

5 Choose defense strategy DS
6 if DS is VJ then
7 pJ

1

Ð randomGenerate in C
8 else if DS is HST then
9 T V 1

s Ð T V
s ` cs

10 else
11 No defense

12 for episode = 0: total episode Ne do
13 E Ð resetEnvironmentpq
14 while not done do
15 sV jnt Ð observeEnvironmentpEq
16 rsV jnt Ð parameterizeStatepsV jnt q

17 cÐ randomSample(Uniform (0,1))
18 if c ď ε then
19 aVt Ð randomSamplepAV q

20 else
21 aVt Ð argmax

aV 1PA
Qprsjnt , aV

1

; ξq

22 RV
t , s

V jn
t`1 Ð executeActionpaVt , pJ

1

or T V 1

s q

23 rsV jnt`1 Ð parameterizeStatepsV jnt`1 q

24 Uptate D with tuple prsV jnt , aVt ,RV
t ,rs

V jn
t`1 q

25 Sample a minibatch of Nb tuples
ps, a,R, s1q „ UniformpDq

26 for each tuple j do
27 Calculate target

yj “
$

&

%

R, if s1 is terminal,
R` γQps1, argmax

a1
Qps1, a1; ξq; ξ´q, o.w.

28

29 Do a gradient descent step with loss
Erpyj ´Qps, a; ξqq2s

30 Update ξ´ Ð ξ every Nr steps

31 return ξ

IV. INTELLIGENT MOBILE JAMMING ATTACK

In this section, we design an intelligent UAV jammer to jam
the transmission between the typical UAV and the IoT nodes
based on the observations from the environment.

A. UAV Jammer Model

In this setting, an intelligent UAV jammer is assumed to
have transmit power P J , height HJ , and certain departure
and landing points. The jammer is equipped with sensors
(e.g., radar) in order to sense nearby UAVs and track the

typical UAV1. The jammer is further assumed to be able
to eavesdrop/learn2: 1) location information of the active
ground nodes assigned to the typical UAV; and 2) the typical
UAV’s continuous reference signal received power (RSRP) and
reference signal received quality (RSRQ) reports.

If the jammer travels at the same height, it needs to avoid
collision with the typical UAV while trying to get close to
the UAV to increase the interference. In addition, if the sine
antenna pattern of the typical UAV is adopted3, it will not
receive interference from the jammer (or the interference
is really small) if the jammer travels at exactly the same
height as the typical UAV. With this consideration, a strong
jammer is designed to fly at a different height compared to
the typical UAV. Then, the interference from the jammer can
be formulated as

IJ “ P JGV pdJV qpd
2
JV ` pHV ´HJq

2q´
α
2

“ P J |HV ´HJ |pd
2
JV ` pHV ´HJq

2q´
α`1
2 (15)

where HV and HJ are the heights of the typical UAV and the
jammer, respectively.

B. Problem Formulation for Intelligent Attack

The objective of the jammer is to reduce the SINR of
the typical UAV subject to collision avoidance constraints,
maximum travel time constraint, kinematic constraints and
the start and destination constraints, similar to what has
been described in Section III-B for the typical UAV. We can
formulate the optimization problem as

pPJq : argmax
tpJt ,@tu

E

»

–

TJ
ÿ

t“0

N
ÿ

n“1

qVnt
1

SVnt

ˇ

ˇ

ˇ

ˇ

πV

fi

fl

s.t. ||pJt ´ pjt||2 ą rJ ` rj ,@j,@t (PJ.a)

T J ¨∆t ď T J
t (PJ.b)

vJst ď vJmax,@t (PJ.c)

|φJt ´ φ
J
t´1| ď ∆t ¨ T J

r ,@t (PJ.d)

pJ0 “ pSJ , p
J
T “ pDJ , (PJ.e)

pJt R N,@t, (PJ.f)

where the expectation Ers in the objective function is with
respect to the typical UAV’s decision making policy πV , pJt
is the position of the jammer at t, and T J is the total flight
time of the jammer. SVnt is the typical UAV’s SINR if it is
connected with the nth IoT node at t, and qVnt is the association
indicator of the typical UAV at time step t. Hence, in the above
optimization problem, we have collision avoidance constraints
in (PJ.a) and (PJ.f), mission completion deadline constraint
in (PJ.b), kinematic constraints in (PJ.c) and (PJ.d), and start

1Note that this assumption can be realized in practice by equipping with
low-cost sensors and radars.

2Note that the jammer, which is able to obtain these information, is a strong
adversary, and consequently makes the defense more difficult. If the typical
UAV can defend against this strong jammer, it can defend other jammers
better. Therefore, this work considers the worst-case scenario and provides
the corresponding defense strategies.

3Note that other antenna patterns can also be utilized, only leading to
different formulation of the interference IJ .
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and destination locations constraint in (PJ.e) for the intelligent
UAV jammer.

C. Reinforcement Learning Formulation

The problem of trajectory design for the intelligent UAV
jammer is also a sequential decision making problem, and thus
can be formulated as an MDP and solved via RL. The tuple
xS,A,Ry is formulated below.

1) State Space SJ : In this network, the jammer can obtain
the following information vectors:

‚ The full information vector of itself, sJt “

rpJx , p
J
y , HJ , v

J
x , v

J
y , r

J , pJgx, p
J
gy, HJ , v

J
max, φ

J s, at
time step t.

‚ The observable information vector of other
UAVs at HJ in its sensing region, i.e., sJot “

rrpxjt , pyjt , HJ , vxjt , vyjt , rjs : j P t1, 2, ..., JJot us.
‚ The typical UAV’s observable state sVt “

rpVxt , p
V
yt , HV , v

V
xt , v

V
yt , r

V s.
‚ The location information of active IoT nodes, i.e., sJnt “

rrpnxn , p
n
yns : n P t1, ..., N cus.

‚ The available time left for the jammer, sJtt.

The observed information vectors can be parameterized by
following process:

‚ The first two information vectors are transformed into
jammer-centric coordinates, in which the jammer’s cur-
rent location is the origin and the direction to the jam-
mer’s destination is the x-axis, i.e.,

rsJt “ rṽ
J
xt , ṽ

J
yt , p̃

J
gxt , p̃

J
gyt , d

J
gt , a

J
gt , r

J , vJmax, θ
J
t s

rsJot “ rrp̃xjt , p̃yjt , ṽxjt , ṽyjt , d
o
jt, a

o
jt, rjs,

for j P t1, 2, ..., JJot us.

‚ The information vector of the typical UAV and the IoT
nodes from the past τ time steps can be parameterized
and utilized to learn the typical UAV’s policy, i.e.,

rsVt “ rp̃
V
xt , p̃

V
yt , HV J , ṽ

V
xt , ṽ

V
yts

rsJnnt “ rrp̃xn , p̃yn , d
V
nt, a

V
nts : n P t1, ..., N cus

where N c is the number of active nodes, dVnt, a
V
nt are the

distance and azimuth angle of the nth IoT node with
respect to the typical UAV’s location, and the node’s
information vector in rsnnt is listed in the smallest dVnt to
the largest order. Then, we have

rsVnt “ rrrs
V
t1 ,rs

Jn
nt1s, t

1 P rt´ τ, tss.

The parameterized state vector of the jammer can be jointly
expressed as

rsJjnt “ rrsJt ,rs
Jo
t ,rsVnt, s

J
tts. (16)

2) Action Space AJ : Based on the jammer’s kinematic
constraints, permissible velocities can be sampled to build
a velocity-set. The jammer’s action aJ is the index of each
velocity in the velocity-set.

3) Reward RJ : The reward function of the jammer is
designed based on the objective function and the constraints,
i.e.,

RJ
t “ RJ

st `RJ
ct `RJ

ot `RJ
tt `RJ

gt `RJ
dt. (17)

The first term is the related to the SINR experienced at the
typical UAV, and it can be expressed as

RJ
st “

#

αJ1 ˆ
1

SVt`1

if SVt`1 ą SVb

0 otherwise
(18)

where SVt`1 can be obtained from the typical UAV’s RSRP
and RSRQ reports, and SVb is a positive constant which is
smaller than the SINR threshold. RJ

ct,RJ
ot,RJ

tt,RJ
gt are the

reward terms for collision avoidance, fixed obstacle avoidance,
maximum travel time constraint, and arrival-to-the-destination
goal, respectively, and are similar to the reward terms in (11),
(12), (13) and (14), respectively. The last term, RJ

dt, is a reward
term based on the distance between the jammer and the typical
UAV, and is formulated as

RJ
dt “ dJVt ´ dJVt`1 . (19)

D. Intelligent Jamming Attack Algorithm

The jammer’s action space is sampled to be discrete, and
thus Q value based RL algorithms, e.g., DQN, DDQN, D3QN,
can be used to learn its policy. Since D3QN is more effective
and stable, we choose D3QN to learn a strong jammer policy.
The training procedure can be performed using Algorithm 1 by
eliminating lines 5-11 and utilizing the designed SJ ,AJ ,RJ

in Section IV-C.

V. DEFENSE AGAINST INTELLIGENT JAMMING ATTACK

In this section, we aim to design a defense algorithm against
the intelligent jamming attacks.

A. Reinforcement Learning Formulation

The goal of the typical UAV is to maximize the collected
data from all IoT nodes in the presence of intelligent jamming
attacks, and the objective function is the same as in (PV).
Due to the jammer’s existence, state space SV and reward
function RV described in Section III-C should be updated
correspondingly.

1) State Space SV : Since the jammer injects interference
and is generally close to the typical UAV, and the typical
UAV is able to observe nearby UAVs in its sensing region, we
assume that the typical UAV is able to detect the jammer all the
time4. Therefore, the location information of the jammer, pJt ,
can be obtained by the typical UAV. The jammer’s locations
in the past τ time steps can be used to estimate the jammer’s
next movement, and therefore we have

rsJt “ rp
J
t1 , t

1 P rt´ τ, tss.

4The assumption can be removed. Discussions are provided in Section VI-
C-3).
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The observed information vectors sVt , sot , snt (described in
Section III-C) can be transformed into typical UAV-centric
coordinates and parameterized into

rsVt “ rṽ
V
xt , ṽ

V
yt , p̃

V
gxt , p̃

V
gyt , d

V
gt , a

V
gt , r

V , vVmax, θ
V
t s

rsojt “ rp̃xjt , p̃yjt , ṽxjt , ṽyjt , d
o
jt, a

o
jt, rjs,

for j P t1, 2, ..., Jcu

rsnnt “ rp̃xnt , p̃ynt , d
n
nt, a

n
nt, D

L
nt, P

r
nts, for n P t1, ..., N cu.

Therefore, the state of the typical UAV is updated to

rsV jnt “ rrsVt , rrs
o
jt, j P t1, ..., J

cus, rrsnnt, n P t1, ..., N
cus,rsJt , s

V
tts.

(20)

2) Reward RV : To encourage the typical UAV to fly away
from the jammer, an additional reward term is added to the
original reward function in (9), which is

RV
Jt “

#

´α7 ˆ p1´
dJVt`1

dVb2
q if dJVt`1

ď dVb2

0, otherwise
(21)

where dJVt`1
is the distance between the typical UAV and the

jammer at the next time step t ` 1, and dVb2 is the distance
buffer which essentially defines the safe distance between the
typical UAV and the jammer.

B. Defense Against Intelligent Attack Algorithm

With the modified state and reward functions, the typical
UAV’s policy can be retrained using modified Algorithm 1.

VI. SIMULATION RESULTS

In this section, we provide simulation results to show the
performance of ground/mobile jamming attack strategies and
the defense strategies. We choose the following performance
metrics: 1) success rate (SR), which is the portion of successful
trajectories among all trajectories (and a successful trajectory
means that the typical UAV arrives at its destination within
mission completion deadline without collisions); 2) data col-
lection rate (DR), which is the percentage of collected data
within successful trajectories; 3) arriving on time rate (TR);
and 4) collision rate (CR), and a collision event occurs when
the typical UAV collides with any of the other UAVs in the
environment. In the figures, we use yellow areas to show
the reliable transmission region, inside which the UAVs can
achieve SV ě T V

s . The blue triangles are the IoT nodes, and
the red triangle is the jammer. The blue and green areas are
the departure and landing areas, respectively. The destination
of the typical UAV is denoted as a black cross in the landing
area. The gray areas are the fixed obstacles or no-fly zones.
In the figures of trajectories, black-doted lines and red doted
lines display the trajectories of the typical UAV and other
non-cooperative and non-adversarial UAVs, respectively. The
orange-doted lines depict the trajectories of the mobile jammer.
The typical UAV flies at 50m, and the transmit power of the
IoT node is 10 dBm (10´2W). Other UAVs are assumed to
use optimal reciprocal collision avoidance (ORCA) [33] in
choosing actions and determining their trajectories.

The typical UAV’s policy is designed as a three-layer
DNN of size (256, 256, 128), and the jammer’s policy is

designed as a two-layer DNN of size (256, 128). In the DNNs,
ReLU function is used as the activation function, and batch-
normalization is used for each layer. Adam optimizer is used
to update the parameters with learning rate 0.0003. Batch size
is set to be 256, and the regularization parameter is 0.0001.
The exploration parameter ε decays linearly from 0.5 to 0.1.
The replay memory capacity is 1000000.

A. Continuous Jamming Attack Scenario

In this subsection, the jammer is located at a fixed location
and transmits at a fixed power level all the time. The transmit
power of the jammer is P Jl “ 10´3{3W, and the SINR
threshold for the typical UAV is T V

s “ 3.5.
1) Attack Performance: Fig. 2 depicts the reliable trans-

mission regions when the jammer is absent (in Fig. 2(a))
and the jammer is located at different locations (Figs. 2(b)
and 2(c)). We immediately notice that the existence of the
jammer significantly reduces the reliable transmission region,
and different jammer locations have varying impact.

Table II provides the attack performance in testing when the
jammer is located at different locations pJ (as well as when
it is absent). Note that the numerical results are averaged over
5000 testing episodes, and in each episode, the number of
IoT nodes is randomly chosen from N P r5, 10s, the number
of other UAVs is J “ 2, the locations of nodes, the start and
destination points of the typical UAV, and the start and destina-
tion points of other UAVs are randomly generated. From Table
II, we observe that the existence of the jammer substantially
reduces the typical UAV’s reward, SR and TR, and slightly
reduces the DR. The decline in SR and TR indicates that the
typical UAV needs more time to arrive at its destination. This
performance degradation is due to two reasons: 1) because of
the reduction in the reliable transmission region (i.e., yellow
areas in the figures), the UAVs needs to get closer to each
IoT node to collect data successfully, leading to a longer
trajectory and longer mission completion time; and 2) the
interference inflicted by the jammer changes the SINR, and
this change makes the UAV get confused and not choose the
optimal actions, leading to longer trajectories as well. The
slight decrease in DR means that in trajectories with successful
arrivals, the typical UAV can still collect the vast majority
(over 96%) of the data in the presence of a fixed jammer.
Overall, we can state that the jammer prevents the UAV from
completing its mission to a certain extent.

TABLE II: Performance of continuous jamming attack.

SR(%) DR(%) TR(%) CR(%) Reward
No-

Jammer 99.4 100 100 0.6 81.9

pJ=(0,0) 84.8 98.1 85.3 0.5 18.66
(20,20) 95.1 98.7 96 0.9 41.89
(-20,30) 97.2 99.2 97.7 0.5 53.44
(-20,-10) 90.8 99.8 91.2 0.4 7.61
(10,-10) 87.2 96.1 87.8 0.6 24.83
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(a) No jammer (b) Jammer at (0,0) (c) Jammer at (-20,-10)

Fig. 2: Illustrations of reliable transmission region when the jammer is absent or is located at different locations with P J
l “ 10´3

{3W.

2) Performance with Defense Utilizing a Virtual Jammer:
Now, we deploy defensive measures and assume that, in train-
ing, a virtual jammer is located at pJ

1

“ p0, 0q on the ground
with transmit power P J

1

“ 10´3{3W. The performance results
in testing (achieved by the learned policy in the presence
of the virtual jammer) are presented in Table III. From this
table, we observe that the SR, TR and DR can be recovered
close to those in the no-jammer scenario. On the other hand,
since the typical UAV needs to fly closer to the IoT nodes
to get reliable connection in the presence of a jammer, the
trajectories become longer. Thus, the reward with the defense
strategy is still smaller than that of the no-jammer case, since
we introduce a negative reward term RVst for each step (as
noted at the end of Section III-C).

TABLE III: Performance with defense strategy using a virtual
jammer.

SR(%) DR(%) TR(%) CR(%) Reward
No-

Jammer 99.4 100 100 0.6 81.9

pJ=(0,0) 98.8 99.8 99 0.3 68.69
(20,20) 98.6 99.9 98.8 0.1 58.58
(-20,30) 99.1 100 99.6 0.5 73.84
(-20,-10) 98.7 99.8 99.1 0.4 66.8
(10,-10) 98.8 99.9 99.3 0.5 66.18

3) Performance with Defense Using a Higher SINR Thresh-
old: With this defense strategy, we assume that the SINR
threshold is T 1s “ 3.9 in training, while Ts “ 3.5 in testing.
The testing performance is presented in Table IV. With this
strategy, the SR, TR and DR performances can be recovered
close to those of the no-jammer case, and we can observe
performances similar to those of the defense with the virtual
jammer.

4) Influence of the Transmit Power Levels : We also present
the attack and defense results in Table V considering different
transmit powers for the IoT nodes Pn and the jammer P J .
From Table V, we observe that if Pn is larger, the jammer
expectedly needs to transmit at a high power level to have
better attack performance. With the proposed strategy, i.e.,
defense with higher SINR threshold, the typical UAV can
successfully defend the attacks and recover the performance.

TABLE IV: Performance with defense strategy using a higher
SINR threshold.

SR(%) DR(%) TR(%) CR(%) Reward
No-

Jammer 99.4 100 100 0.6 81.9

pJ=(0,0) 97.7 100 99.5 0.8 67.46
(20,20) 98.2 99.8 98.5 0.3 49.49
(-20,30) 98.8 99.9 99.3 0.4 65
(-20,-10) 98.8 99.9 99.1 0.3 64.83
(10,-10) 98.8 99.9 99.3 0.4 61.34

TABLE V: Jamming attack performance and defense perfor-
mance when pJ=(0,0).

SR(%) DR(%) Reward

Pn “ 10´1.8

No-Jammer 99.8 100 126.09
P J “ 10´3 91 96.8 31.8

P J “ 2 ˚ 10´3 85.4 93.3 -1.21
Defense 99 99.7 110.6

Pn “ 10´1.6

No-Jammer 99.6 100 124.27
P J “ 2 ˚ 10´3 90.7 98 40.9
P J “ 4 ˚ 10´3 86.2 96.6 3.68

Defense 98.6 99.8 106.3

5) Trajectory Designs: Fig. 3 presents the UAV trajecto-
ries in no-jammer, continuous jamming attack when P Jl “

10´3{3W (with no defense), virtual jammer defense strategy
(VJ-strategy), and higher SINR threshold defense strategy
(HST-strategy) scenarios. Fig. 3(a) shows that the typical
UAV can find an efficient trajectory to complete its mission
when there is no jammer. Fig. 3(b) shows that the typical
UAV trajectory becomes curvy (with several loops) due to
the existence of the jammer at (-8,0). Figs. 3(c) and (d)
demonstrate that with the two defense strategies, the typical
UAV is able to complete its mission in shorter trajectories
under continuous jamming attacks, while the trajectories are
still relatively longer than that in the no-jammer scenario.

B. Periodic Jamming Attack Scenario

In this subsection, it is assumed that the jammer interferes
periodically with transmit power P Jh and jamming period τJh .
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(a) No jammer (b) Continuous attack with no defense

(c) VJ-strategy (d) HST-strategy

Fig. 3: Examples of typical UAV trajectory in different scenarios.

We adopt two transmit power levels P Jh1 “ 10´3{2.5W and
P Jh2 “ 10´3{2W. Since P Jl ˆ 60 “ P Jh ˆ τJh , we have
τJh1 “

PJl ˆ60

PJh1
“ 50s and τJh2 “ 40s. In other words, the

jammer transmits with P Jh1 for 50s and becomes silent for 10s
per minute, or transmits with P Jh2 for 40s and becomes silent
for 20s per minute. Fig. 4 illustrates examples of the reliable
transmission region when the jammer has different transmit
powers. As we see from the figures, the larger the transmit
power is, the greater influence the jammer exerts, e.g., when
P 2
Jh “ 10´3{2W, majority of the connections are blocked

during jamming. Table VI provides the performances of the
periodic jamming attack and two aforementioned defense
strategies. The results in the table indicate that the influence
of the periodic jamming attack is not significant, due to the
reason that the typical UAV is able to wait for the jammer
to become silent and then collect data from the IoT nodes.
However, overall the SR and TR are still reduced due to the
longer mission completion time caused by waiting. Overall,
the collision rate is under 0.6%, thus is not listed in the table.
Using the proposed defense strategies, the performance can
again be recovered to levels close to those in the no-jammer
scenario.

TABLE VI: Periodic jamming attack performance and defense
performance.

SR(%) DR(%) TR(%) Reward
No-Jammer 99.4 100 100 81.904

Attack P J “ 10´3

2 99.1 99.3 99.5 72.355
P J “ 10´3

2.5 96.9 99.3 97.3 50.257

Defense P J “ 10´3

2 99.6 100 99.9 74.269
P J “ 10´3

2.5 99.1 100 99.8 63.151

C. Intelligent Jamming Attack Scenarios

1) Original Policies of the Typical UAV: The typical UAV
has two original policies learned in the no-jammer scenarios
for different mission completion deadlines T V

t , and these
policies are denoted as
‚ πV1 when T V

t “ 100s;
‚ πV2 when T V

t “ 200s.
The performances of these two original policies in a no-
jammer scenario are provided in Table VII. From the table,
we observe that the SR is at least 98.9% and DR is close
to 100%, indicating that the typical UAV can complete its
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(a) No jammer (b) PJh1 “ 10´3
{2.5W (c) PJh2 “ 10´3

{2W

Fig. 4: Illustrations of the reliable transmission region when the jammer is absent or is located at (0,0) with different transmit powers.

mission with 98% success rate if no jammer exists. In addition,
with the looser mission completion deadline of T V

t “ 200s,
the overall performance can be increased. Note that since the
reward function is modified within the defense algorithm, we
do not compare the reward performances in this section.

TABLE VII: Performance of typical UAV’s policies in the
absence of jamming attacks.

SR(%) DR(%) TR(%) CR(%)
πV1 98.9 99.9 99.4 0.4
πV2 99.4 100 100 0.6

2) Intelligent Jamming Attack Performance: In this subsec-
tion, the jammer flies at height HJ “ 30m with transmit power
P J “ 10´3{3W or 10´4W. Four jammers are trained to attack
the typical UAV with different transmit power levels P J , and
these jammers are described in more detail below:
‚ Jammer 1 (J1) is trained to attack πV1 with transmit power
P J “ 10´3{3W, and its policy is denoted by πJ1 ;

‚ Jammer 2 (J2) is trained to attack πV2 with transmit power
P J “ 10´3{3W, and its policy is denoted by πJ2 ;

‚ Jammer 3 (J3) is trained to attack πV1 with transmit power
P J “ 10´4W, and its policy is denoted by πJ3 ;

‚ Jammer 4 (J4) is trained to attack πV2 with transmit power
P J “ 10´4W, and its policy is denoted by πJ4 .

The attack performances of the jammers are provided in Table
VIII. By comparing the typical UAV’s SR, DR, and TR in
the no-jammer scenario (provided in Table VII) and in the
presence of different jammers (provided in Table VIII), we
observe that each jammer can significantly reduce the SR, DR
and TR. The substantial decrease in DR is due to the reason
that the jammer is encouraged to get close to the typical UAV
and thus interference from the jammer can be very large,
leading to the result that most connections are blocked and
the typical UAV fails to collect data from some nodes. This
is also the reason that the DR in the presence of jammers J1
and J2 (where P J “ 10´3{3W) is much smaller than DR in
the presence of jammers J3 and J4 (where P J “ 10´4W).
In addition, the SR and TR decrease due to the following
two reasons: 1) the reliable transmission region is substantially
reduced with the existence of the jammer, and thus the typical
UAV needs more time to collect data from the nodes; and 2)

the reliable transmission region is dynamically changing due
to the movement of the jammer, and that leads the typical UAV
not to choose the optimal action and generally need more time
to arrive at its destination, and therefore violating its mission
completion deadline. These are also the reasons for why SR
and TR when T V

t “ 100s (with jammers J1 and J3 in Table
VIII) are smaller than SR and TR when T V

t “ 200s (with
jammers J2 and J4 in Table VIII).

TABLE VIII: Performance of typical UAV in the presence of
different jammers.

Jammer SR(%) DR(%) TR(%) CR(%)
J1 0.7 13.8 1.3 0.7
J2 7.6 5.3 8.1 0.5
J3 2.1 49.8 2.6 0.5
J4 33.7 77.8 34.4 0.7

3) Defense Performance: Using the proposed defense algo-
rithm with updated state space and reward function, policies
can be re-trained against the intelligent jammers. To defend
against the jammers designed in the previous subsection, we
re-train the typical UAV’s policy. The re-trained policies are
listed and described below:
‚ πV d1 is trained with the existence of J1, i.e., πUd1 is trained

to defend against J1;
‚ πV d2 is trained to defend against J2;
‚ πV d3 is trained to defend against J3;
‚ πV d4 is trained to defend against J4.

Since the typical UAV needs more time to finish its mission
due to the significant reduction in the reliable transmission
region, we loosen the mission completion deadline T V

t in
defensive strategies. The performances of defense polices are
provided in Table IX. From the rows in boldface (in which we
have the performance results of the retrained policies against
the corresponding jamming attackers), we observe that the
performance of the typical UAV in terms of SR, DR and
TR is considerably restored. More specifically, the DR is
recovered to above 80% when defending against J1, J3, and
J4, and above 70% when defending against J2. Also, the SR
and TR are recovered to above 94%. The reasons for this
significant improvement are the following: 1) with loosened
mission completion deadline, the typical UAV is allowed to
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use more time to collect data from the IoT nodes; 2) with
the presence of the jammer in training, the UAV learns the
dynamically varying reliable transmission regions; and 3) the
typical UAV’s policy is updated and re-trained, and thus the
jammer cannot predict the typical UAV’s movement well.

In addition, we also use the policies πV d2 and πV d4 to defend
against other jammers (with respect to which the defensive
policies have not been retrained). It is observed that both
policies can recover the performance to some extent, especially
when using πV d2 . Even though the performances are generally
not as good as the case of using the matching defense policy,
the SR and TR are above 80% and DR is above 70%, which
are much higher than the performance without any defense.

TABLE IX: Performances of defense policies in the intelligent
jamming attack scenarios.

Jammer SR(%) DR(%) TR(%) CR(%)
πV d1 J1 94.7 87.7 95.6 0.9

πV d2

J1 94.8 82.1 94.6 1.1
J2 94.8 71.5 95.4 0.6
J3 98.8 89.2 99.4 0.6
J4 96.9 78.4 98.1 1.1

πV d3 J3 98.1 84.6 98.5 0.3

πV d4

J1 83 88.3 83.9 0.9
J2 81.9 79.8 82.7 0.8
J3 87.2 84.1 88.2 0.9
J4 98.4 82.3 99.1 0.7

The proposed algorithm can be extended and utilized in
more realistic scenarios, e.g., in a scenario in which the typical
UAV is not able to detect the jammer all the time. Particularly,
if the jammer is in sensing region O, its position, velocity and
orientation can be sensed. Otherwise, the typical UAV fails
to sense this information. In this more practical setting, in
order to predict the jammer’s information, a velocity filter is
designed to obtain the estimated next velocity v̂Jt`1 using the
jammer’s velocities in the past τ time steps, and the estimated
velocity can now be expressed as

v̂Jt`1 “
1

τ

t
ÿ

t1“t´τ

vJt1 , if pJt`1 R O (22)

where pJt`1 is the jammer’s position at time step t` 1. Then,
the next estimated position is p̂Jt`1 “ pJt ` v̂Jt`1 ˆ ∆t and
the next estimated orientation is φ̂t`1 “ arctan v̂Jt`1,y{v̂

J
t`1,x.

Fig. 5 plots the reward values in training when considering the
scenario with assumption-1 (in which the jammer’s informa-
tion is detected all the time) and the scenario with assumption-
2 (in which the jammer’s information is estimated using the
velocity filter if it is outside O). From Fig. 5, we observe
that we can achieve comparable performance in the scenario
with assumption-2 compared to that with assumption-1. This
follows from two reasons. First, due to the kinematic con-
straints, sudden drastic changes in the jammer’s velocity are
not allowed, and thus the past movements provide relatively
accurate indications on its near-term future mobility. Secondly,
if the jammer is outside of the typical UAV’s sensing region
O, it is far away from the typical UAV, and correspondingly
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Fig. 5: Comparison of accumulated reward per episode between
two scenarios. In the scenario with assumption-1, the jammer’s
information can be detected all the time, while in the scenario
with assumption-2, the jammer’s information is estimated when it
is outside of O.

its interference is small, leading to small influence on the
typical UAV’s transmission. Thus, the estimation error does
not impact the typical UAV’s performance substantially.

In the literature, Q-learning (e.g., [21], [26] ) and DQN
(e.g., [22], [23]) have been used to defend against jamming
attacks. Due to the large size of the state space, Q-learning
is typically infeasible to be used in such studies. Figure 6
depicts the reward when utilizing DQN, DDQN and D3QN to
train the typical UAV’s defense policy. It can be observed that
D3QN is more rewarding and converges much faster. Since the
dueling architecture is able to learn which states are valuable
without learning the effect of each action for each state, it has
the ability to identify the correct action more quickly during
policy evaluation [34].
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Fig. 6: Comparison of accumulated reward per episode among DQN,
DDQN and D3QN.

4) Trajectory Designs: We provide examples of UAV tra-
jectories in Fig. 7 in the no-jammer scenario, in the scenario
with intelligent jamming attack and no defense, and in the
scenario in which defensive policy is employed. Note that the
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(a) No jammer (b) Intelligent jamming attack (with J2) (c) Defense (with πV d2 )

Fig. 7: Examples of typical UAV trajectory in different scenarios.

orange-dotted lines are the intelligent jammer’s trajectories. In
Fig. 7(b), we observe that the intelligent jammer can follow
the typical UAV closely if the UAV does not implement
the defense policy, and the jammer makes the typical UAV
trajectory really curvy and long (compared with the trajectory
in Fig. 7(a) where no jammer exists). In addition, Fig. 7(c)
shows that if the defense strategy is utilized and the typical
UAV’s policy is updated, the intelligent jammer is not able
to follow the UAV well. Therefore, the typical UAV can find
an efficient trajectory to complete its mission (e.g., a short
trajectory not exceeding the mission completion deadline, and
being close to the IoT nodes but away from the jammer
in order to collect data). This observation further verifies
the effectiveness of the proposed and implemented defensive
measures.

VII. CONCLUSION

In this paper, we have investigated jamming-resilient UAV
path planning strategies for data collection in IoT networks,
in which the typical UAV can learn the optimal trajectory to
elude such jamming attacks. Specifically, the typical UAV is
required to collect data from multiple distributed IoT nodes
under collision avoidance, mission completion deadline, and
kinematic constraints in the presence of jamming attacks. We
have first designed a fixed ground jammer with continuous
jamming attack and periodic jamming attack strategies to
inject interference into the link between the typical UAV
and IoT nodes. RL-based defensive strategies that utilize
a virtual jammer and adopt a higher SINR threshold are
proposed against these attacks. Secondly, we have designed
an intelligent UAV jammer, which uses an RL algorithm to
choose actions based on its observation. Finally, an intelligent
UAV anti-jamming strategy is developed to defend against
such intelligent jamming attacks. The optimal trajectory of the
typical UAV is obtained via D3QN. Simulation results have
shown that both fixed jamming and intelligent UAV jamming
attacks have significant influence on the typical UAV’s per-
formance, and the proposed defense strategies can recover the
performance close to that in the no-jammer scenario.
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