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Abstract

We study the two-dimensional incompressible Navier—Stokes equation on the torus,
driven by Gaussian noise that is white in time and colored in space. We consider the
case where the magnitude of the random forcing /€ and its correlation scale 8(¢)
are both small. We prove a large deviations principle for the solutions, as well as for
the family of invariant measures, as € and §(¢) are simultaneously sent to 0, under a
suitable scaling.

Keywords Stochastic Navier—Stokes equations - Large deviations - Invariant
measures - Quasi-potential

1 Introduction

In the present paper, we consider the two-dimensional incompressible Navier—Stokes
equation on the torus T? = [0, 2712, perturbed by a small additive noise

(1.1)

divu(t, &) =0, u(0,&) =uoé), u is periodic in T2,

The functions u(z, £) € R? and p(z, £) € R denote, respectively, the velocity and
the pressure of the fluid at any (7, £) € Rt x T2. The random forcing 3,7(z, &) is
a space-time white noise, while the operator 1/ Q. provides spatial correlation to the
noise on a scale of size §(¢). Here, we are interested in the behavior of Eq. (1.1) as
the noise magnitude /€ and the correlation scale §(¢) are simultaneously sent to 0.
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In two dimensions, the incompressible Navier—Stokes equation driven by space-
time white noise is well-posed only in spaces of negative regularity (see [9]). The
driving noise must have more regularity in the spatial variable in order to have function-
valued solutions. In our case, we consider a smoothing operator /Q, that provides
sufficient regularity to interpret Eq. (1.1) in the space C([0, T1; [L?(T?)]?), for any
fixed € > 0. In fact, the regularization 1/Q, can be chosen to decay to the identity
operator slowly enough for the /€ factor to compensate and produce a function-valued
limit.

Under the present assumptions, the € | 0 limit of Eq. (1.1) in C ([0, T]; [L2(T?)]?)
is unsurprisingly the corresponding unforced Navier—Stokes equation. A more inter-
esting problem is the quantification of the convergence rate, which can be done using
large deviations theory. In [8], it was shown that the solutions to the Leray-projected
version of Eq. (1.1) satisfy a large deviations principle in C ([0, T']; [L?(T?)]?) with
rate function

1 T
Iw = /0 [/ 0) + Autt) + B yz e o .

where A is the Stokes operator and B is the Navier—Stokes nonlinearity. This result was
proven using the weak convergence approach developed in [7], which is particularly
effective at handling multiple parameter limits. The weak convergence method was
also used in [1] and [2] to prove large deviations principles for the stochastic Navier—
Stokes with viscosity vanishing at a rate proportional to the strength of the noise,
which is believed to be a relevant problem in the study of turbulent fluid dynamics.

If the operator /Q, is simultaneously smoothing enough but not too degenerate,
then Eq. (1.1) will possess a unique ergodic invariant probability measure (see [13]).
In the € | O limit, it can be shown that these measures converge weakly to the Dirac
measure at 0. For fixed correlation strength §(¢) = 6 > 0, it was proven in [3] that
the invariant measures also satisfy a large deviations principle in [L2(T?)]> with rate
function given by the quasi-potential

Us(x) = inf{lg(u) : T >0, ueC(0,T]; [L*(TH1%), u(0) =0, u(T) =x},

where I? :C(0,T]; [L2('JI‘2)]2) — [0, +o0] is the action functional for the paths,
defined by

= | os (W + auor + swn)

dt
2(']1‘2)]2

This result was generalized in [16] to the case of the Navier—Stokes equations posed on
a bounded domain with Dirichlet boundary conditions. In [16] they also considered
the case where the equation has a deterministic, time-independent forcing so that
the limiting dynamics may have nontrivial point attractors or sets of attractors. Both
papers established their results by following the general strategy introduced in [19]
for proving large deviations principles for families of invariant measures.
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In [4],it was also proven that the quasipotential Us (x), corresponding to the problem
on the torus, converges pointwise to

U@) = Il oy »

as 8 | 0. This is a consequence of the orthogonality of Au and B(u) in [L>(T?)]?,
which in general does not hold for the problem posed on a bounded domain. In some
sense, U (x) is what one would expect the quasi-potential for the space-time white
noise case to be, if the time-stationary problem were well-posed.

The purpose of this article is to bridge the results of [3] and [4] with the result of
[8]. Rather than first taking € | 0 and then studying what happens as the regularization
is removed, we take € and § to O simultaneously. We prove that the invariant measures
of Eq. (1.1) satisfy a large deviations principle directly with rate function U (x), under
suitable conditions on the regularization 1/ Q.

To prove this result, we first prove a large deviations principle for the solutions of
Eq. (1.1) in C([0, T]; [L2(T?)]?), that is uniform with respect to initial conditions in
appropriate sets of functions. This is done by proving a large deviations principle for
the linearized problem using the weak convergence approach and then transferring
this to the nonlinear problem via a suitable generalization of the uniform contraction
principle. As well known, when applying the classical contraction principle to obtain
the large deviation principle for the solutions of the nonlinear equation (1.1), the map-
ping that associates the solution of the linear problem to the solution of the nonlinear
problem is only required to be continuous. In particular, in our case, this allows for
slower decay of the correlation scale & (¢) than the one introduced in [8], when proving
a large deviation principle for the solutions of (1.1).

However, when proving a large deviation principle for the invariant measures, we
need to have a large deviation principle for the solutions of (1.1), which is uniform
with respect to initial conditions in a bounded set of [L2(T?)]2. This means that, as we
mentioned above, we need a contraction principle that is uniform with respect to initial
conditions on a bounded set of [L2(T?)]%. When dealing with uniform contraction
principles, the Lipschitz-continuity of the solution mapping is what is usually required.
Here, such a mapping is only locally Lipschitz continuous. Thus, in order to make up
for the lack of global Lipschitz-continuity we need to have some exponential tightness.
Notice that the proof of the exponential tightness of the solutions of the linear problem
is not trivial and requires some work, as also the covariance of the noise depends on
€ and the classical results available in the literature (see e.g. [6]) do not apply.

We would like to mention here that the problem of the validity of a uniform large
deviation principle for a general class of SPDEs has been investigated in depth in few
papers by Salins and others (see e.g. [17] and [18]). In particular, in [18] a general
criterion is given and such criterion applies also to the two-dimensional stochastic
Navier—Stokes equation. However, such very general result does not apply to the case
of variable covariance and for this reason here we are providing an alternative proof.

Once the uniform large deviation principle for the solutions of equation (1.1) is
obtained, the proof of the large deviations principle for the invariant measures follows
from several crucial generalizations and modifications of the arguments used in [3], to
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account for the decaying regularity of the driving noise. In particular, we need another
exponential estimate that takes into account of the variable covariance, this time for
the H!'-norm of the solution of equation (1.1).

2 Preliminaries

We consider Eq. (1.1) posed on the space of square-integrable, mean zero, space-
periodic functions. For an introduction to the 2D Navier—Stokes equations on the
torus, see the book [20] by Temam. We follow the notations and conventions used
there. Denoting T2 .= [0, 271]2, we define

H = {f € [LA(T*)]?: /2 f(€)dE =0, divf =0, fisperiodicin 11‘2},
T

where the periodic boundary conditions are interpreted in the sense of trace. It can
be shown that H is a Hilbert space when endowed with the standard [L2(T?)]? inner
product. We denote the norm and inner producton H by ||| ; and (-, -) g, respectively.

We denote by Hc, the complexification of H, and by Z% the set Z2 \ {(0, 0)}. The
family {ex} kezz C Hc defined by

L (k2, —k1) e,‘g.k
27 Ji2 k2

form a complete orthonormal system in Hc. Similarly, the family {Re(ex)}, 72 CH
form a complete orthonormal system in H. In what follows, we use the basis {ex}, 7

with the implicit assumption that we are only considering the real components.
Next, we let P be the orthogonal projection from [L*(T?)]? onto H, known as the
Leray projection. We define the Stokes operator by setting

en(§) = £eT?, k=(ki k) eZ,

Au:=—PAu, ue€ D(A):=HN[W>>(T?].

It is easy to see that A is a diagonal operator on H with respect to the basis {ex} keZ2-

In particular, for any k € Z(z) we have
Aey = |k|?ey.

Since A is a positive, self-adjoint operator, for any r € R we can define the fractional
power A" with domain D(A"). In fact, it can be shown that D(A") is the closure
of span keZ? (ex) with respect to the [W?"2(T?)]?> Sobolev norm. To simplify our

notations, we will denote V” := D(A’/?), with the norm given by the [W?"2(T2)]?
Sobolev semi-norm

2. 2 2 2 2
”u”r = ”u”D(Ar/Z) = ”u”[Hr(TZ)]Z = Z |k| r(“? ek)H'
kez}
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In particular, we have that V2 = D(A) and V := V! = D(AY?). For any r > 0,
we denote by V" the dual space of V”. In addition, for any p > 1, we will use the
shorthands

LP = [LP(THP, WhP = [WEP(T)P,

Next, we define the tri-linear form, b : V x V x V — R, by

b(u, v, w) := /Tz(u(é) -Vv(€) - w(E)dE, u,v,weV.

From standard interpolation inequalities and Sobolev embeddings, it follows that

172 1/2 1/2 1/2
lull g™ Nully ™ olly lwllg™ lwlly ™,
172 172
[b(u, v, w)| <c ||M||H/ ||u||v/2 lvlly lwllg 2.1

1/2 1/2
lullz olly Twlly® Twlls

for smooth u, v, w. These inequalities can then be extended to the appropriate Sobolev
spaces by continuity. We note that the first inequality in (2.1) implies that b is indeed
well-defined and continuous on V x V x V. The tri-linear form b also induces the

continuous mappings B : V x V — V' and B : V — V’ defined by

(B(u, v), w) := b(u, v, w),
B(u) := B(u, u),

for u, v, w € V. It can be shown that for any u, v € D(A)
B(u,v) = P[(u- V)v],
and
(B(u,v),w)yg = —(B(u, w),v)g, u,v,weV, 2.2)

which implies that

(B(u,v),v)g =0, wu,veV.
Moreover

(B(u), Auyy =0, u e D(A). (2.3)
Equation (2.2) is still true when considering the problem posed on a bounded domain
with Dirichlet boundary conditions. Equation (2.3), on the other hand, only holds

for the problem posed on the torus with periodic boundary conditions (for a proof
of (2.3), see for example [15]). We note that the proof of our main result relies on
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Eq. (2.3) in several places, and hence will not immediately generalize to the case of
the Navier—Stokes equation on a bounded domain.

As for the random forcing in Eq. (1.1), we assume that n(¢, &) is a cylindrical
Wiener process on the Hilbert space of mean-zero functions in [L2(T?)]2. We then set
w(t) := Pn(t), so that w has the formal expansion

w(t, &) =Y exp(t), >0, &eT?,

2
keZg

where {8} kez? Are @ collection of independent, real-valued Brownian motions on
some filtered probability space (2, F, {F;};>0, P). We assume that the covariance
operator Q. belongs to L(H; H) and takes the form

Q. := (I +8(e)AP)~1, (2.4)

for some § > 0 and §(¢) > 0. Since we are concerned with the singular noise limit,
8(e) will be taken to be a strictly decreasing function of € such that

lim 8(€) = 0.
2,0

Definition (2.4) implies that Q. is diagonal with respect to the basis {ey} keZ2:

Remark 1 In the present paper we only take this particular form of the covariance
operator in order to simplify our presentation. The results below can easily be adapted
to more general covariance operators with the same smoothing and ergodic properties.

The driving noise, v/ Q¢ w(t), can thus formally be written as the infinite series

VOew(t. £) =Y ocen®) But) == Y (1+8() k)" er (&) pi(0).

keZ? keZ}

Since § (€) converges to zero, as € |, 0, the covariance operator Q. converges pointwise
to the identity operator, as € |, 0. For each fixed € > 0, it is immediate to check that
VO € L(V", V'TP) In fact, one can show that

[Vo.r| s @5)

Vr+q - /

foranyr e R, g < Band f € V. Moreover, Q. is a trace class operator in H if and
only if > 1. This means that the Wiener process v/ Q w is H-valued only when
B> 1.

By taking the Leray projection on both sides of Eq. (1.1), we obtain the following
stochastic evolution problem

(2.6)

du(t) + [Au(t) + B(u(t))]dt = /e Qc dw(t),
u(0) = x.
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We assume the initial condition x is an element of H. As is well-known (see [5] or
Chapter 15 of [10]), under the assumption that 8 > 0, Eq. (2.6) admits a unique gen-
eralized solution, uf € C([0, T']; H). That is, there exists a progressively measurable
process u} taking values in C([0, T']; H), P-a.s. for any T > 0, such that

t
(e (@), hyy = (x, h) —/0 (ue (s), Ah) g

t
- /0 (Bug(s), h), uc(s))m + (Ve Qew(®), hyu, P—as.,
forany h € D(A) and t € [0, T].

The condition 8 > 0 is not enough to ensure the existence and uniqueness of an
invariant measure for Eq. (2.6). In the last 25 years there has been an extremely intense
activity aimed to the study of the ergodic properties of randomly perturbed PDEs in
fluid dynamics and, in particular, of Eq. (1.1). As shown for instance in the monograph
[15], a sufficient condition for this is that Q. be trace-class in H and o) x 7 O for
all k. Notice that if 8 > 1, then Q. is a trace-class operator and in particular,

Tr Q. < 8.7, Q2.7
for some constant ¢ = cg > 0 depending on . By applying It6’s formula we get
1
E[luf ()7 + 2/ Eluf ()Y ds = llx7 +1€Tr Qe < x|y +cpres /P,
0
(2.8)

This means that u? € L2(2; C([0, T1; H)NL?(0, T; V)) and, in particular, for every
€ > 0 there exists an invariant measure.

Now, let {v¢}e=o be this family of invariant measures. Each v¢ is ergodic in the
sense that

T—oo T

T
lim l/ f(uﬁ(l))dt=/ J(x¥)dve(x),
0 H

for all x € H and Borel-measurable f : H — R. If

sup 65;1/’3 < 00, 2.9)
€e(0,1)

we have that the family {v}¢- is tight in H. Actually, due to (2.8) and the invariance
of v, for every T > 0 we have
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1 T
/ |13 dve (x) = ?/ /Enu;‘(r)n%dve(x)dt
H 0 H

1 T
=7f/ E [luf (0)||3, dt dve(x)
H JO

1 1
ﬁ/H llx 113 dve (x) + ¢ es 1P

IA

1 1 _
< ﬁfH lx13 dve (x) + zcﬂese 178,

Then, thanks to (2.9), if we choose T > 1 we get

sup / 113 dve () < oo,
cc(0.1)JH

and this implies the tightness of {ve}ec (0,1) in H. In fact, provided that

lim € 5,/ = 0,

e—0

we have that
Ve—8g, ase | 0.

The purpose of this paper is to quantify the rate of this convergence through a large
deviations principle. To state the main result, we first recall the definition of the large
deviations principle. Here we give the Freidlin—Wentzell formulation.

Definition 2.1 Let E be a Banach space. Suppose that {1t }¢~ is a family of probability
measures on E and I : E — [0, 4+00] is a good rate function, meaning that for each
s > 0, the level set ®(s) :={h € E : I(h) < s} is a compact subset of E. The family
{iele=0 1s said to satisfy a large deviations principle (LDP) in E, with rate function
1, if the following hold.

(i) Forevery s > 0,6 > 0 and y > 0, there exists ¢y > 0 such that

)

1
j1e(BE (. 8)) = exp (—@)

for any € < ¢p and ¢ € ®(s), where Bg(¢,d) :={h € E : |h — ¢ < §}.
(ii) For every so > 0,8 > 0 and y > 0, there exists €9 > 0 such that

c s—Y
te(BE(®@(s),8)) < exp <—T> ;

forany e < egands < so, where By (®(s),8) := {h € E : distg(h, D(s)) > 8}

The main result of this paper is the following.
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Theorem 2.1 Assume that Q¢ has the form given in (2.4), for some B > 2. Moreover,
suppose that

lim 8(e) =0, limes(e) P =o0.
e—=0 e—0

Then the family of invariant measures {V¢ }e=o of Eq. (2.6) satisfies a large deviations
principle in H with rate function given by

2
, xeV,
Uy = Il (2.10)
400, xeV\H.

We remark here that the rate function, U (x), is really the quasipotential corre-
sponding to Eq. (2.6), whose definition is given in Eq. (4.1). The quasi-potential has
the explicit representation given in (2.10) in the case the problem is posed on a torus.
That formula does not hold in general for the problem posed on a bounded domain
with Dirichlet boundary conditions.

3 Large deviation principle for the paths

The proof of Theorem 2.1 requires a large deviations principle for the solutions to
Eq. (2.6). One such large deviations principle is proven in [8], but here we have to
proceed differently in order to obtain a result that is uniform with respect to initial
conditions in bounded subsets of H. Unlike in [8], we first prove a large deviation
principle for the linearized Ornstein—Uhlenbeck process in the space C ([0, T']; L*),
and then transfer it back to the appropriate Navier—Stokes process by means of the
contraction principle.

3.1 LDP for the Ornstein-Uhlenbeck process

Assume that Q. has the form given in (2.4), for some 8 > 0. For every € > 0, let z¢
denote the mild solution to the equation

3.1

dze + Azedt = J€ Oc dw(t),
z¢(0) = 0.

It is well-known that z, is given by the stochastic convolution

t
ze(t)=/ St —s)ye Qcdw(s), t=>0,
0

where {S(#)};>0 is the analytic semigroup generated by the operator —A on H. It
can be shown that ze € LP(Q2; C([0,T]; V")), forany r < B and p > 1 (e.g. see
[11]). In this subsection, we prove that the family {z}.~¢ satisfies a large deviations
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principle in C ([0, T']; L*NH ). To do so, we first prove that the stochastic convolution
ze converges to 0 in LP(2; C([0, T1; LP)), as € | 0, forevery p > 1.

Lemma 3.1 Forany € > 0, the process z¢ has trajectories in C([0, T]; L?), P-a.s. for
any p € [1, 00). Moreover,

1
lim elogﬂ =0 = hm E sup ”Ze(’)”LmH =0. (3.2)

e—0 € e—0 te[0,T]

Proof Fix any p < oo. Thanks to the Burkholder-Davis—Gundy inequality and the
uniform boundedness of the basis {e;}, 72> We have

E sup IIZE(t)Ilf,,:ep/ZIE sup

t 14
/ S(t = 5)y/Qcdw(s)

0<t<T te[0,T] Lr
56”/2/ E sup ‘/ Do KEC=9) g5 ), kek(é)dﬁk(s)‘ d§
™ e o s
ks 5 \P/?
<cpePl? / (ZUS(G)k|ek(§)| / 2k ‘d de
keZ}

1 p/2
< p/2 > 0.
=cp€ ( 2 K2+ 6 k2P)) =
keZ%

Therefore, (3.2) follows by noting that

1 o 1 o 1
> Y S A A
rez? |k| (1 +8(6)|k| ﬂ) 1 r(1 +3(E)rﬂ) S(e)l/B r(1 +r5)
&40

- /1 dr+ foo dr  _ 1 1 L e
c —+c — — + =
= s N T T %50 T B

for some constant ¢ = cg depending on . O

To prove that the family {z¢ }¢~ 0 satisfies a large deviations principle in C ([0, T]; L*N
H) we use the weak convergence approach, as developed for SPDEs in [7]. This
approach involves proving convergence of the solutions to a sequence of controlled
versions of the equations. For ¢ € L?(2; L?(0, T; H)), we denote by z¢,, the solution
to the equation

dZe,(p(t) + AZe,(p(t) dt = V€ Qcdw(t) + \/@w(t) dt, Ze,go(o) =0,

and we denote by z,, the solution to the so-called skeleton equation
dzy
= Ot Az =0@),  2,0)=0. (3:3)
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Notice that z¢ , can be written as

ge( (w+—/ @(S)dS))

where G, denotes the measurable mapping that associates to w the mild solution of
the equation

dz(t) + Az(t) dt = \/Qcdw(r), z(0) =0

This means that we are in the setting covered in [7]. Actually, Theorem 6 of [7] implies
the following result.

Theorem 3.1 The family {L(z¢)}e~0 satisfies a large deviations principle in C ([0, T1;
LN H), with rate function

1 T
Jr(z) = —1nf {/ ||<p(t)||%1 dt : ¢ € L*(0,T: H),z = Z(p}, (3.4
0

if the following two conditions hold for any M € [0, 00).
(i) The set

d(M) = {z eC(0. T L*NH) : z =z,

1 T
¢ € L*0.T; H), 5/0 o3 dt < M]

is a compact subset of C ([0, T]; LN H).
(ii) For every {¢c}e>0 C L2(S2; L2(0, T; H)), such that

1 T
sup —/ lpe(O)|3; dt < M, P —a.s., (3.5
ec0,1) 2 Jo

if @ converges to ¢q in distribution with respect to the weak topology
of L2(O, T;H), as € | 0, then z¢y converges to zy, in distribution in
C(0,T); L*NH),ase | 0.

Thus, to prove the large deviations principle it remains to prove conditions (i) and (ii)
in the above theorem. Note that condition (i) is precisely the statement that Jr is a
good rate function.

Theorem 3.2 Assume that
lim §(¢) =0 l 1 ! 0
im = im — =0.
ey =P IR S
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Then the family {L£(z¢)}e=0 of solutions to Eq. (3.1) satisfies a large deviations prin-
ciple in C([0, T, L*N H) with rate function

T
1 / 2 . 1,2 . 2 .
() = 2/0 |2 + Az() |, dt - ifz € W20, T H) N L*(0, T; D(A)),

+00 otherwise.

(3.6)

Proof In view of Theorem 3.1, it suffices to show that conditions (i) and (ii) in Theo-
rem 3.1 hold true. Equality of the rate functions defined in Egs. (3.4) and (3.6) follows
immediately from the fact that zy, = z, implies that ¢ = ¢.

Step 1. We first verify condition (i). Suppose that z € ® (M), so that z = z,, for some
NS Lz(O, T; H) satisfying

1 T
; /0 loOI dt < M. 3.7)

For any ¢ € (0, 1), the function z,(t) = fot S(t — s)p(s)ds can be rewritten as
29 = 't (Y¢ (¢)) where

1
T (Y)(1) = cgfo (t —5) 718t — 5)Y (s)ds,

for ¢; = sin(¢x)/m and
Ye(@)(s) := /0 (s —r) 5 S(s —r)e(r)dr.

It is possible to show that for any ¢ € (0, %), p=>2,p€e(0,1)and$§ € (0, %) such
1
thatS—i—ﬁ <{——,
2 p

Iy :LP(0,T;H) — C*([0, T1; V), (3.8)

is a continuous linear mapping (see Appendix A of [10]). Moreover, by Young’s
inequality we have that

P

T s
|| Ye (@) “iP(O,T;H) = / H/ (s —r)5S(s —r)e@r)dr|| ds
0 0 H

T s
<[ ([ 6=nlewar)as
0 0

p+2

T _xp 3 )
(| Rar) T el g (3.9)
; e
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which is finite provided that ¢ < % + %. Hence z € C%0, T; VP) for any 8, p
satisfying § + % < % Moreover, thanks to (3.7),

lzllcso,7:vey < Cps.pV M,

so that ® (M) is abounded setin C%(0, T; V) and thus acompactsetin C ([0, T']; LN
H).

Step 2. Next, we verify condition (ii) in Theorem 3.1. Let M > 0 and let {¢¢ }¢>0 be
asequence in L2(S%; L%(0, T; H)) satisfying (3.5). Thanks to the Skorokhod theorem,
there exists a probability space (Q, F, {_7:',} >0, IF’), a cylindrical Wiener process w(t),
and collection {@¢}e>0 in L%(Q; L*(0, T; H)) such that ¢e and @, have the same
distributions and

lim ¢ = ¢g, P — a.s.,
e—0

with respect to the weak topology of L2(0, T'; H). If we show that Ze,g. converges to
2g, in L*(2; C([0, T1; L* N H)), then condition (ii) will follow.
To simplify our notation, we dispense with the bars. Now, for any # > 0, we have

t t
Zepe (1) = 20 = e /0 S(t = $)v/0c dw(s)+ fo S =)V Qepe(s)—¢(s) |ds
= JE(0) + J5(0).

Thanks to Lemma 3.1, we have

: €14 _
613% BN e qo,ry:40m = 0-

To handle the control terms, we observe that +/ Q. ¢ converges to ¢ weakly in
L2(0, T; H). Indeed, for any 1 € LZ(O, T; H), it follows that

‘( Ocpe — @, h)LZ(O,T;H)’ = ‘(909 Qe — Dh) 2071y + (9 — @, h>L2(O,T;H))
<V2M H (/Qc—Dh

’

L2(0,T: H) +‘ (pe=. M 20.1:m)

which converges to 0, P—a.s., as € — 0, since Q. converges to 1 pointwise in H and
@e converges to ¢ weakly. Moreover, we already showed in Step 1 that the solution
map ' : L2(0, T; H) — C([0, T]; L* N H) given by

t
C(p)(@) = /0 St = s)p(s)ds,
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is a compact operator. Since compact operators map weakly convergent sequences to
strongly convergent sequences, it follows

lim 15 lcqo.ryc4nmy =0, P —as.
Moreover, we have
sup |55 llcqo.7): 040wy < 00, P —a.s.
>0
so that

. €4 _
Lim BNl 3 e o, 7y Lany = 0-

3.2 Uniform LDP for the Navier-Stokes process

To obtain a uniform large deviations principle for the solutions to Eq. (2.6), we will
apply a suitable uniform contraction principle to the large deviations principle for the
solutions to Eq. (3.1).

Foreveryx € H,let F, : L*0,T: L*NH) — C([0, T]; H) be the mapping that
associates to any z € L4(O, T:L*NH ) the solution to the equation

du(t) + Au(t)dt + B(u(t) T z(t))dt -0,
u()=x e H.

In particular, we see that I 4+ F, maps a trajectory of z to a trajectory of u}.
The proof of the following result is from [5]. Here we give a brief sketch of it to
emphasize the right dependence on the initial conditions.

Lemma3.2 /5] For every fixed T > 0, the mappings Fy : L*(0,T; L* N H) —
C ([0, T1; H) are Lipschitz continuous on balls, uniformly over x in bounded sets of
H. That is, for any r > 0 and R > 0, there exists a constant L, gp > 0 such that

sup  NFx(f) = Fx@lcqo,ri;my) = Lrr I1Lf — &llzso, 1,040y »
xXeBy(r)

/.8 € Brao,1;14nm)(R). (3.10)
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Proof For every f,g € Brag.r.14nm)(R), we define u = Fr(f) — Fx(g). By
proceeding as in [5], we have

t
o +/0 lu(s)11% ds
< cllg = FBug i) [ IFeH imoram 1FH 20750,

FIF @l oo, 1P @ 20,7:v) + 1 a0 g4y + ||g||i4(0,T;L4)]
t
+ c/ [IZ@ @1 + 18I |l ds.
0
Now, for an arbitrary f € L4(0, T, L4)

1 t
S IEDOE + [ IR0 ds

A

1 t
< 5 Il + /0 [, F6, F(HED] + B 6), £, F () |ds

IA

1 t
5 Il + /0 [IE NG IENOR 1 Ol + 17115 DGy Jds

<! llx 113 + l/t [FARIOIFE +C/t LF N0 1 (YN T ds + el f 1 Ga 0,0
~2 2 Jo o L L4514
(3.11)

which implies that

t
IF(HONF + fo IF I ds < Al + 17114 14)) eXP ( 117001 )

This implies that if f, g € BL4(O,T;L4)(R)’ and x € Bpy(r), there exists L, g > 0
such that

lu@% + fo lu@)3 ds

3.12
< Lywlg = 2,00 50 (e Jy [ 17 @1 + g, Jas). 12

By using again (3.11) to estimate F, (g), we obtain (3.10) O

In the proof of the main result, Theorem 2.1, two different non-equivalent formula-
tions of the uniform large deviations principle will be required. A thorough comparative
analysis of the different formulations of uniform LDPs is given in the paper [17]. We
state the definitions for the two forms needed in this paper, using the same notations
and conventions as in [17]. This first definition can also be found in [14].

Definition 3.1 Let £ be a Banach space and let D be some non-empty set. Suppose
that for each x € D, {14} }e~0 is a family of probability measures on £ and /* : E —
[0, +00] is a good rate function. The family {iu] }e~o is said to satisfy a Freidlin—
Wentzell uniform large deviations principle in E with rate functions /*, uniformly
with respect to x € D, if the following statement holds.
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(i) Forany s > 0,8 > O and y > 0, there exists €g > 0 such that

. I'(p) +y
xlng (M?(BE(% 8)) —exp ( - f) >0, €=e,

for any ¢ € ®*(s), where ®*(s) :={h € E : I*(h) < s}.
(ii) For any so > 0,8 > 0 and y > 0, there exists €y > 0 such that

sup pf (B (0*(6).) < exp (= ). € = e,

xeD

for any s < 59, where
BS(D*(s),8) = {h € E : distg (h, ®*(s)) > 8}.

We will use the following modification of the contraction principle that allows to
get a large deviation principle which is uniform with respect to some parameters.

Theorem 3.3 (Uniform Contraction Principle) Let D be some nonempty set. Assume
the family of measures {yc}e=0 Satisfies a large deviations principle on a Banach
space F with good rate function J : F — [0, +00]. Moreover, assume that there
exists another Banach space G such that F C G with continuous embedding, such
that the family {yc}e=o is exponentially tight in G, that is for every s > O there exists
R; > 0 and €; > O such that

ve(BG(R)N F) > 1 —exp(—g), € <e (3.13)

Next, suppose that {A*},ep is a family of continuous mappings from F to a Banach
space E. We assume that A~ are Lipschitz continuous on all balls of G, uniformly
over x € D, i.e. for every R > 0 there exists some Lg > 0 such that

A" (p1) — A* (@)l g
sup sup
xeD ¢1,p2€ BG(R)NF ler — o2l

= Lg. (3.14)

Then the family of push-forward measures {1} }e~0 defined by u} = ye o (A1
satisfies a Freidlin—Wentzell uniform large deviations principle in E with rate functions
I* uniformly with respect to x € D, where I is given by

(o) :=inf{J(Y) : ¥ € F, o = A" (¥)}.

Proof Lower Bound. Fix s > 0,8 > Oand y > 0. Foreach x € D, let ¢* € E
be such that I*(¢p*) < s. Therefore, for each x € D there exists ¥* € F such that
¥ = AY(WY) and J(Y¥) < I*(¢*) + y/2. Since J is a good rate function and
J(W*) <s 4+ y/2, we have

sup |[Y*|F =: k < oo. (3.15)
xeD
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Now, for every R > 0 we have

wEBe@",8) =ve ({f € F: |A*(f) —¢"|; <3})
> ve ({f € BG(RYNF : |[A*(f) — o], <6}).

Then, due to (3.14) and (3.15), there exists some L = Lg (6, k) > O such that

1 (Be(p*,8) = ve ({f € BG(R)NF : | f — ™|, < Lg})
>y ({feF:|f=v"|; <Lr})— v (IBF(R)NFI).

Thanks to the exponential tightness (3.13), we can fix R > 0 such that for some €; > 0

_M>, <.

_ 1
ve ((BG(R)NFI) < 5 &Xp ( .

Next, we fix €2 > 0 such that

€

J (Y~ 4
yg({feF:Hf—t/fx|}F<LR})zexp<_M>’ (e

so that, for some €y < €] A €3, which is independent of x € D, we get

W (B (¢*.8) > %exp (—M)

Zexp <_M> Zexp <_M>7 € SEO~

€ €

Upper Bound. Fix so > 0,6 > 0 and y > 0 and observe that

W@ ) =ye({feFr it AT~ ol = 8)).

For every R > 0 and s > O there exists Lg = Lg(6,s) > 0 such that for every
f € Bg(R) N F if there exists ¥ € F such that

JW) =s, If—¥lr <Lg,

then, for every x € D

PN W) =T@W) =5, A = A WDle < 6.

Therefore

M?(B;cg(CDX(S),S))S)/e({fEBG(R)ﬂFI inf IIf—IIfIIFzLRD

VEF:J())=s
+ e ([BG(R) N FI°).
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Now, by using again the exponential tightness (3.13), we can find R > Oande; > 0
such that

Ve ([Bc(R) N FI°) < exp <—s _€2y> . €=Ze,

so that

g (B ((s),8)) <ve ({f e F: inf |f-vle= LR})

YeF:J(Y)<s
—v/2

—i—exp(—ﬂ), € <e€.
€

Therefore, we can find €9 < €1, independent of x € D, such that

€

wy (B%(@x(s),(S)) <2exp <—S — Y/Z) <exp (—S — y) , € <¢.
€

To define the Navier—Stokes rate function, we first define the Hamiltonian
Hu) :=u' 4+ Au+ Bu), wue D(H):=W"20,T;Vv-HnL*0,T;V)).

For u € D(H) the nonlinearity B(u) is a well-defined element of L>(0, T; V).
Now, for any x € H and u € C([0, T]; H), we define

T
I*(u) = ; /O IH@) O dr it H(w) € L2 T: H), and u(0) = x.

+00 otherwise.

Theorem 3.4 Assume that B > 1 and

lim §(e) =0, suped(e)™ /P < 0. (3.16)

e—0 >0

If u} is the solution to Eq. (2.6), then for any R > 0, the family {L(u})}c0 satis-
fies a Freidlin—Wentzell uniform large deviations principle in C ([0, T]; H) with rate
functions I*, uniformly with respect to x € By (R).

Before proving the theorem above, we notice that if D C H is a bounded set and
{z*}xep C C([0, T1; L* N H), then

sup Jr(z") < 00 == sup [Iz" lc(jo.7): L4nH) < O©- (3.17)
xeD xeD
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Moreover, as proven in the following lemma, the family of measures defined by
Ye = L(z¢) satisfies the exponential estimate (3.13), with F = C([0, T]; L* N H)
and G = L*(0, T; L*).

Lemma 3.3 (Exponential Estimate 1) Under the same assumptions of Theorem 3.4, for
any s > 0 there exist €, > 0 and R; > 0 such that

Ve (Brso.r:04(Rs)) = 1 —exp (—Z) € < €.
Proof For every x € L*, we define
e = (1)
The function f : L* — R is twice differentiable and
DF) = f0, DA =307 (2 = f0 7 @)

(here and in what follows, for every x € L” and g < p we denote x? = (xlq, xg ).
Next, for every € > 0, we define

F.(x) = exp <@) , xe L%
We have
DF(x) = é Fe(x)Df (x) = é Fe(x) f(x)7 %7, (3.18)
and

D*F(x) = E%Fe (ODf(x) ® Df (x) + ~ Fe(0)D? £ (x)
= Fe(x) Liz o ex’ + S f™? (x2 —fO™F e x3)} :
(3.19)
As a consequence of [td’s formula, we have
E Fe(ze (1)) = exp (¢ ")

t
+E fo [DFe(ze(S))Aze(S)Jr;ZDZFG(ZE(S))( Qeek,\/@ek)}ds

k=1
t
—exp(¢ ') +E / {D&(ze(s))Aze(s) + g D 02k D*Fe(ze(s)) (ex, ek)} ds.
0 k=1

(3.20)
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Thanks to (3.19) and (2.7), we have

[o o] 1 o0 2
D0k DPFee()en e0) = 5 Felze@) f@els) ™ D02y <z€(s)3,ek>)

k=1 k= 1

+ Fe(ze(s)) f(ze(s)™ 32% (ze(), €f)

k=1
1
— Fe(ze(9)) f(2e () llze ()17
“ 3
+mre Fe@e) fael) ™ Tr 02 lze) Il
1 3
< 5 Fe(ze(®) [f(ze(S)) *llze)llgs + 5 €)™ ‘/ﬂ]

(3.21)

=

Moreover, thanks to (3.18) we have

1
DFe(ze(9)Aze(s) = — Fe(ze() f (ze (5)) " (ze ()%, Aze(s))
3
== @) f e () (Ve (5)2e(5)?, Vze(s))

—% Fe(ze(s)) f (ze(s) " llze ()11
Therefore, putting this together with (3.21), we conclude
DFc(ze(s))Aze(5) + % gaf,k D?Fe(ze(5)) (ex. ex)
< é Fe(ze(s)) Bf(ze(s)rﬁnze(sﬁnig - %f(ze(s))*3||ze(s>2||§,l + 8731—2 ea(er‘/ﬂ] :
(3.22)

By interpolation, we have
lze (135 < lze®? 13 1ze ) Mg < Nz l1ze 13 = Nze@N7alze ) 131
and this implies

@) Clze)? 135 < FEe)  Nze()I74 £ ze() 7 ze ()13,
< F @) P llze() M3

In particular

§f<ze<s)>*6||ze<s>2||ig - f(ze(s» Yze(s)? ||H1 < ——f(ze(S)) Yz ()13,
< ——f(ze(s)) 3||ze(s>||L4 =—- f(ze(s)>+ f(ze(S)) 3
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Due to (3.20) and (3.22), this allows to conclude that

f(ze(s)) 1 3
T Tt

t
E Fe(ze(1) < exp (e‘l)+l / EF, (ze(s)) [ 3(6)—1//3} ds.
4 Jo

Since ¢*(a — x) < e for every x > 0 and a > 1, it follows

(3.23)

-1/
E Fe(ze() < exp (™) + rexp (&) |

Now, since the function
(1+4r)/4
r € [0,4+00) = h(r) :=exp| — | € [1, 00),
€

is convex when € < 1/3, and increasing, for any R > 0 we have

1T 4 R*
P(Izell 4024 = R) =P 7/ lze(DNpads = —

17 R*
P(h (; /O [EXCHM ds) > h (7))

T 4 ;174
P (l / Fe(z(s))ds > exp (M))
T 0 €

4 71/4 T
< exp (—%) 7 | ERGoas

IA

Then, thanks to (3.23) and (3.16), we can find R; > 0 sufficiently large and €, > 0
sufficiently small such that

1+ RY/TH/4 3 T 1+ed(e) /B
P (Izellz4o.7.14) = Rs) < exp (_¥) (exp (e 1) + 5 exp (#))

€ €

((1+R;‘/T)‘/4> <1+266(e)’1/5)
<exp|-— exp

€

m}

Proof of Theorem 3.4 First of all, notice that u} = (I + Fy)(zc). Lemma 3.2 implies
that the mapping

I+ F,:C((0,T1; LN H)— C(0,T]; H),
is Lipschitz on balls of L4(0, T; L4), uniformly on bounded sets of H. Therefore,

thanks to Theorem 3.3 applied to the Banach spaces F = C([0, T]; L* N H), G =
L*0,T; L% and E = C([0, T]; H), and thanks to Theorem 3.2, the family {(I +
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Fi)(ze)} = {u?} satisfies a Freidlin—Wentzell uniform large deviations principle in
C([0, T]; H), with rate function

13(u) = inf {JT(Z) cu=z+F(z), ze W0, T; H)NL*0, T; D(A))}-

If u € D(H) and u(0) = x, then H(u) € L2(O, T: V~1) and u is a weak solution to

{du(t) + [Au(t) + B(u(t)1dt = H(u)(t)dt, (3.24)

u(0) = x.

Note that u € D(H) implies that Eq. (3.3) with forcing ¢ = H(u) has a unique
weak solution z, € X. In particular this also implies that F,(zy) € D(H) and
u = 2y + Fx(z,). This decomposition is unique. Indeed, if u = z 4+ F, (z) for some
other z € D(H), then u — F,(z) would again be a weak solution to Eq. (3.3) with
forcing ¢ = H(u) so that z = z,. This implies that

1 T
G =5 /0 IH@ O, di,

whenever H(u) € L%(0, T; H). O

Remark 2 Notice that both the proof of Theorem 3.2 and the proof of Theorem 3.4 do
not require periodic boundary conditions.

The second definition for the uniform large deviations principle is given by the
following. It can be found in [12].

Definition 3.2 Let E be a Banach space and let D be some non-empty set. Suppose
that for each x € D, {u}}e-o is a family of probability measures on E and [+ :
E — [0, 400] is a good rate function. The family { ] }¢~0 is said to satisfy a Dembo—
Zeitouni uniform large deviations principle in E with rate functions /* uniformly with
respect to x € D if the following hold.

(i) For any y > 0 and open set G C E, there exists €y > 0 such that

1
inf ul(G) > exp <—— |:sup inf 1V (u) + yi|) , € <e¢g.
xeD € yeD ueG

(ii) For any y > 0 and closet set F C E, there exists €p > 0 such that

1
sup pul(F) <exp (—— [inf inf 17 (u) — y]) , € <e¢.
xeD € | yeD ueG

Corollary 3.1 Assume that
. . 1
lim §(¢) =0, limelog—— =0.
e—0 e—0

5(e)
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Let K C H be a compact set. Then the family {L(u})}c=0 of solutions to Eq. (2.6)
satisfies a Dembo—Zeitouni uniform large deviations principle in C ([0, T]; H) with
rate functions {I*}ycx uniformly with respect to x € K.

Proof In view of Theorem 2.7 of [17], to prove equivalence of the two uniform large
deviation principles over a compact subset of H , it suffices to show that for every fixed
s > 0 the mapping

x€ H— & () :={ueC(0,T]; H) : I"(u) < s},

is continuous with respect to the Hausdorff metric. That is, we must show that for any
{xn}02, C H suchthatx, — x € H,

lim max sup diStC([o,T];H) (u, q)x(s)), sup diStC([()’T];H)(M, ™ )| = 0.
n— 00 uedn (s) ued*(s)

This is immediately implied by the continuity of the Navier—Stokes equations with
respect to initial conditions. Indeed, suppose that u; is a solution to the equation,

[du(t) + (Au(t) + Bu()))dt = p(t)dt, (3.25)

u(0) = x,

with driving force ¢ € L?(0, T; H). Then by standard energy estimates (see for
instance, [15]), we have

T
swp g0~ + [ o — el a
0<t<T 0
T
< llx = Il exp (c/0 )]} dr)
< e = vl exp (e[ Iy + 190 7, 1)-

Now, if u € ®*(s), then ¢, := H(w) € L0, T3 H), 5 I9uljagq 7.pp) < s and u

solves Eq. (3.24). But then, the weak solution v € WI'Z(O, T, V_l) N L2(0, T;V)to

dv(t) + [Av(t) + B(v(t))]dt = ¢, (t)dt,
v(0) =y,

belongs to ®Y (s). Therefore,

distc (o, 71 1), DV (5)) < llu — vlicqo.rym < csUylg) Ix = ylg,
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for some continuous increasing function ¢y : [0, +00) — [0, +00). Since this is true
for arbitrary u € ®*(s), it follows that

sup distc (o, 7y 1) (1, DV(5)) < esIyllg) X = yllg
ued*(s)

which implies the result, since sup,, .y Xzl g < 00. O

4 Proof of Theorem 2.1

We start this section with the description of the quasi-potential associated with
Eq. (2.6). To simplify notation, for any 7 > 0 we will denote

1 T
) =5 / M@0, dr.
0
whenever H(u) € L%(0, T; H). In addition, we set

I if u(0) =
26 :{ r@, ifu©) =y,
+00, otherwise.

The quasi-potential U : H — [0, 4-00] is defined as
U):=inf{Ir(u):T >0,uc C(0,T]; H),u0) =0,u(T) =x}. (4.1)

For any x € H, U (x) gives the minimum action of all paths that start at O and end at
x. Since 0 is an asymptotically attracting equilibria for the Navier—Stokes equations,
U (x) will govern the long-time dynamics and asymptotic behavior of the invariant
measures.

In the particular case of the Navier—Stokes equations on the torus, the orthogonality
of B(u) and Au can be taken advantage of to provide an explicit formula for the
quasipotential. In fact, as proven in [4, Theorem 7.1] we have that for any x € H

2
lxlly, xeV,

Ux) =
400, xeH\V.

4.2)

Now, we proceed with the proof of Theorem 2.1. Some of the steps of the proof are
analogous to those used in [3, Theorem 4.5], where a large deviation principle for the
invariant measures of the 2D stochastic Navier—stokes equation is studied, under the
assumption that the covariance of the noise does not depend on €. In those steps our
arguments will be less detailed and we refer the reader to [3]. On the other hand, our
arguments will be fully detailed in those steps of the proof that deviate from [3], and
require new arguments and techniques.
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4.1 Lower bound

Proposition 4.1 Under the assumptions of Theorem 2.1, the family of invariant mea-
sures {Ve}eso of Eq. (2.6) satisfies the large deviations principle lower bound in H
with rate function U (x). That is, forany x € H, § > 0and y > 0, there exists €g > 0
such that

U(x)+7/),

ve(Brr(x. ) = exp (= —

Proof Fix x € H,andany § > 0,y > 0 and T > 0. We assume that U (x) < oo or
else there is nothing to prove. Suppose that {v'},ey C C([0, T]; H) is a family of
paths satisfying

sup [[v'(T) — x|, < 8/2.
yeH
Thanks to the invariance of v., we have
ve(Bp (x,8)) = /HP(M(T) — x|, <8 dve(y)
= [ Bz = Lo < 8/ dvety

> /;?H((),R) ]P’(Huz —vY HC([O,T];H) < §/2) dve(y)

> ve(By(0,R)) inf  P(||ul < 8/2).
yeBy (0,R)

Y
v ” C(0,T1; H)
Since the invariant measures are becoming concentrated around 0, as € | 0, we have

lim ve (B (0, R)) =1,
e—>0
for any R > 0. Thus, we can pick €1 (R) > 0 small enough that
1
ve(Bp (0, R)) = 5 € < €1(R).

Thanks to Theorem 3.4, a Freidlin—Wentzell uniform large deviations principle holds.
Then, for every so > O there exists €2(R) > 0 such that for any v> € C([0, T]; H)
with I% ) < 59,

1
P (||ug 0" cqo.rp iy < 3/2) > inf exp <_Z (170 + y/2]> :

inf
y€BE(0,R) y€BE (0,R)

for every € < €(R). Therefore, to complete the proof, it remains to find a 7' large

enough that for each y € Bpy(0, R), there exists a path v’ € C([0, T]; H) with
vY(0) = y that satisfies
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@ It(v”) =Ux)+y/2,
®) W(T) —xllyg <§/2.

The paths we choose are the solutions ué to the controlled Navier Stokes equations,
Eq. (3.25), with initial condition y € H and control ¢ € L2(0, T; H), defined by

0 if0<r<T,
o) =1 _ )
ot =Ty T <t=<Th+T1,

with 77 and 7> to be chosen. Here, ¢ € C([0, T>]; H) is a path such that ug)(O) =0
and ug (1) = x with I, (u%) < U(x)+y/2.Sucha 7> and ¢ exist by the definition of
the quasipotential U. Meanwhile, 71 = T (A) is taken large enough that the solutions
{uy}yeny 0,r) to the unforced Navier-Stokes equations satisfy

sup Hu(y)(Tl)”H <A,
yeBy (0,R)

for some small A. Clearly point (a) is satisfied since the path contributes nothing to the
action integral on the interval [0, 77]. Point (b) follows by noting that the controlled
Navier Stokes equations are continuous with respect to initial conditions. Indeed, since
ug(T1) € Bpy(0, A), we have by a standard estimate (for example see Proposition
2.1.25 of [15]) that

w (T +T>) — x|, < su ’
|ug (10 + T2) = ], S

u (o) —uy(B)|

2 =112
< swp lzlgexp(clzll +e 61 )-
zeBy (0,1) e

This implies point (b) if X is taken small enough. We conclude the proof upon taking
€o := min(eq, €). O

4.2 Upper bound
Proposition 4.2 Under the assumptions of Theorem 2.1, the family of invariant mea-
sures {Ve}eso of Eq. (2.6) satisfies the large deviations principle upper bound in H

with rate function U (x). That is, for any s > 0, § > 0 and y > 0, there exists €y > 0
such that

ve ({h € H : disty (h, ®(s)) > 8}) < exp (—ﬂ> . e<e.
€
where
D(s):={ye H:U(y) <s}.
The proof requires the following three lemmas.
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Lemma 4.1 (Exponential Estimate II) Assume that Q has the form given in (2.4) for
some B > 2. Moreover, suppose that

lim §(e) =0, supe 8(6)72/‘3 < 00.
€e~0 €>0

Then for any s > 0 there exist € > 0 and Ry > 0 such that
ve(Br(O.R) = 1—exp (=), e =e
€

Proof Fix R > 0,¢ > Oand y > 0 and let ug be the solution of Eq. (2.6). Thanks to
the ergodicity of v, we have

T
ve(By (0. R)) = lim_ % /0 Pu’(s) € B (0, R)) ds

2 T 05|12
< exp ( - R—)l lim sup/ Eexp <M> ds. 4.3)
0 e

2¢/T 7150

To estimate the expectation of the exponential, we apply the Ito formula to the func-
tional F¢ : R x V — R defined by

Il
Fe(t,v)=exp|t+—],
¢

whose derivatives are given by
DlFé(tﬂ M) = Fé(tﬂ M),
and
1 2 1 1
DyFe(t,u) = —Fe(t,w)u, D Fe(t,u) = =Fe(t,u)u @u+ —Fe(r,u)l.
€ € €
Formal application of the Ito formula to the solution u7 to Eq. (2.6) implies that
t
EFe(t, ug (1)) = Fe(0,x) -HE/ I:DIFG(S7 ug (8)) + (DuFe(s, ug (5)), —Aug (s) — Bug(s))v
0

oo
€
5 D DRFs () Qe exdy |ds
kezd

= F.(0 x)—HE/IF (s uX(s))[l— 1 |ut )|
eV, ) els, Ug p € V2

iy eiz (\wz(s), Oeertv| + é(Qeek,ek)V>}ds

keZ(Z)

@ Springer



1678 Stoch PDE: Anal Comp (2022) 10:1651-1681

‘ 1
= F.(0,x) +IE/ F.(s, ug(s))[l - - |uz)]3s

+3 X (Zo2wi ), Acnl + ko2, ) |ds

keZz

r 1 2 1
< 00 +B [ R o)1= 5 [0+ 5 3 ko Jas

2
keZj

where in the second line we used identity (2.3) to dispose of the nonlinearity and in
the fourth line we used that |o¢ x| < 1, for any k € Z% and € > 0.

We remark that the use of the Ito formula on the V-valued process u} is justified
since we are assuming additional regularity (8 > 2) of the noise. For a rigorous
justification, see for instance the proof of Proposition 2.4.12 of [15].

Now, since 8 > 2, we have

|k|2 /oo r L,
= K —§—< —dr <cd(e) P
Fe k"o — 1+ 3(e) k% ¢ Txs@m ¥ =c%©
O

kez}

Therefore, thanks to the Poincaré inequality and the fact that e* (a — x) < exp(a — 1),
for every a > 1 and x > 0, it follows that

. 613 ’ Juz o3, I O
EFc(t,u; (1) < eXp( e ) +E/(; exp(s) exp (T)(l + - P — 7>ds

2 2e
Ix1y ’ !
< exp e + /0 exp(s) exp <§ PE> ds.

Hence,

2
ur (1) x||? 1
s (E200) <o (14 518) oo (3.

Finally, using Eq. (4.3), we see that

c R\ 1T, 1
ve(By, (0, R)) < exp ( — —) lim sup — [e + exp (—P€>]dt
€ T—oo I Jo 2
R P R? —Ces. "
p(-E ) op(- )
€ 2 €
which completes the proof of the lemma, since € §(¢)"2/# — 0, as € | 0. ]

Lemma4.2 Foranyé > 0 and s > 0, there exist A > 0 and T > 0 such that for any
t>Tandz € C([0,1]; H),

120)r <A, Li(z) =5 = disty (z(1), P(s)) <3,
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where ®(s) :={x € H:U(x) <s}.

Lemma4.3 Foranys > 0,6 > O andr > 0, let A be as in Lemma 4.2. Then there
exists N € N large enough that

ue Hr,s,é(N) = It(u) >y,
where the set H, s s(n) is defined for N € N by
Hpss(N) == {u € C(0,NT; H), |luO)lly <r, lu(Dlyg =r, j=1,...,N}.

The proofs of Lemmas 4.2 and 4.3 depend only on the properties of the deterministic
Navier—Stokes equation and can be found in [3] (see Lemmas 7.2 and 7.3).

Proof of Proposition 4.2 Fixanys > 0,6 > Oandy > Oandlet R; beasin Lemma4.1.
Due to the invariance of v, for any r > 0 we have

ve ({h € H : disty (h, ®(s)) > 6§}) = / P(diStH(lAz(l‘), D(s)) > 5) dve(y)
H
= / ]P’(diS[H (u;v(l), D(s)) > 5) dve(y)
BY, (0, Ry)
+/ P (disty (u) (1), @(5)) > 8, u) € Hp, 5.5(N))dve(y)
By (0,Ry)

+/ P (disty (u) (1), @(s)) > 8, u) & Hg, 5,5(N)) dve(y)
By (0.R))

=: K1 + K> + K3.

Now, thanks to Lemma 4.1 we know that
K = ve(By 0, R) =exp (= 2).
€

Next, let N be as in Lemma 4.3. Since Hg, 5 s(N) is a closed setin C([0, N]; H) and
By (0, Ry) is a compact subset of H, the Dembo—Zeitouni uniform large deviation
principle over compact sets, Corollary 3.1, implies that there exists €y > 0 such that

Ky < sup P(u) € Hg, 5.5(N))

veBy (0,Ry)
1
< ex (—-[ inf inf  I3(h) — ])
P\ 2€By (0,Ry) heHg, 5 5(N) (=

for any € < €. Hence, by Lemma 4.3,

1
K> < GXP(—E[S —vD.
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To address K3, we use the Markov property of u, to stop the process at integer times.
We then have

N
K3=fB o EL U0 <2 () s ), 006 2 3} | vty
VU, Ky

j=1
N
- P ({lu2(Dla < 2} () {dista (al (1), () = 8}) dve(y)
j;/Bv(o,Rs) ({ " }ﬂ{ H })
N

<Y sup  Pdisty@l(t — j), (s)) = ).
=1 Y€Bu(0.0)

In order to use the uniform LDP of Theorem 3.4, we must convert this event at time
t — jtoaneventin C([0, r — j]; H). To do so, we pick ¢ large enough that Lemma 4.2
applies for §/2. Then, if y € By ()

disty (ud (r — j),®(s)) > 8

== inf[ ug—v

8
Ol <2 fj0) =5} = >

HC([O,t—j];H)
= distc([o,z-jl;m(ug’, \w(s)) >5/2,
where
W(s):={veC(0,t—jl: H):v(0) =y, [,_;(v) <s}.

Then, by Theorem 3.4, there exists g, ; such that for any € < € ;,

sup  P(disty (u)(t — j), ®(s)) > 8)
yeBRH(0,1)

< sup P(distc([o,,_ﬂ;ﬁ)(ug,\W(s))35/2)

yeBy (0,0
5 —
cen(-277)
€
Hence, for any € < min(ep, €0.1, - . -, €0,y ) it follows that

K3§Nexp(—s_y),
€

which implies the result. O
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