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ON THE SMALL NOISE LIMIT IN THE

SMOLUCHOWSKI-KRAMERS APPROXIMATION OF

NONLINEAR WAVE EQUATIONS WITH VARIABLE FRICTION

SANDRA CERRAI AND MENGZI XIE

Abstract. We study the validity of a large deviation principle for a class
of stochastic nonlinear damped wave equations, including equations of Klein-
Gordon type, in the joint small mass and small noise limit. The friction term is
assumed to be state dependent. We also provide the proof of the Smolchowski-
Kramers approximation for the case of variable friction, non-Lipschitz nonlin-
ear term and unbounded diffusion.

1. Introduction

In this article we deal with this class of stochastic wave equations with state-
dependent damping on a bounded smooth domain O ⊂ R

d

(1.1)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μ∂2
t uμ(t, x) = Δuμ(t, x)− γ(uμ(t, x))∂tuμ(t, x) + f(x, uμ(t, x))

+σ(uμ(t, ·))∂twQ(t, x),

uμ(0, x) = u0(x), ∂tuμ(0, x) = v0(x), uμ(t, x) = 0, x ∈ ∂O,

depending on a parameter 0 < μ << 1. Here the friction coefficient γ is strictly
positive and bounded and the nonlinearity f is either a Lipschitz-continuous func-
tion (in this case we can consider any d ≥ 1) or a locally Lipschitz-continuous
function of the Klein-Gordon type (in this case we can only take d = 1). The noise
wQ(t) is a cylindrical Q-Wiener process and σ is a suitable Lipschitz-continuous
operator-valued function.

The solution uμ of equation (1.1) can be seen as the displacement field of some
particles in a domain O, subject to interaction forces represented by the Laplacian
and to nonlinear reactions represented by f , in the presence of a random external
forcing σ(uμ(t, ·))∂twQ(t) and a state-dependent friction γ(uμ(t))∂tuμ(t). A series
of papers has investigated the validity of the so-called Smoluchowski-Kramers ap-
proximation that describes the limiting behavior of the solution uμ, as the density
μ of the particles vanishes (see [24] and [33]). For the finite dimensional case, the
existing literature is quite broad and we refer in particular to [15], [16], [20], [21]
and [34] (see also [2], [6], [13] and [25] for systems subject to a magnetic field or
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constrained to stay on a manifold and [7], [23] and [30] for some related multiscaling
problems).

In recent years there has been an intense activity dealing with the Smoluchowski-
Kramers approximation of infinite dimensional systems. To this purpose, we refer
to [4], [5], [8], [31] and [26], [27] and [28] for the case of constant damping term
(see also [12] where systems subject to a magnetic field are studied), and to [14] for
the case of state-dependent damping. As a matter of fact, these two situations are
quite different. When γ is constant, uμ converges to the solution of the stochastic
parabolic problem

(1.2)

⎧

⎨

⎩

γ ∂tu(t, x) = Δu(t, x) + f(x, u(t, x)) + σ(u(t, ·))∂twQ(t, x),

u(0, x) = u0(x), ∂tu(0, x) = v0(x), uμ(t, x) = 0, x ∈ ∂O.

However, when γ is not constant, because of the interplay between the state-
dependent friction and the noise, an extra drift is created and in [14] it has been
proven that the limiting equation becomes
(1.3)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

γ(u(t, x))∂tu(t, x) = Δu(t, x) + f(u(t, x))

− γ′(u(t, x))

2γ2(u(t, x))

∞
∑

i=1

|[σ(u(t, ·))Qei](x)|2 + σ(u(t, ·))∂twQ(t, x),

u(0, x) = u0(x), u(t)|∂O
= 0,

where {Qei}i∈N is a complete orthonormal basis of the reproducing kernel of the
noise.

Once proved the validity of the small mass limit, it is important to understand
how stable such an approximation is with respect to other important asymptotic
features of the two systems, such as for example the long time behavior. To this
purpose, in [9] and [4] it is shown that the statistically invariant states of equation
(1.1) (in case of constant friction) converge in a suitable sense to the invariant
measure of equation (1.2). In the same spirit, the two papers [10] and [11] are
devoted to an analysis of the convergence of the quasi-potential that describes, as
known, the asymptotics of the exit times and the large deviation principle for the
invariant measure.

In the present paper we are interested in studying the validity of a large deviation
principle for the following equation

(1.4)

⎧

⎪

⎨

⎪

⎩

μ∂2
t uμ(t, x) = Δuμ(t, x)− γ(uμ(t, x))∂tuμ(t, x)

+ f(x, uμ(t, x)) +
√
μσ(uμ(t, ·))∂twQ(t, x),

uμ(0, x) = u0(x), ∂tuμ(0, x) = v0(x), uμ(t, x) = 0, x ∈ ∂O,

where, together with the mass, we are also assuming that the intensity of the noise
vanishes. Our aim is proving that in the joint small mass and small noise limit the
family of random variables {uμ}μ>0 satisfies a large deviation principle in the space
C([0, T ];Lp(O)) (for some p > 2 depending on the dimension d), with respect to
the action functional

IT (u) =
1

2

{

ˆ T

0

‖ϕ(t)‖2H dt : u(t) = uϕ(t), t ∈ [0, T ]

}

,
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where uϕ(t) denotes the solution of the controlled quasi-linear parabolic equation

(1.5)

{

γ(u(t, x))∂tu(t, x) = Δu(t, x) + f(x, u(t, x)) + σ(u(t, ·))ϕ(t, x),
u(0, x) = u0(x), u(t, x) = 0, x ∈ ∂O.

This means in particular that, in spite of the fact that in the presence of a non-
constant friction coefficient the Smoluchowski-Kramers approximation of equation
(1.1) leads to equation (1.3), the large deviation principle is consistent with equation
(1.2).

The small parameter we are taking in front of the noise in equation (1.4) is
√
μ.

However, we would like to point out that this is done only for simplicity sake. In
fact,

√
μ could be replaced by any other positive function α(μ) such that

lim
μ→0

α(μ) = 0, lim
μ→0

α(μ)√
μ

< ∞,

and in this case the speed of the large deviation principle would be α2(μ), instead
of μ.

Due to the nature of our problem, the weak-convergence approach to large de-
viation, as developed in [3] for SPDEs, is the ideal tool for our proof. As known,
such an approach requires a thorough analysis of the following controlled version
of equation (1.4)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μ∂2
t uμ(t, x)=Δuμ(t, x)−γ(uμ(t, x))∂tuμ(t, x)+f(x, uμ(t, x))+σ(uμ(t, ·))Qϕ(t, x)

+
√
μσ(uμ(t, ·))∂twQ(t, x), t > 0, x ∈ O.

uμ(0, x) = u0(x), ∂tuμ(0, x) = v0(x), uμ(t, x) = 0, x ∈ ∂O,

(1.6)

In [14], only the case of Lipschitz f and bounded σ is considered. However, in
relevant models it is important to consider non-Lipschitz nonlinearities. For this
reason, in this paper we are considering also nonlinearities f having polynomial
growth and satisfying some monotonicity conditions. We would like to stress that
this, together with the fact that we allow the diffusion coefficients σ to have linear
growth and we have to add a control in equation (1.6), has required the introduction
of new arguments, compared with [14], already in the proof of the well-posedness
result.

After we have shown that equation (1.6) admits a unique solution uϕ
μ , for every

fixed μ > 0 and for every predictable control, we have proven suitable a priori
bounds for such solution and its time derivative. Then, we have introduced ρμ :=
g(u

ϕμ
μ ), where g′ = γ and {ϕμ}μ>0 is a family of controls all contained P-a.s.

in a ball of L2([0, T ];L2(O)), and we have shown that these estimates imply the
tightness of the family {ρμ}μ∈(0,μT ) in C([0, T ];Hδ), for some μT > 0 and for every
δ < 1.

Next, we have shown how, for every sequence {μk}k∈N converging to zero, every
limit point ρ of {ρμk

}k∈N is a weak solution of the deterministic controlled problem
⎧

⎪

⎨

⎪

⎩

∂tρ(t, x) = div [b(ρ(t, x))∇ρ(t, x)] + fg(x, ρ(t, x)) + σg(ρ(t, ·))ϕ(t, x),
t > 0, x ∈ O,

ρ(0, x) = g(u0(x)), ρ(t, x) = 0, x ∈ ∂O,
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where b = 1/γ ◦ g−1, fg = f ◦ g−1, and σg = σ ◦ g−1. In order to identify uniquely
the limit point and prove that {ρμk

}k∈N converges to ρ, we had first to prove that
the equation above has a unique solution. Then, by defining u := g−1(ρ), we have
obtained the convergence of u

ϕμ
μ to the solution of the controlled equation (1.6) and

this has allowed us to conclude our proof.
Finally, we would like to mention that in Appendix A we have extended the

results of [14] and provided a proof of the validity of the Smoluchowski-Kramers
approximation for quasi-monotone f having polynomial growth and unbounded
diffusion σ (see Hypothesis 4). This has required the proof of quite nontrivial a
priori bounds for the solution uμ and its time derivative ∂tuμ, and the introduction
of suitable functional spaces where tightness holds and the small-mass limit can be
proven.

2. Notations and assumptions

Throughout the present paperO is a bounded domain in R
d, with smooth bound-

ary. We denote byH the Hilbert space L2(O) and by 〈·, ·〉H the corresponding inner
product. H1 is the completion of C∞

0 (O) with respect to norm

‖u‖2H1 := ‖∇u‖2H =

ˆ

O

|∇u(x)|2dx,

and H−1 is the dual space to H1. Then H1, H and H−1 are all complete separable
metric spaces, and H1 ⊂ H ⊂ H−1, with compact embeddings. In what follows,
we shall denote

H = H ×H−1, H1 = H1 ×H.

Given the domain O, we denote by {ei}i∈N ⊂ H1 the complete orthonormal
basis of H which diagonalizes the Laplacian Δ, endowed with Dirichlet boundary
conditions on ∂O. Moreover, we denote by {−αi}i∈N the corresponding sequence
of eigenvalues, i.e.

Δei = −αiei, i ∈ N.

Next, for every δ ∈ R, we denote by Hδ the completion of C∞
0 (O) with respect

to the norm

‖u‖2Hδ :=

∞
∑

i=1

αδ
i 〈h, ei〉2H .

2.1. The stochastic term. We assume that wQ(t) is a cylindrical Q-Wiener pro-
cess, defined on a complete stochastic basis (Ω,F , (Ft)t≥0,P). This means that
wQ(t) can be formally written as

wQ(t) =

∞
∑

i=1

Qeiβi(t),

where {βi}i∈N is a sequence of independent standard Brownian motions on
(Ω,F , (Ft)t≥0,P), {ei}i∈N is the complete orthonormal system introduced above
that diagonalizes the Laplace operator, endowed with Dirichlet boundary condi-
tions, and Q : H → H is a bounded linear operator,. When Q = I, wI(t) will be
denoted by w(t). In particular, we have wQ(t) = Qw(t).

In what follows we shall denote by HQ the set Q(H). HQ is the reproducing
kernel of the noise wQ and is a Hilbert space, endowed with the inner product

〈Qh,Qk〉HQ
= 〈h, k〉H , h, k ∈ H.
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Notice that the sequence {Qei}i∈N is a complete orthonormal system in HQ. More-
over, if U is any Hilbert space containing HQ such that the embedding of HQ into
U is Hilbert-Schmidt, we have that

(2.1) wQ ∈ C([0, T ];U).

Next, we recall that for every two separable Hilbert spaces E and F , L2(E,F )
denotes the space of Hilbert-Schmidt operators from E into F . L2(E,F ) is a Hilbert
space, endowed with the inner product

〈A,B〉L2(E,F ) = TrE [A�B] = TrF [BA�].

As well known, L2(E,F ) ⊂ L(E,F ) and

(2.2) ‖A‖L(E,F ) ≤ ‖A‖L2(E,F ).

Hypothesis 1. The mapping σ : H → L2(HQ, H) is defined by

[σ(h)Qei](x) = σi(x, h(x)), x ∈ O h ∈ H, i ∈ N,

for some mapping σi : O × R → R. We assume that there exists L > 0 such that

(2.3) sup
x∈O

∞
∑

i=1

|σi(x, y1)− σi(x, y2)|2 ≤ L |y1 − y2|2, y1, y2 ∈ R.

Moreover,

(2.4) sup
x∈O

∞
∑

i=1

|σi(x, 0)|2 =: σ2
0 < ∞.

Remark 2.1.

(1) Condition (2.3) implies that σ is Lipschitz continuous. Namely for any
h1, h2 ∈ H

(2.5) ‖σ(h1)− σ(h2)‖L2(HQ,H) ≤
√
L ‖h1 − h2‖H .

This, together with condition (2.4), implies also that σ has linear growth,
that is

(2.6) ‖σ(h)‖L2(HQ,H) ≤
√
L ‖h‖H + |O|1/2σ0.

(2) If σ is constant, then Hypothesis 1 means that σQ is a Hilbert-Schmidt
operator in H.

(3) If σ is not constant, Hypothesis 1 is satisfied for example when

[σ(h)Qk](x) = s(x, h(x))Qk(x), x ∈ O, h, k ∈ H,

for some measurable function s : O × R → R such that s(x, ·) : R → R

is Lipschitz continuous, uniformly with respect to x ∈ O, and for some
Q ∈ L(H) such that

(2.7)
∞
∑

i=1

‖Qei‖2L∞(O) < ∞.

In case Q is diagonalizable with respect to the basis (ei)i∈N, with Qei =
λiei, condition (2.7) reads

(2.8)

∞
∑

i=1

λ2
i ‖ei‖2L∞(O) < ∞.
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In general (see [18]), we have

‖ei‖L∞(O) ≤ c iα,

for some α > 0, and (2.8) becomes
∞
∑

i=1

λ2
i i

2α < ∞.

In particular, when d = 1 or the domain is a hyperrectangle when d > 1
the eigenfunctions (ei)i∈N are equi-bounded and (2.8) becomes Q ∈ L2(H).

2.2. The coefficients γ and f . Throughout the paper, we shall assume that the
friction coefficient satisfies the following condition

Hypothesis 2. The mapping γ belongs to C1
b (R) and there exist γ0 and γ1 such

that

(2.9) 0 < γ0 ≤ γ(r) ≤ γ1, r ∈ R.

In what follows, we shall define

g(r) =

ˆ r

0

γ(σ) dσ, r ∈ R.

Remark 2.2.

(1) Clearly g(0) = 0 and g′(r) = γ(r). In particular, due to (2.9), g is uniformly
Lipschitz continuous on R.

(2) The function g is strictly increasing and

(g(r1)− g(r2)) (r1 − r2) ≥ γ0 |r1 − r2|2, r1, r2 ∈ R.

As far as the nonlinearity f is concerned, in this paper we shall consider two
situations: f is Lipschitz continuous and O is a bounded smooth domain in R

d,
for any arbitrary d ≥ 1, or f is only locally Lipschitz continuous with polynomial
growth and O is a bounded interval in R.

Hypothesis 3. The mapping f : O × R → R is measurable and there exists c > 0
such that

sup
x∈O

|f(x, r)− f(x, s)| ≤ c |r − s|, r, s ∈ R.

Moreover

sup
x∈O

|f(x, 0)| < ∞.

In what follows, for every function u : O → R, we shall denote

F (u)(x) = f(x, u(x)), x ∈ O.

Hypothesis 4. We have O = [0, L] and the mapping f : [0, L] × R → R is mea-

surable and satisfies the following conditions.

(1) There exist θ > 1 and c1 > 0 such that for every r ∈ R

(2.10) sup
x∈[0,L]

|f(x, r)| ≤ c1
(

1 + |r|θ
)

, sup
x∈[0,L]

|∂rf(x, r)| ≤ c1
(

1 + |r|θ−1
)

.

Moreover, there exists c2 > 0 such that for every r ∈ R and x ∈ [0, L]

(2.11) f(x, r) :=

ˆ r

0

f(x, s) ds ≤ c2
(

1− |r|θ+1
)

.
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(2) For every x ∈ [0, L], the function f(x, ·) : R → R is differentiable and

(2.12) sup
(x,r)∈[0,L]×R

∂rf(x, r) ≤ 0.

(3) For every r ∈ R, the function f(·, r) : [0, L] → R is differentiable and

sup
x∈[0,L]

|∂xf(x, r)| ≤ c (1 + |r|) , r ∈ R.

Remark 2.3.

(1) A typical example of a function f satisfying Hypothesis 4 is

f(r) = −a |r|θ−1r.

(2) When d = 1, we have that H1 ↪→ L∞(O), and then we get the fundamental
fact that F (u) ∈ H, for every u ∈ H1.

(3) In the existing literature the well-posedness of stochastic semi-linear wave
equations having polynomial nonlinearities is not restricted to space di-
mension d = 1. However, here the presence of a state-dependent friction
coefficient, and the fact that we are not just interested in the well-posedness
of equation (1.1), but also in the small mass and small noise limits, makes
our analysis more complicated and we can only handle the case of space
dimension d = 1.

(4) We are assuming (2.12) just for the sake of simplicity. In fact, our results
remain true under the condition

sup
(x,r)∈[0,L]×R

∂rf(x, r) < ∞.

(5) From (2.11) and (2.12), it is not hard to show that for every r ∈ R

(2.13) sup
x∈[0,L]

rf(x, r) ≤ c2

(

1− |r|θ+1
)

.

Indeed, if we consider the function

G(x, r) := f(x, r)− rf(x, r), r ∈ R, x ∈ [0, L],

then for every x ∈ [0, L], ∂rG(x, r) = −r∂rf(x, r) ≥ 0 if r > 0, and
∂rG(x, r) ≤ 0 if r < 0. Note that G(x, 0) = 0, we have G(x, r) ≥ 0, and
thus (2.13) follows from (2.11).

(6) Thanks to (2.12) we have

〈F (u)− F (v), u− v〉H ≤ 0, u, v ∈ H1.

In particular, there exists some c > 0 such that

(2.14) 〈F (u), u〉H ≤ c ‖u‖H , u ∈ H1.

(7) Due to (2.10), for every u, v ∈ H1, we have

‖F (u)− F (v)‖2H ≤ c

ˆ

O

(

1 + |u(x)|2(θ−1) + |v(x)|2(θ−1)
)

|u(x)− v(x)|2 dx,

so that

(2.15) ‖F (u)− F (v)‖H≤ c
(

1 + ‖u‖θ−1
H1 + ‖v‖θ−1

H1

)

‖u− v‖H .

In particular, we have

‖F (u)‖H ≤ c
(

1 + ‖u‖θH1

)

, u ∈ H1.
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(8) In the same way

(2.16)
‖F (u)− F (v)‖L1 ≤c

ˆ

O

(

1 + |u(x)|θ−1 + |v(x)|θ−1
)

|u(x)− v(x)| dx

≤ c
(

1 + ‖u‖θ−1
L2(θ−1) + ‖v‖θ−1

L2(θ−1)

)

‖u− v‖H .

Now, by proceeding as in [29] (see also [5]), for every n ∈ N and x ∈ O we define

(2.17) fn(x, r) :=

⎧

⎪

⎨

⎪

⎩

f(x, n) + (r − n)∂rf(x, n), if r ≥ n,

f(x, r), if r ∈ [−n, n],

f(x,−n) + (r + n)∂rf(x,−n), if r ≤ −n.

Clearly, for every n ∈ N, the mapping fn(x, ·) : R → R is Lipschitz continuous,
uniformly with respect to x ∈ [0, L], and

fn(x, r) = f(x, r), x ∈ [0, L], r ∈ [−n, n].

Moreover,

(2.18) sup
x∈[0,L]

|fn(x, r)| ≤ c
(

1 + |r|θ
)

, sup
x∈[0,L]

|∂rfn(x, r)| ≤ c
(

1 + |r|θ−1
)

,

for some constant c independent of n, and there exists n0 ∈ N such that for every
n ≥ n0

(2.19) fn(x, r) :=

ˆ r

0

fn(x, s) ds ≤ c
(

1− nθ+1
)

, r ∈ R, x ∈ [0, L].

3. The problem and the method

As we mentioned in Section 1, we are interested in the study of the validity of
a large deviation principle, as μ ↓ 0 for the family {L(uμ)}μ>0, where uμ is the
solution of equation (1.1). Our final goal is proving the following result.

Theorem 3.1. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis

4 and fix p < ∞, if d = 1, 2, and p < 2d/(d − 2), if d > 2. Then, for every

(u0, v0) ∈ H1 and T > 0, the family {L(uμ)}μ>0 satisfies a large deviation principle

in C([0, T ];Lp(O)), as μ ↓ 0, with action functional

(3.1) IT (u) =
1

2

{

ˆ T

0

‖ϕ(t)‖2H dt : u(t) = uϕ(t), t ∈ [0, T ]

}

,

where uϕ(t) denotes the unique weak solution to the quasi-linear parabolic equation

(3.2)

{

∂tu(t, x) = γ−1(u(t, x)) [Δu(t, x) + f(x, u(t, x)) + σ(u(t, ·))ϕ(t, x)] ,
u(0, x) = u0(x), u(t, x) = 0, x ∈ ∂O.

Theorem 3.1 is proved by following the classical weak convergence approach to
large deviations, as developed for SPDEs in [3]. To this purpose, we need first to
introduce some notations. For every T > 0, we denote by PT the set of predictable
processes in L2(Ω× [0, T ];H), and for every M > 0 we introduce the sets

ST,M :=
{

ϕ ∈ L2
w(0, T ;H) : ‖ϕ‖L2([0,T ];H) ≤ M

}

,

and

ΛT,M := {ϕ ∈ PT : ϕ ∈ ST,M , P− a.s.} .
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Next, for every ϕ ∈ PT we consider the controlled version of equation (1.1)
(3.3)
⎧

⎪

⎨

⎪

⎩

μ∂2
t uμ(t, x) = Δuμ(t, x)− γ(uμ(t, x))∂tuμ(t, x) + f(x, uμ(t, x))

+ σ(uμ(t, ·))Qϕ(t, x) +
√
μσ(uμ(t, ·))∂twQ(t, x), t > 0, x ∈ O,

uμ(0, x) = u0(x), ∂tuμ(0, x) = v0(x), uμ(t, x) = 0, x ∈ ∂O.

The well-posedness of the equation above has been proven in [14] in the case the
nonlinearity f is Lipschitz-continuous, the diffusion coefficient σ is bounded and
the control ϕ = 0. In what follows, we will prove that also under the more general
conditions we are assuming for f and σ, the following result holds.

Theorem 3.2. Under Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis

4, for every T,M > 0 and ϕ ∈ ΛT,M and for every initial condition (u0, v0) ∈ H1,

there exists a unique adapted process (uμ, vμ) ∈ L2(Ω, C([0, T ];H1)) which solves

the systems of equations

(3.4)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

uμ(t, x) = u0(x) +
´ t

0
vμ(s, x) ds,

μ vμ(t, x) = μ v0(x) +

ˆ t

0

[Δuμ(s, x)− γ(uμ(s, x))vμ(s, x) + f(x, uμ(s, x))

+σ(uμ(s))Qϕ(s, x)] ds+
√
μ

ˆ t

0

σ(uμ(s)) dw
Q(s).

Once proved Theorem 3.2, we introduce the following two conditions.

(C1) Let {ϕμ}μ>0 be an arbitrary family of processes in ΛT,M such that

lim
μ→0

ϕμ = ϕ, in distribution in L2
w(0, T ;H),

where L2
w(0, T ;H) is the space L2([0, T ];H) endowed with the weak topol-

ogy and ϕ ∈ ΛT,M . Then, for every p < ∞ we have

lim
μ→0

uϕμ
μ = uϕ, weakly in C([0, T ], Lp(O)),

where u
ϕμ
μ is the solution to (3.3), corresponding to the control ϕμ, and uϕ

is the solution to (3.2), corresponding to the control ϕ.
(C2) For every T,R > 0 and p < ∞, the level sets ΦT,R = {IT ≤ R} are compact

in the space C([0, T ];Lp(O)).

As shown in [3], Conditions (C1) and (C2) imply the validity of a Laplace princi-
ple with action functional IT in the space C([0, T ];Lp(O)) for the family {uμ}μ>0.
Due to the compactness of the level sets ΦT,R stated in (C1) this is equivalent to
the validity of Theorem 3.1.

Thus, in what follows our strategy will be first proving Theorem 3.2, for every
fixed μ > 0, and then proving conditions (C1) and (C2).

4. Well-posedness of equation (3.4)

In Theorem 3.2 the parameter μ > 0 is fixed. This means that in this section,
without any loss of generality, we can assume μ = 1. If we denote

η := v + g(u), z = (u, η),
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then system (3.4) can be rewritten as the following abstract stochastic evolution
equation

(4.1) dz(t) = [A(z(t)) +Bϕ(t, z(t))] dt+Σ(z(t))dwQ(t), z(0) = (u0, v0+g(u0)),

where

A(u, η) = (−g(u) + η,Δu+ F (u)) , (u, η) ∈ D(A) = H1,

Bϕ(t, (u, η)) = (0, σ(u)Qϕ(t)), (u, η) ∈ H, t ∈ [0, T ],

and

Σ(u, η) = (0, σ(u)), (u, η) ∈ H.

This means that the adapted H1-valued process z(t) = (u(t), η(t)) is the unique
solution to the equation

(4.2) z(t) = (u0, v0 + g(u0)) +

ˆ t

0

[A(z(s)) +Bϕ(s, z(s))] ds+

ˆ t

0

Σ(z(s)) dwQ(s),

if and only if the adapted H1-valued process (u(t), v(t)) = (u(t),−g(u(t))+ η(t)) is
the unique solution of

(4.3)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u(t, x) = u0(x) +

ˆ t

0

v(s, x) ds,

v(t, x) = μ v0(x) +

ˆ t

0

[Δu(s, x)− γ(u(s, x))v(s, x) + f(x, u(s, x))

+σ(u(s, ·))Qϕ(s, x)] ds+

ˆ t

0

σ(u(s, ·)) dwQ(s).

In our proof of Theorem 3.2 we first assume that f : R → R is Lipschitz-
continuous and then we consider the case Hypothesis 4 holds.

4.1. The case when f satisfies Hypothesis 3. In [14, Section 3] an analogous
result has been proved, in the case ϕ = 0 (and hence Bϕ = 0) and σ. Here, we
extend the arguments used in [14] to consider the case of an arbitrary ϕ ∈ ΛT,M ,
σ having linear growth. As in [14, Section 3], the arguments we are using here are
based on classical tools from the theory of monotone non-linear operators and we
refer to the monograph [1] for all details.

Since f is assumed to be Lipschitz continuous, we have

(4.4) ‖A(z)‖H ≤ c (1 + ‖z‖H1
) , z ∈ D(A),

and, as shown in [14, Lemma 3.1], there exists κ ∈ R such that

〈A(z1)−A(z2), z1 − z2〉H ≤ κ ‖z1 − z2‖2H.

Moreover, for every λ > 0 small enough

Range (I − λA) = H.

This means that the operator A : D(A) ⊂ H → H is quasi-m-dissipative. In
particular, this implies that there exists λ0 > 0 such that

Jλ := (I − λA)−1 , λ ∈ (0, λ0),

is a well-defined Lipschitz-continuous mapping in H and we can introduce the
Yosida approximation of A, defined as

Aλ(z) := A(Jλ(z)) =
1

λ
(Jλ(z)− z) , z ∈ H.
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Notice that

(4.5) 〈Aλ(z1)−Aλ(z2), z1 − z2〉H ≤ κ

1− λκ
‖z1 − z2‖2H,

and

(4.6) ‖Aλ(z1)−Aλ(z2)‖H ≤ 2

λ(1− λκ)
‖z1 − z2‖H.

Moreover, for every z ∈ D(A)

‖Aλ(z)‖H ≤ 1

1− λκ
‖A(z)‖H,

so that for every z ∈ D(A)

‖Jλ(z)− z‖H = λ‖Aλ(z)‖ ≤ λ

1− λκ
‖A(z)‖H,

and

lim
λ→0

‖Aλ(z)−A(z)‖H = 0.

In [14, Proof of Theorem 3.2], it has been shown that there exists some λ1 ∈ (0, λ0)
such that for every λ ∈ (0, λ1)

(4.7) 〈Aλ(z), z〉H1
≤ −γ0

2
‖Jλ(z)1‖2H1 + c ‖Jλ(z)2‖2H−1 , z ∈ H1.

Furthermore, for every λ, ν ∈ (0, λ0) and z1, z2 ∈ H1 it holds
(4.8)

〈Aλ(z1)−Aν(z2), z1 − z2〉H ≤ ‖z1 − z2‖2H + c (λ+ ν)
(

‖z1‖2H1
+ ‖z2‖2H1

+ 1
)

.

Concerning the random operator Bϕ, according to Hypothesis 1 for every t ∈
[0, T ] we have that Bϕ(t, ·) : H → H1 is well-defined and, in view of (2.5), for any
z1, z2 ∈ H
(4.9)

‖Bϕ(t, z1)−Bϕ(t, z2)‖H1
= ‖(σ(u1)− σ(u2))Qϕ(t)‖H ≤

√
L ‖u1 − u2‖H ‖ϕ(t)‖H .

Finally, Hypothesis 1 implies that the mapping Σ : H → L2(HQ,H1) is well-defined
and due to (2.5) for any z1, z2 ∈ H

(4.10) ‖Σ(z1)− Σ(z2)‖L2(HQ,H1) = ‖σ(u1)− σ(u2)‖L2(HQ,H) ≤
√
L ‖u1 − u2‖H .

Step 1. For every λ ∈ (0, λ0) the approximating problem
(4.11)

dz(t) = [Aλ(z(t)) +Bϕ(t, z(t))] dt+Σ(z(t))dwQ(t), z(0) = (u0, v0 + g(u0))

admits a unique solution zλ ∈ L2(Ω;C([0, T ];H)).

Proof of Step 1. According to (4.6), we have

ˆ T

0

‖Aλ(z1(s))−Aλ(z2(s))‖2H ds ≤ c

λ2

ˆ T

0

‖z1(s)− z2(s)‖2H ds(4.12)

≤ cT
λ2

sup
t∈[0,T ]

‖z1(t)− z2(t)‖2H.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7662 SANDRA CERRAI AND MENGZI XIE

According to (4.9), if ϕ ∈ ΛT,M , we have
(4.13)
ˆ T

0

‖Bϕ(t, z1)−Bϕ(t, z2)‖2H1
dt≤ L

ˆ T

0

‖u1(t)− u2(t)‖2H ‖ϕ(t)‖2H dt

≤ LM2 sup
t∈[0,T ]

‖z1(t)− z2(t)‖2H, P− a.s.

Finally, according to (4.10), we have

E sup
t∈[0,T ]

∥

∥

∥

∥

ˆ t

0

(Σ(z1(s))− Σ(z2(s))dw
Q(s)

∥

∥

∥

∥

2

H1

(4.14)

≤ c

ˆ T

0

E ‖Σ(z1(s))− Σ(z2(s))‖2L2(HQ,H1)
ds

≤ TLE sup
t∈[0,T ]

‖z1(t)− z2(t)‖2H.

Therefore, in view of (4.12), (4.13) and (4.14), for every λ ∈ (0, λ0) the mapping

Φλ(z)(t) = (u0, v0 + g(u0)) +

ˆ t

0

[Aλ(z(s)) +Bϕ(s, z(s))] ds+

ˆ t

0

Σ(z(s)) dwQ(s)

is Lipschitz continuous from L2(Ω;C([0, T ];H)) into itself, and then for every λ ∈
(0, λ0) equation (4.11) admits a unique solution zλ ∈ L2(Ω;C([0, T ];H)).

Step 2. There exists cT > 0 such that

(4.15) E sup
t∈[0,T ]

‖zλ(t)‖2H1
≤ cT

(

1 + ‖z0‖2H1

)

, λ ∈ (0, λ1).

Proof of Step 2. As a consequence of Itô’s formula, we have

‖zλ(t)‖2H1
= ‖z0‖2H1

+ 2

ˆ t

0

〈Aλ(zλ(s)), zλ(s)〉H1
ds+ 2

ˆ t

0

〈Bϕ(s, zλ(s)), zλ(s)〉H1
ds

+

ˆ t

0

‖Σ(zλ(s))‖2L2(HQ,H1)
ds+ 2

ˆ t

0

〈zλ(s),Σ(zλ(s))dwQ(s)〉H1
.

Due to (4.7), we have
(4.16)
ˆ t

0

〈Aλ(zλ(s)), zλ(s)〉H1 ds≤ −γ0
2

ˆ t

0

‖Jλ(zλ(s))1‖2H1 ds+ c

ˆ t

0

‖Jλ(zλ(s))‖2H ds

≤ −γ0
2

ˆ t

0

‖Jλ(zλ(s))1‖2H1 ds+ c

ˆ t

0

‖zλ(s)‖2H ds.

Next, recalling that ϕ ∈ ΛT,M , due to (4.9) for every δ > 0 we have
(4.17)
∣

∣

∣

∣

ˆ t

0

〈Bϕ(s, zλ(s)), zλ(s)〉H1
ds

∣

∣

∣

∣

≤ δ

ˆ t

0

‖Bϕ(s, zλ(s))‖2H1
ds+

c

δ

ˆ t

0

‖zλ(s)‖2H1
ds

≤ δ cM

(

1 + sup
r∈[0,t]

‖zλ(r)‖2H

)

+
c

δ

ˆ t

0

‖zλ(s)‖2H1
ds, P− a.s.
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In the same way, thanks to (4.10) for every δ > 0

E sup
r∈[0,t]

∣

∣

∣

∣

ˆ r

0

〈zλ(s),Σ(zλ(s)) dwQ(s)〉H1

∣

∣

≤ cE

(

sup
r∈[0,t]

‖zλ(r)‖2H1

ˆ t

0

‖Σ(zλ(s))‖2L2(HQ,H1)
ds

)
1
2

≤ δ E sup
r∈[0,t]

‖zλ(r)‖2H1
+

c

δ

ˆ t

0

E‖zλ(s)‖2H1
ds+

cT
δ
.

(4.18)

Finally, due to (4.10) we get

(4.19)

ˆ t

0

‖Σ(zλ(s))‖2L2(HQ,H1)
ds ≤ cT

(

1 +

ˆ t

0

E‖zλ(s)‖2H ds

)

.

Therefore, if we choose δ > 0 small enough, from (4.16), (4.17), (4.18) and (4.19)
we get

E sup
r∈[0,t]

‖zλ(r)‖2H1
+

γ0
2

ˆ t

0

E‖Jλ(zλ(s))1‖2H1 ds ≤ cT

ˆ t

0

E sup
r∈[0,s]

‖zλ(r)‖2H1
ds+ cT .

Now, Gronwall’s lemma allows to obtain (4.15).

Step 3. There exists z ∈ L2(Ω;C([0, T ];H)) such that

(4.20) lim
λ→0

E sup
t∈[0,T ]

‖zλ(t)− z(t)‖2H = 0.

Proof of Step 3. For every λ, ν ∈ (0, λ1), we denote ρλ,ν(t) := zλ(t) − zν(t). We
have

dρλ,ν(t) =
[

Aλ(zλ(t))−Aν(zν(t))
]

dt

+
[

Bϕ(t, zλ(t))−Bϕ(t, zν(t))
]

dt+
[

Σ(zλ(t))− Σ(zν(t))
]

dwQ(t).

We have

‖ρλ,ν(t)‖2H = 2

ˆ t

0

〈Aλ(zλ(s))−Aν(zν(s)), ρλ,ν(s)〉Hds

+ 2

ˆ t

0

〈Bϕ(s, zλ(s))−Bϕ(s, zν(s)), ρλ,ν(s)〉Hds

+

ˆ t

0

‖Σ(zλ(s))− Σ(zν(s))‖2L2(HQ,H) ds

+ 2

ˆ t

0

〈ρλ,ν(s), (Σ(zλ(s))− Σ(zν(s))) dw
Q(s)〉H =:

4
∑

k=1

Ik(t).

Due to (4.8), we have

(4.21) |I1(t)| ≤ c

ˆ t

0

‖ρλ,ν(s)‖2Hds+ c(λ+ ν)

ˆ t

0

(

‖zλ(s)‖2H1
+ ‖zν(s)‖2H1

+ 1
)

ds,

and due to (4.10) we have

(4.22) |I3(t)| ≤ c

ˆ t

0

‖ρλ,ν(s)‖2H ds.
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Moreover, by proceeding as in the proof of (4.17) and (4.18), for every δ > 0 we
have
(4.23)

E sup
r∈[0,t]

|I2(r)|+ E sup
r∈[0,t]

|I4(r)| ≤ δ E sup
r∈[0,t]

‖ρλ,ν(r)‖2H +
c

δ

ˆ t

0

E ‖ρλ,ν(r)‖2H dr.

Therefore, if we choose δ > 0 sufficiently small, from (4.21), (4.22) and (4.23), we
obtain

E sup
r∈[0,t]

‖ρλ,ν(r)‖2H ≤c

ˆ t

0

E sup
r∈[0,s]

‖ρλ,ν(r)‖2H ds

+c (λ+ ν)

ˆ t

0

(

‖zλ(s)‖2H1
+ ‖zν(s)‖2H1

+ 1
)

ds,

and the Gronwall lemma, together with (4.15), gives

E sup
r∈[0,T ]

‖ρλ,ν(r)‖2H≤ cT (λ+ ν)

ˆ T

0

(

‖zλ(s)‖2H1
+ ‖zν(s)‖2H1

+ 1
)

ds

≤ cT (λ+ ν)
(

1 + ‖z0‖2H
)

.

This implies that

lim
λ,ν→0

E sup
r∈[0,T ]

‖ρλ,ν(r)‖2H = 0,

so that the family {zλ}λ∈(0,λ1) is Cauchy and (4.20) follows.

Step 4. There exists a unique solution z ∈ L2(Ω;C([0, T ];H1)) for equation (4.1).

Proof of Step 4. For every λ ∈ (0, λ0) we have that zλ satisfies equation (4.11).
Then, by proceeding as in [14, Proof of Theorem 3.2], we take the limit, as λ goes
to zero, of both sides of (4.11) in L2(Ω;C([0, T ];H−1)) and thanks to (4.20) we
obtain that z satisfies the equation

z(t) = (u0, v0 + g(u0)) +

ˆ t

0

[A(z(s)) +Bϕ(s, z(s))] ds+

ˆ t

0

Σ(z(s)) dwQ(s),

and z ∈ L2(Ω;L∞(0, T ;H1)).

Next, by using again arguments analogous to those used in [14, Proof of Theorem
3.2], we can show that z has continuous trajectories and is the unique solution of
equation (4.2).

4.2. The case when f satisfies Hypothesis 4. In view of what we have seen
in Subsection 4.1, for every n ∈ N and for every ϕ ∈ ΛT,M and (u0, v0) ∈ H1 there
exists a unique solution (un, vn) ∈ L2(Ω;C([0, T ];H1)) for the equation
(4.24)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

un(t, x) = u0(x) +

ˆ t

0

vn(s, x) ds,

vn(t, x) = μ v0(x)+

ˆ t

0

[Δun(s, x)− γ(un(s, x))vn(s, x) + fn(x, u(s, x))

+σ(un(s, ·))Qϕ(s, x)] ds+

ˆ t

0

σ(u(s, ·)) dwQ(s, x),

where fn is the function defined in (2.17).
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For every n ∈ N, we define

τn := inf {t ≥ 0 : ‖un(t)‖H1 ≥ n/C} ,

with inf ∅ = +∞, where C > 0 is a constant such that ‖·‖L∞(0,L) ≤ C ‖·‖H1 .

Clearly {τn}n∈N is an increasing sequence of stopping times.
We denote τ := supn∈N τn, and for every ω ∈ Ω and t < τ (ω) ∧ T , define

z(t)(ω) := zn(t)(ω), if t < τn(ω) ≤ T.

Notice that this is a good definition, as fn(r) = fm(r), for every n ≤ m and |r| ≤ n.
Moreover, since for ω ∈ Ω and t ≤ τn(ω) ∧ T

‖un(t)(ω)‖L∞([0,L]) ≤ C‖un(t)(ω)‖H1 ≤ n,

we have that fn(u(s)(ω)) = f(u(s)(ω)). This means z(t) = zn(t) solves equation
(4.3) for t ≤ τn ∧ T .

Step 1. There exists cT > 0 independent of n ∈ N such that
(4.25)

E sup
t∈[0,T ]

‖u(t ∧ τn)‖2H +

ˆ T

0

E ‖u(t ∧ τn)‖2H1 dt+

ˆ T

0

E ‖u(t ∧ τn)‖θ+1
Lθ+1 dt

≤ cT

(

1 +

ˆ T

0

E ‖u(t ∧ τn)‖2H dt+

ˆ T

0

E ‖v(t ∧ τn)‖2H dt+ E sup
t∈[0,T ]

‖v(t ∧ τn)‖2H
)

.

Proof of Step 1. Recall that for t < τn ≤ T , z(t) = zn(t) is a solution of equation
(4.3), by proceeding as in [14, Proof of Lemma 4.1], we have
(4.26)

γ0
4

‖u(t ∧ τn)‖2H +

ˆ t∧τn

0

‖u(s)‖2H1 ≤ c+ c ‖v(t ∧ τn)‖2H +

ˆ t∧τn

0

‖v(s)‖2H ds

+

ˆ t∧τn

0

〈F (u(s)), u(s)〉Hds+

ˆ t∧τn

0

〈u(s), σ(u(s))Qϕ(s)〉Hds

+

ˆ t∧τn

0

〈u(s), σ(u(s))dwQ(s)〉H .

Thanks to (2.13), we have

(4.27)

ˆ t∧τn

0

〈F (u(s)), u(s)〉Hds ≤ −c2

ˆ t∧τn

0

‖u(s)‖θ+1
Lθ+1 ds+ c2t.

Moreover, by proceeding as in the proof of (4.17) and (4.18), for every δ > 0 we
have

E sup
r∈[0,t]

∣

∣

∣

∣

ˆ r∧τn

0

〈u(s), σ(u(s))Qϕ(s)〉Hds

∣

∣

∣

∣

+ E sup
r∈[0,t]

∣

∣

∣

∣

ˆ r∧τn

0

〈u(s), σ(u(s))dwQ(s)〉H
∣

∣

∣

∣

≤ δE sup
r∈[0,t]

‖u(r ∧ τn)‖2H +
c

δ

ˆ t

0

E‖u(s ∧ τn)‖2H ds.

Therefore, if we choose δ > 0 sufficiently small above, this, together with (4.26)
and (4.27) allows to conclude that (4.25) holds true.
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Step 2. There exists cT > 0 independent of n ∈ N such that

E sup
t∈ [0,T ]

‖(u(t ∧ τn), v(t ∧ τn))‖2H1
+E sup

t∈[0,T ]

‖u(t ∧ τn)‖θ+1
Lθ+1

(4.28)

+γ0

ˆ T

0

E‖v(s)‖2H ds≤cT
(

1+‖u0‖θ+1
H1 +‖v0‖2H

)

.

Proof of Step 2. From the Itô formula we have

1

2

[

‖u(t ∧ τn)‖2H1 + ‖v(t ∧ τn)‖2H
]

=
1

2

[

‖u0‖2H1 + ‖v0‖2H
]

−
ˆ t∧τn

0

〈γ(u(s))v(s), v(s)〉H ds

+

ˆ

O

f(x, un(t ∧ τn, x)) dx−
ˆ

O

f(x, u0(x)) dx+

ˆ t∧τn

0

〈σ(u(s))Qϕ(s), v(s)〉H ds

+

ˆ t∧τn

0

〈σ(u(s))dwQ(s), v(s)〉H+
1

2

ˆ t∧τn

0

‖σ(u(s))‖2L2(HQ,H) ds.

Thanks to (2.11) we have
ˆ

O

f(x, u(t ∧ τn, x)) dx ≤ c− c2 ‖u(t ∧ τn)‖θ+1
Lθ+1 ,

and
∣

∣

∣

∣

ˆ

O

f(x, u0(x)) dx

∣

∣

∣

∣

≤c

(

1 +

ˆ

O

|u0(x)|θ+1 dx

)

=c
(

1 + ‖u0‖θ+1
Lθ+1

)

≤c
(

1 + ‖u0‖θ+1
H1

)

.

Therefore, due to (2.6),

sup
r∈[0,t]

‖u(r ∧ τn)‖2H1 + sup
r∈[0,t]

‖u(r ∧ τn)‖θ+1
Lθ+1+ sup

r∈[0,t]

‖v(r ∧ τn)‖2H

+γ0

ˆ t∧τn

0

‖v(s)‖2H ds

≤ c
(

1 + ‖u0‖θ+1
H1 + ‖v0‖2H

)

+ sup
r∈[0,t]

∣

∣

∣

∣

ˆ r∧τn

0

〈σ(u(s))Qϕ(s), v(s)〉H ds

∣

∣

∣

∣

+ sup
r∈[0,t]

∣

∣

∣

∣

ˆ r∧τn

0

〈σ(u(s))dwQ(s), v(s)〉H
∣

∣

∣

∣

+ c

ˆ t∧τn

0

‖u(s)‖2H ds.

Since ϕ ∈ ΛT,M , by proceeding as in (4.17) and (4.18), this implies that for every
δ > 0

E sup
r∈[0,t]

‖u(r ∧ τn)‖2H1 + E sup
r∈[0,t]

‖u(r ∧ τn)‖θ+1
Lθ+1

+ E sup
r∈[0,t]

‖v(r ∧ τn)‖2H + γ0E

ˆ t∧τn

0

‖v(s)‖2H ds

≤ c
(

1 + ‖u0‖θ+1
H1 + ‖v0‖2H

)

+ δ E sup
r∈[0,t]

‖u(r ∧ τn)‖2H

+
c

δ

ˆ t

0

E‖v(s ∧ τn)‖2H ds+ c

ˆ t

0

E ‖u(s ∧ τn)‖2H ds.
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In particular, if we choose δ small enough we have
(4.29)

E sup
r∈[0,t]

‖u(r ∧ τn)‖2H1 + E sup
r∈[0,t]

‖u(r ∧ τn)‖θ+1
Lθ+1 + E sup

r∈[0,t]

‖v(r ∧ τn)‖2H

≤ c
(

1 + ‖u0‖θ+1
H1 + ‖v0‖2H

)

+ c

ˆ t

0

E‖v(s ∧ τn)‖2H ds+ c

ˆ t

0

E ‖u(s ∧ τn)‖2H ds,

and if we choose δ large enough we have

(4.30)

E sup
r∈[0,t]

‖u(r ∧ τn)‖θ+1
Lθ+1 + E sup

r∈[0,t]

‖v(r ∧ τn)‖2H + γ0E

ˆ t∧τn

0

‖v(s)‖2H ds

≤ c
(

1 + ‖u0‖θ+1
H1 + ‖v0‖2H

)

+ c

ˆ t

0

E ‖u(s ∧ τn)‖2H ds.

Combining (4.30) with (4.25) yields that

(4.31) E sup
r∈[0,t]

‖u(r ∧ τn)‖2H ≤ c

ˆ t

0

E ‖u(s ∧ τn)‖2H ds.

Thanks to Gronwall’s lemma, (4.28) follows from (4.29).

Step 3. There exists z = (u, v) ∈ L2(Ω;C([0, T ];H1)) solution to problem (4.3)
such that

E sup
t∈ [0,T ]

‖(u(t), v(t))‖2H1
+ E sup

t∈[0,T ]

‖u(t)‖θ+1
Lθ+1

(4.32)

+ γ0

ˆ T

0

E‖v(s)‖2H ds ≤ cT
(

1 + ‖u0‖θ+1
H1 + ‖v0‖2H

)

.

Proof of Step 3. According to (4.28), for every T > 0 we have

P(τn ≤ T ) ≤ C2

n2
E
(

‖u(τn)‖2H1 ; τn ≤ T
)

≤ C2

n2
E sup

t∈[0,T ]

‖u(t ∧ τn)‖2H1 ≤ c

n2
,

so that

lim
n→∞

P(τn ≤ T ) = 0,

and hence P(τ = ∞) = 1. This implies for every t ∈ [0, T ], z(t ∧ τn) → z(t), P-a.s.
as n → ∞, so that z belongs to L2(Ω;C([0, T ];H1)) and solves equation (4.3). By
taking the limit as n → ∞ in (4.28), we get (4.32).

Step 4. The solution z is unique in L2(Ω;C([0, T ];H1)).

Proof of Step 4. Let z1 and z2 be two solutions of equation (4.1) in
L2(Ω;C([0, T ];H1)). For every R > 0, we define

τR := τ1,R ∧ τ2,R,

where

τi,R := inf {t ≥ 0 : ‖ui(t)‖H1 ≥ R} , i = 1, 2.

Since z1 and z2 belong to L2(Ω;C([0, T ];H1)), we have

(4.33) lim
R→∞

P (τR < T ) = 0.
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Now, if we define ρ = z1 − z2, from the Itô formula we have

‖ρ(t ∧ τR)‖2H = 2

ˆ t∧τR

0

〈A(z1(s))−A(z2(s)), ρ(s)〉Hds

+ 2

ˆ t∧τR

0

〈Bϕ(s, z1(s))−Bϕ(s, z2(s)), ρ(s)〉Hds

+

ˆ t∧τR

0

‖Σ(z1(s))− Σ(z2(s))‖2L2(HQ,H) ds

+2

ˆ t∧τR

0

〈ρ(s), (Σ(z1(s))− Σ(z2(s))) dw
Q(s)〉H =:

4
∑

k=1

Ik(t ∧ τR).

We have

〈A(z1(s))−A(z2(s)), ρ(s)〉H =−〈(g(u1(s))− g(u2(s)), u1(s)− u2(s)〉H
+〈F (u1(s))− F (u2(s)), η1(s)− η2(s)〉H−1 ,

so that, according to (2.15)

|〈A(z1(s)) − A(z2(s)), ρ(s)〉H| ≤ c ‖ρ(s)‖2H + c ‖F (u1(s))− F (u2(s))‖2H
≤ c ‖ρ(s)‖2H + c

(

1 + ‖u1(s)‖2(θ−1)
H1 +‖u2(s)‖2(θ−1)

H1

)

‖u1(s)− u2(s)‖2H .

This implies that

(4.34) sup
r∈[0,t]

|I1(r ∧ τR)| ≤ c(R)

ˆ t∧τR

0

‖ρ(s ∧ τR)‖2H ds.

Moreover, by proceeding as in (4.17) and (4.18), for every δ > 0 we have
(4.35)

E sup
r∈[0,t]

(|I2(r ∧ τR)|+ |I4(r ∧ τR)|) ≤ δE sup
r∈[0,t]

‖ρ(r∧τR)‖2H+
c

δ

ˆ t

0

E‖ρ(s∧τR)‖2H ds.

Therefore, since

sup
r∈[0,t]

|I3(r ∧ τR)| ≤ c

ˆ t∧τR

0

‖ρ(s ∧ τR)‖2H ds,

thanks to (4.34) and (4.35), if we fix some δ > 0 small enough, we get

E sup
r∈[0,t]

‖ρ(r ∧ τR)‖2H ≤ c(R)

ˆ t

0

E‖ρ(r ∧ τR)‖2H dr.

This implies that for every R > 0

E sup
r∈[0,T ]

‖ρ(r ∧ τR)‖2H = 0.

In view of (4.33), by taking the limit as R ↑ ∞ this gives E supr∈[0,T ] ‖ρ(r)‖2H = 0
and uniqueness follows.

5. A priori bounds and tightness

In the previous section we have proved that for any μ > 0 and any T > 0 there
exists a unique solution (uμ, ∂tuμ) ∈ L2(Ω;C([0, T ];H1)) to system (4.3). Our
purpose here is proving a bound for (uμ, ∂tuμ), which is uniform with respect to μ.
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Lemma 5.1. Under Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis 4,
for every T,M > 0 and for every initial condition (u0, v0) ∈ H1, there exist cT > 0
and μT > 0 such that for every ϕ ∈ ΛT,M and μ ∈ (0, μT )

E sup
t∈[0,T ]

‖uμ(t)‖2H1 + E sup
t∈[0,T ]

‖uμ(t)‖θ+1
Lθ+1 + μE sup

t∈[0,T ]

‖∂tuμ(t)‖2H(5.1)

+

ˆ T

0

E‖∂tuμ(t)‖2H dt ≤ cT .

Proof. We give our proof in case Hypothesis 4 holds and we leave to the reader the
proof in case Hypothesis 3 holds.

Step 1. There exists cT > 0 such that for all μ ∈ (0, 1)
(5.2)

E sup
r∈[0,t]

‖uμ(r)‖2H +

ˆ t

0

E‖uμ(s)‖2H1 ds+

ˆ t

0

E ‖uμ(s)‖θ+1
Lθ+1 ds

≤ cT

(

1 +

ˆ t

0

E‖uμ(s)‖2Hds+ μ

ˆ t

0

E‖∂tuμ(s)‖2Hds+ μ2
E sup

r∈[0,t]

‖∂tuμ(r)‖2H

)

.

Proof of Step 1. As shown in [14, Proof of Lemma 4.1], for every μ ∈ (0, 1) we have

γ0
4
‖uμ(t)‖2H +

ˆ t

0

‖uμ(s)‖2H1ds ≤ c+ cμ2‖∂tuμ(t)‖2H + μ

ˆ t

0

‖∂tuμ(s)‖2Hds

(5.3)

+

ˆ t

0

〈F (uμ(s)), uμ(s)〉Hds+

ˆ t

0

〈uμ(s), σ(uμ(s))Qϕμ(s)〉Hds

+
√
μ

ˆ t

0

〈uμ(s), σ(uμ(s))dw
Q(s)〉H .

Due to (2.13), we have

(5.4)

ˆ t

0

〈F (uμ(s)), uμ(s)〉Hds ≤ −c2

ˆ t

0

‖uμ(s)‖θ+1
Lθ+1 ds+ c2t.

Moreover, by proceeding as in the proof of (4.17) and (4.18), for every δ > 0 we
have

E sup
r∈[0,t]

∣

∣

∣

∣

ˆ r

0

〈uμ(s), σ(uμ(s))Qϕμ(s)〉Hds

∣

∣

∣

∣

+
√
μE sup

r∈[0,t]

∣

∣

∣

∣

ˆ t

0

〈uμ(s), σ(uμ(s))dw
Q(s)〉H

∣

∣

∣

∣

≤ δE sup
r∈[0,t]

‖uμ(r)‖2H +
c

δ

ˆ t

0

E‖uμ(s)‖2H ds.

Therefore, if we choose δ > 0 sufficiently small above, this, together with (5.4) and
(5.3) allows to conclude that (5.2) holds true.

Step 2. For every T > 0 there exist cT > 0 and μT > 0 such that

(5.5) sup
μ∈(0,μT )

E sup
t∈[0,T ]

‖uμ(t)‖2H ≤ cT ,

and (5.1) holds.
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Proof of Step 2. As in the previous section, from Itô’s formula, we have

‖uμ(t)‖2H1 + μ‖∂tuμ(t)‖2H = ‖u0‖2H1 + μ‖v0‖2H −
ˆ t

0

〈γ(uμ(s))∂tuμ(s), ∂tuμ(s)〉H ds

+

ˆ

O

f(x, uμ(t, x)) dx−
ˆ

O

f(x, u0(x)) dx+

ˆ t

0

〈σ(uμ(s))Qϕ(s), ∂tuμ(s)〉H ds

+
√
μ

ˆ t

0

〈σ(uμ(s))dw
Q(s), ∂tuμ(s)〉H+

ˆ t

0

‖σ(uμ(s))‖2L2(HQ,H) ds.

Due to (2.6), (2.9) and (2.11), this gives

‖uμ(t)‖2H1 + c‖uμ(s)‖θ+1
Lθ+1 + μ‖∂tuμ(t)‖2H + γ0

ˆ t

0

‖∂tuμ(s)‖2H ds

≤ c
(

1 + ‖u0‖θ+1
H1 + μ‖v0‖2H

)

+

ˆ t

0

‖σ(uμ(s))‖2L2(HQ,H) ds

+

ˆ t

0

〈σ(uμ(s))Qϕ(s), ∂tuμ(s)〉H ds+
√
μ

ˆ t

0

〈σ(uμ(s))dw
Q(s), ∂tuμ(s)〉H .

Therefore, by proceeding as in Step 1, for every δ > 0 we have

E sup
r∈[0,t]

‖uμ(r)‖2H1+E sup
r∈[0,T ]

‖uμ(r)‖θ+1
Lθ+1+μE sup

r∈[0,t]

‖∂tuμ(r)‖2H+

ˆ t

0

E‖∂tuμ(s)‖2H ds

(5.6)

≤ c
(

1 + ‖u0‖θ+1
H1 + μ‖v0‖2H

)

+ δE sup
r∈[0,t]

‖uμ(r)‖2H +
c

δ

ˆ t

0

E‖∂tuμ(s)‖2H ds

+ c

ˆ t

0

E‖uμ(s)‖2H ds.

If we take δ > 0 small enough in (5.6), we get

(5.7)

E sup
r∈[0,t]

‖uμ(r)‖2H1 + E sup
r∈[0,T ]

‖uμ(r)‖θ+1
Lθ+1 + μE sup

r∈[0,t]

‖∂tuμ(r)‖2H

≤ c

(

1 +

ˆ t

0

E‖∂tuμ(s)‖2H ds

)

+ c

ˆ t

0

E‖uμ(s)‖2H ds,

and if we take δ > 0 large enough we get

(5.8) E sup
r∈[0,T ]

‖uμ(r)‖θ+1
Lθ+1 + μE sup

r∈[0,t]

‖∂tuμ(r)‖2H +

ˆ t

0

E‖∂tuμ(s)‖2H ds

≤ c

(

1 + E sup
r∈[0,t]

‖uμ(r)‖2H

)

.

By combining together (5.2) and (5.8), we can fix μT > 0 such that for every
μ ∈ (0, μT )

E sup
r∈[0,t]

‖uμ(r)‖2H ≤ cT

(

1 +

ˆ t

0

E‖uμ(s)‖2Hds

)

,

which implies (5.5). Thus, from (5.5), (5.7) and (5.8), we obtain (5.1).

�
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Now, for every T > 0 and μ > 0 we define

ρμ(t, x) = g(uμ(t, x)), (t, x) ∈ [0, T ]×O.

According to Hypothesis 2, we know that

|g(r)| ≤ γ1|r|, |g′(r)| ≤ γ1, r ∈ R

so that for every μ > 0 and t ∈ [0, T ],

‖ρμ(t)‖H ≤ γ1‖uμ(t)‖H , ‖ρμ(t)‖H1 ≤ γ1‖uμ(t)‖H1 ,(5.9)

‖∂tρμ(t)‖H ≤ γ1 ‖∂tuμ(t)‖H .

Since the function g is strictly increasing, it is invertible and we have

uμ(t, x) = g−1(ρμ(t, x)), (t, x) ∈ [0, T ]×O,

which implies that

Δuμ(t, x) = div
[

∇g−1(ρμ(t))
]

= div

[

1

γ(g−1(ρμ(t)))
∇ρμ(t)

]

.

Moreover, by the definition of ρμ,

∇ρμ(t) = γ(uμ(t))∇uμ(t), ∂tρμ(t) = γ(uμ(t))∂tuμ(t).

This means that if we integrate equation (3.3) (with ϕμ) with respect to t we
have
(5.10)

ρμ(t) + μ∂tuμ(t) = g(u0) + μv0 +

ˆ t

0

div
[

b(ρμ(s))∇ρμ(s)
]

ds+

ˆ t

0

Fg(ρμ(s))ds

+

ˆ t

0

σg(ρμ(s))Qϕμ(s)ds+
√
μ

ˆ t

0

σg(ρμ(s))dw
Q(s),

where for every r ∈ R and x ∈ O

(5.11) b(r) :=
1

γ(g−1(r))
, fg(x, r) := f(x, g−1(r)),

and for every u ∈ H1

(5.12) Fg(u) = fg ◦ u, σg(u) := σ(g−1 ◦ u).
Theorem 5.2. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis

4 and fix an arbitrary T > 0 and (u0, v0) ∈ H1. Then, for any family of predictable

controls {ϕμ}μ∈(0,μT ) ⊂ ΛT,M , the family of probabilities {L(ρμ)}μ∈(0,μT ) is tight

in C([0, T ];Hδ), for every δ < 1.

Proof. According to (5.1) and (5.9), we have that

E sup
r∈[0,t]

‖ρμ(r)‖2H1 +

ˆ t

0

E‖∂tρμ(s)‖2H ds ≤ cT , μ ∈ (0, μT ).

This means that for every ε > 0 there exists Lε > 0 such that if we denote by Kε

the ball of radius Lε in C([0, T ];H1) ∩W 1,2([0, T ];H), then

inf
μ∈(0,μT )

P(ρμ ∈ Kε) ≥ 1− ε.

This allows to conclude as, due to the Aubin-Lions lemma, the set Kε is compact
in C([0, T ];Hδ), for every δ < 1. �
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6. The limit controlled problem

In order to prove conditions (C1) and (C2), we need first to understand better
the controlled quasi-linear parabolic problem
(6.1)
{

∂tρ(t, x)=div [b(ρ(t, x))∇ρ(t, x)]+fg(x, ρ(t, x))+σg(ρ(t, ·))ϕ(t, x), t>0, x∈O,

ρ(0, x) = g(u0(x)), ρ(t, x) = 0, x ∈ ∂O.

In view of Hypothesis 2, we have

1

γ1
|r| ≤ |g−1(r)| ≤ 1

γ0
|r|, r ∈ R.

When Hypothesis 4 holds, thanks to (2.10), this means that for every u∈Lθ+1([0, L])

(6.2) ‖Fg(u)‖H−1 ≤ c

ˆ L

0

(1 + |g−1(u(x))|θ) dx ≤ c

(

1 + ‖u‖
2

θ−1

H ‖u‖
(θ+1)(θ−2)

θ−1

Lθ+1

)

.

Next, again due to Hypothesis 2 we have

1

γ 1

≤ g−1(r)

r
≤ 1

γ 0

, r ∈ R,

so that, thanks to Hypothesis 4, we get,

fg(r)r = f(g−1(r))g−1(r) · r

g−1(r)
≤ c

(

1− |r|θ+1
)

, r ∈ R

(here we define g−1(0)/0 = 1/γ(0)). In particular, we have

(6.3) 〈Fg(u), u〉H ≤ c
(

1− ‖u‖θ+1
Lθ+1

)

, u ∈ H1.

Moreover, since g−1 is increasing and f is decreasing, we have that fg is decreasing,
so that

(6.4) 〈Fg(u1)− Fg(u2), u1 − u2〉H ≤ 0.

Finally, thanks to Hypotheses 2 and 1,

(6.5) |b(r)| ≤ 1

γ0
, b(r) ≥ 1

γ1
, |b(r)− b(s)| ≤ c |r − s|, r, s ∈ R,

and

(6.6) ‖σg(u1)− σg(u2)‖L(HQ,H) ≤ c ‖u1 − u2‖H , u1, u2 ∈ H.

Definition 6.1. A function ρ ∈ L2([0, T ];H1) is a weak solution to equation (6.1)
if for every test function ψ ∈ C∞

0 (O) and t ∈ [0, T ]

〈ρ(t), ψ〉H = 〈g(u0), ψ〉H −
ˆ t

0

〈b(ρ(s))∇ρ(s),∇ψ〉Hds(6.7)

+

ˆ t

0

〈Fg(ρ(s)) + σg(ρ(s))Qϕ(s), ψ〉H ds.(6.8)

Proposition 6.2. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hypoth-

esis 4 and fix any T > 0 and ϕ ∈ L2([0, T ];H). Then, for every u0 ∈ H1 there is

at most one weak solution ρ ∈ L2([0, T ];H1) to equation (6.1).
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Proof. We adapt here the method introduced in the proof of [14, Theorem 6.2].
To this purpose, let (φn)n∈N be the sequence of twice differentiable functions con-
structed in [22, Theorem 3.1] such that

(6.9) φ′
n(0) = 0, |φ′

n(r)| ≤ 1, 0 ≤ φ′′
n(r) ≤

2

n|r| , r ∈ R,

and

(6.10) lim
n→∞

sup
r∈R

∣

∣φn(r)− |r|
∣

∣ = 0.

Now, suppose ρ1, ρ2 ∈ L2([0, T ];H1) are both solutions to (6.1). Using inte-
gration by parts, for any fixed positive superharmonic function ψ ∈ C∞

0 (O), we
have
(6.11)
〈

φn(ρ1(t)− ρ2(t)), ψ
〉

H

=

ˆ t

0

〈

φ
′
n(ρ1(s)− ρ2(s))(Fg(ρ1(s))− Fg(ρ2(s))), ψ

〉

H
ds

+

ˆ t

0

〈

φ
′
n(ρ1(s)− ρ2(s))

(

σg(ρ1(s))− σg(ρ2(s))
)

Qϕ(s), ψ
〉

H
ds

−

ˆ t

0

〈

φ
′′
n(ρ1(s)− ρ2(s))∇(ρ1(s)− ρ2(s))

(

b(ρ1(s))∇ρ1(s)− b(ρ2(s))∇ρ2(s)
)

, ψ
〉

H
ds

−

ˆ t

0

〈

φ
′
n(ρ1(s)− ρ2(s))

(

b(ρ1(s))∇ρ1(s)− b(ρ2(s))∇ρ2(s)
)

,∇ψ
〉

H
ds

=:
4

∑

k=1

Ik,n(t).

In the case when f satisfies Hypothesis 3, by the Lipschitz continuity of Fg, we
have

I1,n(t) ≤ c

ˆ t

0

〈

|ρ1(s)− ρ2(s)|, ψ
〉

H
ds.

In the case when f satisfies Hypothesis 4, thanks to the fact that F ′
g ≤ 0, φ′′

n ≥ 0
and ψ ≥ 0, we have I1,n(t) ≤ 0.

Next, by proceeding as in the proof of [14, Theorem 6.2], we know that

I3,n(t) + I4,n(t) ≤
cT
n

(

‖ψ‖H1 + ‖ψ‖L∞

)

ˆ t

0

(

‖ρ1(s)‖2H1 + ‖ρ2(s)‖2H1

)

ds.

And moreover, it follows from (2.3) that

I2,n(t)=

ˆ t

0

ˆ

O

φ′
n(ρ1(s)− ρ2(s))

[

(

σg(ρ1(s))− σg(ρ2(s))
)

Qϕ(s)
]

ψ(x)dxds

≤
ˆ t

0

ˆ

O

∞
∑

i=1

∣

∣

∣
ϕi(s)

(

σi(x, u1(s))− σi(x, u2(s))
)
∣

∣

∣
ψ(x)dxds

≤ c

ˆ t

0

‖ϕ(s)‖H
ˆ

O

(

∞
∑

i=1

∣

∣

∣
σi(x, u1(s))− σi(x, u2(s))

∣

∣

∣

2) 1
2

ψ(x)dxds

≤ C

ˆ t

0

‖ϕ(s)‖H
〈

|ρ1(s)− ρ2(s)|, ψ
〉

H
ds,

where ϕi(t) := 〈ϕ(t), ei〉H .
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Therefore, we have for every t ≥ 0
〈

φn(ρ1(t)− ρ2(t)), ψ
〉

H

≤ cT
(

‖ψ‖H1 + ‖ψ‖L∞

)

n

ˆ t

0

(

‖ρ1(s)‖2H1 + ‖ρ2(s)‖2H1

)

ds

+ C

ˆ t

0

(

1 + ‖ϕ(s)‖H
)

〈

|ρ1(s)− ρ2(s)|, ψ
〉

H
ds.

Taking n → ∞, we obtain

〈

|ρ1(t)− ρ2(t)|, ψ
〉

H
≤ C

ˆ t

0

(

1 + ‖ϕ(s)‖H
)

〈

|ρ1(s)− ρ2(s)|, ψ
〉

H
ds,

and then by the Gronwall lemma, we conclude
〈

|ρ1(t)− ρ2(t)|, ψ
〉

H
= 0, t ≥ 0.

Finally, due to the arbitrariness of positive superharmonic test function ψ ∈ C∞
0 (O),

we have ρ1 = ρ2. This completes the proof. �

Proposition 6.3. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hy-

pothesis 4 and fix any T > 0, u0 ∈ H1 and ϕ ∈ L2([0, T ];H). Suppose that ρ is

the weak solution of equation (6.1). Then, if we define u := g−1(ρ), we have that

u ∈ L2([0, T ];H1) is a weak solution to equation (3.2).

Proof. Due to the fact that ρ ∈ L2([0, T ];H1) and g−1 is differentiable with bounded
derivative, we have that u ∈ L2([0, T ];H1) and

∇(g(u(t)) = g′(u(t))∇u(t) = γ(u(t))∇u(t).

Recalling how b, Fg and σg were defined, this implies

Sϕ(t, ρ(t)) := div [b(ρ(t))∇ρ(t)] + Fg(ρ(t)) + σg(ρ(t))Qϕ(t)

= div

[

1

γ(u(t))
∇(g(u(t))

]

+ f(u(t)) + σ(u(t))Qϕ(t)

= Δu(t) + f(u(t)) + σ(u(t))Qϕ(t)

in H−1 sense. Moreover, by mollifying ρ with respect to t and x and then by taking
the limit, we have that

∂tu ∈ L2([0, T ];H−1)

and

∂tρ(t) = g′(u(t))∂tu(t) = γ(u(t))∂tu(t),

in H−1 sense. We can now conclude, as we know that ∂tρ(t) = Sϕ(t, ρ(t)), in H−1

sense. �

7. Proof of Theorem 3.1

In order to prove Theorem 3.1, we will show that the conditions (C1) and (C2)
that we introduced in Section 3 are both satisfied. We will consider here the case
the nonlinearity f satisfies Hypothesis 4 and we leave to the reader to adapt our
proof to the case f satisfies Hypothesis 3.

Theorem 7.1. Under Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis

4, condition (C1) holds.
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Proof. Let us fix T,M > 0 and let {ϕμ} be a family of processes in ΛT,M such that

lim
μ→0

ϕμ = ϕ, in distribution in L2
w(0, T ;H),

where L2
w(0, T ;H) is the space L2([0, T ];H) endowed with the weak topology and

ϕ ∈ ΛT,M .
For every sequence {μk}k∈N converging to 0, as k ↑ ∞, we denote ρk = g(uk),

where uk := u
ϕμk
μk is the solution of equation (3.3), corresponding to the control

ϕμk
. Thanks to Theorem 5.2 and Lemma 5.1, for an arbitrary δ < 1 we have that

the family

{L(ρk, μk∂tuk, ϕμk
)}k∈N

⊂ P
(

C([0, T ];Hδ)× C([0, T ];H)× ST,M

)

is tight. We denote by ρ a weak limit point for the sequence {ρk}k∈N and we denote

Λ := C([0, T ];Hδ)× C([0, T ];H)× ST,M × C([0, T ], U)),

where U is the Hilbert space such that (2.1) holds. By the Skorokhod Theorem
there exist random variables

Y = (ρ̂, 0, ϕ̂, ŵQ), Yk =
(

ρ̂k, θ̂k, ϕ̂k, ŵ
Q
k

)

, k ∈ N,

defined on a probability space (Ω̂, F̂ , {F̂t}t∈[0,T ], P̂), such that

L(Y) = L(ρ, 0, ϕ, wQ), L(Yk) = L(ρk, μk∂tuk, ϕμk
, wQ), k ∈ N,

and such that

(7.1) lim
k→∞

Yk = Y in Λ, P̂− a.s.

For every k ∈ N and ψ ∈ H2, we have

〈ρ̂k(t) + θ̂k(t), ψ〉H = 〈g(u0) + μkv0, ψ〉H +

ˆ t

0

〈div [b(ρ̂k(s))∇ρ̂k(s)] , ψ〉H ds

+

ˆ t

0

〈Fg(ρ̂k(s)), ψ〉H ds+

ˆ t

0

〈σg(ρ̂k(s))Q ϕ̂k(s), ψ〉H ds

+
√
μk

ˆ t

0

〈σg(ρ̂μk
(s))dŵQ

k (s), ψ〉H .

Thanks to (7.1), for every t ∈ [0, T ] we have

(7.2) lim
k→∞

〈ρ̂k(t) + θ̂k(t), ψ〉H = 〈ρ̂(t), ψ〉H , P̂− a.s.

Next, if we define ûk := g−1(ρ̂k) and û := g−1(ρ̂), we have
ˆ t

0

〈b(ρ̂k(s))∇ρ̂k(s),∇ψ〉Hds−
ˆ t

0

〈b(ρ̂(s))∇ρ̂(s),∇ψ〉H ds

=

ˆ t

0

〈∇ûk(s),∇ψ〉Hds−
ˆ t

0

〈∇û(s),∇ψ〉Hds = −
ˆ t

0

〈(ûk(s)− û(s)),Δψ〉Hds.

In particular, since (7.1) implies the P-a.s. convergence of ûk to û in C([0, T ];H),
we get that

(7.3) lim
k→∞

ˆ t

0

〈b(ρ̂k(s))∇ρ̂k(s),∇ψ〉H ds =

ˆ t

0

〈b(ρ̂(s))∇ρ̂(s),∇ψ〉H ds, P̂− a.s.
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It is immediate to check that estimate (2.16) extends to Fg. Thus we have
∣

∣

∣

∣

ˆ t

0

〈Fg(ρ̂k(s)), ψ〉H ds−
ˆ t

0

〈Fg(ρ̂(s)), ψ〉H ds

∣

∣

∣

∣

≤
ˆ t

0

‖Fg(ρ̂k(s))−Fg(ρ̂(s))‖L1 ds ‖ψ‖H1

≤ c

ˆ t

0

(

1 + ‖ρ̂k(s)‖θ−1
L2(θ−1) + ‖ρ̂(s)‖θ−1

L2(θ−1)

)

‖ρ̂k(s)− ρ̂(s)‖H ds ‖ψ‖H1 ,

so that, thanks to (7.1),

(7.4) lim
k→∞

ˆ t

0

〈Fg(ρ̂k(s)), ψ〉H ds =

ˆ t

0

〈Fg(ρ̂(s)), ψ〉H ds, P̂− a.s.

Now, for any h ∈ L2(0, T ;H), due to (6.6)

∣

∣

∣

∣

ˆ t

0

〈σg(ρ̂(s))Qh(s), ψ〉Hds

∣

∣

∣

∣

≤ c‖ψ‖H
(

ˆ T

0

(1 + ‖ρ̂(s)‖2H)ds

)
1
2
(

ˆ T

0

‖h(s)‖2Hds

)
1
2

and this implies that the mapping

h ∈ L2([0, T ];H) �→
ˆ t

0

〈σg(ρ̂(s)))Qh(s), ψ〉H ds ∈ R

is a linear functional so that, thanks to (7.1), for every fixed t ≥ 0

(7.5) lim
k→∞

ˆ t

0

〈σg(ρ̂(s))Qϕ̂k(s), ψ〉Hds =

ˆ t

0

〈σg(ρ̂(s))Qϕ̂(s), ψ〉H ds, P̂− a.s.

Moreover, we have
∣

∣

∣

∣

ˆ t

0

〈(σg(ρ̂k(s))− σg(ρ̂(s)))Qϕ̂k(s), ψ〉Hds

∣

∣

∣

∣

≤ ‖ψ‖H
ˆ t

0

‖σg(ρ̂k(s))− σg(ρ̂(s))‖L(HQ,H)‖ϕ̂k(s)‖H ds

≤ c ‖ψ‖H‖ρ̂k − ρ̂‖L2([0,T ];H)‖ϕ̂k‖L2([0,T ];H),

and by using again (7.1) we get

lim
k→∞

ˆ t

0

〈(σg(ρ̂k(s))− σg(ρ̂(s)))Qϕ̂k(s), ψ〉Hds = 0, P̂− a.s.

This, together with (7.5), implies

(7.6) lim
k→∞

ˆ t

0

〈σg(ρ̂k(s))Qϕ̂k(s), ψ〉Hds =

ˆ t

0

〈σg(ρ̂(s))Qϕ̂(s), ψ〉Hds, P̂−a.s.

Finally, since

sup
k∈N

Ê sup
t∈[0,T ]

∣

∣

∣

∣

ˆ t

0

〈σg(ρ̂μk
(s))dŵQ

k (s), ψ〉H
∣

∣

∣

∣

2

≤ c sup
k∈N

‖ψ‖2H
ˆ T

0

(

1 + Ê‖ρ̂μk
(s)‖2H

)

ds < ∞,

we conclude that

lim
k→∞

√
μk sup

t∈[0,T ]

Ê

∣

∣

∣

∣

ˆ t

0

〈σg(ρ̂μk
(s))dŵQ

k (s), ψ〉H
∣

∣

∣

∣

2

= 0.
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This, together with (7.2), (7.3), (7.4) and (7.6), implies that

〈ρ̂(t), ψ〉H =〈g(u0), ψ〉H −
ˆ t

0

〈b(ρ̂(s))∇ρ̂(s),∇ψ〉Hds

ˆ t

0

[〈Fg(ρ̂(s)), ψ〉H + 〈σg(ρ̂(s))Qϕ̂(s), ψ〉H ] ds.

As proven in Proposition 6.2, the equation above has at most one solution. Thus,
for every sequence {μk}k∈N ↓ 0 the sequence {ρk}k∈N converges in distribution to
the solution ρ of equation (6.1) with respect to the strong topology of C([0, T ];Hδ),
for any arbitrary δ < 1, and hence, due to the embedding of H1 into Lp(O), with
respect to the strong topology of C([0, T ];Lp(O)), for every p < ∞, if d = 1, 2 and
p < 2d/(d − 2), if d > 2. In particular, this implies that the sequence {uk}k∈N

converges in distribution to the solution uϕ of equation (3.2) with respect to the
strong topology of C([0, T ];Lp(O)) and condition (C1) holds.

As a consequence of the arguments used above to prove condition (C1), we have
that the mapping

ϕ ∈ L2
w(0, T ;H) �→ uϕ ∈ C([0, T ];Lp(O))

is continuous. Therefore, since ΛT,M is compact in L2
w(0, T ;H), for every M > 0,

we have that

ΦT,R = {IT ≤ R} = {uϕ : ϕ ∈ ΛT,2R2}
is compact, and condition (C2) follows. �

Appendix A. The small mass limit for system (1.1)

The Smoluchowski-Kramers approximation for system (1.1) has been studied
in [14], in the case f is Lipschitz-continuous and σ is bounded. Here, we prove an
analogous result when σ is unbounded and f has polynomial growth (see Hypothesis
4).

In what follows, we shall assume that Hypotheses 1, 2 and Hypothesis 4 hold.
By applying Theorem 3.2 with the control ϕ = 0, we have that for every T > 0 and
every (u0, v0) ∈ H1 there exists a unique adapted solution uμ to equation (1.1),
such that (uμ, ∂tuμ) ∈ L2(Ω;C([0, T ];H1)).

For every a ∈ [0, 1) we denote

X(a) :=
⋂

q<q(a)

Lq(0, T ;Ha), Y (a) :=
⋂

p<2/a

Lp(0, T ;Ha),

where

q(a) :=
2(θ + 1)

2 + (θ − 1)a
.

Theorem A.1. Assume Hypotheses 1, 2 and 4 hold, and for every μ > 0, let uμ

denote the unique solution to equation (1.1), with the initial conditions (u0, v0) ∈
H1.

(1) If θ ∈ (1, 3), then for every a ∈ [0, 1) and η > 0 we have

lim
μ→0

P

(

‖uμ − u‖X(a) > η
)

= 0,

where u ∈ L2(Ω;L2([0, T ];H1)) is the unique solution to equation (1.3),
with initial datum u0.
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(2) If we assume

(A.1)
⎧

⎪

⎨

⎪

⎩

∃ ρ ∈ [0, (θ + 1)/4) such that ‖σ(h)‖L2(HQ,H) ≤ c
(

1 + ‖h‖ρH
)

, h ∈ H,

θ ∈ (1, 3], if ρ > 0, θ ∈ (1, 5), if ρ = 0,

then for every a ∈ [0, 1) and η > 0 we have

lim
μ→0

P

(

‖uμ − u‖Y (a) > η
)

= 0.

A.1. Energy estimates. One of the key ingredients in our proof of Theorem A.1
is the tightness of {uμ}μ∈(0,1) in suitable functional spaces. This will require the
following a priori bounds.

Lemma A.2. Assume Hypotheses 1, 2 and 4 hold, and fix T > 0 and (u0, v0) ∈ H1.

(1) There exist μT ∈ (0, 1) and cT > 0 such that for every μ ∈ (0, μT ),

(A.2) E sup
t∈[0,T ]

‖uμ(t)‖2H + E

ˆ T

0

‖uμ(t)‖2H1 dt+ E

ˆ T

0

‖uμ(t)‖θ+1
Lθ+1 dt ≤ cT ,

and

(A.3)

E sup
t∈[0,T ]

‖uμ(t)‖2H1+E sup
t∈[0,T ]

‖uμ(t)‖θ+1
Lθ+1+μE sup

t∈[0,T ]

‖∂tuμ(t)‖2H+E

ˆ T

0

‖∂tuμ(t)‖2H dt

≤ cT
μ
.

(2) If, in addition, condition (A.1) holds, then for every μ ∈ (0, μT )

(A.4) E sup
t∈[0,T ]

‖uμ(t)‖2H1 + E sup
t∈[0,T ]

‖uμ(t)‖θ+1
Lθ+1 + μE sup

t∈[0,T ]

‖∂tuμ(t)‖2H ≤ cT
μβ

,

where

β = β(ρ) :=
θ + 1

2(θ + 1− 2ρ)
.

Remark A.1.

(1) If the mapping σ is bounded, then condition (A.1) is satisfied for ρ = 0, in
which case β = 1/2, so that for every μ ∈ (0, μT )

√
μ E sup

t∈[0,T ]

(

‖uμ(t)‖2H1 + ‖uμ(t)‖θ+1
Lθ+1 + μ ‖∂tuμ(t)‖2H

)

≤ cT .

(2) When condition (A.1) holds with ρ = 0, in order to prove (A.4) we can take
any θ > 1.

(3) If ρ ∈ [0, (θ+1)/4), then β < 1. Therefore, if condition (A.1) holds, due to
(A.4) we have

(A.5) lim
μ→0

μ2
E sup

t∈[0,T ]

‖∂tuμ(t)‖2H = 0,

which is the same bound proven in [14].
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Proof. Estimates (A.2) and (A.3) can be proved by proceeding as in the proof of
Lemma 5.1. Thus, we will only prove (A.4) under condition (A.1).

For every μ ∈ (0, 1) and t ∈ [0, T ], define

Lμ(t) := ‖uμ(t)‖2H1 +

ˆ L

0

(

c2 − f(x, uμ(t, x))
)

dx+ μ ‖∂tuμ(t)‖2H ,

where the function f and the constant c2 have been introduced in Hypothesis 4.
Due to (2.11), we have that

Lμ(t) ≥ ‖uμ(t)‖2H1 + ‖uμ(t)‖θ+1
Lθ+1 + μ ‖∂tuμ(t)‖2H , P− a.s.

Thus, we obtain (A.4) once we have proved that

(A.6) μβ
E sup

t∈[0,T ]

Lμ(t) ≤ cT .

Assume (A.6) is not true. Then there is a sequence (μk)k∈N ⊂ (0, 1) converging
to 0, as k → ∞, such that

(A.7) lim
k→∞

μβ
k E sup

t∈[0,T ]

Lμk
(t) = +∞.

For every k ∈ N, the mapping t �→ Lμk
(t) is continuous P-a.s., so that there exists

a random time tk ∈ [0, T ] such that

Lμk
(tk) = sup

t∈[0,T ]

Lμk
(t).

As a consequence of the Itô formula, if s is any random time such that P(s ≤ tk) = 1,
we have

Lμk
(tk)− Lμk

(s) ≤ 1

μk

ˆ tk

s

‖σ(uμk
(r))‖2L2(HQ,H) dr + 2

(

Mk(tk)−Mk(s)
)

,

where

Mk(t) :=

ˆ t

0

〈

∂tuμk
(r), σ(uμk

(r))dwQ(r)
〉

H
.

Thanks to Young’s inequality, since 2β ≥ 1 and μk < 1, we have

1

μk

ˆ tk

s

‖σ(uμk
(r))‖2L2(HQ,H) dr ≤ c

μk

ˆ tk

s

(

1 + ‖uμk
(r)‖2ρH

)

dr

≤ c

(

tk − s

μk
+

tk − s

μ
θ+1

θ+1−2ρ

k

+

ˆ T

0

‖uμk
(t)‖θ+1

H dt

)

≤ c

(

tk − s

μ2β
k

+

ˆ T

0

‖uμk
(t)‖θ+1

H dt

)

.

Therefore, if we define

Uk :=

ˆ T

0

‖uμk
(t)‖θ+1

Lθ+1 dt, and Mk := sup
t∈[0,T ]

|Mk(t)|,

we can fix a constant κT independent of k, with Lμk
(0) ≤ κT , such that

Lμk
(tk)− Lμk

(s) ≤ κT

( tk − s

μ2β
k

+ Uk

)

+ 4Mk.
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In particular, if we take s = 0, we have

(A.8) tk ≥ μ2β
k

κT

(

Lμk
(tk)− 4Mk − κT (Uk + 1)

)

=:
μ2β
k

κT
δk.

On the set Ek :=
{

δk > 0
}

, for any s ∈
[

tk − μ2β
k

2κT
δk, tk

]

we have

Lμk
(s) ≥ Lμk

(tk)−
1

2
δk − κTUk − 4Mk =

1

2

[

Lμk
(tk)− 4Mk − κT (Uk − 1)

]

.

Hence, if we define

Ik :=

ˆ T

0

Lμk
(s)ds,

recalling how δk was defined in (A.8), we have

Ik ≥
ˆ tk

tk−
μ
2β
k

2κT
δk

Lμk
(s)ds ≥ μ2β

k

4κT

[(

Lμk
(tk)− 4Mk − κTUk

)2

− κ2
T

]

,

so that

(A.9) E(Ik) ≥ E(Ik;Ek) ≥ E

(

μ2β
k

4CT

(

Lμk
(tk)− 4Mk − CTUk

)2

;Ek

)

− μ2β
k

4
CT .

Now, thanks to condition (A.1), and estimates (A.2) and (A.3), we have

E(Mk)≤ E

(

ˆ T

0

‖∂tuμk
(t)‖2H ‖σ(uμk

(t))‖2L2(HQ,H) dt

)
1
2

≤ E

[

sup
t∈[0,T ]

‖σ(uμk
(t))‖L2(HQ,H)

(

ˆ T

0

‖∂tuμk
(t)‖2H dt

)
1
2
]

≤ cE sup
t∈[0,T ]

‖σ(uμk
(t))‖

2
ρ

L2(HQ,H) + cE
(

ˆ T

0

‖∂tuμk
(t)‖2H dt

)
1

2−ρ

≤ c
(

1 + E sup
t∈[0,T ]

‖uμk
(t)‖2H

)

+ c
(

ˆ T

0

E ‖∂tuμk
(t)‖2H dt

)
1

2−ρ ≤ CT

μ
1

2−ρ

k

.

In particular, since (A.1) implies

β =
θ + 1

2(θ + 1− 2ρ)
≥ 1

2− ρ
,

we have that

(A.10) lim sup
k→∞

μβ
kE(Mk) < +∞.

Moreover, by (A.2) and (A.3), we have

(A.11) sup
k

E(Uk) < ∞.

Therefore, due to (A.8), (A.10) and (A.11), as a consequence of (A.7) we have

(A.12) lim
k→∞

μβ
kE(δk) = +∞.

Now, we have

μβ
kE(δk) = μβ

kE(δk;Ek) ≤ E
(

μβ
k (δk + κT );Ek

)

≤
[

E
(

μ2β
k (δk + κT )

2;Ek

)

]
1
2

,
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so that, thanks to (A.9) we have

E(Ik) ≥
1

4κT
E
(

μ2β
k (δk + κT )

2;Ek

)

− μ2β
k κT

4
≥ 1

4κT

[

μβ
kE(δk)

]2 − μ2β
k κT

4
.

Due to (A.12), this implies

lim
k→∞

E(Ik) = +∞.

However, the limit above is not possible. Actually, since we

Lμk
(t) ≤ ‖uμk

(t)‖2H1 + μk ‖∂tuμk
(t)‖2H + L c

(

1 + ‖uμk
(t)‖θ+1

Lθ+1

)

, P-a.s.

as a consequence of (A.2) and (A.3) we have

sup
k∈N

E(Ik) < +∞,

and this gives a contradiction. In particular, this means that claim (A.6) is true,
and (A.4) holds. �

A.2. Tightness. As in Section 5, for every T > 0 and μ > 0 we have defined

ρμ(t, x) = g(uμ(t, x)), (t, x) ∈ [0, T ]× [0, L],

and, by integrating equation (1.1) with respect to t, we got
(A.13)

ρμ(t) + μ∂tuμ(t) = g(u0) + μv0 +

ˆ t

0

div
[

b(ρμ(s))∇ρμ(s)
]

ds+

ˆ t

0

Fg(ρμ(s))ds

+

ˆ t

0

σg(ρμ(s))dw
Q(s),

where we recall that b, fg, Fg and σg were defined in (5.11) and (5.12).

Definition A.2. Let E be a Banach space with norm ‖·‖E . Given r > 1 and
λ ∈ (0, 1), we denote by Wλ,r(0, T ;E) be the Banach space of all u ∈ Lp(0, T ;E)
such that

[u]Wλ,r(0,T ;E) :=

ˆ T

0

ˆ T

0

‖u(t)− u(s)‖rE
|t− s|1+λr

dtds < ∞,

endowed with the norm

‖u‖rWλ,r(0,T ;E) =

ˆ T

0

‖u(t)‖rE dt+ [u]Wλ,r(0,T ;E).

It is possible to prove that if λr < 1, p ≤ r/(1 − λr) and 1 ≤ r ≤ p, then
Wλ,r(0, T ;E) ⊂ Lp(0, T ;E) and there exists some c > 0 such that for all u ∈
Wλ,r(0, T ;E)

(A.14) ‖τh(u)− u‖Lp(0,T−h;E) ≤ c hλT 1/p−1/r [u]Wλ,r(0,T ;E), h > 0,

where

τh(u)(t) = u(t+ h), t ∈ [−h, T − h]

(see [32, Lemma5]).

Proposition A.3. Assume Hypotheses 1, 2 and 4 hold, and fix any T > 0 and

(u0, v0) ∈ H1, and an arbitrary sequence (μk)k∈N ⊂ (0, 1) that converges to 0.

(1) The family of probability measures
(

L(ρμk
)
)

k∈N
is tight in X(a), for every

a ∈ [0, 1).
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(2) If condition (A.1) holds, then the family of probability measures
(

L(ρμk
)
)

k∈N

is tight in Y (a), for every a ∈ [0, 1).

Remark A.3.

(1) By taking a = 0, we have

(L(ρμk
))k∈N

is tight in
⋂

q<θ+1

Lq(0, T ;H)

and thanks to the embedding Ha ↪→ C([0, L]), for a ∈ (1/2, 1), we have
(

L(ρμk
)
)

k∈N
is tight in

⋂

q<4(θ+1)/(θ+3)

Lq(0, T ;C([0, L])).

(2) When condition (A.1) holds, we have that
(

L(ρμk
)
)

k∈N
is tight in

⋂

p<∞

Lp(0, T ;H).

Proof. For every 0 ≤ t1 ≤ t2 ≤ T , we have

E

∥

∥

∥

∥

ˆ t2

t1

div
[

b(ρμ(s))∇ρμ(s)
]

ds

∥

∥

∥

∥

(θ+1)/θ

H−1

≤
(

E

∥

∥

∥

∥

ˆ t2

t1

div
[

b(ρμ(s))∇ρμ(s)
]

ds

∥

∥

∥

∥

2

H−1

)(θ+1)/2θ

≤ C(t2 − t1)
(θ+1)/2θ

(

E

ˆ T

0

‖ρμ(s)‖2H1 ds

)(θ+1)/2θ

,

E

∥

∥

∥

∥

ˆ t2

t1

Fg(ρμk
(s))ds

∥

∥

∥

∥

(θ+1)/θ

H−1

≤ CE

(

ˆ t2

t1

(

1 + ‖uμ(s)‖θθ+1

)

ds

)(θ+1)/θ

≤ C(t2 − t1)
1/θ

E

ˆ T

0

(

1 + ‖uμ(s)‖θ+1
θ+1

)

ds,

and

E

∥

∥

∥

∥

ˆ t2

t1

σg(ρμ(s))dw
Q(s)

∥

∥

∥

∥

(θ+1)/θ

H−1

≤
(

E

∥

∥

∥

∥

ˆ t2

t1

σg(ρμ(s))dw
Q(s)

∥

∥

∥

∥

2

H−1

)(θ+1)/2θ

≤C(t2−t1)
(θ+1)/2θ

(

1+E sup
t∈[0,T ]

‖uμ(t)‖2H

)(θ+1)/2θ

.

In view of (A.2) and (A.13), it is not difficult to show that for every λ ∈ (0, 1/(θ+1)),

(A.15) sup
μ∈(0,μT )

E[ρμ + μ∂tuμ]
θ0
Wλ,θ0 (0,T ;H−1)

< ∞,

where

θ0 :=
θ + 1

θ
∈ (1, 2).
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Moreover, by (A.2) and (A.3) we have

(A.16) sup
μ∈(0,μT )

E ‖ρμ + μ∂tuμ‖2L∞([0,T ];H) < ∞.

Therefore, from (A.15) and (A.16) we conclude that for every ε > 0, there exists
L1(ε) > 0 such that, if we define

Kε
1 =

{

f : [0, T ]× R → R : [f ]Wλ,θ0 (0,T ;H−1) + ‖f‖L∞(0,T ;H) ≤ L1(ε)
}

,

then
inf

μ∈(0,μT )
P
(

ρμ + μ∂tuμ ∈ Kε
1

)

> 1− ε/4.

According to (A.14), we have that for every p < (θ + 1)/θ

lim
h→0

‖τhf − f‖Lp(0,T−h;H−1) = 0, f ∈ Kε
1.

Hence, in view of [32, Theorem 6], we have that Kε
1 is relatively compact in

Lq(0, T,H−δ), for every q < ∞ and δ > 0.
Next, due to (A.3), we have

lim
μ→0

E ‖μ∂tuμ‖2L2([0,T ];H) = 0,

hence for every sequence (μk)k∈N ⊂ (0, μT ) converging to zero, there exists a com-
pact Kε

2 in L2([0, T ];H) such that

P
(

μk∂tuμk
∈ Kε

2

)

> 1− ε/4, k ∈ N.

Since L2([0, T ];H) ⊂ Lθ0([0, T ];H−δ), for δ > 0, we have that Kε
2 is also com-

pact in Lθ0([0, T ];H−δ), which implies that Kε
1 + Kε

2 is relatively compact in
Lθ0([0, T ];H−δ), and for every k ∈ N,

P
(

ρμk
∈ Kε

1 +Kε
2

)

≥ 1− ε/2.

Moreover, thanks to estimate (A.2) there exists L2(ε) > 0 such that, if we define

Kε
3 =

{

f : [0, T ]× R → R : ‖f‖Lθ+1([0,T ];H) ≤ L2(ε)
}

,

then
inf

μ∈(0,μT )
P
(

ρμ ∈ Kε
3

)

≥ 1− ε/4,

and thus

inf
k∈N

P

(

ρμk
∈
(

Kε
1 +Kε

2

)

∩Kε
3

)

≥ 1− 3ε/4.

By using again [32, Theorem 6],
(

Kε
1 + Kε

2

)

∩ Kε
3 is relatively compact in

Lp([0, T ];H−δ) for every δ > 0 and p < θ + 1. This implies that the family of
probability measures

(

L(ρμk
)
)

k∈N
is tight in Lp([0, T ];H−δ), for every δ > 0 and

p < θ + 1.
Now, according to [32, Theorem 1], we have

lim
h→0

sup
f∈
(

Kε
1+Kε

2

)

∩Kε
3

‖τhf − f‖Lp([0,T ];H−δ) = 0.

Furthermore, since

sup
μ∈[0,μT ]

E ‖ρμ‖2L2([0,T ];H1) < ∞,

there exists L3(ε) > 0 such that, if we define

Kε
4 =

{

f : [0, T ]× R → R : ‖f‖L2([0,T ];H1) ≤ L3(ε)
}

,
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then

inf
μ∈(0,μT )

P
(

ρμ ∈ Kε
4

)

≥ 1− ε/4.

Thus, if we define

Kε =
(

Kε
1 +Kε

2

)

∩Kε
3 ∩Kε

4,

we have

inf
k∈N

P(ρμk
∈ Kε) ≥ 1− ε.

For every a ∈ [0, 1) and for any δ > 0, by interpolation

‖u‖Ha ≤ C(a, δ) ‖u‖
1−a
1+δ

H−δ ‖u‖
a+δ
1+δ

H1 .

Thus, according to [32, Theorem 7], we haveKε is relatively compact in Lq(0, T ;Ha),
where q = q(a, δ, p) satisfies

1

q
=

1− a

p(1 + δ)
+

a+ δ

2(1 + δ)
, δ > 0, p < θ + 1.

This means that Kε is relatively compact in Lq(0, T ;Ha), for every q < q(a), where

q(a) =
2(θ + 1)

2 + (θ − 1)a
, a ∈ [0, 1),

so that
(

L(ρμk
)
)

k∈N
is tight in X(a).

Now let us assume that the condition (A.1) holds. Thanks to (A.5) we know
that

lim
μ→0

E ‖μ∂tuμ‖L∞([0,T ];H) = 0.

Since L∞(0, T ;H) ⊂ Lq(0, T ;H−δ), for every q < ∞ and δ > 0, we can proceed as
in the proof of part (1), and we have that

(

L(ρμk
)
)

k∈N
is tight in Lp([0, T ];H−δ)

for every p < ∞ and δ > 0. Finally, since

(A.17) sup
μ∈[0,μT ]

E ‖ρμ‖2L2([0,T ];H1) < ∞,

by using the same argument as in the proof of part (1), we have that for every
a ∈ [0, 1),

(

L(ρμk
)
)

k∈N
is tight in Lq([0, T ];Ha), where q = q(a, δ, p) satisfies

1

q
=

1− a

p(1 + δ)
+

a+ δ

2(1 + δ)
, δ > 0, p < ∞.

This implies that
(

L(ρμk
)
)

k∈N
is tight in Lq([0, T ];Ha), for every q < 2/a, and the

proof of part (2) follows. �

A.3. The limiting problem. Here we will prove the uniqueness of solutions for
the following equation
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

γ(u(t, x))∂tu(t, x) = Δu(t, x) + f(u(t, x))− γ′(u(t, x))

2γ2(u(t, x))

∞
∑

i=1

|[σ(u(t, ·)Qei](x)|2

+σ(u(t, ·))∂twQ(t, x),

u(0, x) = u0(x), u(t, 0) = u(t, L) = 0.
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To this purpose, we shall first study the following quasi-linear parabolic equation
(A.18)

⎧

⎨

⎩

∂tρ(t, x) = div
[

b(ρ(t, x))∇ρ(t, x)
]

+ fg(x, ρ(t, x)) + σg(ρ(t, ·))dwQ(t, x),

ρ(0, x) = g(u0(x)), ρ(t, 0) = ρ(t, L) = 0.

Definition A.4. An (Ft)t≥0 adapted process ρ ∈ L2(Ω;L2(0, T ;H1)) is a solution
of equation (A.18) if for every test function ψ ∈ C∞

0 ([0, L])

(A.19)

〈ρ(t), ψ〉H = 〈g(u0), ψ〉H +

ˆ t

0

〈b(ρ(s))∇ρ(s),∇ψ〉Hds

+

ˆ t

0

〈Fg(ρ(s)), ψ〉Hds+

ˆ t

0

〈σg(ρ(s))dw
Q(s), ψ〉H .

By proceeding as in the proof of [14, Theorem 6.2], combined with similar argu-
ments as in the proof of Proposition 6.2, we have the following result.

Proposition A.5. Under Hypotheses 1, 2 and 4, there is at most one solution

ρ ∈ L2(Ω;L2(0, T ;H1)) to equation (A.18).

Moreover, by proceeding as in the proof of [14, Theorem 7.1], we have the fol-
lowing result.

Proposition A.4. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hy-

pothesis 4 and fix any T > 0, u0 ∈ H1. Suppose that ρ ∈ L2(Ω;L2(0, T ;H1)) is the
solution of equation (A.18). Then, if we define u := g−1(ρ), we have that u belongs

to L2(Ω;L2(0, T ;H1)) and is a solution to equation (1.3). Furthermore, equation

(1.3) admits at most one solution u ∈ L2(Ω;L2(0, T ;H1)).

A.4. Proof of Theorem A.1. For every sequence {μk}k∈N ⊂ (0, μT ) converging
to 0 as k → ∞, we denote

uk := uμk
and ρk := g(uk), k ∈ N.

In view of the first part of Proposition A.3, if we define

X :=
⋂

0≤a<1

X(a),

we have that the family
{

L(ρk, μk∂tuk)
}

k∈N
⊂ P

(

X × L2(0, T ;H)
)

is tight.
We denote by ρ a weak limit point for the sequence {ρk}k∈N and we denote

K := X × L2(0, T ;H)× C([0, T ], U),

where U is the Hilbert space such that the embedding HQ ⊂ U is Hilbert-Schmidt.
According to the Skorokhod Theorem there exist random variables

Y = (ρ̂, 0, ŵQ), Yk =
(

ρ̂k, θ̂k, ŵ
Q
k

)

, k ∈ N,

defined on a probability space (Ω̂, F̂ , {F̂t}t∈[0,T ], P̂), such that

L(Y) = L(ρ, 0, wQ), L(Yk) = L(ρk, μk∂tuk, w
Q), k ∈ N,
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and such that

(A.20) lim
k→∞

Yk = Y in K, P̂-a.s.

In particular,

(A.21) lim
k→∞

(

‖ρ̂k − ρ̂‖Lp([0,T ];H) + ‖ρ̂k − ρ̂‖Lq([0,T ];C([0,L]))

)

= 0, P̂-a.s.

for every p < θ+1 and every q < 4(θ+1)/(θ+3). Moreover, thanks to (A.17), we
have that ρ̂ ∈ L2(Ω;L2([0, T ];H1)), and, taking possibly a subsequence,

lim
k→∞

ρ̂k = ρ̂, in L2
w([0, T ];H

1), P̂-a.s.,

where L2
w([0, T ];H

1) is the space L2([0, T ];H1) endowed with the weak topology.
By proceeding as in the proof of [14, Theorem 7.1], thanks to Proposition A.4,

in order to prove Theorem A.1, it is sufficient to show that ρ̂ solves the parabolic
equation (A.18).

For every k ∈ N and ψ ∈ C∞
0 ([0, L]), we have

(A.22)

〈ρ̂k(t) + θ̂k(t), ψ〉H = 〈g(u0) + μkv0, ψ〉H −
ˆ t

0

〈b(ρ̂k(s))∇ρ̂k(s),∇ψ〉Hds

+

ˆ t

0

〈Fg(ρ̂k(s)), ψ〉Hds+

ˆ t

0

〈σg(ρ̂k(s))dŵ
Q
k (s), ψ〉H , P̂-a.s.

Since ρ̂k + θ̂k converges to ρ̂ in L2(0, T ;H), P̂-a.s., we have

(A.23) lim
k→∞

ˆ t

0

〈ρ̂k(s) + θ̂k(s), ψ〉H ds =

ˆ t

0

〈ρ̂(s), ψ〉H ds, t ∈ [0, T ], P̂-a.s.

As in the proof of [14, Theorem 7.1], we have that
(A.24)

lim
k→∞

sup
t∈[0,T ]

∣

∣

∣

∣

ˆ t

0

〈b(ρ̂k(s))∇ρ̂k(s),∇ψ〉Hds−
ˆ t

0

〈b(ρ̂(s))∇ρ̂(s),∇ψ〉Hds

∣

∣

∣

∣

= 0, P̂-a.s.

Next, as (2.16) extends to Fg, for each k ∈ N,

∣

∣

∣

ˆ t

0

〈Fg(ρ̂k(s))− Fg(ρ̂(s)), ψ〉H
∣

∣

∣

≤ c ‖ψ‖H1

ˆ t

0

(

1 + ‖ρ̂k(s)‖θ−1
L2(θ−1) + ‖ρ̂(s)‖θ−1

L2(θ−1)

)

‖ρ̂k(s)− ρ̂(s)‖H ds

≤ c ‖ψ‖H1

(

1+‖ρ̂k‖θ−1
Lq(θ−1)([0,T ];C([0,L])+‖ρ̂‖θ−1

Lq(θ−1)([0,T ];C([0,L])

)

‖ρ̂k−ρ̂‖Lp([0,T ];H),

for any p, q satisfying p−1 + q−1 = 1. Now, if θ ∈ (1, 3), we can fix

4(θ + 1)

7 + 2θ − θ2
< p < θ + 1,

so that q(θ − 1) < 4(θ + 1)/(θ + 3). Then thanks to (A.21), we have

(A.25) lim
k→∞

sup
t∈[0,T ]

∣

∣

∣

∣

ˆ t

0

〈Fg(ρ̂k(s)), ψ〉Hds−
ˆ t

0

〈Fg(ρ̂(s)), ψ〉Hds

∣

∣

∣

∣

= 0, P̂-a.s.

Finally, since

lim
k→∞

sup
t∈[0,T ]

∥

∥

∥
ŵQ

k (t)− ŵQ(t)
∥

∥

∥

U
= 0, P-a.s.
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and

lim
k→∞

‖ρ̂k − ρ̂‖L2([0,T ];H) = 0, P-a.s.

with the uniform estimate

sup
k∈N

E sup
t∈[0,T ]

‖ρ̂k(t)‖2H < ∞,

by [19, Corollary 4.5] we have that

(A.26) lim
k→∞

sup
t∈[0,T ]

∣

∣

∣

∣

ˆ t

0

〈σg(ρ̂k(s))dŵ
Q
k (s), ψ〉H −

ˆ t

0

〈σg(ρ̂(s))dŵ
Q(s), ψ〉H

∣

∣

∣

∣

= 0,

in probability.

Therefore, combining (A.23)–(A.26), if we integrate with respect to time both
sides of equation (A.22) and take the limit as k → ∞, it follows that for every
ψ ∈ C∞

0 ([0, L]) and t ∈ [0, T ],
ˆ t

0

〈ρ̂(s), ψ〉H ds =

ˆ t

0

[

〈g(u0), ψ〉H −
ˆ s

0

〈b(ρ̂(r))∇ρ̂(r),∇ψ〉Hdr

+

ˆ s

0

〈Fg(ρ̂(r)), ψ〉Hdr +

ˆ s

0

〈σg(ρ̂(r))dŵ
Q(r), ψ〉H

]

ds, P̂-a.s.

Due to the arbitrariness of t ∈ [0, T ], this means that ρ̂ ∈ L2(Ω;X ∩ L2(0, T ;H1))
solves equation (A.18) with initial data u0, and the first part of the theorem is
proved.

We omit the proof of the second part as it is analogous to the one we have just
seen. We only notice that in order to prove (A.25) we need that q(θ − 1) < 4. In
particular, we need 4/(θ − 1) > 1, and this is satisfied if θ ∈ (1, 5).
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