TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 376, Number 11, November 2023, Pages 7651-7689
https://doi.org/10.1090/tran/8946

Article electronically published on August 17, 2023

ON THE SMALL NOISE LIMIT IN THE
SMOLUCHOWSKI-KRAMERS APPROXIMATION OF
NONLINEAR WAVE EQUATIONS WITH VARIABLE FRICTION

SANDRA CERRAI AND MENGZI XIE

ABSTRACT. We study the validity of a large deviation principle for a class
of stochastic nonlinear damped wave equations, including equations of Klein-
Gordon type, in the joint small mass and small noise limit. The friction term is
assumed to be state dependent. We also provide the proof of the Smolchowski-
Kramers approximation for the case of variable friction, non-Lipschitz nonlin-
ear term and unbounded diffusion.

1. INTRODUCTION

In this article we deal with this class of stochastic wave equations with state-
dependent damping on a bounded smooth domain @ c R?

p07u,(t, ) = Auy(t,z) — v(uu(t, ©))0pu,, (t, o) + fz,u,(t, )
(1.1) +o(uu(t, ) 0w (t, @),

u,(0,2) = uo(x),  Owuu(0,x) =vo(x), uu(t,z) =0, z €00,

depending on a parameter 0 < pu << 1. Here the friction coefficient ~ is strictly
positive and bounded and the nonlinearity f is either a Lipschitz-continuous func-
tion (in this case we can consider any d > 1) or a locally Lipschitz-continuous
function of the Klein-Gordon type (in this case we can only take d = 1). The noise
w?(t) is a cylindrical Q-Wiener process and ¢ is a suitable Lipschitz-continuous
operator-valued function.

The solution w,, of equation (1.1) can be seen as the displacement field of some
particles in a domain O, subject to interaction forces represented by the Laplacian
and to nonlinear reactions represented by f, in the presence of a random external
forcing o(u,(t,-))9w?(t) and a state-dependent friction v(u,, (t))du,(t). A series
of papers has investigated the validity of the so-called Smoluchowski-Kramers ap-
proximation that describes the limiting behavior of the solution u,, as the density
w of the particles vanishes (see [24] and [33]). For the finite dimensional case, the
existing literature is quite broad and we refer in particular to [15], [16], [20], [21]
and [34] (see also [2], [6], [13] and [25] for systems subject to a magnetic field or
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7652 SANDRA CERRAI AND MENGZI XIE

constrained to stay on a manifold and [7], [23] and [30] for some related multiscaling
problems).

In recent years there has been an intense activity dealing with the Smoluchowski-
Kramers approximation of infinite dimensional systems. To this purpose, we refer
to [4], [5], [8], [31] and [26], [27] and [28] for the case of constant damping term
(see also [12] where systems subject to a magnetic field are studied), and to [14] for
the case of state-dependent damping. As a matter of fact, these two situations are
quite different. When  is constant, u, converges to the solution of the stochastic
parabolic problem

w2) you(t, z) = Au(t,z) + flz,ut,z)) + o(u(t, ) dw?(t, ),
. u(0,z) = uo(x), Ou(0,z) = vo(x), u,(t,z) =0, x € 0.

However, when v is not constant, because of the interplay between the state-
dependent friction and the noise, an extra drift is created and in [14] it has been
proven that the limiting equation becomes
(1.3)

Y(u(t, z))owu(t, x) = AU(t ) + ( ( x))

( 2 Z| ))Qeil(@)]* + o (ult, ) 9w (t, ),

U(O,l‘) = UO(I)v u( )\ao =0,

where {Qe; }ien is a complete orthonormal basis of the reproducing kernel of the
noise.

Once proved the validity of the small mass limit, it is important to understand
how stable such an approximation is with respect to other important asymptotic
features of the two systems, such as for example the long time behavior. To this
purpose, in [9] and [4] it is shown that the statistically invariant states of equation
(1.1) (in case of constant friction) converge in a suitable sense to the invariant
measure of equation (1.2). In the same spirit, the two papers [10] and [11] are
devoted to an analysis of the convergence of the quasi-potential that describes, as
known, the asymptotics of the exit times and the large deviation principle for the
invariant measure.

In the present paper we are interested in studying the validity of a large deviation
principle for the following equation

pOup(t,x) = Auy(t,x) — (u,(t, )0, (t, o)
(1.4) + f(I, uu(tv x)) + \/,L_LO'(UH( ))atw ( )
u,(0,z) = uo(x), Owuu(0,x) = vo(z), u,(t,z) =0, z €00,
where, together with the mass, we are also assuming that the intensity of the noise
vanishes. Our aim is proving that in the joint small mass and small noise limit the
family of random variables {u,, },¢ satisfies a large deviation principle in the space

C([0,T]; LP(O)) (for some p > 2 depending on the dimension d), with respect to
the action functional

T
In(u) = 5 {/ (@)l dt 5 u(t) = u?(2), te M]},

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



SMALL-NOISE LIMIT IN THE S.K. APPROXIMATION OF NSWES 7653

where u¥(t) denotes the solution of the controlled quasi-linear parabolic equation

n ()R = Au(t.a) + ) + o(ult, et ),
) u(0,x) =up(x), wu(t,z)=0, xedO.

This means in particular that, in spite of the fact that in the presence of a non-
constant friction coefficient the Smoluchowski-Kramers approximation of equation
(1.1) leads to equation (1.3), the large deviation principle is consistent with equation
(1.2).

The small parameter we are taking in front of the noise in equation (1.4) is /.
However, we would like to point out that this is done only for simplicity sake. In
fact, /i could be replaced by any other positive function () such that

lim a(u) =0, lim alk) < 00,

n—0 pn—0 \//__L
and in this case the speed of the large deviation principle would be a?(u), instead
of u.

Due to the nature of our problem, the weak-convergence approach to large de-
viation, as developed in [3] for SPDEs, is the ideal tool for our proof. As known,
such an approach requires a thorough analysis of the following controlled version
of equation (1.4)

(1.6)

u@fuu(t, x)=Auy(t, 2) =y (uy(t, ) Opu, (8, )+ f (2, uu(t, ) +o(uu(t, ) Qe(t, o)
o (uu(t, )0 (t,x), t>0, x€O.

uu(0,2) = uo(z), Owuu(0,z) = vo(x), uy(t,x) =0, €00,

In [14], only the case of Lipschitz f and bounded o is considered. However, in
relevant models it is important to consider non-Lipschitz nonlinearities. For this
reason, in this paper we are considering also nonlinearities f having polynomial
growth and satisfying some monotonicity conditions. We would like to stress that
this, together with the fact that we allow the diffusion coefficients o to have linear
growth and we have to add a control in equation (1.6), has required the introduction
of new arguments, compared with [14], already in the proof of the well-posedness
result.

After we have shown that equation (1.6) admits a unique solution uf, for every
fixed p > 0 and for every predictable control, we have proven suitable a priori
bounds for such solution and its time derivative. Then, we have introduced p,, :=
g(ui"), where ¢ = v and {p,},>0 is a family of controls all contained P-a.s.
in a ball of L%([0,T]; L?*(0)), and we have shown that these estimates imply the
tightness of the family {p,},.c (0, in C([0,T7; H?Y), for some pr > 0 and for every
0 < 1.

Next, we have shown how, for every sequence { i }ren converging to zero, every
limit point p of {p,, }ren is a weak solution of the deterministic controlled problem

Oep(t, ) = div [b(p(t, 2))Vp(t,x)] + fo(z, p(t, x)) + o4(p(t,-))e(t, 2),
t>0, z €O,
p(oa I) = g(uo(x)), p(t,l‘) =0, z€d0,
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where b=1/yog™!, f; = fog™!, and o, = 0 0o g~ !. In order to identify uniquely
the limit point and prove that {p,, }ren converges to p, we had first to prove that
the equation above has a unique solution. Then, by defining u := g~!(p), we have
obtained the convergence of uj;" to the solution of the controlled equation (1.6) and
this has allowed us to conclude our proof.

Finally, we would like to mention that in Appendix A we have extended the
results of [14] and provided a proof of the validity of the Smoluchowski-Kramers
approximation for quasi-monotone f having polynomial growth and unbounded
diffusion o (see Hypothesis 4). This has required the proof of quite nontrivial a
priori bounds for the solution u,, and its time derivative d;u,, and the introduction
of suitable functional spaces where tightness holds and the small-mass limit can be
proven.

2. NOTATIONS AND ASSUMPTIONS

Throughout the present paper O is a bounded domain in R¢, with smooth bound-
ary. We denote by H the Hilbert space L?(O) and by (-, ) the corresponding inner
product. H! is the completion of C§°(O) with respect to norm

lul2n = [ Vull3 = /@ Vu(z)dr,

and H~! is the dual space to H*. Then H', H and H! are all complete separable
metric spaces, and H' ¢ H C H~!, with compact embeddings. In what follows,
we shall denote
H=HxH*'  H =H'xH

Given the domain O, we denote by {e;}ien C H! the complete orthonormal
basis of H which diagonalizes the Laplacian A, endowed with Dirichlet boundary
conditions on d0. Moreover, we denote by {—a;}ien the corresponding sequence
of eigenvalues, i.e.

Ae; = —Q; €4, i € N.

Next, for every § € R, we denote by H°® the completion of C§°(0) with respect

to the norm

o0
lullFys =) af(h,ed.
i=1

2.1. The stochastic term. We assume that w?(t) is a cylindrical Q-Wiener pro-
cess, defined on a complete stochastic basis (2, F, (F;)i>0,P). This means that
w?(t) can be formally written as

w@(t) = ZQQ‘@‘(W

where {8;}ieny is a sequence of independent standard Brownian motions on
(Q,F, (Ft)i>0,P), {ei}ien is the complete orthonormal system introduced above
that diagonalizes the Laplace operator, endowed with Dirichlet boundary condi-
tions, and Q : H — H is a bounded linear operator,, When Q = I, w!(t) will be
denoted by w(t). In particular, we have w?(t) = Qu(t).

In what follows we shall denote by Hg the set Q(H). Hg is the reproducing
kernel of the noise w® and is a Hilbert space, endowed with the inner product

<Qh7Qk>HQ = <h>k>H7 h, ke H.
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Notice that the sequence {Qe; }ien is a complete orthonormal system in Hg. More-
over, if U is any Hilbert space containing Hg such that the embedding of Hg into
U is Hilbert-Schmidt, we have that

(2.1) w® e C([0,T); U).

Next, we recall that for every two separable Hilbert spaces E and F, Lo(E, F')
denotes the space of Hilbert-Schmidt operators from E into F. Lo(E, F) is a Hilbert
space, endowed with the inner product

(A,B),(p,r) = Trp [A*B] = Trp[BA™].
As well known, Lo(E,F) C L(E,F) and
(2.2) 1Al zce,ry < Al 2o, F)-
Hypothesis 1. The mapping o : H — Lo(Hg, H) is defined by
[c(h)Qe;](x) = oi(x,h(z)), x€O heH, ‘€N,
for some mapping o; : O x R = R. We assume that there exists L > 0 such that

(2.3) sup D loi(@,yn) —oi(wyo) P < Llys —wal*, v,y €R.
€O =1
Moreover,
oo
(2.4) sup Z loi(2,0)]* =: 08 < oo0.
ze0 7
Remark 2.1.
(1) Condition (2.3) implies that o is Lipschitz continuous. Namely for any
hl, h2 cH
(2.5) lo(h1) = o (he) | 2orrg, i) < VI b1 = hal .
This, together with condition (2.4), implies also that o has linear growth,
that is
(2.6) lo ()l 2og,my < VI |Blla + OV ?00.

(2) If o is constant, then Hypothesis 1 means that c@Q is a Hilbert-Schmidt
operator in H.
(3) If o is not constant, Hypothesis 1 is satisfied for example when

[c(h)QK](z) = s(x, h(x))Qk(z), x€O, hkeH,

for some measurable function s : O x R — R such that s(z,) : R - R

is Lipschitz continuous, uniformly with respect to x € O, and for some
Q € L(H) such that

o0

(2.7) D Qe 0y < o

i=1
In case @ is diagonalizable with respect to the basis (e;);en, with Qe; =
i€, condition (2.7) reads

(2.8) D Aleill7o o) < oo

i=1
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In general (see [18]), we have
leill Loy < i,

for some o > 0, and (2.8) becomes

oo

Z)\?i%‘ < 00.

i=1
In particular, when d = 1 or the domain is a hyperrectangle when d > 1
the eigenfunctions (e;);en are equi-bounded and (2.8) becomes Q € Lo(H).

2.2. The coefficients v and f. Throughout the paper, we shall assume that the
friction coefficient satisfies the following condition

Hypothesis 2. The mapping v belongs to C’l} (R) and there exist 7o and 1 such
that

(2.9) 0 <7 <7(r) <, reR.

In what follows, we shall define
g(r) = / v(o)do, reR.
0

Remark 2.2.

(1) Clearly g(0) = 0 and ¢'(r) = v(r). In particular, due to (2.9), g is uniformly
Lipschitz continuous on R.
(2) The function g is strictly increasing and

(g(r1) — g(r2)) (11 —712) > Y0 |r1 — 2|, 71,12 ER.

As far as the nonlinearity f is concerned, in this paper we shall consider two
situations: f is Lipschitz continuous and O is a bounded smooth domain in R,
for any arbitrary d > 1, or f is only locally Lipschitz continuous with polynomial
growth and O is a bounded interval in R.

Hypothesis 3. The mapping f : O x R = R is measurable and there exists ¢ > 0
such that

sup |f(z,r) — f(z,s)| <c|r—s|, rseR.
zeO

Moreover
sup |f(z,0)| < 0.
zeO

In what follows, for every function u : O — R, we shall denote
Fu)(z) = f(z,u(z)), z€O.

Hypothesis 4. We have O = [0, L] and the mapping f : [0,L] Xx R = R is mea-
surable and satisfies the following conditions.

(1) There exist 0 > 1 and ¢; > 0 such that for every r € R
(2.10) sup |f(z,r)] < e (L+]r]9), st(l)pL] 0:f(z, )| < e (L+ |71

ze[0,L xE

Moreover, there exists co > 0 such that for every r € R and z € [0, L]

(2.11) fla,r) = /OT flx,s)ds < e (1—|r|?th).
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(2) For every x € [0, L], the function f(z,-): R — R is differentiable and

(2.12) sup  Opf(z,7) <0.
(z,r)€[0,L] xR

(3) For every r € R, the function f(-,r):[0,L] = R is differentiable and

sup |0 f(z,r)|<c(l+|r]), reR.
z€[0,L]

Remark 2.3.
(1) A typical example of a function f satisfying Hypothesis 4 is

f(r) = ~alr*"r.

(2) When d = 1, we have that H! < L°°(0), and then we get the fundamental
fact that F(u) € H, for every u € H'.

(3) In the existing literature the well-posedness of stochastic semi-linear wave
equations having polynomial nonlinearities is not restricted to space di-
mension d = 1. However, here the presence of a state-dependent friction
coefficient, and the fact that we are not just interested in the well-posedness
of equation (1.1), but also in the small mass and small noise limits, makes
our analysis more complicated and we can only handle the case of space
dimension d = 1.

(4) We are assuming (2.12) just for the sake of simplicity. In fact, our results
remain true under the condition

sup Orf(x,r) < 0.
(z,r)€[0,L] xR

(5) From (2.11) and (2.12), it is not hard to show that for every r € R

(2.13) sup rf(x,7) < c2 (1 - |7“|‘9+1)-
z€[0,L]

Indeed, if we consider the function
G(z,r) =f(z,r) —rf(z,r), reR, zel0,L],

then for every x € [0,L], 0,G(z,r) = —rd.f(x,r) > 0 if r > 0, and
0,G(z,r) < 0if r < 0. Note that G(x,0) = 0, we have G(z,r) > 0, and
thus (2.13) follows from (2.11).

(6) Thanks to (2.12) we have

(F(u) = F(v),u—v)g <0, u,veH"
In particular, there exists some ¢ > 0 such that
(2.14) (F(u),u)g < cllullg, weH".
(7) Due to (2.10), for every u,v € H', we have
1P = Fe)l <c [ (L4 @POD +o@) 200 ju(e) - o) da,
o
so that
(2.15) IF(w) = F()lla< e (14 [[ullint + [oll5") lu — vl
In particular, we have

[Fu)llg <c(l+ Hu||§{1) ., uweH.
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(8) In the same way

IF(u) — F(0)|| <e /O (14 [u(@) P~ + (@)1 [u(z) — v(a)|do

0— 0—
< e (L4 ullze + 101 720-0) llu = vz

(2.16)

Now, by proceeding as in [29] (see also [5]), for every n € N and = € O we define
f(@,n) + (r = n)o, f(z,n), if 7 > mn,
(2.17) folz,r) =< f(z,7), if r € [-n,n|,
flz,—n)+ (r+n)o,f(z,—n), ifr <-—n.

Clearly, for every n € N, the mapping f,(x,-) : R — R is Lipschitz continuous,
uniformly with respect to = € [0, L], and

falz,r) = f(z,r), x€][0,L], r€[-n,n]
Moreover,

(2.18) sup |fa(z,r)| <c (1 + |r\9) , sup |0 fu(z,r)| <c (1 + |r|971) ,
z€[0,L] z€[0,L]

for some constant ¢ independent of n, and there exists ng € N such that for every
n > ng

(2.19) fnl(z,7) 1= /OT fula,s)ds <c(1—n®T), reR, zel0,Ll.

3. THE PROBLEM AND THE METHOD

As we mentioned in Section 1, we are interested in the study of the validity of
a large deviation principle, as p | 0 for the family {£(u,)}u>0, where u, is the
solution of equation (1.1). Our final goal is proving the following result.

Theorem 3.1. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis
4 and fir p < oo, if d = 1,2, and p < 2d/(d — 2), if d > 2. Then, for every
(uo,v0) € H1 and T > 0, the family {L(u,)} >0 satisfies a large deviation principle
in C([0,T); LP(O)), as p | 0, with action functional

1 T
(1) =y { | el de s ut) = v, te [o,T]} ,
where u?(t) denotes the unique weak solution to the quasi-linear parabolic equation

(32) omltr)= yHult, @) [Au(t,z) + fz,ult,2) + o(ult, )e(t, )],
’ w(0,2) = up(x), wu(t,z)=0, ze€dO.

Theorem 3.1 is proved by following the classical weak convergence approach to
large deviations, as developed for SPDEs in [3]. To this purpose, we need first to
introduce some notations. For every T' > 0, we denote by Pr the set of predictable
processes in L2(2 x [0,T]; H), and for every M > 0 we introduce the sets

Sroui={peLL(0,T;H) : |l@ll2qorim < M},
and
Arv={p€ePr : ¢ €Srm, P—as.}.
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Next, for every ¢ € Pr we consider the controlled version of equation (1.1)
(3.3)
p0uy (8, ) = Ay (t, x) =y (up(t,2))Opup(t, 7) + f(2, 0, (t, 7))
+ o (u,(t, )Qp(t, x) + Vi o(uu(t, ) 0w (t,x), t>0, €0,
uu(0,2) = uo(z),  Owuu(0,z) = vo(x), uy(t,x) =0, € 00.

The well-posedness of the equation above has been proven in [14] in the case the
nonlinearity f is Lipschitz-continuous, the diffusion coeflicient ¢ is bounded and
the control ¢ = 0. In what follows, we will prove that also under the more general
conditions we are assuming for f and o, the following result holds.

Theorem 3.2. Under Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis
4, for every T,M > 0 and ¢ € Ay and for every initial condition (ug,vo) € H1,
there exists a unique adapted process (u,,v,) € L*(Q, C([0,T);H1)) which solves
the systems of equations
(3.4)

u,(t, x) = up(x) + fot vu(s,x)ds,

po(t,z) = puole) + / (A (5,2) = Y(wuls, 2))va(s,2) + f(2,w,(s,2))

o (up () Qe (s, 2)] ds + v/ / o (t(s)) duw(s).

Once proved Theorem 3.2, we introduce the following two conditions.

(C1) Let {¢,}u>0 be an arbitrary family of processes in Ap ps such that

lim ¢, = ¢, in distribution in L2(0,T; H),

pn—0
where L2 (0,T; H) is the space L*([0,T]; H) endowed with the weak topol-
ogy and ¢ € Ay pr. Then, for every p < co we have

lir% ufr =u?,  weakly in  C([0,T], LP(0)),
—

where u};* is the solution to (3.3), corresponding to the control Yu, and u?

is the solution to (3.2), corresponding to the control (.
(C2) For every T, R > 0 and p < oo, the level sets &1 p = {Ir < R} are compact
in the space C([0,T]; L?(O)).

As shown in [3], Conditions (C1) and (C2) imply the validity of a Laplace princi-
ple with action functional I in the space C([0,T]; LP(O)) for the family {u,},>o0-
Due to the compactness of the level sets @7 r stated in (C1) this is equivalent to
the validity of Theorem 3.1.

Thus, in what follows our strategy will be first proving Theorem 3.2, for every
fixed p > 0, and then proving conditions (C1) and (C2).

4. WELL-POSEDNESS OF EQUATION (3.4)

In Theorem 3.2 the parameter p > 0 is fixed. This means that in this section,
without any loss of generality, we can assume p = 1. If we denote

n:=v+gu), z=(u,n),
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then system (3.4) can be rewritten as the following abstract stochastic evolution
equation

(4.1) da(t) = [A(z(t)) + By(t, (1)) dt +(2(t))dw?(t),  2(0) = (uo, vo+g(uo)),

where

A(Uﬂ?) = (_g(u)+na Au+F(u))7 (Uﬂ?) ED(A) = Ha,
Bsa(t7 (’U,, 77)) = (O’ G(U)Q@(t))v (ua 77) €N, te [OvT]v
and
E(u’ 77) = (0’ G(U))a (Uﬂ?) €H.
This means that the adapted #Hi-valued process z(t) = (u(t),n(t)) is the unique

solution to the equation
t

(4.2) 2(t) = (uo,vo+g(uO))+/0 [A(2(5)) + By (s, 2(s))] ds + ; S(2(s)) dw?(s),

if and only if the adapted Hi-valued process (u(t),v(t)) = (u(t), —g(u(t)) +n(t)) is
the unique solution of

u(t,x) = ug(x) —l—/o v(s,x)ds,

t

(43)  folta) = o)+ [ [Buls.) =y(u(s,2))o(s.2) + fous.2)

Fo(uls,))Qp(s 2] ds + / o(u(s, ) dw®(s).

In our proof of Theorem 3.2 we first assume that f : R — R is Lipschitz-
continuous and then we consider the case Hypothesis 4 holds.

4.1. The case when [ satisfies Hypothesis 3. In [14, Section 3] an analogous
result has been proved, in the case ¢ = 0 (and hence B, = 0) and o. Here, we
extend the arguments used in [14] to consider the case of an arbitrary ¢ € Ap ar,
o having linear growth. As in [14, Section 3], the arguments we are using here are
based on classical tools from the theory of monotone non-linear operators and we
refer to the monograph [1] for all details.

Since f is assumed to be Lipschitz continuous, we have

(4.4) [AG) |l < c(X+lzlla,), 2z € D(A),
and, as shown in [14, Lemma 3.1], there exists x € R such that

(A(21) = A(22), 21 — 22)m < w21 — 223,
Moreover, for every A > 0 small enough

Range (I — AA) = H.
This means that the operator A : D(A) C H — H is quasi-m-dissipative. In
particular, this implies that there exists Ag > 0 such that
Jyi=(I=2A)"", Xe(0,)),

is a well-defined Lipschitz-continuous mapping in H and we can introduce the

Yosida approzimation of A, defined as

/\(JA(z)—z), z€H.
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Notice that

(4.5) (Ax(z1) — Ax(22), 21 — 22)n < ll21 — 2213,

K
1—- )Xk
and

2
(4.6) [Ax(21) — Ax(z2)l|n < mﬂzl — z2|ln-

Moreover, for every z € D(A)

1
A <
142l < T

[A(2) [,

so that for every z € D(A)

A
1- )Xk

13 (2) = zll2 = A A )| < [A(2) [,

and
lim ||Ax(2) — A(2)||% = 0.
A—0

In [14, Proof of Theorem 3.2], it has been shown that there exists some A; € (0, Ag)
such that for every A € (0, A1)

(4.7) (Ax(2), ), < —? 1Tl + cllIn()2llF—, = € Ha

Furthermore, for every A\, v € (0, \g) and z1, 29 € H; it holds
(4.8)
(Ax(z1) = Ap(22), 21 = 22)m < |21 = 223 + ¢ A+ v) (12113, + [l22ll3, +1) -

Concerning the random operator B, according to Hypothesis 1 for every ¢ €
[0,T] we have that B,(t,-) : H — H1 is well-defined and, in view of (2.5), for any
Z1,20 €EH
(4.9)

|By(t, z1) — By(t, 22) I3, = [l(0(u1) — o(u2)) Q)| < VL |luy — ual|a [|o(t)]| -

Finally, Hypothesis 1 implies that the mapping ¥ : H — Lo(Hg, H1) is well-defined
and due to (2.5) for any z1,20 € H

(4.10) [[Z(21) = B(z2)ll om0y = lo(ur) = o(uz)ll 2y (rg, ) < VL ur — uallsr.

Step 1. For every A € (0, \g) the approximating problem
(4.11)

dz(t) = [Ax(2(8) + By (t, 2(1))] dt + B(2())dw?(t),  2(0) = (uo, vo + g(uo))
admits a unique solution zy € L?(Q; C([0,T]; H)).

Proof of Step 1. According to (4.6), we have

T c T
(4.12) /0 ||A>\(Zl(5))_AA(Z2(5))||3-Ld5Sﬁ ; 1z1(s) = 22(s) 13, ds
c
SA—Z sup [21(t) — 22(t)][3-
te[0,T]
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According to (4.9), if ¢ € Ap ar, we have

(4.13)
T

T
/OIIBw(t,zl)—Bw(t,Zz)llihdtSL/o lur (8) = ua (6) |7 o (®)1 7 dt

< LM? sup |zi(t) — 2@®)|3, P-—as.
te[0,T)

Finally, according to (4.10), we have

(4.14)
E sup / (X(z1(s)) — 2(22(3))de(3)
te[o,77 /1o

Ha

T
< C/o E||2(21(s)) — 2(22(5))”252(1{@,%1) ds

<TLE sup |z1(t) — 22(t)|3,.
te[0,T)

Therefore, in view of (4.12), (4.13) and (4.14), for every A € (0, A\¢) the mapping

BA(:)(0) = (0,10 +9(0) + [ [A(6) + Byl 2(s)] s+ | 2(a(0) du(s)

is Lipschitz continuous from L?(2; C([0,T];H)) into itself, and then for every X €
(0, Ao) equation (4.11) admits a unique solution zy € L%(€; C([0,T]; H)).

Step 2. There exists ¢ > 0 such that

(4.15) E s[up ] a3, <er (T+l20l3,), A€ (0,A1).
te[o,T

Proof of Step 2. As a consequence of It6’s formula, we have

t

lax(@)1l3,, = llzoll3, + 2/0 (Ax(2x(5)), 22 (), ds + 2/0 (By(s521(5)), 2a(8))n, ds

+ / IS (DI, i1 0,5 + 2 / (22 (), B2 (5))dw®(s)) s

Due to (4.7), we have
(4.16)

o@D @ ds< =2 [ Ine@nli s e [ 1ne)Eds

t t
<=2 [ Ineenln ds e [ Il

Next, recalling that ¢ € Ag a7, due to (4.9) for every 6 > 0 we have
(4.17)

| Bots s xrads| <8 [ 1B @ s+ 5 [ Il ds

rel0,t]

t
Cc
<dcm <1+ sup IIZA(T)II%> + 5/ lza(s)l13, ds, P —aus.
0
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In the same way, thanks to (4.10) for every § > 0
(4.18)

E sup
ref0,t]

/ N(ea(s), S (s)) ()|

Nl

t
< CE ( sup [l2a(r)|I%, / ||z<zx<s>>||iz(HQ,%)ds>

rel0,t]

C ¢ C
<OE sup ar(lf, + 5 [ Elaa)l, ds+ -
rel0,t] 0

Finally, due to (4.10) we get
t t
419) [ IS g s < ex (1 + [ Bl ds) |

Therefore, if we choose 6 > 0 small enough, from (4.16), (4.17), (4.18) and (4.19)
we get

t
B s a0l + 2 [ A ds Ser [ B o a0l ds ber.
rel0,t] 0 r€[0,s]

Now, Gronwall’s lemma allows to obtain (4.15).

Step 3. There exists z € L%(Q; C([0,T]; H)) such that

(4.20) I E sup l2(8) = 2(t)II3, = O.
A—0 telo,T

Proof of Step 3. For every A\, v € (0,)\1), we denote py ,(t) = 2a(t) — z,(t). We
have

dp)\,l/ (t) = [A)\(Z)\ (t)) - AV(ZV (t))} dt
+[By(t, 22 (t)) — By(t, 2, ()] dt + [S(2a(t) — (2 (£))] dw® ().
We have

Iorsl1% =2 [ (4r(r(6)) = Au(aul5): prl)) s
0
+2 / (By(5,22(5)) = Bo(5, 2(5)), o () nls
+ / 1202 (5)) = S ()2 1 70) 05
t 4
2 [ (0009 (S1(6) ~ S(auls)) du ) = Y10
0 k=1
Due to (4.8), we have

@20) 1601 < e [ o) lds +ehv) [ (Iar)lBy, + (o), +1) ds

and due to (4.10) we have

(4.22) BOI<e [ Ioru@lds
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Moreover, by proceeding as in the proof of (4.17) and (4.18), for every 6 > 0 we
have

(4.23)

c

t
E sup [Ix(r)|+E sup [I4(r)| <OE sup [lpa.(r)[F + 5/ E [|pa (r) ||, dr.
r€[0,t] r€[0,t] r€[0,t] 0

Therefore, if we choose ¢ > 0 sufficiently small, from (4.21), (4.22) and (4.23), we
obtain

t
E sup v, ()% <c [ B sup lov, ()| ds
re(0,t] 0 r€[0,s

te(h+ ) / (122 ()13, + 120 (3)11%, + 1) ds,

and the Gronwall lemma, together with (4.15), gives

T
E sup |lpan ()< er(A + V)/ (lzx ()13, + 20 ()13, + 1) ds
+€[0,T] 0
<er(A+v) (1+ |l20l3) -

This implies that

lim E sup |[px.(r 2 =0,
Jm B sup lpr()l

so that the family {zx}xc(0,x,) is Cauchy and (4.20) follows.

Step 4. There exists a unique solution z € L?(Q; C([0,T]; H1)) for equation (4.1).

Proof of Step 4. For every A € (0,\9) we have that z) satisfies equation (4.11).
Then, by proceeding as in [14, Proof of Theorem 3.2], we take the limit, as A goes
to zero, of both sides of (4.11) in L?(Q;C([0,T]; H—1)) and thanks to (4.20) we
obtain that z satisfies the equation

2(t) = (uoy vo + g(uo)) + / [A(2(5)) + By(s, 2(s))] ds + / S(2(s)) du(s),
and z € L2(Q; L>°(0,T;H1)).

Next, by using again arguments analogous to those used in [14, Proof of Theorem
3.2], we can show that z has continuous trajectories and is the unique solution of
equation (4.2).

4.2. The case when f satisfies Hypothesis 4. In view of what we have seen
in Subsection 4.1, for every n € N and for every ¢ € A pr and (ug, vg) € Hq there
exists a unique solution (u,,v,) € L*(Q; C([0,T]; H1)) for the equation

(4.24)

un (t, ) = up(x) —|—/0 vn (8, ) ds,

vn(t, ) = uvo(x)—I—/O [Aun (s, 2) — y(un (s, x))vn(s, ) + fn(z, u(s, x))

Fo(un(s, ) Qp(s,2)] ds + / o(us, ) dw(s, z),

where f,, is the function defined in (2.17).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



SMALL-NOISE LIMIT IN THE S.K. APPROXIMATION OF NSWES 7665

For every n € N, we define

Tpi=1nf {t >0 : |lun(t)||gr >n/C},

with inf) = +oo, where ' > 0 is a constant such that |[-[|p«g ) < Cl'llg-
Clearly {7, }nen is an increasing sequence of stopping times.
We denote 7 := sup,,ey Tn, and for every w € Q and t < 7(w) AT, define

z(t)(w) == zp () (w), ift<7p(w) <T.

Notice that this is a good definition, as f,(r) = fi(r), for every n < m and |r| < n.
Moreover, since for w € Q and t < 7, (w) AT

llun () (@)l o (j0,27) < Cllun()(@)|lar < n,

we have that f,(u(s)(w)) = f(u(s)(w)). This means z(t) = z,(t) solves equation
(43) fort <1, AT.

Step 1. There exists ¢ > 0 independent of n € N such that
(4.25)

T T
B sup Jultan)ly+ [ Eluanlinde+ [ Eutean)fih d
te[0,7) 0 0

T T
gcT(1+/ 1E||u(m7n)\|§,dt+/ E ot Ama)llfy dt+E sup [[o(t Al ).
0 0 te[0,T)

Proof of Step 1. Recall that for t < 7, < T, z(t) = z,(t) is a solution of equation
(4.3), by proceeding as in [14, Proof of Lemma 4.1], we have

(426) tAT, tA
Yo " ™
gt nra) + / lu() s < et cllo(t A ) + / ()| ds

[ s+ [ ) o) Q) nds
[ ) o) a5

Thanks to (2.13), we have
tAT,

(4.27) /0 " (B (u(s)), u(s)) wds < —cs /0 lu(s)|%5E, ds + eat.

Moreover, by proceeding as in the proof of (4.17) and (4.18), for every 6 > 0 we
have

E sup
rel0,t]

+ E sup
rel0,t]

[ ) otutsn@ets s [ ) otu(s)au?(s))
o 0

C
<OE sup [u(r A7)k + =

t
/ E|lu(s A Tn)”%{ ds.
ref0,4] 6 Jo

Therefore, if we choose § > 0 sufficiently small above, this, together with (4.26)
and (4.27) allows to conclude that (4.25) holds true.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



7666 SANDRA CERRAI AND MENGZI XIE

Step 2. There exists ¢ > 0 independent of n € N such that

(4.28)
E sup [[(u(t ATa), ot ATa))I5, +E sup [lult Ara)l700
te [0,T] te[0,T

T
0 [ Blo(s) B ds <er (14 ol + unly).
0
Proof of Step 2. From the It6 formula we have

5 [t A s + ot A7) ]
— 5 ol + ol ] - [ T b ul)o(s), o)) ds
2 H H 0 )

+ /O @ tn (¢ A Ty ) it — /O i@, uo(x)) dar+ / (0 (u())Qp(5), v(s)) ds

1

+/0 <0(u(s))de(s),v(s)>H+§/0 o (D2, 11, 95-

Thanks to (2.11) we have

/ flx,u(t A, x))de < c— e |lu(t A Tn)||iﬁ1 )
o

and

/ f(, uo(2)) dz SC<” / |Uo<x>|9“dx)—c<1+IIUOlliﬁl)sdHlluOII?ff)-
O O

Therefore, due to (2.6),

0
sup [[u(r ATo)[3n + sup [lu(r A7)l|700+ sup [o(r A7)l
rel0,t] rel0,t] rel0,t]

tAT,
0 / lo(s)|2 ds
0

< e (1+ [luo %t + [[vol|3) + sup
rel0,t]

/Or T"(U(u(s))an(s),q;(s)>Hds

“ r/\‘rno—us wQS o(s . tAT, uls 9 N
+ s | [ (o), e [ Tt a

Since ¢ € Ap p, by proceeding as in (4.17) and (4.18), this implies that for every
6>0
E sup [u(r A7o)[3n +E sup [lu(r A7)|z5h
rel0,t] r€[0,t]

tATn
VE sup [o(r Ama)ll% +0E / lo(s)|Z ds
re[0,t] 0

<c(L+ uoll%it + llwollz) + 0 E s, lu(r A )%
rel0,t

t t
+§/ Ellv(sAm)Il%dHc/ E [[u(s A 7)lI% ds.
0 0
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In particular, if we choose ¢ small enough we have

(4.29)
E sup [u(r Am)|H: +E sup, u(r A )| Zots +E sup [lo(r A7)l
re(0,t] rel0,t rel0,t]

t

t
(1—|— ||u0||9+1 + ||UO||H) —|—c/ Ellv(s A7) ||% ds+c/ E||u(s/\7’n)||?{ ds,
0 0

and if we choose § large enough we have

tATR
E sup ulr Am)[5Eh +E sup ol Al 0B [ ol ds
(4 30) rel0,t] r€0,t] 0

t
<ec (1 + ||u0||9+1 + HUOHH) + c/o E||u(s A Tn)”?q ds.

Combining (4.30) with (4.25) yields that

¢
(4.31) E sup |lu(r A7,)|% < c/ EHU(S/\TH)H?{ ds.
rel0,t] 0

Thanks to Gronwall’s lemma, (4.28) follows from (4.29).

Step 3. There exists z = (u,v) € L?(Q;C([0,T];H1)) solution to problem (4.3)
such that

(4.32)

0+1
E sup ||(u(t),o(t))|3, +E sup [u(t)]|zin
te [0,T] te[0,T]

T
+V0/ Ello(s)|I% ds < ez (1+ Juollz + llvoll%) -
0

Proof of Step 3. According to (4.28), for every T' > 0 we have

02 2 02 2 C
P(rn < T) < —E([lu(ma)llg ;7 <T) < —5E sup [Ju(t A7)ll3n < =,
n n te[0,T] n

so that
lim P(r, <T) =0,
n— 00

and hence P(7 = 0o) = 1. This implies for every t € [0,T], z(t A 1,) — z(t), P-a.s.
as n — 00, so that z belongs to L?(Q; C([0,T];H1)) and solves equation (4.3). By
taking the limit as n — oo in (4.28), we get (4.32).

Step 4. The solution z is unique in L?(Q; C([0,T]; H1)).

Proof of Step 4. Let z; and 22 be two solutions of equation (4.1) in
L?(Q;C([0,T];H1)). For every R > 0, we define

TR ‘= T1,R \ T2,R,
where
Tipi=inf {t >0 : |u;(t)[|gr > R}, i=1,2.
Since z; and zo belong to L2(€2; C([0,T); H1)), we have
(4.33) I{liirlmP (tr<T)=0.
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Now, if we define p = 21 — 25, from the Itd formula we have
tATR
lo(t ATr) |3 = 2/ (A(21(s)) — A(22(8)), p(s)) nds
0
tATR
2 [ Buls.51(9) ~ Bl 2a(s)), (o) s
0

o I S g

+2/0 TR<p(3)a (2(21(8)) - 2(22(5))) de(5)>H =: lec(t A TR).

‘We have

so that, according to (2.15)
(A(21(9)) = Alz2(9)). p())ul < cllp(s) 3, + eI F (ui(s) = Flua(s) Il
< cllp()l; + e (1+ Nun ) 3D+ lus (I3 ) llun(s) = ua(s) %
This implies that
tATR
(4.34) sup |(r A 7a)| < o(F) / lo(s A 7r)I3 ds.
rel0,t 0

Moreover, by proceeding as in (4.17) and (4.18), for every § > 0 we have
(4.35)

c
E sup (|L(r A7)l + |Li(r ATr)]) < OB sup [lo(rATr)[5+5
rel0,t] r€(0,t]

t
/0 E|lp(sATR)|3, ds.

Therefore, since
tATR
sup [Lram) < [ llols Al ds,

r€[0,t] 0

thanks to (4.34) and (4.35), if we fix some ¢ > 0 small enough, we get
¢
E sup [lp(r A el < c(R) | Ellotr A )l dr

r€[0,t] 0

This implies that for every R > 0

E sup Hp(r/\TR)H% =0.
rel0,T]

In view of (4.33), by taking the limit as R 1 oo this gives Esup,.co 7 llp(r)]3, =0
and uniqueness follows.
5. A PRIORI BOUNDS AND TIGHTNESS

In the previous section we have proved that for any p > 0 and any 7" > 0 there
exists a unique solution (u,,du,) € L*(Q;C([0,T];H1)) to system (4.3). Our
purpose here is proving a bound for (u,, d;u,), which is uniform with respect to p.
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Lemma 5.1. Under Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis 4,
for every T, M > 0 and for every initial condition (ug,vo) € Hi, there exist ey > 0
and pr > 0 such that for every ¢ € A ar and p € (0, ur)

(5.1)  E sup [luu()|7n +E sup [lu, (6|75 + 1E sup ||8tuu()lliz
t€[0,T] t€[0,T] te[0,T

T
+ [ Elo 0l de < er,
0

Proof. We give our proof in case Hypothesis 4 holds and we leave to the reader the
proof in case Hypothesis 3 holds.

Step 1. There exists ¢p > 0 such that for all u € (0,1)

(5.2)
t t
0-+1
E sup [lu, (r)3 + / Elup (s) 3 ds + / E ()25, ds
ref0,¢] 0 0

t t
<er <1+/ E||uu(s)\|§{ds+,u/ 10, (3) s + 1B sup [0 (r )||§,>.
0 0

re(0,t

Proof of Step 1. As shown in [14, Proof of Lemma 4.1], for every p € (0,1) we have
(5.3)

W Ol + [ os)ds < e+ 0Ol + 1 [ 10,9 s
[ D s+ [ 9. 0,05 Q ) s
V[ s). o () 5) .
0

Due to (2.13), we have

(5.4) [ ) us)mds < —es / ()22, ds + eat.

Moreover, by proceeding as in the proof of (4.17) and (4.18), for every 6 > 0 we
have

E sup
r€l0,t]

/0 (), (1(5) Qo (5)) s

+/uE sup
rel0,t]

t

C

<08 sup [ (1) + 5 [ Elu(s) [y d.
rel0,t] 0

[ o) o)

Therefore, if we choose § > 0 sufficiently small above, this, together with (5.4) and
(5.3) allows to conclude that (5.2) holds true.

Step 2. For every T > 0 there exist ¢y > 0 and pp > 0 such that

(5.5) sup B sup lu,(t)|F < er,
we(O,pr)  tel0,T)

and (5.1) holds.
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Proof of Step 2. As in the previous section, from Itd’s formula, we have

et () 2+ By ()13 = o2 + el 3 — / (1 () Ot (), Dy (5)) 1 s
+ /o s up(t, @) dar — /o i, uo()) de -+ / (0 (1(5))Q(5). Byt (5)) 1 dis
Vi / (0 (1 (5))dw(5), Dyt (5)) 1+ / o) 2 a1y -

Due to (2.6), (2.9) and (2.11), this gives
t
o (s + lla (IS + 001 + 30 | 100, (5) s
t
< e (1 Lol + selnle) + (90 2,

+ / (0 (1x(5)) @ (), Dty ()1t s + / (0 (1(5)) A (s), Byt (5)) 1.
0 0

Therefore, by proceeding as in Step 1, for every § > 0 we have

(5.6)
t
E sup |luy(r)l[7n+E sup [lu,(r)]|755 +1E sup Hf?tuu(r)Il?qu/ E||8yu,.(s)|[ ds
r€[0,¢] ref0,7) ref0,4] 0

C
< e (14 Juoll%ht + ullwoll) + OE sup, oty ()7 + 5
re|0,

t
e / Elu(s) 2 ds.

t
/ E |0y, (5)|1% ds
0

If we take ¢ > 0 small enough in (5.6), we get

E sup [lu,(r)|F +E sup [luu(r)l|I78 +1E sup (8w, (r)|1F

rel0,t] rel0,T] re[0,t]

t t
<e (1 + [ Bl ds> +e [ Bl ds
0 0

and if we take 6 > 0 large enough we get

(5.7)

t
(5.8) E sup [uu(r)l|78h +pE sup ||3tuﬂ(7")\|%1+/ B0y, (s)|[5 ds
ref0,7] ref0,4) 0

<c (1 +E sup ||uu(7“)|§1> :
rel0,t]

By combining together (5.2) and (5.8), we can fix pur > 0 such that for every

1€ (0, pur)

t
E sup [lu,(r)[% < er (1+ / Euuu(s)@fds),
0

re(0,t]

which implies (5.5). Thus, from (5.5), (5.7) and (5.8), we obtain (5.1).
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Now, for every T' > 0 and pu > 0 we define
p#(tvx) = g(uu(tvx))v (tvx) € [OvT] X O
According to Hypothesis 2, we know that

g <mlrl, gl <m,  reR
so that for every u > 0 and ¢ € [0, T7,
(5.9) lou@lle < nillua@lle pu@llar < il (@]

10eou(®)ll < 71 100w (8)]] -
Since the function g is strictly increasing, it is invertible and we have
u,(t, ) = g (pu(t,x), (t,x) €[0,T] x O,
which implies that

Auy(t,x) =div [Vg H(pu(t))] = div Vou(t)] .

1
(g~ Hpu(t)))

Moreover, by the definition of p,,,
Vpu(t) = 7(uu(t) Vuu(t), Depu(t) = v(wp(t))Opup(t).

This means that if we integrate equation (3.3) (with ¢,) with respect to ¢t we
have
(5.10)
¢

pu(®) + 10,0, (8) = glao) + o + [ (bl () pu(]ds + [ Fylons)is

+ / 00(pu() @ p(s)ds + Vi / 0o () (5),

where for every r € R and z € O

1 -1
(511) b(?") = 7(971(71)), fg(‘rvr) = f(x?g (T))7
and for every u € H!
(5.12) Fy(u) = fyou, og(u) :=0o(g o).

Theorem 5.2. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis
4 and fix an arbitrary T > 0 and (ug,vo) € H1. Then, for any family of predictable
controls {@u}ue(o,ur) C A1, the family of probabilities {L(pu)}ueo,ur) 15 tight
in C([0,T]; H?), for every 6 < 1.

Proof. According to (5.1) and (5.9), we have that

t
E sup [|ou(r)]%: + / E|0upn ()% ds < er, € (0, pr).
rel0,t] 0

This means that for every € > 0 there exists L. > 0 such that if we denote by K,
the ball of radius L. in C([0,T); H') n W2([0,T); H), then

inf P ceK)>1—e
neO.nr) (Pu )

This allows to conclude as, due to the Aubin-Lions lemma, the set K. is compact
in C([0,T]; H?), for every § < 1. O
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6. THE LIMIT CONTROLLED PROBLEM

In order to prove conditions (C1) and (C2), we need first to understand better
the controlled quasi-linear parabolic problem

(6.1)
Opp(t, ) =div [b(p(t, 2))Vp(t, 2)|+ fo(x, p(t, 2)) +04(p(t, ) p(t, ), >0, 20,
p(0,z) = g(uo(z)), p(t,z) =0, =€0d0.

In view of Hypothesis 2, we have

1

m

When Hypothesis 4 holds, thanks to (2.10), this means that for every u € L*1([0, L])

_ 1
Il <lg 1(?‘)\S%IT\7 reR.

L ) ) 2 (0+1)(0-2)
(6.2) [[Fy(u)llg- < C/O I+ 197 (u(@)]")dz <c (1 + llull gl o ) :

Next, again due to Hypothesis 2 we have

—1
1 o _1 reR,
71 r Yo
so that, thanks to Hypothesis 4, we get,
_ _ r
fo(r)r = flg™ (r)g ™ (r)- iS¢ (1="*"), reR

(here we define g=1(0)/0 = 1/+(0)). In particular, we have
(6.3) (Fy(u),u)g < c(1— ||u||iﬁ1) ,  ueH.

Moreover, since g~! is increasing and f is decreasing, we have that f, is decreasing,
so that

(6.4) (Fy(u1) — Fy(uz),u1 —uz)mr < 0.

Finally, thanks to Hypotheses 2 and 1,
1 1

(6.5) b(r)| < —,  b(r)=—, [b(r) =b(s)| <clr—s[, rseR,
Yo 7

and

(6.6) log(ur) = og(u2)llo(rg.my < cllur —uallm,  ui,uz € H.

Definition 6.1. A function p € L2([0,T]; H') is a weak solution to equation (6.1)
if for every test function ¢ € C§°(O) and t € [0, T

(6.7) (p(t), ¥)m = (9(uo), V) —/0 {b(p(5))Vp(s), V) nds

(6.8) + / (Fy(p(3)) + 09 (p()) Qi (s). ) s ds.

Proposition 6.2. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hypoth-
esis 4 and fix any T > 0 and ¢ € L?([0,T); H). Then, for every ug € H*' there is
at most one weak solution p € L*([0,T]; H') to equation (6.1).
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Proof. We adapt here the method introduced in the proof of [14, Theorem 6.2].
To this purpose, let (¢, )nen be the sequence of twice differentiable functions con-
structed in [22, Theorem 3.1] such that

(6.9) 500 =0, [6L(NI<1, 0< L)< % reR,
n\r

and

(6.10) lim sup |¢n |r\| =0.

n—)oo

Now, suppose p1,p2 € L?([0,T]; H') are both solutions to (6.1). Using inte-
gration by parts, for any fixed positive superharmonic function ¢ € C§°(O), we
have
(6.11)

(Dnpr(t) = p2(6), )

-/ (6 01(5) = ) (Fy o2 (5)) — Filpals))). ) s
+ [ (600106 = (o) (02001 (5) 7261 Qi) )
-/ (o (5) = p2()(01(5) — p2(5)) (bor () F1(5) — b2 ()T p2(s)). ) s
-/ (0r(5) — 2(5)) (b1 () V01 (5) — b2 ()T 2(s) ). V) s

=: ;Ik,n(t)

In the case when f satisfies Hypothesis 3, by the Lipschitz continuity of F, we
have

Fat) < [ (lor(s) = o). 0) s

In the case when f satisfies Hypothesis 4, thanks to the fact that Fy <0, ¢} > 0
and ¢ > 0, we have I ,(t) <O0.
Next, by proceeding as in the proof of [14, Theorem 6.2], we know that

t
o0+ T(®) < L (il + 100 ) [ (N + o)l ).

And moreover, it follows from (2.3) that

0= [ [ 6100106) = pa5) (0401 (5) ~ 4 0(69) Qot5) o
<[ L%
) 2\ &
< c/ llo(s HH/ ; oi(z,ui(s _O-i(x,UQ(S))‘ ) Y(x)dxds

<c / o)l o1 (5) — pa(s)], ) s

where ¢;(t) := (p(t), ;) g-

@i(s) (Ui(iv, u1(s)) — oi(z, ug(s))) ’gb(a:)dmds
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Therefore, we have for every ¢t > 0

(Dnlpr(t) = pa(t)),¥)

D[l ) [
< er(ln + el ) [ (o) + Ioa(o) 13 Jas

n

+C / (1 1)l ) (on(5) = pas)l ).

Taking n — oo, we obtain

t
(Ior(6) = p2(D)], ) < C / (14 ()l ) {lor(s) = pa(s)], ) s,
and then by the Gronwall lemma, we conclude

(Ipr(t) = p2(t)],¥) ,; =0, t>0.

Finally, due to the arbitrariness of positive superharmonic test function ¢ € C§°(O),
we have p; = pa. This completes the proof. (]

Proposition 6.3. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hy-
pothesis 4 and fix any T > 0, ug € H' and o € L*([0,T); H). Suppose that p is
the weak solution of equation (6.1). Then, if we define u = g~ '(p), we have that
w € L2([0,T]; HY) is a weak solution to equation (3.2).

Proof. Due to the fact that p € L?([0, T]; H') and g~ is differentiable with bounded
derivative, we have that u € L*([0,T]; H') and

V(g(u(t)) = g'(u(t)) Vu(t) = y(u(t)) Vu(t).
Recalling how b, Fj; and o, were defined, this implies
Se(t, p(t)) = div [b(p(t)) Vp(t)] + Fy(p(t) + og(p(t)) Qe (t)
. 1
= div WV(Q(U@)) + f(u(®)) + o (u(t))Qp(t)
= Au(t) + f(u(t)) + o (u(t))Qe(t)

in H~! sense. Moreover, by mollifying p with respect to ¢t and = and then by taking
the limit, we have that

Owu € L2([0,T]; H™ 1)
and
Aep(t) = g (u(t))Opu(t) = y(u(t))dpu(t),

in H~! sense. We can now conclude, as we know that d,p(t) = S,(t, p(t)), in H*
sense. g

7. PROOF OF THEOREM 3.1

In order to prove Theorem 3.1, we will show that the conditions (C1) and (C2)
that we introduced in Section 3 are both satisfied. We will consider here the case
the nonlinearity f satisfies Hypothesis 4 and we leave to the reader to adapt our
proof to the case f satisfies Hypothesis 3.

Theorem 7.1. Under Hypotheses 1 and 2 and either Hypothesis 3 or Hypothesis
4, condition (C1) holds.
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Proof. Let us fix T, M > 0 and let {¢,,} be a family of processes in Ap 5s such that
lim ¢, = ¢, in distribution in L2(0,T; H),
pn—0

where L2 (0,T; H) is the space L?([0,T]; H) endowed with the weak topology and

L,OEAT)M.

For every sequence {u}ren converging to 0, as k 1 0o, we denote pr = g(ug),

where uy, = u,f’,:’“ is the solution of equation (3.3), corresponding to the control

©Yu,- Thanks to Theorem 5.2 and Lemma 5.1, for an arbitrary § < 1 we have that
the family

{L(pr, 1rOpur, )} e C P (C([0,T]; H®) x C([0,T); H) x Sr.u)
is tight. We denote by p a weak limit point for the sequence {pg }ren and we denote
A= C([0,T]; H*) x C((0,T]; H) x Srv x C([0,T),0)),

where U is the Hilbert space such that (2.1) holds. By the Skorokhod Theorem
there exist random variables

Y= (30,60, V= (p.0 i 0f), kEN,
defined on a probability space (Q,]}, {ft}te[oﬂ,}f"), such that
£(y) :E(p707(p7wQ)7 £(yk) :‘C(pk:> /'LkatukuspltkuwQ)7 k €N7
and such that
(7.1) lim YV, =) in A, P— as.
k—o0

For every k € N and 1) € H?, we have
(Pro(t) + 0k (1), V) i = (g(uo) + purvo, V) i +/o (div [b(pr(5))Vpr(s)], ) i ds
+ [ E(0u(9), ¥ ds + / oy (3r(5)Q B1(5), Y ds

VI [ {00 ()02 (). ).
0
Thanks to (7.1), for every t € [0, T] we have
(7.2) Jim (pe(t) + 00(0). ) = (3(0).0). B —as,

Next, if we define @y, := g~ *(py) and @ := g~1(p), we have

/ (b(p1(5))V pr(s), Vi) rds — / (b(p($))Vi(s), Vi) ds
0 0

:/ (Vﬁk(s),vw)Hds—/ (Vi(s), Vi) pds = —/ ((Ug(s) — a(s)), AY) gds.
0 0 0

In particular, since (7.1) implies the P-a.s. convergence of 4y to @ in C([0,T]; H),
we get that
¢

(7.3) lim [ (b(pr(s)Vir(s), V) ds = / (b(p())Vi(s), Vi ds, P —as.

k—o0 Jq
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It is immediate to check that estimate (2.16) extends to Fj;. Thus we have

/0 (Ey(pr(5)), ) 1 ds— / (Fy(p(5)), 6) 1 ds / 1Fy (31 (5)) — Fy (p(5)) 121 dis 6l

SC/O (L 181 Faio-1y + 1) F26-1) 18(5) = p(8) Lz s |1 |

so that, thanks to (7.1),
¢

(7.4) lim [ (Fy(pr(s)), ) ds = /0 (Fg(p(s)),¥)uds, P —as.

k—oo Jo
( / |h<s>||%qu>
0

h e L*([0,T7; l—>/ aq(p h(s),)pds € R

Now, for any h € L?(0,T; H), due to (6.6)

’/0 (04(p(5))@h(s), ) uds| < ¢l (/0 (1+ Iﬁ(S)II?{)d8>

and this implies that the mapping

1 1
2 2

is a linear functional so that, thanks to (7.1), for every fixed t > 0
¢

@) Jim [ (0, (p)Qa). W) = [ oy (p()Qe0). W) ds. B s

k—o0 Jq

Moreover, we have

/O (00 (p1(5)) — 09 (5(5)))Qr(5), ) s

< ol [ Noa5e(6) = o) e 04(5) s

< c|¥llullipe — pllzzo.m:mllPkll L2 (o, 1): 1)

and by using again (7.1) we get
t

lim [ ((0,(7(5) = 04(())Q@r(s) ¥uds =0, B—as.

k—o0 Jq

This, together with (7.5), implies
t

10) Jim [ (0y(u(6)@on(s)thmds = [ (oy(pe)Qes) dmds,  Bas

k—oo Jo

Finally, since

supr sup
keN  t€]0,T)

T
<csup [0l [ (14 Elpu(5)F) ds < oc,
keN 0
we conclude that

lim /u, sup ]E‘/ (P (s dwk( ),y =0.

k=00 te[0,7T]
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This, together with (7.2), (7.3), (7.4) and (7.6), implies that
(5000 ={aluo). o = [ OG()VA(). T}

/0 (Fy(5(5)), )1 + (0 (P(5))QB(5), )] ds.

As proven in Proposition 6.2, the equation above has at most one solution. Thus,
for every sequence {p}ren | 0 the sequence {pg}ren converges in distribution to
the solution p of equation (6.1) with respect to the strong topology of C([0, T]; H?),
for any arbitrary § < 1, and hence, due to the embedding of H! into L?(0), with
respect to the strong topology of C([0,T]; LP(0O)), for every p < oo, if d = 1,2 and
p < 2d/(d — 2), if d > 2. In particular, this implies that the sequence {ug}ren
converges in distribution to the solution u¥ of equation (3.2) with respect to the
strong topology of C([0,T]; L?(O)) and condition (C1) holds.

As a consequence of the arguments used above to prove condition (C1), we have
that the mapping

0 € L2(0,T; H) — u? € C([0,T); LP(0))

is continuous. Therefore, since Ap ps is compact in L2 (0,T; H), for every M > 0,
we have that

Orp={lr <R} ={u? : ¢ € Arap}
is compact, and condition (C2) follows. |

APPENDIX A. THE SMALL MASS LIMIT FOR SYSTEM (1.1)

The Smoluchowski-Kramers approximation for system (1.1) has been studied
in [14], in the case f is Lipschitz-continuous and o is bounded. Here, we prove an
analogous result when o is unbounded and f has polynomial growth (see Hypothesis
4).
In what follows, we shall assume that Hypotheses 1, 2 and Hypothesis 4 hold.
By applying Theorem 3.2 with the control ¢ = 0, we have that for every T' > 0 and
every (ug,vo) € Hi there exists a unique adapted solution u, to equation (1.1),
such that (u,, dpu,) € L?($;C([0,T); Hq)).

For every a € [0, 1) we denote

X(a) = ﬂ L10,T; HY), Y(a) := ﬂ LP(0,T; H),
9<q(a) p<2/a

where 0+ 1)

2041

@)= G e
Theorem A.1. Assume Hypotheses 1, 2 and 4 hold, and for every p > 0, let u,,
denote the unique solution to equation (1.1), with the initial conditions (ug,vo) €
Hi.
(1) If 6 € (1,3), then for every a € [0,1) and n > 0 we have

tim B, — ull ) > 1) =0.

where u € L*(Q; L?([0,T]; H')) is the unique solution to equation (1.3),
with initial datum ug.
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(2) If we assume
(A1)
Ap€0,(0+1)/4) such that |lo(h)llz,cpg 1) < c(1+ [|n]l% ), heH,

06(173}7 pr>05 06(155)7 pr:O7
then for every a € [0,1) and n > 0 we have
giE%)IP’( lu, — u||Y(a) > 17) =0.

A.1. Energy estimates. One of the key ingredients in our proof of Theorem A.1

is the tightness of {u,},ec(0,1) in suitable functional spaces. This will require the

following a priori bounds.

Lemma A.2. Assume Hypotheses 1, 2 and 4 hold, and fix T > 0 and (ug,vo) € H.
(1) There exist ur € (0,1) and cr > 0 such that for every u € (0, ur),

T T
(A2 B swp (Ol +E [ @i+ E [ a5k d <er,
te[0,T) 0 0
and
(A.3)
2 0+1 2 4 2
E sup [lu,(t)|[z+E sup [luu(t)|zor +HE sup ||8tu,u(t)||H+E/ ([0 (£) |17 dt
te[0,7) te[0,T] te[0,T) 0
<
i
(2) If, in addition, condition (A.1) holds, then for every u € (0, ur)
c
(Ad) E swp [u,(®)lF +E sup uu()l|75h + pE sup [0ty < =3,
t€[0,T] t€[0,T] t€[0,T 12
where
0+1
Remark A.1.

(1) If the mapping o is bounded, then condition (A.1) is satisfied for p = 0, in
which case = 1/2, so that for every u € (0, ur)

9
VEE sup [ [ua @7 + w0755 + w10 @)]7 ) < er.
te[0,7]

€lo,

(2) When condition (A.1) holds with p = 0, in order to prove (A.4) we can take
any 6 > 1.

(3) If p € [0,(0+1)/4), then 5 < 1. Therefore, if condition (A.1) holds, due to
(A.4) we have

A5 lim u?E sup ||Opu,(t 2 =0,
(A5) li i sup 00

which is the same bound proven in [14].
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Proof. Estimates (A.2) and (A.3) can be proved by proceeding as in the proof of
Lemma 5.1. Thus, we will only prove (A.4) under condition (A.1).
For every u € (0,1) and ¢ € [0, 77, define

L
Lﬁw:nwwﬁp+4 (c2 = F(@, up(t,)) ) dar + e | Dru (D11,

where the function § and the constant co have been introduced in Hypothesis 4.
Due to (2.11), we have that

Lu®) 2 lua(®) B + OIS + 1 l0u I, P as.
Thus, we obtain (A.4) once we have proved that

(A.6) pPE sup L,(t) < cr.
t€[0,T

Assume (A.6) is not true. Then there is a sequence (p)ken C (0,1) converging
to 0, as k — oo, such that

(A.7) lim ,ugE sup Ly, (t) = +oo.
k—o0 te[0,T)

For every k € N, the mapping t — L, (t) is continuous P-a.s., so that there exists
a random time ¢; € [0, 7] such that

Ly, (tk) = sup Ly, (t)
t€[0,T)

As a consequence of the It6 formula, if s is any random time such that P(s < ¢;) =1,
we have

Ly (tr) — Ly, (s) < i / o, (D2, a0y 4+ 2(Mi(t) — Mi(s)),

where
Mk(t) ::/0 <8tuﬂk(r)7U(uuk(r))de(r)>H'

Thanks to Young’s inequality, since 25 > 1 and pi < 1, we have

1 tr 2 & b 2p
E/ O o) [A—r E/ (14l ()I57 )

tp, — S tpy — S T 0+1
sC< F ek [ a0l
M ulzﬂ—zp 0

ty — s r 0+1
<ot [ Tl e ).
i 0

T
Uy ::/ e, (t)Hiﬁl dt, and My := sup |Mg(t)],
0 te[0,T)

Therefore, if we define

we can fix a constant k7 independent of k, with L,, (0) < kr, such that

ty — 8
Lﬂk(tk) - Luk(s) < HT( i 35 + Uk) + 4 M.
Fo
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In particular, if we take s = 0, we have

e’ 1’
(A.8) t, > M (L#k (t) — AM;, — rop (Uy + 1)) — Mg,

KT RT

28
On the set Ej, := {§, > 0}, for any s € [t — %5;6,15;6] we have
1 1
Lﬂk(S) Z Lﬂk(ﬁk) — §5k — IiTUk — 4Mk = 5 [L/J«k(tk?) — 4Mk — HT(Uk — 1)]

Hence, if we define

T
Iy, ::/ L, (s)ds,
0

recalling how d;, was defined in (A.8), we have

ty u2ﬁ 2
Bz [ Lu(ods = B (L) - M- wrt) - 3],
t

k= Bk b 4k
so that
H2ﬁ 9 MQB
(A.9) E(Ix) > E(Iy; Ex) > E L(LM (ty) — 4M;, — C’TUk) By | - P
4CT 4

Now, thanks to condition (A.1), and estimates (A.2) and (A.3), we have

1

2

E(My)< E(/O [T O P [ N N dt)

T 3
<E sup HU(Uuk(t))ng(HQ,H) </O Hatuuk(t)ﬂ?q dt> ]

t€[0,T

2 T 1
7 2 e
< eB sup (7 (O £y )+ eE( [ 1000 O )

t€[0,T]
2 r 2 = Cr
<c(1+E swp fun @) +e( [ Elou, 01 d)77 < -
te[0,T] 0 M;i_p

In particular, since (A.1) implies
0+1 < 1

b= 20+1-2p) ~2—p’
we have that
(A.10) lim sup p B(My) < +oc.
k—o0
Moreover, by (A.2) and (A.3), we have
(A.11) sup E(Uy) < 0.
k

Therefore, due to (A.8), (A.10) and (A.11), as a consequence of (A.7) we have
(A.12) lim pfE(8;) = +o00.
k—o00

Now, we have

-

2

WEE(S) = pB(Gs Br) < B (g (0 + nr)s i) < [E (2 (5 + w7)% B)]
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so that, thanks to (A.9) we have
B 2p
1 28 2 s I 2y KT
E(I;) > —E 0 1 EBy) — —— > — | E( -t
(k)_4I€T (Mk(k-i-HT), k) 1 _4/<;T[Mk (k)] 1
Due to (A.12), this implies
lim E(I;) = +o0.
k— o0
However, the limit above is not possible. Actually, since we

2 2 0+1
Ly (1) < g (O + s 10 O + Le(1 4 [, OI551 ). Bras
as a consequence of (A.2) and (A.3) we have

supE(I) < +oo,
keN

and this gives a contradiction. In particular, this means that claim (A.6) is true,
and (A.4) holds. O

A.2. Tightness. As in Section 5, for every T' > 0 and p > 0 we have defined
pu(t,x) = g(uu(tax))v (t,l‘) € [OvT] X [07 L]’

and, by integrating equation (1.1) with respect to ¢, we got
(A.13)
t

pu(®) + 10,0, (8) = glao) + o + [ x[blp, () pu(]ds + [ Fylouls)is

t
+ [ o))
where we recall that b, f,, Fy and o, were defined in (5.11) and (5.12).

Definition A.2. Let E be a Banach space with norm ||| ;. Given r > 1 and
A € (0,1), we denote by W7 (0,T; E) be the Banach space of all u € LP(0,T; E)

such that T
[u(t) — u(s)||
[Wlwa.r0.1:1) */ / t_5|1+MEdtd5<°O

endowed with the norm
T
Vil = / &) dt + [ulwsoro.7:5)-

It is possible to prove that if Aor < 1, p < /(1 — Ar) and 1 < r < p, then
WHr(0,T; E) C LP(0,T;E) and there exists some ¢ > 0 such that for all u €
WHrr(0,T; E)

(A.14) 7 (w) = ull oo, 7—nmy < TPV [W]ynro iy, B> 0,
where

Th(u)(t) =u(t +h), te[-h,T—h]
(see [32, Lemma5]).

Proposition A.3. Assume Hypotheses 1, 2 and 4 hold, and fir any T > 0 and
(uo,v0) € H1, and an arbitrary sequence (p)ken C (0,1) that converges to 0.
(1) The family of probability measures (L(py,))
a€0,1).

pen 8 tight in X (a), for every
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(2) If condition (A.1) holds, then the family of probability measures (E(p#k))
is tight in Y (a), for every a € [0,1).

keN

Remark A.3.
(1) By taking a =0, we have

(L(pu))pey s tight in (1) L0, T; H)

q<6+1
and thanks to the embedding H* — C([0, L]), for a € (1/2,1), we have
(L(ppi)) ey s tight in N L9(0,T;C([0, L])).
a<4(0+1)/(0+3)

(2) When condition (A.1) holds, we have that

(L(puy)) ey I tight in (1) LP(0,T; H).

p<oo

Proof. For every 0 < t; <ty < T, we have

to (0+1)/0
| [ di o o)
t1 H-1
t 2 (0+1)/20
< (E\/ div[b(p, (5)) V()] ds )
t1 H-1
. (0+1)/26
<Oty — ty) D/ (E/ 1 (5) | 321 d8> ,
0
ts (0+1)/6
E\ | Filou s
t1 H-1
b (6+1)/6
< CE(/ (1 + |uu(3)”z+1)d8>
t1
< C(ty —t1)YE T<1+\| ot
SOtz —t u(s)llgyy )d
0
and
ta (6+1)/6 2 (6+1)/26
]E‘ / Ug(pu(s))dw S( Uq pu ))de(S) )
t1 H-1

(6+1)/20
<O(ty—t,)0+D/20 <1+E sup ||u,(t )||?{> :
te[0,T)

In view of (A.2) and (A.13), it is not difficult to show that for every A € (0,1/(6+1)),

(A.15) sup  Elpy + 10y oo (o gir-1) < 00
nE(0,pur)
where
0+1
o=~ € (1,2)
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Moreover, by (A.2) and (A.3) we have
2
(A.16) o Ellpp + p0rwpl| oo (0,77, 1) < 00
Therefore, from (A.15) and (A.16) we conclude that for every € > 0, there exists
Li(€) > 0 such that, if we define

Ki={f:[0,T]xR—>R: [flw>eo0,mm-1) + [ fllzeo0,130) < Li(e)},
then

inf  P(p, + pdu, € K5) > 1 —€/4.
ne(0,ur)

According to (A.14), we have that for every p < (6 +1)/6
Lim lmnf — fllero.7—nsm-1) =0,  f € K.
—0

Hence, in view of [32, Theorem 6], we have that K§ is relatively compact in
L9(0,T, H°), for every ¢ < oo and § > 0.
Next, due to (A.3), we have

. 2 _
,EIE%)E ||Matuu||L2([o,T];H) =0,

hence for every sequence (pix)ren C (0, ur) converging to zero, there exists a com-
pact K$ in L?([0,T]; H) such that

P(urdiuy, € K§) >1—¢€/4, keN.
Since L2([0,T]; H) C L%([0,T); H~?), for § > 0, we have that K§ is also com-
pact in L% ([0, T]; H~%), which implies that K{ + K is relatively compact in
L%([0,T]; H~°), and for every k € N,
P(py, € K{+ K5) > 1—¢/2.
Moreover, thanks to estimate (A.2) there exists L2(€) > 0 such that, if we define

K5 = {f D0, T x R = R L fll pora o,y m) < L2(5)}’

then
inf P eK3)>1—¢/4,
ne(0,u) (p# 3) - /
and thus

gggp(puk € (K + K5)n K3) > 1 3¢/4.

By using again [32, Theorem 6], (K{ + K$) N K is relatively compact in
LP([0,T]; H?) for every § > 0 and p < 6 + 1. This implies that the family of
probability measures (£(py,)), oy is tight in LP([0,T]; H°), for every § > 0 and
p<O+1.
Now, according to [32, Theorem 1], we have
%i{)% sup I7hf — f”LP([O,T];H*‘;) =0.
re(Ks+K3)nKs
Furthermore, since

2
Sup ]E ”pHHL2([O,T];H1) < 00,
pel0,pur]

there exists Lz(e) > 0 such that, if we define

KZ = {f : [07T] xR —R : ||f||L2([O,T];H1) S L3(6)}7
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then

inf P e Kj)>1—¢/4
ne(0,u) (p# 4) - /

Thus, if we define
K= (K{+ K$5) N K§NKj,
we have
i GY>1—e
éngP(p“k eEK)>1—¢

For every a € [0,1) and for any § > 0, by interpolation

l1-a ats
[ull gra < C(a, 0) [lull =5 lull 51 -

Thus, according to [32, Theorem 7], we have K€ is relatively compact in L2(0,T; H?),
where ¢ = q(a, , p) satisfies
1 1—a a+9d
¢ P+ 2110y
This means that K¢ is relatively compact in L?(0,T; H*), for every q < ¢(a), where
20 +1
a(a) = %

so that (ﬁ(p#k))keN is tight in X (a).
Now let us assume that the condition (A.1) holds. Thanks to (A.5) we know
that

6>0, p<O+1.

a€[0,1),

Jixny B {|pOrtiull o o 7101 = 0

Since L>°(0,T; H) C L(0,T; H~?), for every ¢ < oo and & > 0, we can proceed as
in the proof of part (1), and we have that (L(p,.,)) is tight in LP([0,T]; H~?)
for every p < oo and § > 0. Finally, since

keN

2
(A.17) sup B lppll7z o 79,11y < 00
HE[O,pur]

by using the same argument as in the proof of part (1), we have that for every
a €[0,1), (L(pur)) ey 18 tight in LI([0,T); H*), where g = g(a, J, p) satisfies

1 1-a n a+9

g p(l+65)  2(1+0)’
This implies that (E(puk))keN is tight in L([0,T]; H®), for every ¢ < 2/a, and the
proof of part (2) follows. O

0>0, p<oo.

A.3. The limiting problem. Here we will prove the uniqueness of solutions for
the following equation

A (ult, 2)Bpu(t, ) = Ault, ) + F(u(t, 7)) — DSt Qe ()P

+o(u(t, ~))(’9th(1§, x),

u(0, z) = ugp(z), u(t,0) = u(t, L) = 0.
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To this purpose, we shall first study the following quasi-linear parabolic equation
(A.18)

Bep(t,x) = div[b(p(t, x))Vp(t,2)] + fo(z, plt,2)) + og(p(t, ) dw(t, @),

p(0,x) = g(uo(x)),  p(t,0) = p(t, L) = 0.

Definition A.4. An (F;);>0 adapted process p € L?(2; L?(0,T; H')) is a solution
of equation (A.18) if for every test function ¢ € C§°([0, L])

(P(6), )11 = (g(uo), ) + / (b(p(3))Vp(5), V) s

(A.19)

+ / (Fy(p(s)) ) s + / (05(0(5))duw(s), ¥) 11

By proceeding as in the proof of [14, Theorem 6.2], combined with similar argu-
ments as in the proof of Proposition 6.2, we have the following result.

Proposition A.5. Under Hypotheses 1, 2 and 4, there is at most one solution
p € L2(; L2(0,T; HY)) to equation (A.18).

Moreover, by proceeding as in the proof of [14, Theorem 7.1], we have the fol-
lowing result.

Proposition A.4. Assume Hypotheses 1 and 2 and either Hypothesis 3 or Hy-
pothesis 4 and fix any T > 0, ug € H*. Suppose that p € L?(Q; L*(0,T; HY)) is the
solution of equation (A.18). Then, if we define u := g~*(p), we have that u belongs
to L2(Q; L*(0,T; H')) and is a solution to equation (1.3). Furthermore, equation
(1.3) admits at most one solution u € L?(Q; L*(0,T; H')).

A.4. Proof of Theorem A.1. For every sequence {ux}ren C (0, ur) converging
to 0 as k — oo, we denote

ug i=wuy, and pgi=g(ug), keN.
In view of the first part of Proposition A.3, if we define
X:= (] X(a)
0<a<1

we have that the family
{ Lok pdrur)} oy P(X x L2(0,T; H))
is tight.
We denote by p a weak limit point for the sequence {pi ren and we denote
K:=X x L*(0,T; H) x C([0,T],U),

where U is the Hilbert space such that the embedding Hg C U is Hilbert-Schmidt.
According to the Skorokhod Theorem there exist random variables

Y= (3,009,  Ve=(prbif), ke,
defined on a probability space (Q, F, {ﬁt}te[O7T]7ﬁD)7 such that
L(Y) = L(p,0,u), LOVk) = Lok, prdsug,w?),  kEN,
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and such that
(A.20) lim Y, =Y in K, P-a.s.
k—o0
In particular,
(A21) kh_{g) (Hﬁk - ﬁHLP([o,T];H) + ok — ﬁ”Lq([o,T];C([o,L]))) =0, P-as.

for every p < 4+ 1 and every ¢ < 4(6 + 1)/(6 4+ 3). Moreover, thanks to (A.17), we
have that p € L?(Q; L2([0,T]; H')), and, taking possibly a subsequence,

lim pp =p, in L2([0,T);H'), P-as.,
k—o0

where L2 ([0, T]; H') is the space L?([0,T]; H') endowed with the weak topology.
By proceeding as in the proof of [14, Theorem 7.1], thanks to Proposition A.4,
in order to prove Theorem A.1, it is sufficient to show that p solves the parabolic
equation (A.18).
For every k € N and ¢ € C§°([0, L]), we have
(A.22)

(Pr(8) + 0x (), )1 = (9(uo) + prvo, ) ar — /0 (b(pr(3))Vpr(s), Vip) ads

+ [ E oD nds+ [ oy pu() i) 0)n. Bas

Since py, + 0 converges to p in L?(0,T; H), P-a.s., we have
t

(A.23) Tim [ (pe(s) + Ou(s), ) g ds = /O ((s),¥hmds, tel0,T], P-as

k—oo Jo

As in the proof of [14, Theorem 7.1], we have that
(A.24)

Jim s / (b(pi())V (), Veb) s — / (B(p(3))V(5), Vi) sds| = 0, P-as.

Next, as (2.16) extends to Fy, for each k € N,

| /Ot<Fg<ﬁk<s>> ~ Fy(p(s)), 0|

t
<ellellps [ (T 1A + 1A 0 ) 1oele) = 35

< cdhll (1+||Pk||Lq<9 D ([0,T]; c(oL])+||P||Lq(9 1 ([0,T];C ([o,L})) ||PAk_ﬁ||Lp([o7T];H)7

for any p, ¢ satisfying p~! + ¢~ = 1. Now, if § € (1, 3), we can fix
400 +1)

7+ 260 — 02

so that ¢(6 — 1) < 4(6 +1)/(6 + 3). Then thanks to (A.21), we have

| Fsoet vpmas = [ (F (3000

<p<O+1,

(A.25) lim sup =0, P-as.

k=00 tei0,1]

Finally, since

lim sup Hﬁ)Q t) — w9t H =0, P-as.
k=00 telo0,1) e (®) Q U
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and
R 1pr =l 2o rysery =0, P-as.
with the uniform estimate

sup E sup |5 (t)| < oo,
keN  te[0,T]

by [19, Corollary 4.5] we have that

(A.26) lim sup
k—ooei0,1]

/<Ug(ﬁk(5))dw1?(5)a¢>H_/ (9(p(s))d?(s), )| = 0,
0 0

in probability.

Therefore, combining (A.23)—(A.26), if we integrate with respect to time both
sides of equation (A.22) and take the limit as k — oo, it follows that for every
¥ e C§°([0,L]) and ¢ € [0,T],

[0,T
[ o) irmas = | [<g<uo>,w>H— / () V(). V) s

+ [ 1B v+ [ 0,(p0)di20). 0)n] ds, P

Due to the arbitrariness of ¢ € [0, T], this means that p € L*(Q; X N L?(0,T; H))
solves equation (A.18) with initial data ug, and the first part of the theorem is
proved.

We omit the proof of the second part as it is analogous to the one we have just
seen. We only notice that in order to prove (A.25) we need that ¢(0 — 1) < 4. In
particular, we need 4/(6 — 1) > 1, and this is satisfied if 0 € (1,5).
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