
1

How to Attack and Defend NextG Radio Access

Network Slicing with Reinforcement Learning
Yi Shi, Senior Member, IEEE, Yalin E. Sagduyu, Senior Member, IEEE, Tugba Erpek, Member, IEEE,

and M. Cenk Gursoy, Senior Member, IEEE

Abstract—In this paper, reinforcement learning (RL) for net-
work slicing is considered in next generation (NextG) radio access
networks, where the base station (gNodeB) allocates resource
blocks (RBs) to the requests of user equipments and aims to
maximize the total reward of accepted requests over time. Based
on adversarial machine learning, a novel over-the-air attack is
introduced to manipulate the RL algorithm and disrupt NextG
network slicing. The adversary observes the spectrum and builds
its own RL based surrogate model that selects which RBs to jam
subject to an energy budget with the objective of maximizing
the number of failed requests due to jammed RBs. By jamming
the RBs, the adversary reduces the RL algorithm’s reward. As
this reward is used as the input to update the RL algorithm,
the performance does not recover even after the adversary
stops jamming. This attack is evaluated in terms of both the
recovery time and the (maximum and total) reward loss, and it
is shown to be much more effective than benchmark (random
and myopic) jamming attacks. Different reactive and proactive
defense schemes such as suspending the RL algorithm’s update
once an attack is detected, introducing randomness to the decision
process in RL to mislead the learning process of the adversary,
or manipulating the feedback (NACK) mechanism such that the
adversary may not obtain reliable information are introduced to
show that it is viable to defend NextG network slicing against
this attack, in terms of improving the RL algorithm’s reward.

Index Terms—NextG security, network slicing, radio access
network, reinforcement learning, adversarial machine learning,
jamming, wireless attack, defense.

I. INTRODUCTION

A. Machine Learning for NextG Radio Access Network Slicing

Next Generation (NextG) offers major enhancements to the

performance of cellular communications to meet the data rate

demands of emerging applications such as virtual/augmented

reality and Internet of Things. One key component of NextG

communications is network slicing in the radio access network

(RAN), which splits communication resources into virtual

resource blocks (RBs). These RBs can be allocated dynam-

ically to support different types of user applications and

This effort is supported in part by the U.S. Army Research Office under
contract W911NF-17-C-0090. The content of the information does not neces-
sarily reflect the position or the policy of the U.S. Government, and no official
endorsement should be inferred.

This effort is supported in part by the Commonwealth Cyber Initiative,
an investment in the advancement of cyber RD, innovation, and workforce
development. For more information about CCI, visit www.cyberinitiative.org.

Yi Shi is with Commonwealth Cyber Initiative, Virginia Tech, Arlington,
VA 22203, USA. (e-mail: yshi@vt.edu)

Yalin E. Sagduyu and Tugba Erpek are with National Security Institute,
Virginia Tech, Arlington, VA 22203, USA. (e-mail: ysagduyu@vt.edu; ter-
pek@vt.edu)

M. Cenk Gursoy is with Syracuse University, Syracuse, NY 13244, USA.
(e-mail: mcgursoy@syr.edu)

transmissions in one RB do not interfere with other RBs. These

applications are categorized as enhanced Mobile Broadband

(eMBB), massive machine-type communications (mMTC) and

ultra-reliable low-latency communications (URLLC) based

on throughput and latency requirements. Efficient and fast

resource allocation by RAN slicing is critical for near-real

time RAN Intelligent Controller (Near-RT RIC). The details on

resource allocation as part of RAN slicing are not defined yet

in the 3GPP standards. To address this gap, research activities

have focused on how the resources should be allocated as part

of RAN slicing [1]–[5].

Machine learning provides automated means to learn from

data and optimize decision making for complex tasks. Sup-

ported by recent algorithmic and computational advances,

deep learning can operate on raw data without hand-crafted

feature extraction and learn the underlying complex data

representations. Therefore, deep learning has found rich appli-

cations in wireless communications such as waveform design,

spectrum situational awareness, and wireless security [6].

Related to network slicing, deep learning was studied in [7]

for application and device specific identification and traffic

classification problems, and in [8] for management of network

load efficiency and network availability. Instead of relying

on the availability of training data, reinforcement learning

(RL) has emerged as a viable solution for NextG network

slicing [9]–[17] such as learning from the NextG network

performance and updating resource allocation decisions for

network slicing.

In this paper, we consider a NextG base station, i.e.,

gNodeB, as the victim system that runs an RL algorithm (as

an example, the Q-learning algorithm) to dynamically allocate

resources for NextG network slicing, where RBs are allocated

to support downlink communications from the gNodeB to the

user equipments (UEs). One benefit of using RL algorithm is

that it does not require a pre-trained model and thus there

is no delay due to training. Each network slicing request

from any UE is associated with user-centric priority (weight),

throughput and latency (deadline) requirements (namely, the

quality of experience (QoE)), and needs to be served for a

specific duration.

B. Adversarial Machine Learning based Attack on NextG

Radio Access Network Slicing with Reinforcement Learning

Blockchain was applied to design a secure decentralized

spectrum trading platform for network slicing [58], [59].

However, blockchain cannot protect the RL algorithms for



2

network slicing from jamming attacks. Due to the broadcast

nature of wireless communications, an adversary can overhear

and jam transmissions. As a consequence, the adversary can

launch a jamming attack on RBs. Security issues for machine

learning based network slicing were discussed in [60], [61]

but these work did not discuss security issues for the RL

algorithms. Separate from NextG network slicing, attacks on

RL algorithms have been considered in [18]–[20] for medium

access with a jammer that can jam one channel over one time

block only.

In this paper, we consider allocation of potentially multiple

channels to different users over a time horizon for the NextG

network slicing problem. If an RB is assigned to a network

slicing request and is jammed by the adversary, this request

cannot achieve the required QoE and is considered as a

failure. The reward of this request becomes zero, i.e., the

performance of the gNodeB is reduced under attack. Moreover,

this reward is given as the input (along with the state) to the

gNodeB’s RL algorithm. Therefore, this algorithm is confused

and will predict the existence of jamming attacks even if there

is no attack. Thus, such a jamming attack not only affects

the gNodeB’s current performance but also affects its future

performance even after the adversary stops jamming RBs. On

the other hand, RL can recover from the attack over a period

of time by collecting correct feedback once the attack stops

and updating its algorithm. To measure the performance of this

attack (in terms of its effect on NextG network slicing), we

compute the recovery time, which is the time period from when

the jamming attack stops to when the gNodeB’s performance

is back to normal (i.e., to the level before the attack starts), as

well as the maximum and total reduction in the RL algorithm’s

reward during the recovery time.

We impose the practical constraint that the adversary has

limited transmit power and thus cannot jam all RBs due

to its energy budget. Then, the adversary needs to carefully

select which RBs to jam with the objective of maximizing

the impact of jamming on network slicing requests (namely,

the number of failed network slicing requests). One potential

attack strategy is myopic, which aims to jam some RBs

to maximize the instantaneous impact of the attack without

consideration of future impact. This strategy cannot work well

as an online algorithm in general. Moreover, our results show

that this rather simple strategy can be learned by the gNodeB’s

RL algorithm and thus its impact can be mitigated over time

by the usual RL algorithm updates.

To maximize the impact of jamming the RBs, we pursue

an adversarial machine learning approach. Different types

of attacks built upon adversarial machine learning have been

studied in wireless communications [21], [22] such as ex-

ploratory (inference) attacks [23], [24], evasion (adversarial)

attacks [25]–[39] and their extensions to secure and covert

communications against eavesdroppers [40]–[42], causative

(poisoning) attacks [43]–[45], membership inference attacks

[46], [47], Trojan attacks [48], and spoofing attacks [49]–[51]

that have been launched against various spectrum sensors and

wireless signal (such as modulation) classifiers. Adversarial

machine learning has also been considered for NextG by

studying evasion and spoofing attacks on deep neural networks

gNodeB

UE

Adversary

UE

UE

UE

Fig. 1: The interaction of the victim RL algorithm and the adversarial surrogate
RL algorithm. The solid black lines from the UEs to the gNodeB represent the
control messages sent for a failed network slicing request. The dashed lines
from the UEs to the adversary represent the control messages for a failed
network slicing request heard at the adversary. The adversary decides on its
attack strategy based on its environment sensing results.

(without reinforcement learning) used for NextG spectrum

sharing and NextG signal authentication [52]. In addition,

flooding attacks have been considered for NextG network

slicing with reinforcement learning [53].

In this paper, a jamming attack built upon adversarial ma-

chine learning is launched against the RL agent that performs

resource allocation for NextG network slicing, and the attack

exploits the unique properties that (i) the RL algorithm is

affected by manipulated rewards and (ii) it takes a while for

the RL algorithm to recover even after the attack stops.

The states of the surrogate RL model built by the adversary

correspond to the availability of RBs, which are determined by

passively sensing the RBs (since the RBs that are allocated to a

user request are used for communications and thus are sensed

as busy). Note that the adversary does not have access to the

victim’s RL model, namely it launches a black-box attack, and

cannot obtain the availability of RBs by querying the model

with inputs.

The actions of the adversary are the set of selected RBs

to be jammed. We assume that the UEs send a negative

acknowledgment (NACK) to confirm a failed transmission

from the gNodeB (so that it can be retransmitted later subject

to its deadline for reliable communications) and the adversary

needs to detect the presence of this feedback without decoding

it, as shown in Fig. 1. Typically, the NACK message has a

particular pattern: it has a short packet length and it follows

data transmission after a fixed time lag. Therefore, it is not

difficult to detect the presence of NACK transmissions.

The reward of the adversary’s RL algorithm is the number

of jammed and therefore failed requests. The RL algorithm

at the adversary can learn the effect of its attack and update

its RL model (in our example, the Q-table). Once the RL

model is well trained, the adversary can make the optimal

decision on selecting which RBs to jam by maximizing its

expected jamming reward. Note that in this attack scenario,

the adversary launches an over-the-air attack and indirectly

manipulates the reward of the RL algorithm by jamming the

RBs, as shown in Fig. 1. The interactions between the victim

RL algorithm of the gNodeB and the surrogate RL algorithm

of the adversary are illustrated in Fig. 2.

In performance evaluations, we compare the RL based

attack with the myopic attack and random jamming (namely,

jamming randomly selected RBs) subject to the same jamming



3

Adversary’s 
RL Agent

Action

“jamming 
RBs”

State Reward

gNodeB’s
RL Agent

Spectrum 

Environment

(RBs)

Action

“allocating 
RBs to

requests”
(changed)

State

(changed)
Reward (reduced)

Fig. 2: Illustration of how jamming built upon adversarial machine learning
manipulates the RL process of the gNodeB to allocate the RBs to network
slicing requests.

time

gN
od

eB
’s

re
w

ar
d

jamming 

starts

jamming 

ends

RL reward 

dropping ends

RL recovery 

completed

before the attack jammed

RL reward 

keeps dropping
RL reward is 

improving

back to 

normal RL 

operation

recovery time

Jamming’s effect 
into future: Unique 

to attack on RL

Fig. 3: Adversarial machine learning for manipulating the RL process of the
gNodeB when it allocates the RBs to network slicing requests.

budget constraint. We show that the RL based attack can

achieve the largest reduction in the reward of the gNodeB’s

RL algorithm (under attack and after attack) and the longest

recovery time from the attack (after the jamming attack stops).

This result demonstrates the adversarial machine learning ben-

efits of manipulating the RL process over a time horizon. As

illustrated in Fig. 3, the extension of the attack’s impact beyond

the time instant when the attack stops is a key capability

of the RL based jamming attacks compared to conventional

jamming attacks (on data transmissions) whose impact is

typically limited to the duration of the attack (see [54], [55]

for examples on conventional jamming attacks on wireless

communications).

C. Defense against Adversarial Machine Learning based At-

tack on NextG Radio Access Network Slicing with Reinforce-

ment Learning

In this paper, we also investigate how to defend the network

slicing operations against the RL based jamming attacks. For

that purpose, we introduce three different defense schemes,

Q-Protect, RandomOpt/RandomTop, and MisNACK, for the

gNodeB or the UE to take (illustrated in Fig. 4):

1) Q-Protect protects the RL algorithm itself by suspending

the RL algorithm (i.e., Q-table) update once an attack

is detected to avoid the impact of the attack on the RL

algorithm;

2) RandomOpt and RandomTop introduce randomness to the

decision process in RL (in particular, add perturbations

gNodeB

UE

Adversary

UE

UE

UE

1. Q-Protect: Stop 

updating RL algorithm 

under attack
3. MisNACK: Change 

NACK scheme

2. RandomOpt & RandomTop: 

Introduce randomness in RL decisions

Fig. 4: The defense schemes against RL based attack on NextG RAN slicing.

in the Q-table updates) to mislead the learning process of

the adversary;

3) MisNACK manipulates the feedback (NACK) mechanism

such that the adversary may not obtain reliable informa-

tion to build its attack strategy.

We show that the second defense schemes is more effective

than others and can be combined with others to help network

slicing operations sustain its performance relative to the case

without an attack.

D. Contributions and Paper Organization

The contributions of this paper are summarized as follows.

• For an RL based NextG RAN slicing algorithm, we

design a novel RL based attack scheme built upon adver-

sarial machine learning that selectively jams the available

RBs so that the RL algorithm for network slicing receives

incorrect reward (feedback) and updates itself in a wrong

way, thereby leading to a significant performance loss of

resource allocation for NextG RAN slicing.

• We design novel defense schemes by considering various

characteristics of RL algorithms. The Q-Protect scheme

stops the RL algorithm if the reward is unexpected.

The RandomOpt and RandomTop schemes make it more

challenging for an adversary to learn. The MisNACK

scheme provides incorrect information to the adversary.

• We show the effectiveness of the designed attack and

defense schemes using different benchmarks in numerical

results. Our results show that the RL based attack scheme

achieves better attack performance than benchmark attack

schemes, and a combined scheme with multiple defense

schemes achieves the best protection.

The rest of the paper is organized as follows. Section II

describes resource allocation for network slicing via RL.

Section III presents the RL based jamming attack that aims

to maximize the impact on the gNodeB’s performance under

the attack and after the attack. Section IV introduces defense

schemes to protect the network slicing operations from RL

based jamming attacks. Section V evaluates the attack and

defense performances. Section VI concludes this paper.

II. THE VICTIM SYSTEM TO ATTACK: REINFORCEMENT

LEARNING BASED RESOURCE ALLOCATION FOR

NETWORK SLICING

In this section, we summarize the NextG RAN slicing

setting that an adversary aims to attack. We follow the RL



4

UE 1 UE 2 UE N

2 2 2 2

1 1 1

N N

1 1 1 3

N N

2 2 2 2

adversary

gNodeB
Available RB

RB allocated to a UE

Unavailable RB due 

to jamming

time →

fr
eq

u
en

cy
 b

an
d

s 
→

UE 3

RB allocated to a 

request but jammed

Fig. 5: System model for NextG network slicing in the presence of an
adversary.

formulation of [14] for network slicing as an example, while

the attack and defense schemes that we consider in the next

two sections apply to other RL based NextG RAN slicing

settings (e.g., [9], [57]), as well. As depicted in Fig. 5, we

consider a general scenario in which multiple NextG UEs send

requests over time with different QoE requirements, i.e., rate,

latency (deadline) and lifetime demands and priority weights,

and the gNodeB needs to allocate the RBs to selected requests

such that the total weight of served requests over a time period

can be maximized. If a request is not granted, it will be kept

in a waiting list until its deadline expires. There is also an

adversary that we will describe in Section III.

At time slot t, there are a set of active requests A(t)
(requests that have just arrived or are in the waiting list). UE

i’s QoE requirement of rate for its request j is given by

Dij ≥ dij , (i, j) ∈ A(t), (1)

where Dij is the achieved downlink data rate and dij is the

minimum required rate. Dij is determined by the assigned

bandwidth Fij in an RB and the modulation/coding scheme

used for communications between the gNodeB and UE i. The

data rate (bps) is approximated as [56]:

Dij = c Kij (1− BERij), (i, j) ∈ A(t), (2)

where Kij is the number of aggregate component carriers in

a band combination and BERij is the bit error rate of UE i

for its request j (which depends on the signal-to-noise ratio

(SNR) and is computed for additive white Gaussian noise

(AWGN) channel with low-density parity-check coding), and

constant c is approximately 12.59×106 when a single-antenna

UE uses quadrature phase shift keying (QPSK) modulation,

60 kHz subcarrier spacing and 10 MHz bandwidth. The data

rate equation provided in [56] can be modified accordingly if

different configuration parameters are used.

The constraints of resource assignments to network slices

are given by
∑

(i,j)∈A(t)

Fij xij(t) ≤ F (t), (3)

where Fij is the assigned bandwidth and F (t) represents the

available communication resources (RBs) of the gNodeB at

time t (resources that are assigned previously to some requests

and not terminated yet become temporarily unavailable) and

xij(t) is the binary indicator on whether UE i’s request j is

satisfied at time t.

By considering the optimization problem for a time horizon,

the resources are updated from time t− 1 to time t as

F (t) = F (t− 1) + Fr(t− 1)− Fa(t− 1), (4)

where Fr(t− 1) and Fa(t− 1) are the released and allocated

resources on frequency at time t−1, respectively. Each request

has a lifetime lij and if it is satisfied at time slot t (namely, the

service starts in time slot t), this request will end at the end

of time slot t+ lij − 1. The released and allocated resources

at time t are given by

Fr(t) =
∑

(i,j)∈R(t)

Fij , (5)

Fa(t) =
∑

(i,j)∈A(t)

Fijxij(t), (6)

where R(t) denotes the set of requests ending (completed or

expired) at time t. Then, the optimization problem is given by

max
xij(t)

∑

t

∑

(i,j)∈A(t)

wij xij(t), (7)

subject to (1)–(6), where wij is the weight for UE i’s request

j to reflect its priority.

As a model-free RL algorithm, we use Q-learning to learn

the policy that determines which action (resource assignment)

to take under a given state (available resources and requests)

for the gNodeB. The gNodeB applies Q-learning to compute

the function Q : S × A → R (maintained as the Q-table) to

evaluate the quality of action A producing reward R at state

S. At each time t, the gNodeB selects an action at, observes

a reward rt, and transitions from the current state st to a new

state st+1 (this transition depends on current state st and action

at), and updates Q.

Initializing Q as a random matrix and using the weighted

average of the old value and the new information, Q-learning

performs the value iteration update for Q as follows:

Q(st, at) ← Q(st, at) (8)

+α ·
(

rt + γ ·max
a

Q(st+1, a)−Q(st, at)
)

,

where α is the learning rate (0 < α ≤ 1) and γ is the discount

factor (0 ≤ γ ≤ 1) for rewards over time. As the size of the

states increases, it becomes computationally more efficient to

approximate the Q-function by training a deep neural network,

leading to a deep Q-network formulation.

In dynamic resource allocation to network slices, the reward

at time t is wij if UE i’s request j is satisfied at time t, i.e.,

xij(t) = 1. Note that the reward measures the satisfied QoE

demands of network slices and therefore it indirectly reflects

the achieved QoE performance such as throughput and delay.

An action is to assign resources to a request at time t.

Multiple actions can be taken at the same time instance. The

states at t are F binary variables on the availability of F

RBs and (Fij , wij) for a request under consideration. The

state transition at time t is driven by allocating resources



5

TABLE I: RL algorithm for network slicing.

RL term Specification (at any given time instant)

State Availability of RBs, an active request

Action Assign RBs if the request is selected

Reward The weight of the request if it is selected, 0 otherwise

TABLE II: Notation table.

Symbol Definition

at Action at time slot t

A(t) Set of active requests at time t

B Maximum number of RBs that the adversary can jam at any
given time

BERij Bit error rate for UE i’s request j

dij Minimum required rate for UE i’s request j

Dij Achieved downlink data rate for UE i’s request j

F Number of all RBs

Fij Assigned RBs for UE i’s request j

F (t) Available RBs of the gNodeB at time t

Fr(t) Released RBs on frequency at time t

Fa(t) Allocated RBs on frequency at time t

lij Lifetime of UE i’s request j

r(t) Reward at time t

rtop Percentage to determine whether a reward is considered as
top reward or not

R(t) Set of requests ending at time t

s(t) State at time t

wij Weight for UE i’s request j to reflect its priority

xij(t) Binary indicator on whether UE i’s request j is satisfied
at time t

α Learning rate of the Q-learning algorithm

γ Discount factor for rewards over time

for requests granted at time t and releasing resources after

lifetimes of some active services expire at time t. In particular,

the state transitions are given by (4)-(6). The states, actions,

and rewards of the RL algorithm for network slicing are

summarized in Table I. The standard Q-learning algorithm of

(8) is considered. The Q-table size mainly depends on the

number of RBs. For a large number of RBs, the Q-table size

can be very large and thus a deep Q-network (DQN) can be

applied to reduce the algorithm complexity. The notation used

in this paper is shown in Table II.

III. ATTACK ON REINFORCEMENT LEARNING FOR NEXTG

NETWORK SLICING

We now consider an adversary that attacks an RL algorithm

for NextG RAN slicing, e.g., the one discussed in Section II.

Other example victim systems include the RL based network

slicing schemes in [9], [57].

A. Reinforcement Learning based Attack

Since RL keeps collecting data and updating itself, it has

two unique properties that we leverage to build and evaluate

attacks on RL.

1) If an adversary changes the state or the reward, it can

affect the RL algorithm.

2) On the other hand, if the adversary stops attacking, the

RL algorithm will recover by itself.

In this section, we exploit the first property to design the attack

on the RL algorithm of the NextG network slicing. As this

attack can still affect the RL significantly even after the attack

stops for a while, we measure the impact due to the second

property in Section V.

To launch an attack, the adversary can change either the

state or the reward of the RL agent. For the RL algorithm

presented in Section II, the state includes the RB availability

and a request under consideration. Both are maintained by the

gNodeB. Therefore, they cannot be changed by the wireless

adversary that is physically separated from the gNodeB and

does not have direct access to the gNodeB’s RL algorithm. On

the other hand, the adversary can affect the reward if it jams an

RB to be allocated to a request. In that case, the request will

not be successful even if resources are allocated by the RL

algorithm and there is no reward gained by the RL algorithm.

We assume a practical constraint that the adversary has

limited jamming capability (typically due to limited energy

budget) and thus cannot jam all RBs to maximize its impact.

We denote B as the maximum number of RBs that the

adversary can jam at any given time. Due to this constraint,

it is important for the adversary to select the RBs that are

available and likely to be allocated such that jamming these

RBs can affect network slicing requests to be selected by the

RL algorithm.

The ideal case is that the adversary can build a surrogate

model (another RL algorithm) that can predict which RBs will

be allocated and then use the predicted results to decide which

RBs should be jammed. However, this case is impractical since

(i) the request under consideration is a part of the state, which

is unknown to the adversary, and (ii) the reward is the request’s

weight, which is unknown to the adversary. Therefore, the

adversary builds a different RL model (as an approximate

surrogate model). Although the RL algorithm is the same as

that discussed in Section II, this RL model of the adversary has

different state, action, and reward properties given as follows.

• The state is the set of binary variables that indicate the

availability of all RBs.

• An action corresponds to selecting the set of

min{B,F (t)} RBs from F (t) available RBs, and

jamming those selected RBs. Note that there is also the

action of not jamming any RB. Thus, the number of

possible actions is CB
F (t)+1 (where CB

F (t) is the number

of B-combinations from a set of F (t) elements, i.e.,

the number of possibilities in picking B out of F (t)) if

F (t) > B, or 2 (jam or not) if F (t) ≤ B.

• The reward is the number of jammed requests at a given

time. We assume that there is a NACK transmitted from a

NextG UE at the end of a time slot if the transmission is

not successful. If the adversary jams an RB and later

observes the NACK, the reward on this channel is 1.

Note that the adversary does not need to decode the

NACK. It needs to detect the presence of NACK only,

which is possible by distinguishing the NACK from data

transmissions (as the NACK is shorter than data portion

and has the structure of appearing between requests and

data transmissions).

To initialize the Q-table, we set entries in the column of no

jamming to zeros and entries in other columns to the number

of jammed RBs.



6

TABLE III: The adversary’s RL algorithm.

RL term Specification (at any given time instant)

State Availability of RBs

Action Jam selected RBs

Reward Number of jammed requests

The adversary applies RL to update its Q-table by (8) and

to take actions based on its Q-table. The states, actions, and

rewards of the adversary’s RL algorithm are summarized in

Table III. The Q-table size depends on the number of RBs.

If the number of RBs is large, we can apply DQN instead to

reduce the algorithm complexity.

B. Performance Metrics and Benchmark Attack Schemes

When the adversary launches its attack, we can observe the

performance reduction of the gNodeB by comparing it with

the case of no attack. The reason for the performance loss is

that some requests fail due to jamming and thus their weights

are not counted in the reward of the gNodeB.

More interestingly, since some rewards are changed by

jamming the RBs and the gNodeB’s RL algorithm is updated

based on these changed rewards, the attack also affects the

RL algorithm itself. As a result, even if the adversary stops

jamming the RBs, the performance of NextG network slicing

cannot return to previous levels (before the attack) right away.

Instead, it takes some time for the gNodeB to collect sufficient

data to correct its algorithm and then finally its performance

can go back to the case when there is no attack. To measure

this impact after the attack stops, we consider the following

metrics.

• Recovery time: The time it takes (after the attack, namely

jamming, stops) for the network slicing performance

(namely, the reward) to go back to “normal” (the level

before the attack). The recovery time is an important

metric since if it is long, the adversary can stop its attack

to avoid being detected or to save energy and then start

its attack again before the recovery time.

• Maximum performance reduction: The maximum gap in

performance compared to the normal (before-the-attack)

value during the recovery time. The performance is

measured as the running averaged reward. The maximum

performance reduction describes the maximum impact

during the recovery time.

• Total performance reduction: The accumulated perfor-

mance gap to the normal value during the recovery

time. The total performance reduction is a more robust

metric than the above two, since it is not affected by

small performance reduction (comparing with recovery

time) or single extreme point (comparing with maximum

performance reduction).

In addition to this attack, we also consider the case of no

attack and two benchmark attacks, namely random attack and

myopic attack, for performance evaluation:

• Random attack: The adversary randomly jams some RBs

(that are uniformly randomly selected from all RBs)

subject to the jamming budget.

• Myopic attack: The adversary selects which RBs to jam

(subject to the jamming budget) with the objective of

maximizing the instantaneous reward without the consid-

eration of future rewards.

Note that the proposed RL based attack takes time to

improve its attack actions as its RL algorithm learns how to

attack NextG RAN slicing. Other attacks schemes do not have

this of process of gradual improvement. As we measure the

recovery time, maximum and total performance reduction over

the same period of time (including the warm-up time) for all

attack schemes, we provide a fair comparison of RL based

attacks with random and myopic attack. The performance of

these attacks is evaluated in Section V.

IV. DEFENSE AGAINST ATTACKS ON REINFORCEMENT

LEARNING FOR NEXTG NETWORK SLICING

To protect the RL based resource allocation for NextG RAN

slicing (e.g., [9], [14], [57]) from the RL based jamming

attacks, we present different defense schemes (illustrated in

Fig. 4) for the gNodeB or the UE to take.

1) Q-Protect: One reactive defense scheme is based on

protecting the RL algorithm itself. Note that if there is

no attack, once a network slicing request is served, some

reward is expected. However, if the RBs that are allocated

to this request are jammed, this request cannot be satisfied

and therefore its reward is reduced to zero. Thus, the

gNodeB can detect the jamming attack by checking the

changes in the reward. For numerical results, we assume

that the attack is detected if the running average of the

rewards drops by 10%. Hence, the gNodeB suspends the

Q-table update once an attack is detected to avoid the

impact of the attack on the RL based network slicing

algorithm. We call this defense scheme “Q-Protect”,

which can be applied to any RL algorithm. The adversary

cannot force the gNodeB to update its RL algorithm and

thus cannot circumvent this defense.

2) RandomOpt and RandomTop: A proactive defense

scheme aims to manipulate the adversary’s learning pro-

cess (namely, its surrogate model). This defense scheme

can be effective against any learning-based attack. How-

ever, it cannot protect network slicing from random

jamming attacks. The gNodeB can proactively introduce

randomness to the resource allocation actions in its RL

algorithm such that an adversary cannot easily learn

how to build its RL algorithm. We propose two defense

schemes, with and without performance loss when there

is no attack

a) Note that there may be multiple best actions with the

same reward in the Q-table. Then, the gNodeB can

randomly select any action without any performance

loss.1 We call this defense scheme “RandomOpt”,

which can be applied to any algorithm that can find

multiple optimal actions.

1To simplify discussion, we assume that the Q-table is perfect and thus
the same reward in the Q-table means the same long-term reward in the
objective. In reality, the Q-table may not be perfect and thus there can still
be performance loss under this policy.



7

b) The randomness among best actions may not be suffi-

cient to mitigate the performance loss due to the attack.

Another defense scheme is to randomly select an action

from top actions (those with rewards that are close to

the best reward). An action is considered as “Top” if

its reward is at least rtop percentage of the maximum

reward. This defense scheme introduces more random-

ness but may incur performance loss even if there is

no attack. We call this defense scheme “RandomTop”,

which can be applied to any algorithm that can find

multiple near-optimal actions. The adversary cannot

remove the randomness introduced by the defender and

thus cannot circumvent these two defense schemes.

3) MisNACK: Another proactive defense scheme aims to

manipulate the feedback (NACK) mechanism such that

the adversary may not obtain reliable information to build

its attack strategy. We note that the UE sends a NACK

over any jammed RB if some of its RBs are jammed. That

is, there is one NACK transmitted for each failed request.

The adversary monitors the jammed RBs to detect the

presence of NACK transmission and thus defines the

reward of its action. As a defense, each UE can send

the NACK over an unjammed RB (if any) such that no

NACK can be detected by the adversary that monitors

only the channel that it has jammed. If all its RBs are

jammed, the UE can send multiple NACKs over these

RBs such that the adversary will overestimate the effect of

its attack. This way, the adversary reduces the reliability

of NACK for the adversary. We call this defense scheme

“MisNACK”, which can be applied to any algorithm

that uses NACK. The adversary cannot force UEs not

to send misleading NACKs and thus cannot circumvent

this defense.

The performance of these defense schemes is evaluated in

Section V.

V. PERFORMANCE EVALUATION

Suppose that the gNodeB receives requests from 30 UEs.

For each UE, requests arrive with the rate of 0.05 per slot.

Here, a slot corresponds to each time block which is 0.23
ms long with 60 kHz subcarrier spacing. For each request,

the weight of a request is assigned (uniformly) randomly in

[1, 5], the lifetime is assigned randomly in [1, 10] slots, and the

deadline is assigned randomly in [1, 20] slots. The maximum

received SNR is selected randomly from [1.5,3]. The total

frequency is 10 MHz including guard bands and is split into

11 bands, i.e., there are 11 RBs. We also consider a scenario

with a smaller number of RBs, namely 5 RBs.

A. Attack Performance Evaluation

The same scenario over 1000 time slots is repeated to

evaluate these attacks. For Q-learning, we set the discount

factor as γ = 0.95 and the learning rate as α = 0.1.

We assume that the adversary launches its attack over 10000
slots. The benchmark of no attack case is also run over 10000
slots in total and the achieved reward is measured as 3.032
over the first 1000 slots (and this is used as the benchmark

TABLE IV: Performance comparison of Q-learning and other attacks when
there are 11 RBs.

Attack Maximum Recovery Maximum Total
scheme jammed time reduction reduction

RBs in reward in reward

1 1038 1.447 736.216
2 1191 1.801 911.604

Q-learning 3 1548 1.957 1006.174
4 2086 2.014 1038.988
5 2038 2.714 1410.069

1 1035 1.343 670.071
2 1060 1.587 788.289

Myopic 3 1028 1.684 836.998
4 1207 1.775 894.721
5 1365 1.772 889.113

1 1197 1.000 506.947
2 1233 1.489 750.976

Random 3 1170 1.813 907.546
4 1180 2.061 1032.088
5 1202 2.273 1141.359

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time

0

0.5

1

1.5

2

2.5

3

3.5

R
e
w

a
rd

Random

Myopic

Q-learning

Fig. 6: The reward of RL algorithm for NextG RAN slicing after the attack
stops when there are 11 RBs.

for recovery). Then, we measure the average reward over the

past 1000 slots after the attack stops and once this average

reward reaches 3.032, namely when the system performance

is assumed to recover from the attack. We also measure the

performance gap to the benchmark and present results on the

maximum gap and the total gap during the recovery time.

For comparison purposes, we obtain results for attacks by

random and myopic jamming attacks in Table IV, where

results for random jamming are averaged over 20 runs. The

RL based attack (introduced in Section III-A) has longer and

larger impact on the NextG network slicing performance than

other attacks, which means that the RL based attack has better

performance. Depending on the maximum number of jammed

RBs, Q-learned based attack increases the recovery time by up

to 77%, increases the maximum reduction in reward up by to

53%, and increases the total reduction in reward by up to 59%
compared to benchmark attack schemes. We show in Fig. 6

how the reward changes over time after the attack stops when

the maximum number of jammed RBs is 5. The advantage

of RL based attack comes from the smallest reward when the

attack stops. Thus, we also check the RL algorithm’s reward

under different attacks (see Fig. 7). Since we show the average

reward over the past 1000 slots, the performance is high at the



8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

0

0.5

1

1.5

2

2.5

3

3.5

R
e
w

a
rd

Random

Myopic

Q-learning

Fig. 7: The reward of RL algorithm for NextG RAN slicing under the attack
when there are 11 RBs.

TABLE V: Performance comparison of RL based and other attacks when there
are 5 RBs.

Attack Maximum Recovery Maximum Total
algorithm jammed time reduction reduction

RBs in reward

Q-learning 1 990 0.476 253.221
2 1100 0.799 418.045

Myopic 1 925 0.370 175.576
2 992 0.583 283.019

Random 1 1029 0.403 199.924
2 1003 0.620 308.266

beginning and decreases fast. Then, the performance under

random jamming remains still small while the performance

under myopic jamming keeps increasing. This is because

the myopic algorithm is deterministic and thus it is easy to

learn and mitigate it by the RL algorithm for NextG RAN

slicing. There is another decrease for the performance under Q-

learning based jamming at time slot 9000, where in addition to

failed requests due to jamming, the RL algorithm for network

slicing also starts making errors in selecting requests. That

is, the RL algorithm for network slicing receives the wrong

reward due to attack and updates itself incorrectly. Then, it

starts to make wrong decisions on whether to select a request

or not.

Next, we evaluate the performance when the number of RBs

is reduced from 11 to 5 (other parameters remain the same).

Results are shown in Table V. As before, the Q-learning based

attack has longer and larger impact on the performance than

benchmark attacks. Fig. 8 and Fig. 9 show the reward over time

after the attack stops and under the attack, respectively. The

trends in Fig. 8 and Fig. 9 are the same as the trends observed

in Fig. 6 and Fig. 7 when there are 11 RBs. Note that due to

the smaller problem size, the almost flat period between two

decreases of network slicing performance under the RL based

attack is much shorter, i.e., the start of the second decrease is at

about time slot 3200. On the other hand, we may increase the

number of RBs. We find that the Q-table size will be increased

by the second order of the number of RBs. A large Q-table

requires both long training time and large memory usage. It

would be better to design a solution using deep Q-learning

instead.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
e
w

a
rd

Random

Myopic

Q-learning

Fig. 8: The reward of RL algorithm for NextG RAN slicing after the attack
stops when there are 5 RBs.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
e
w

a
rd

Random

Myopic

Q-learning

Fig. 9: The reward of RL algorithm for NextG RAN slicing under the attack
when there are 5 RBs.

B. Defense Performance Evaluation

We now present the performance of different defense

schemes (described in Section IV) against the RL based attack.

For RandomTop, an action is considered as “Top” if its reward

is at least rtop = 50% of the maximum reward. The recovery

time for the no defense case and all defense schemes is

shown in Fig. 10, where the “Combined” scheme combines

different defense schemes (“Q-Protect”, “RandomTop”, and

“MisNACK”) and apply them jointly to strengthen the overall

defense against the RL based attack on NextG network slicing.

In particular, “Q-Protect” aims to protect the Q-table while

both “RandomTop” and “MisNACK” aim to attack the adver-

sary’s learning process, and thus they all can be combined.

Compared with the no attack case, all the defense schemes

reduce the recovery time if the number of jammed RBs is

at least three. The improvement when there is one jammed

RB is not significant. The random effect in “RandomOpt” and

“RandomTop” makes them worse than the no defense case if

the number of jammed RBs is 2. In fact, although it takes

long time to recover, the amount of reduction in reward is not

large. Thus, we further study the reduction in reward, in terms

of the maximum reduction and the total reduction, during the

recovery period.

The maximum reduction in reward for the no defense case



9

1 2 3 4 5

Number of jammed RBs

0

500

1000

1500

2000

2500

R
e
c
o
v
e
ry

 t
im

e

No defense

Q-Protect

RandomOpt

RandomTop

MisNACK

Combined

Fig. 10: Recovery time of RL algorithm for NextG RAN slicing under different
attacks.

1 2 3 4 5

Number of jammed RBs

0

0.5

1

1.5

2

2.5

3

M
a
x
im

u
m

re
d
u
c
ti
o
n

in
re

w
a
rd

No defense

Q-Protect

RandomOpt

RandomTop

MisNACK

Combined

Fig. 11: Maximum reduction in the reward of RL algorithm for NextG RAN
slicing under different attacks.

and all defense schemes are shown in Fig. 11. Compared

with the no attack case, the “RandomOpt”, “RandomTop”, and

“Combined” schemes achieve smaller reduction in most of the

cases.

The total reduction in reward for the no defense case and

defense schemes is shown in Fig. 12. Compared with the no at-

tack case, the “RandomOpt”, “RandomTop”, and “Combined”

schemes achieve smaller reduction for most cases.

In summary, the “Combined” scheme achieves better de-

fense performance than other defense schemes for most of

cases. Therefore, we evaluate the performance of the “Com-

bined” scheme in further detail. The performance when there

are 5 RBs is shown in Table VI. Compared with the results in

in Table V, we note that the “Combined” scheme can improve

the performance for NextG RAN slicing, and this observation

holds for both cases with 5 and 11 RBs.

VI. CONCLUSION

In this paper, we studied the security vulnerability of

NextG network slicing by designing a jamming attack on the

underlying RL operations for resource allocation. Although RL

is an efficient solution to optimally allocate network resources

(RBs at the NextG gNodeB) for communication requests from

NextG UEs, the broadcast nature of wireless communications

1 2 3 4 5

Number of jammed RBs

0

200

400

600

800

1000

1200

1400

T
o
ta

l 
re

d
u
c
ti
o
n
 i
n
 r

e
w

a
rd

No defense

Q-Protect

RandomOpt

RandomTop

MisNACK

Combined

Fig. 12: Total reduction in the reward of RL algorithm for NextG RAN slicing
under different attacks.

TABLE VI: Performance by the combined defense of “Q-Protect”, “Random-
Top”, and “MisNACK” schemes under the RL based attack when there are 5
RBs.

Maximum Recovery Maximum Total
jammed RBs time reduction in reward reduction

1 986 0.536 266.581

2 918 0.679 320.966

makes the NextG RAN vulnerable to jamming attacks. In

particular, if an RB is assigned to a request and is jammed

by an adversary, that request cannot be satisfied and the

associated reward becomes zero. This reward is used as input

to the gNodeB’s RL algorithm and thus its performance starts

deteriorating. Even after the adversary stops jamming, the

gNodeB’s performance cannot be recovered until its algorithm

is updated by a sufficient number of feedback messages.

To select the RBs for jamming, the adversary builds a

surrogate RL model to maximize the number of jammed

requests over time subject to an energy budget (namely, a

constraint on the number of channels that can be jammed

simultaneously). We showed that such an algorithm is highly

effective to reduce the gNodeB’s performance, even after

the adversary stops attacking. We compared this attack with

other attack benchmarks such as random jamming and myopic

jamming (that aims to maximize the instantaneous number of

jammed RBs) and showed that the RL based jamming attack

is more effective than both random or myopic jamming.

To protect network slicing against RL based jamming at-

tacks, we introduced several defense schemes such as suspend-

ing the Q-table updates when an attack is detected, introducing

randomness into network slicing decisions or manipulating the

feedback mechanism in network slicing to mislead the learn-

ing process of the adversary. We showed that these defense

schemes can be effectively combined to defend network slicing

by fooling the adversary into making wrong decisions and

reducing its impact.

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94-100, May 2017.



10

[2] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J.
Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV: Con-
cepts, architectures, and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80–87, May 2017.

[3] P. Rost, C. Mannweiler, D. S. Michalopoulos, C.Sartori, V. Sciancale-
pore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz,
and H. Bakker, “Network slicing to enable scalability and flexibility in
5G mobile networks,” IEEE Communications Magazine, vol. 55, no. 5,
pp. 72–79, May 2017.

[4] A. Kaloxylos, “A survey and an analysis of network slicing in 5G
networks,” IEEE Communications Standards Magazine, vol. 2, no. 1,
Apr. 2018.

[5] S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia, “The slice
is served: Enforcing radio access network slicing in virtualized 5G
systems,” IEEE INFOCOM, 2019.

[6] T. Erpek, T. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C. Clancy, “Deep
learning for wireless communications,” Development and Analysis of

Deep Learning Architectures, Springer, 2019.

[7] A. Nakao, and P. Du, “Toward in-network deep machine learning
for identifying mobile applications and enabling application specific
network slicing,” IEICE Transactions on Communications, 2018.

[8] A. Thantharate, R. Paropkari, V. Walunj, C. Beard, “DeepSlice: A deep
learning approach towards an efficient and reliable network slicing in
5G networks,” IEEE 10th Annual Ubiquitous Computing, Electronics

and Mobile Communication Conference (UEMCON), 2019.

[9] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” arXiv preprint arXiv:1805.06591, 2020.

[10] J. Koo, M. R. Rahman, V. B. Mendiratta, and A. Walid, “Deep
reinforcement learning for network slicing with heterogeneous re-
source requirements and time varying traffic dynamics,” arXiv preprint

arXiv:1908.03242, 2019.

[11] H. Wang, Y. Wu, G. Mina, J. Xu, and P. Tang, “Data-driven dynamic
resource scheduling for network slicing: A deep reinforcement learning
approach,” Information Sciences, 2019.

[12] Q. Liu and T. Han, “When network slicing meets deep reinforcement
learning,” International Conference on Emerging Networking Experi-

ments and Technologies, 2019.

[13] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep reinforce-
ment learning based framework for power-efficient resource allocation
in cloud RANs,” IEEE International Conference on Communications

(ICC), 2017.

[14] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement learning for
dynamic resource optimization in 5G radio access network slicing,”
IEEE International Workshop on Computer Aided Modeling and Design

of Communication Links and Networks (CAMAD), 2020.

[15] Y. Shi, P. Rahimzadeh, M. Costa, T. Erpek, and Y. E.
Sagduyu, “Deep reinforcement learning for 5G radio access
network slicing with spectrum coexistence,” TechRxiv. Preprint.

https://doi.org/10.36227/techrxiv.16632526.v1

[16] A. Nassar and Y. Yilmaz, “Deep reinforcement learning for adaptive
network slicing in 5G for intelligent vehicular systems and smart cities,”
arXiv preprint arXiv:2010.09916, 2020.

[17] K. Suh, S. Kim, Y. Ahn, S. Kim, H. Ju and B. Shim, “Deep reinforce-
ment learning-based network slicing for beyond 5G,” IEEE Access, vol.
10, pp. 7384–7395, 2022.

[18] F. Wang, C. Zhong, M. C. Gursoy, and S. Velipasalar, “Adversarial
jamming attacks and defense strategies via adaptive deep reinforcement
learning,” arXiv preprint arXiv:2007.06055, 2020.

[19] C. Zhong, F. Wang, M. C. Gursoy, and S. Velipasalar, “Adversar-
ial jamming attacks on deep reinforcement learning based dynamic
multichannel access,” IEEE Wireless Communications and Networking

Conference (WCNC), 2020.

[20] F. Wang, C. Zhong, M. C. Gursoy, and S. Velipasalar, “Defense strategies
against adversarial jamming attacks via deep reinforcement learning,”
IEEE Conference on Information Sciences and Systems (CISS), 2020.

[21] Y. E. Sagduyu, Y. Shi, T. Erpek, W. Headley, B. Flowers, G. Stantchev,
and Z. Lu, “When wireless security meets machine learning: Motivation,
challenges, and research directions,” arXiv preprint arXiv:2001.08883,
2020.

[22] D. Adesina D, C. C. Hsieh, Y. E. Sagduyu, and L. Qian, “Adversarial
machine Learning in wireless communications using RF data: A review,”
arXiv preprint arXiv:2012.14392, 2020.

[23] Y. Shi, Y. E Sagduyu, T. Erpek, K. Davaslioglu, Z. Lu, and J. Li, “Ad-
versarial deep learning for cognitive radio security: Jamming attack and
defense strategies,” IEEE International Conference on Communications

(ICC) Workshop on Promises and Challenges of Machine Learning in

Communication Networks, 2018.

[24] T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for launching and
mitigating wireless jamming attacks, IEEE Transactions on Cognitive

Communications and Networking, vol. 5, no. 1, pp. 2–14, Mar. 2019.

[25] M. Sadeghi and E. G. Larsson, “Adversarial attacks on deep-learning
based radio signal classification,” IEEE Communications Letters, vol. 8,
no. 1, pp. 213—216, Feb. 2019.

[26] Y. Shi, T. Erpek, Y. E. Sagduyu, and J. Li, “Spectrum data poisoning with
adversarial deep learning,” IEEE Military Communications Conference

(MILCOM), 2018.

[27] S. Bair, M. DelVecchio, B. Flowers, A. J. Michaels, and W. C. Headley,
“On the limitations of targeted adversarial evasion attacks against deep
learning enabled modulation recognition,” ACM Workshop on Wireless

Security and Machine Learning (WiseML), 2019.

[28] B. Flowers, R. M. Buehrer, and W. C. Headley, “Evaluating adversarial
evasion attacks in the context of wireless communications,” IEEE

Transactions on Information Forensics and Security, vol. 15, pp. 1102–
1113, 2020.

[29] S. Kokalj-Filipovic and R. Miller, “Adversarial examples in RF deep
learning: Detection of the attack and its physical robustness,” IEEE

Global Conference on Signal and Information Processing, 2019.

[30] S. Kokalj-Filipovic, R. Miller, and J. Morman, “Targeted adversarial
examples against RF deep classifiers,” ACM Workshop on Wireless

Security and Machine Learning (WiseML), 2019.

[31] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus,
“Over-the-air adversarial attacks on deep learning based modulation
classifier over wireless channels,” Conference on Information Sciences

and Systems (CISS), 2020.

[32] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus,
“Channel-aware adversarial attacks against deep learning-based wireless
signal classifiers,” arXiv preprint arXiv:2005.05321, 2020.

[33] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus,
“Adversarial attacks with multiple antennas against deep learning-based
modulation classifiers,” IEEE GLOBECOM Open Workshop on Machine

Learning in Communications, 2020.

[34] B. Kim, Y. E. Sagduyu, T. Erpek, K. Davaslioglu, and S. Ulukus, “Chan-
nel effects on surrogate models of adversarial attacks against wireless
signal classifiers,” IEEE International Conference on Communications

(ICC), 2021.

[35] B. Kim, Y. E. Sagduyu, T. Erpek, and S. Ulukus, “Adversarial attacks
on deep learning based mmWave beam prediction in 5G and beyond,”
IEEE Statistical Signal Processing Workshop (SSP), 2021.

[36] Y. Lin, H. Zhao, Y. Tu, S. Mao, and Z. Dou, “Threats of adversarial
attacks in DNN based modulation recognition,” IEEE INFOCOM, 2020.

[37] M. Sadeghi and E. G. Larsson, “Physical adversarial attacks against end-
to-end autoencoder communication systems,” IEEE Communications

Letters, vol. 23, no. 5, pp. 847–850, May 2019.

[38] B. Manoj, M. Sadeghi, and E. G. Larsson, “Adversarial attacks on deep
learning based power allocation in a massive MIMO network,” arXiv

preprint arXiv:2101.12090, 2021.

[39] F. Restuccia, S. D’Oro, A. Al-Shawabka, B. C. Rendon, K. Chowdhury,
S. Ioannidis, and T. Melodia, “Hacking the waveform: Generalized
wireless adversarial deep learning,” ACM Workshop on Wireless Security

and Machine Learning, 2020.

[40] M. Z. Hameed, A. Gyorgy, and D. Gunduz, “Communication without
interception: Defense against deep-learning-based modulation detec-
tion,” IEEE Global Conference on Signal and Information Processing

(GlobalSIP), 2019.

[41] M. Z. Hameed, A. Gyorgy, and D. Gunduz, “The best defense is a
good offense: Adversarial attacks to avoid modulation detection,” IEEE

Transactions on Information Forensics and Security, vol. 16, pp. 1074–
1087, 2021.

[42] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus, “How
to make 5G communications “invisible” adversarial machine learning
for wireless privacy,” Asilomar Conference on Signals, Systems, and

Computers, 2020.

[43] Y. E. Sagduyu, T. Erpek, and Y. Shi, “Adversarial deep learning for
over-the-air spectrum poisoning attacks,” IEEE Transactions on Mobile

Computing, vol. 20, no. 2, pp. 306–319, Feb. 2021.

[44] Z. Luo, S. Zhao, Z. Lu, J. Xu, and Y. E. Sagduyu, “When attackers meet
AI: Learning-empowered attacks in cooperative spectrum sensing,” IEEE

Transactions on Mobile Computing, 2020.

[45] Z. Luo, S. Zhao, Z. Lu, Y. E. Sagduyu, and J. Xu, “Adversarial machine
learning based partial-model attack in IoT,” ACM Workshop on Wireless

Security and Machine Learning (WiseML), 2020.



11

[46] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Over-the-air membership
inference attacks as privacy threats for deep learning-based wireless
signal classifiers,” ACM WiSec Workshop on Wireless Security and

Machine Learning (WiseML), 2020.
[47] Y. Shi, Y. E. Sagduyu, “Membership inference attack and defense

for wireless signal classifiers with deep learning,” arXiv preprint

arXiv:2107.12173, 2021.
[48] K. Davaslioglu and Y. E. Sagduyu, “Trojan attacks on wireless signal

classification with adversarial machine learning,” IEEE DySPAN Work-

shop on Data-Driven Dynamic Spectrum Sharing, 2019.
[49] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial net-

work in the air: Deep adversarial learning for wireless signal spoofing,”
IEEE Trans. on Cognitive Communications and Networking, 2020.

[50] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial
network for wireless signal spoofing,” ACM Workshop on Wireless

Security and Machine Learning (WiseML), 2019.
[51] S. Karunaratne, E. Krijestorac, and D. Cabric, “Penetrating RF

fingerprinting-based authentication with a generative adversarial attack,”
arXiv preprint arXiv:2011.01538, 2020.

[52] Y. E. Sagduyu, T. Erpek, and Y. Shi, “Adversarial machine learning for
5G communications security,” arXiv preprint arXiv:2101.02656, 2021.

[53] Y. Shi and Y. E. Sagduyu, “Adversarial machine learning for flooding
attacks on 5G radio access network slicing,” IEEE International Con-

ference on Communications (ICC) Workshops, 2021.
[54] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching

and detecting jamming attacks in wireless networks,” ACM International

Symposium on Mobile Ad Hoc Networking and Computing, 2005.
[55] Y. E. Sagduyu, R. Berry, and A. Ephremides, “Jamming games in

wireless networks with incomplete information,” IEEE Communications

Magazine, 2011.
[56] 3GPP TS 38.306: “NR; User Equipment (UE) radio access capabilities”.
[57] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid, “Deep

reinforcement learning for network slicing with heterogeneous resource
requirements and time varying traffic dynamics,” IEEE International

Conference on Network and Service Management (CNSM), 2019.
[58] G.O. Boateng, D. Ayepah-Mensah, D.M. Doe, A. Mohammed, G. Sun,

and G. Liu, “Blockchain-Enabled Resource Trading and Deep Rein-
forcement Learning-Based Autonomous RAN Slicing in 5G,” IEEE

Transactions on Network and Service Management 19, no. 1 (2021):
216-227.

[59] G.O. Boateng, G. Sun, D. Ayepah-Mensah, D.M. Doe, R. Ou, and
G. Liu, “Consortium blockchain-based spectrum trading for network
slicing in 5G RAN: A multi-agent deep reinforcement learning ap-
proach,” IEEE Transactions on Mobile Computing (2022).

[60] R. Dangi, A. Jadhav, G. Choudhary, N. Dragoni, M.K. Mishra, and
P. Lalwani, “ML-Based 5G Network Slicing Security: A Comprehensive
Survey,” Future Internet 14, no. 4 (2022): 116.

[61] V.P. Kafle, Y. Fukushima, P. Martinez-Julia, and T. Miyazawa, “Consid-
eration on automation of 5G network slicing with machine learning,” in
IEEE ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K),
pp. 1-8. IEEE, 2018.

Yi Shi (SM’13) is a Research Associate Professor at
Commonwealth Cyber Initiative, Virginia Tech. He
is also a Research Associate Professor of Electrical
and Computer Engineering (by Courtesy), Virginia
Tech. Prior to joining Virginia Tech, He was a Senior
Lead Research Scientist in BlueHalo Inc. Dr. Shi’s
research focuses on algorithm design, optimization,
and machine learning for NextG wireless networks.
He was a recipient of Best Paper Award at IEEE
INFOCOM 2008, a recipient of the only Best Paper
Award Runner-Up at IEEE INFOCOM 2011, a re-

cipient of Best Student Paper Award at ACM WUWNet 2014, and a recipient
of Best Paper Award at IEEE HST 2018. He was an Exemplary Editor for
IEEE Communications Surveys and Tutorials in 2014 and a Distinguished
TPC Member for IEEE INFOCOM in 2021. Dr. Shi is an Editor for IEEE
Communications Surveys and Tutorials and served as a TPC chair for IEEE
and ACM symposiums, tracks, and workshops.

Yalin E. Sagduyu (S’02–M’08–SM’15) received
his B.S. degree in Electrical and Electronics Engi-
neering from Bogazici University, Turkey and his
M.S. and Ph.D. degrees in Electrical and Computer
Engineering from University of Maryland, College
Park. He is a Research Professor at Virginia Tech
National Security Institute. Prior to that, he was
the Director of Networks and Security at Intelligent
Automation, Inc./BlueHalo. He is also a Visiting Re-
search Professor at the Department of Electrical and
Computer Engineering of University of Maryland,

College Park. His research interests are in wireless communications, networks,
security, and machine learning. He is an Editor of IEEE Transactions on
Communications. He chaired workshops at ACM MobiCom, ACM WiSec,
IEEE CNS and IEEE ICNP, served as a Track Chair at IEEE PIMRC, IEEE
GlobalSIP and IEEE MILCOM, and served in the organizing committee of
IEEE GLOBECOM and IEEE MILCOM. He received IEEE HST 2018 Best
Paper Award.

Tugba Erpek (S’13-M’19) a Research Associate
Professor in the Intelligent Systems Division of the
Virginia Tech National Security Institute. She re-
ceived her Ph.D. degree in Electrical and Computer
Engineering from Virginia Tech. Prior to joining to
Virginia Tech, she was a Lead Scientist and Net-
work Communications Technical Area Lead at the
Intelligent Automation, a BlueHalo Company and
a Senior Communications Systems Engineer at the
Shared Spectrum Company. Her research interests
are in wireless communications and networks, 5G

and beyond, wireless security, machine learning, and resource allocation. She
has published extensively in these areas. She has been serving as a TPC
member and reviewer for major IEEE conferences and journals.

M. Cenk Gursoy (SM) is a Professor in the
EECS Department at Syracuse University. His re-
search interests are in the general areas of wire-
less communications, information theory, commu-
nication networks, signal processing, and machine
learning. He is a member of the editorial boards
of IEEE Transactions on Wireless Communications
and IEEE Transactions on Communications, and
he is an Area Editor for IEEE Transactions on
Vehicular Technology. He also served as an editor
for IEEE Transactions on Green Communications

and Networking between 2016 and 2021, IEEE Transactions on Wireless
Communications between 2010 and 2015, IEEE Communications Letters
between 2012 and 2014, IEEE Journal on Selected Areas in Communications
- Series on Green Communications and Networking (JSAC-SGCN) between
2015 and 2016, Physical Communication (Elsevier) between 2010 and 2017,
and IEEE Transactions on Communications between 2013 and 2018. He
has been the co-chair of the 2017 International Conference on Computing,
Networking and Communications (ICNC) - Communication QoS and System
Modeling Symposium, the co-chair of 2019 IEEE Global Communications
Conference (Globecom) - Wireless Communications Symposium, the co-chair
of 2019 IEEE Vehicular Technology Conference Fall - Green Communications
and Networks Track, and the co-chair of 2021 IEEE Global Communications
Conference (Globecom), Signal Processing for Communications Symposium.
He received an NSF CAREER Award in 2006. More recently, he received
the EURASIP Journal of Wireless Communications and Networking Best
Paper Award, 2020 IEEE Region 1 Technological Innovation (Academic)
Award, 2019 The 38th AIAA/IEEE Digital Avionics Systems Conference
Best of Session (UTM-4) Award, 2017 IEEE PIMRC Best Paper Award,
2017 IEEE Green Communications & Computing Technical Committee
Best Journal Paper Award, UNL College Distinguished Teaching Award,
and the Maude Hammond Fling Faculty Research Fellowship. He is the
Aerospace/Communications/Signal Processing Chapter Co-Chair of IEEE
Syracuse Section.


