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ABSTRACT denotes non-negative edge weights. Here the edge set is a collection

We present an algorithm that given any n-vertex, m-edge, rank r
hypergraph constructs a spectral sparsifier with O(ne =2 log nlog r)
hyperedges in nearly-linear O(mr) time. This improves in both size
and efficiency over a line of work [Bansal-Svensson-Trevisan 2019,
Kapralov-Krauthgamer-Tardos-Yoshida 2021] for which the previ-
ous best size was O(min{ne~*log? n, nr3¢~2logn}) and runtime
was 5(mr +n0MW),
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1 INTRODUCTION

The problem of sparsification asks to reduce the size of an object
while preserving some desired properties. For example, a cut spar-
sifier reduces the number of edges in a graph while approximately
preserving the total weight of each cut, and a spectral sparsifier
reduces the number of edges in a graph while approximately pre-
serving the spectral form of the Laplacian, or equivalently the
electrical energy of any potentials. Over the last few decades, a
variety of efficient and effective algorithms have been developed
for these notions of graph sparsification [3, 4, 33].

In recent years there has been a variety of work seeking to
sparsify more complex objectives (see e.g. [26]). One such example
is the problem of spectral hypergraph sparsification (see [31] for
discussion), which has seen significant attention. In this setting,
formalized by [31], we have a hypergraph G = (V, E,v), where V
denotes a finite vertex set, E denotes the edge set, and v € RE 0
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of subsets of V of size at least two, i.e. E C {0,1}¥ and |S| > 2 for
all S € E and G is said to be of rank r if the cardinality of each
hyperedge is at most r, i.e. |S| < r forall S € E. Consequently, when
r = 2 a hypergraph is simply an undirected graph. For every vector
x € RV we define its associated energy in G as

fe () = Z vs max (x; — Xj)z. (1)
g W €S
The problem of spectral hypergraph sparsification asks to produce
a hypergraph H consisting of a small subset of the hyperedges of
G, possibly reweighted, whose energy approximates the energy of
G on all vectors x € R” up to a (1+¢) multiplicative approximation.

When r = 2, spectral hypergraph sparsification exactly reduces
to spectral sparsification, where it is known that a random-sampling
algorithm can produce a sparsifier with O(ne~?log n) edges [33]
(it is known how to improve this bound to O(ne=2) with more
adaptive edge choices [3]). For spectral hypergraph sparsification,
a line of work [2, 16, 17] has shown that every hypergraph G
admits a sparsifier with a nearly-linear O(ne~*log® n) edges, and
is surprisingly independent of the rank r. Additionally, [16] proved
that there is a random-sampling algorithm that constructs such a
sparsifier with high probability in time O(mr +n®(1)).

Building on this line of work, in particular [16], the main result
of this paper is the following Theorem 1.1.

THEOREM 1.1 (HYPERGRAPH SPARSIFICATION). There is an algo-
rithm that given a rank r hypergraph G = (V,E,v) with n ver-
tices computes a (1 + €)-approximate spectral hypergraph sparsi-
fier with O(ne?lognlogr) hyperedges in nearly-linear time, i.e.
O(Xsck |SI), with high probability in n.

This result consists of two key ingredients. First, we introduce a
broad class of sampling probabilities which we call group leverage
score overestimates (Definition 1.3). While the sampling weights in
[16] took time 5(mr+no(1)) to calculate, we show how to compute
our more general weights in nearly-linear, O(mr), time. Second, we
use the generic chaining machinery developed by Talagrand [37] to
show that that the sampling algorithm of [16], with group leverage
score overestimates, actually produces a (1+¢)-spectral hypergraph
sparsifier with O(ne~2log nlogr) edges. This improves over the
previous bounds of O(ne~*log® n) [16], and O(ne=2r3 logn) [2].

Paper Organization. In the remainder of the introduction we
discuss our high level setup required to show Theorem 1.1. After
providing notation in Section 1.1, in Section 1.2 we describe a more
general matrix formulation of hypergraph sparsification that we
work with, which we call a matrix hypergraph. In Section 1.3 we then
introduce our new definition of group leverage score overestimates
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(Definition 1.3) which can be computed efficiently and still suffices
for sampling when constructing sparsifiers. Then, in Section 1.4, we
provide a high-level overview of the ideas behind generic chaining,
which we use to improve the size bound to O(ne~2log nlogr).
After the introduction, we provide our efficient algorithm for
computing group leverage score overestimates in Section 2. In
Section 3, we analyze a sampling algorithm that produces a spec-
tral hypergraph sparsifier by using a simplified form of chaining
known as Dudley’s inequality. The number of hyperedges will be
O(ne2log® n). In Section 4 we use the powerful generic chain-
ing machinery presented in [37], specifically the growth functional
framework, to improve the hyperedge bound to O(ne=2lognlogr).

1.1 General Notation

Throughout, we use C (or C with a subscript denoting a lemma,
theorem, or equation number for clarity) to denote a universal
constant. We let Z>, = Z N [, +0) and R>, = R N [, +0). We
define T,- to be indicator vectors for coordinate i, and let 0 be the
zero vector. We let nnz(A) denote the number of nonzero entries in
amatrix A. We use T to denote the Moore-Penrose pseudoinverse of
a matrix.. We assume all logs are base e unless otherwise denoted.
We say that an algorithm succeeds with high probability in n if
for any constant C > 1, there is some choice of constants in the
algorithm that makes it have success probability at least 1 — n~C.
The reader should think of C as fixed but arbitrary throughout the
paper. The constants in our main result Theorem 1.1 will depend
on this constant C (see Theorem 3.4).

1.2 A Matrix Generalization of Hypergraph
Sparsification

We introduce a generalization of hypergraph sparsification to gen-
eral matrices that we use throughout the paper. Let ay, ..., am € R"
denote the rows of a matrix A € R™*" let S = {Sy,...,S;} be a
partition of [m] into k subsets, so k = |S|, and let each set S; have
a non-negative weight v;, forming a vector v € R¥. We denote the
tuple of the matrix A, the partition S, and the weights v as the
(matrix) hypergraph G = (S, A, v) (henceforth referred to simply
as a hypergraph). We define the rank of a matrix hypergraph as
r = maxge s |S|. We will assume r > 2 throughout, as we can du-
plicate rows a;. We let fg : R? — R denote the energy function of
G where fg(x), the energy of G of x, is defined as

def

fo() = D vimax(a,x)” @

ie[k]

Note that (2) generalizes the hypergraph energy in (1), because
for a hypergraph with n = |V| vertices and k = |E| hyperedges,
a hyperedge of weight v containing the vertices F C V can be
captured with the vectors a; = (Tul - Tuz) for all pairs uy,up € F
with weight v. The rank of the matrix hypergraph will be at most
r(r—1)/2 if the hypergraph has rank r. By definition, in this case the
matrix A will be the incidence matrix of some multigraph G. We will
call matrix hypergraphs where A comes from a normal hypergraph
spectral sparsification instance graphical hypergraphs. We will use
the term graphical hypergraphs primarily in Theorem 2.6, when
we show how to efficiently compute sampling weights for them.
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We show that this matrix generalization of hypergraph energy
can be sparsified essentially as well as graphical hypergraphs. Here,
we say that a matrix hypergraph H is a (1+¢)-approximate spectral
sparsifier of G if (1 + &)~ fy(x) < fe(x) < (1 +¢)fy(x) for all
x € R™.

THEOREM 1.2 (MATRIX HYPERGRAPH SPARSIFICATION). There is
an algorithm that given a matrix hypergraph G = (S, A, v) with
A € R™" and r = maxgeg |S| computes a (1 + ¢)-approximate
spectral hypergraph sparsifier with O(ne=2log mlogr) hyperedges
in O(nnz(A) + n®) time.

Unit matrix hypergraphs: A nice benefit of the general matrix
setup is that we may assume that the base hypergraph G = (S, A, v)
has unit weights, i.e. all v; = 1. This is without loss of generality, by
scaling rows of A, i.e. A « VI/2A for V = diag(v). We make this
assumption for the remainder of the paper, and denote unit matrix

hypergraphs as G = (S, A), omitting the v.

1.3 Group Leverage Score Overestimates

A critical component of the O(ne™*log® n) size sparsifier in the
previous work was the balanced weight assignment [16, Definition
5.1] (elaborated on after Definition 1.3) This was used to prove that
the sum of “importances” of the hyperedges was bounded by at
most n, generalizing the notion of leverage scores in graphs. In
this paper, we introduce a weaker version of a balanced weight
assignment, in that we only enforce a one-sided inequality and a
total size bound, instead of the substantially tighter condition in
[16].

Definition 1.3 (Group Leverage Score Overestimates). We say that
TE R‘ZSO are v-(bounded group leverage score) overestimates for a
unit hypergraph G = (S, A) with A € R™*" if ||r]|; < v and there
exist an associated set of weights, w € RT, such that 3} jcg5, wj = 1
for all i € [k], and maxjeg, a]T (ATWA)Taj < g foralli € [k]

where W = diag(w).

Our goal is to give an algorithm which computes group leverage
score overestimates v with };c[x] vi = O(n). Compared to our
Definition 1.3, the balanced weight assignment in [16, Definition
5.1] enforced that for all j € S;, either w; = 0 or a}— (ATWA)Taj €
[7i/y, 7i] for a constant y = O(1), without initially enforcing that
Zie[k] T < O(n). However, it is not difficult to show that this
stronger condition implies that };c[x] 7i < yn (see [16, Lemma
6.1]). One reason the balanced weight assignment is a natural def-
inition is that when y = 1, the weights w € R producing the
assignment are a minimizer of the convex optimization problem

min —log det(ATWA).
weRT,
Yjes; wi=1forall i€ [k]

This is essentially the spanning tree potential in [16], by the matrix
tree theorem.

Nonetheless, we show that the weaker notion in Definition 1.3
still suffices for sampling, as long as 3’;c ] 7i < O(n). Precisely, we
analyze the following simple sampling algorithm (variants of which
were studied in [16, 33]) where an edge e is kept with probability
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pi defined as
®)

)12 ifp-m <1/2
T otherwise

for an oversampling parameter p, and upweighted by a factor of
pl._l so that its value is the same in expectation.

Algorithm 1: Subsample(G = (S,A),r € Rléo,p)

input:Rank r unit hypergraph G = (S, A), group leverage

score overestimates 7 (Definition 1.3), and
oversampling parameter p

1 Initialize a vector v € R".

2 fori € [k] do

3 pi < 1/2if p- 7; < 1and 1 otherwise.

4 Set v} « p; ! with probability p;, and 0 otherwise.

5 end

6 Return H & (S,A,0").// Can remove all sets S; of
S in H where 0] =0

To understand why group leverage scores are useful for sub-
sampling, we introduce the following facts which ultimately show
that group leverage score overestimates upper bound the maximum
contribution of each coordinate i € [k] to the total energy.

LEMMA 1.4. For any unit hypergraph G = (S, A) with A € R™*"
andw € RY where 3 ;jes, wj = 1 foralli € [k], xTATWAx <

fg(x) forall x € R™.

Proor. Note that } jeg, Wj(aj,x)z < maxjesi(aj,x)z for all
i € [k] since } jes, wj = 1. Hence

xTATWAx = Z Z wilaj,x)? < Z .E%}((aj,X)Z < fg(x).
ic[k] J€Si ielk] /=
o

LEmMA 1.5. For any group leverage scores T € R“ZSO and associated
weights w € RT for unit hypergraph G = (S, A) with A € RMX1
maxjes; (aj,x)z <1 -x"ATWAx foralli € [k].

PrOOF. We can assume that xT ATWAx = 1 by scaling. Note
that

2 ToAT +
max ai,x)*=a; (A" WA)'a; <7
A =9 yiap <

for all j € S; by Definition 1.3. O

Combining Lemmas 1.4 and 1.5 shows that max g, {(aj, x)? <
7i fg (x), for all x, i.e. coordinate i € [k] can only contribute 7; frac-
tion of the hypergraph energy. Intuitively, this means that sampling
proportional to 7; should produce a sparsifier, though formalizing
this intuition and achieving tight bounds is challenging. This is the
main goal of Sections 3 and 4.

It is worth remarking on some general connections between
the group leverage scores defined in Definition 1.3, and similar
notions defined for Lewis weights. In general, there are several
settings where iterative/contractive procedures produce weights
satisfying a one-sided bound, and where such a bound suffices for
applications. Our iterative algorithm for computing group leverage
score overestimates (Algorithm 2) is inspired by the algorithm of
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[8] for computing an approximate John ellipse, corresponding to feo
Lewis weights [11]. The notion of approximate weights in [8] is very
similar to Definition 1.3. Additionally, a one-sided £, Lewis weight
computation sufficed for the algorithm of [14] for £, regression.

1.4 Overview of Chaining

In the section we introduce the basic intuition behind chaining
methods, in particular when applied to analyze our sparsification
algorithm which samples by group leverage score overestimates
(Algorithm 1). The sampling algorithm proposed in Algorithm 1
keeps a hyperedge S; € S and assigns it weight pi_l for some
probability p; to produce a hypergraph H. We want to prove that,
for an appropriate choice of p, the value of fg (x) is preserved up to
a multiplicative (1 + ¢) approximation for all x € R". Even though
it is straightforward to show that fg(x) is preserved up to (1 +¢)-
multiplicatively for each fixed x € R”, there are infinitely many
x € R™ which prevents us from applying a union bound. Even a
naive discretization leaves exponentially many x to check.

The idea behind chaining is to introduce a sequence of finer and
finer e-nets to approximate each x at different scales. Define B as
the unit ball of fg,ie. B = {x: fg(x) < 1}. Consider finite subsets
To, T1, - - - € Bof increasing size, which are our nets. Foreach N > 0
let xny € Ty be the closest point to x in the metric d(-, -) which we
define shortly. Write

fo(x) = fg(xo) + ) folxns) = fg(en),
N>0

where the sum converges because xy — x. Let H be the subsam-
pled hypergraph, so we get

fe () = fr ()] < Ifg (x0) = fu(xo)] @)
+ 2 (e lansn) = fo(an)) = (frGensn) = fren))| - (5)
N>0

by the triangle inequality. Thus we want to bound | (fg (y)—fg (2))—
(f(y) — f(2))| for several pairs (y, z). To analyze this, note that

Exl(fg(y) - fg(2)) = (fu(y) — f#(2))] = 0 by the definition of
H. If we define a distance

d(y.2) = Varg [ fu(y) - fre(2)]"/?

=Eul((fg(y) - f6(2) = (Fu(y) - fr (@)1,
by Hoeftding’s inequality we know that

Pr(|(fg(v) = fg(2)) = (fr(y) = fr(2))| = Kkd(y, 2)]
<2 exp(—21<2).
Hence, the probability that for N > 0, parameter k), and all xpn41 €
In+1, xN € TN,
[(fg (xn+1) = fg (xn)) = (fre(xN+1) — frr (ew)) (6)
< kNd(XN, XN+1) ™)
is at least 1 — 2|Tn || Tn+1] exp(—lclzv). At this point, up to constants,

it makes sense to set |Tn| = 22" for all N,and ky = C-2N/2
for sufficiently large constant C, so that 2|Tn||Tn+1] exp(—KIZV) <
exp(—ZZN). Thus (7) holds for all N > 0 by a union bound. Plug-
ging this all back into (5) and using that d(-, -) satisfies the triangle
inequality (at least up to constants), proves the main chaining theo-
rem, which we formally state in Theorem 3.4.
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With the chaining theorem in hand, proving the desired sam-
pling bounds in Theorem 1.1 reduces to constructing sets Ty such
that the distances d(x, Ty) = minyeTy, d(x, y) are suitably bounded.
Surprisingly, the celebrated majorizing measures theorem [13, 34]
says in variants of the above setting when the sampling distribution
is Gaussian instead of Bernoulli (as in our case), this proof method

is optimal, i.e. there exist nets Ty with |Tn| = 22" that achieve the
true optimal bound. We also believe that in our hypergraph spar-
sification setting, the Gaussian and Bernoulli sampling processes
behave similarly. However, the majorizing measures theorem does
not shed light on how to construct the sets Ty. Many previous
works on chaining have thus settled for suboptimal bounds such
as Dudley’s inequality [12], which we use in Section 3 to achieve
an O(ne 2 log® n) bound, or rely on analysis frameworks which
require additional structure. Towards achieving a better bound in
Section 4, we apply a powerful growth function framework of Ta-
lagrand which shows how to construct the sets Ty given access
to a family of functions satisfying a certain growth condition. We
defer a more detailed explanation of our application of the growth
function framework and deviations from prior work (in particular,
the proof of matrix Chernoff for rank one matrices [28, 37]) to the
start of Section 4.

1.5 Related Work

We discuss relevant related work on chaining and sparsification by
sampling.

Hypergraph spectral sparsification. Previous works showed that
hypergraphs admit sparsifiers with O(n3¢~2) [31], O(ne=2r3logn)
[2], O(nr(e~'log n)°W) [17], and finally O(ne~*log> n) [16] hy-
peredges. The independent and concurrent work of Lee [24] also
used chaining to show that hypergraphs admit spectral sparsifiers
with O(ne~2lognlogr) hyperedges, matching our Theorem 1.1.
The result [2] also used chaining methods, however, their chaining
was over the space of matrices, instead of vectors as is done in this

paper.

Hypergraph cut sparsification. The problem of hypergraph cut
sparsification [6, 19] asks to maintain the energy of the hypergraph
(see (1)), but only for vectors x € {0,1}". This generalizes the
notion of cut sparsification in graphs. In this setting it is known
how to construct hypergraph cut sparsifiers with O(ne~2 log n)
edges with a random sampling algorithm based on a different no-
tion of “balanced weight assignments” [7]. Their algorithm runs
in time O(mr + n°()). Because hypergraph spectral sparsifica-
tion strictly generalizes cut sparsification, our Theorem 1.1 pro-
duces a hypergraph cut sparsifier in runtime O(mr), albeit with
O(ne~2log nlog r) hyperedges instead of O(ne =2 log n) as shown
in [7].

Other sparsification objectives. In general, one can study sparsifi-
cation of functions f : R" — Ry defined as f(x) = Xje[x] fi(x)-
When f;(x) = (a;, x)? for a vector a; € R", this is exactly spec-
tral sparsification of matrices and is now well-understood using
tools such as the matrix Chernoff bound. On the contrary, for other
functions f;(x), the best known sparsification results often pro-
ceed via chaining methods. Nearly tight (up to logarithmic factors)
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sparsification results are known for sparsification of £, norms of
matrices, i.e. f(x) = ||Ax||§ = Yie[k] I{ai, x)|? for all p € [0, c0)
[5, 29, 30, 35, 36], and the proofs generally rely on combining chain-
ing methods with £, Lewis weights, a natural importance measure
for rows of A analogous to our group leverage scores (Definition 1.3).
For more discussion on £, norm sparsification, see [11].

Sparsification of several additional convex functions, including
Tukey and Huber losses, gamma functions for £, regression, Orlicz
norms, etc., is studied in [26]. The analysis uses chaining methods,
among other techniques.

Future work. The authors are optimistic that the methods in
[16], this paper, and [36], can provide sparsification results for
“£y hypergraph sparsification” for p € [1,2], i.e. when the energy
function is fg(x) o Yie[k] maxjes; [{aj, x) |P, or even beyond.
This paper leaves these questions as an interesting direction for
future work.

2 GROUP LEVERAGE SCORE
OVERESTIMATES

In this section we provide and analyze efficient algorithms for
computing group leverage score overestimates as defined in Defi-
nition 1.3. Our principal subroutine is the following Algorithm 2
which turns an algorithm for computing leverage score overesti-
mates for row-reweightings of a matrix A into group leverage score
overestimates for a hypergraph induced by A. In this section we
introduce leverage scores, their overestimates, and procedures for
computing them, introduce and analyze Algorithm 2, and then use
these results to compute group leverages score overestimates for
matrix hypergraphs and graphical hypergraphs.

First, we introduce leverage scores (Definition 2.1) as well as
leverage score overestimates and algorithms for computing them
(Definition 2.2).

Definition 2.1 (Leverage scores). For a matrix A € R™*", the
leverage score of row i € [m] is defined as o;(A) o a;'— (ATA) q;.
Let 0(A) € R™ be the corresponding vector of leverage scores.

It is standard that 3} je[,,,] 0j(A) = rank(A) < n. Additionally,
oi(A) € [0,1] and 6;(A) = 0ifand only if a; = 0. In all hypergraphs
in this paper we assume that it is not the case that a; = 0 as it would
make no contribution to the energy. It is known how to estimate
the leverage scores to constant accuracy in 5(1) calls to linear
system solvers for ATDA for positive diagonal matrices D (see
Theorem 2.3).

In the following definition we overload the term “overestimate”
with Definition 1.3 when it is clear if the subject is a matrix or a
hypergraph.

Definition 2.2 (Leverage Score Overestimates). We call ¢ € R™, v-
(bounded leverage score) overestimates for A € R™ " if ||5||; < vand
o > 0(A) entrywise. Further, we call a procedure A a v-(bounded
leverage score) overestimator for A if on input w € RT it outputs

A(w) € RT) which are v-bounded leverage score overestimates
def

for oo (w) = o(W/2A) where W o diag(w).

Leverage score overestimates have played a prominent role in
sparsifcation and linear system solving [9, 15, 18, 20-23, 27, 32]. Our
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choice of notation in Definition 2.2 is strongly influenced by these
works. Further, there are known efficient algorithms for computing
leverage score overestimates in general and faster algorithms in
the case of graphs as summarized in the following Theorem 2.3.

THEOREM 2.3 (LEVERAGE SCORE APPROXIMATION, [10, 25, 33]).
There is an algorithm that given a matrix A € R™*" produces O(n)-
overestimates of A in O(nnz(A) + n®) time with high probability
in n. If A is additionally the weighted incidence matrix of a graph,
i.e. every row i is all zero except for a single w; and a single —w; for
w; # 0, then the runtime improves to O(nnz(A)).

PROOF In both cases, the cited works compute & € R, with

€ [(1-06)oj(A), (1 +6)g;j(A)] with high probability in n for

any 6 > 0 in the stated runtimes multiplied by O(poly(1/6)). Since
lo(A)|l1 = rank(A) < n the result follows by invoking these
algorithms for constant § > 0 and outputting (1 — §)~15. O

Given Theorem 2.3, it suffices to provide an algorithm which
carefully combines O(1) overestimates for matrices to produce
overestimates for hypergraphs. We provide an algorithm which
does this in Algorithm 2. This algorithm is a natural generaliza-
tion of the algorithm of [8] for computing an approximate John
ellipse mentioned in Section 1.3. The procedure simply iterates on
a weight vector wit), computing 1) as leverage score overesti-
mates for oa (w) (Line 2), and then letting w(*1) be the natural
re-normalization of those weights (Line 4). The procedure then
outputs the average of these weights (Line 7) as the weights as-
sociated with an overestimate 7 € R’; o Where each entry of 7 is
an appropriately scaled up aggregation of the computed leverage
score overestimates (Line 6).

Algorithm 2:
(S,A), T, A)
input:Rank r unit hypergraph G = (S, A) with A € R"™*",
iteration count T € Z>1, and v-overestimator ‘A for
A (Definition 2.2)

1 Initialize w(V) € RT, with wj(.l) =1/|S;| for alli € [k] and
Jj€Si;
2 fort=1tTdo
s | 30 —Aw®); 7750 er? with 5O <v
and 1) > gp(w®)) entrywise
4 Set w(+D) ¢ RZ) with W(t+1) ~(t)/(2 es; a > )for
allie [k]land j € S; ;

GrouplLeverageOverestimate(G =

5 end
koo
6 Sett € Rzo with

171 «— exp(T~!logr) - % 2ite[T] ZjeS; 5]@ foralli e [k] ;
7 W — %Zte[ﬂ w(t)

s return (7,w) ;

For intuition behind this algorithm, consider the optimal weights
w* and group leverage scores ¥, corresponding to y = 1 as dis-
cussed in Section 1.3. Precisely, for the hypergraph G = (S, A) we
have that a;.r (ATW*A)Taj =1} foralli € [k] and j € S;, unless
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w; = 0. This can be more compactly written as [oa (w*)]; = w] T}
for all i € [k] and j € S;. Because 3 j¢g, w;f = 1, we know that

T = Y jres;[oa(w*)]j» and therefore

= [oa(w")1;/ ), Toa(w)]

J'€S;

for all i € [k] and j € S;. Thus, Algorithm 2 can be viewed as
simply updating w(t) as if the above equation was an equality,
using overestimates for leverage score, and then averaging the
weights over all ¢ € [T].

In Theorem 2.4 we prove that this algorithm does successfully
compute leverage score overestimates. In fact, the theorem implies
that it suffices to compute O(n)-bounded leverage score overesti-
mates of O(logr) different reweightings of A € R™*" in order to
compute O(n)-bounded group leverage score overestimates of a
rank r hypergraph associated with A. The proof is similar to that
of [8] for computing approximate John ellipses and uses a critical
technical tool of it, the convexity of log([oa (w)] j/w;) with respect
to w for any j.

We note that is not actually clear that 7 > 7* where 7 are the
overestimates produced by Algorithm 2 for G and r* are the optimal
group leverage scores discussed earlier. It is an interesting open
problem to determine whether or not this is the case and if it is
false, the term “group leverage score overestimates” is perhaps
a misnomer. However, in either case the overestimates produced
are sufficient for hypergraph spectral sparsfication as we prove in
Sections 3 and 4.

THEOREM 2.4 (GROUP LEVERAGE SCORE OVERESTIMATION AL-
GORITHM). Given any rank r unit hypergraph G = (S,A) with
A e R™" T € Zsq, and v-overestimator A for A (Definition 2.2),
GroupLeverageOverestimate(G, T, v) in Algorithm 2 outputs
exp(T ! log r)v-overestimates T € Rfo for G and associated weights
w € RY,. The algorithm can be implemented in O(mT) time plus the
time of invoking A on T different inputs.

Proor. The runtime is immediate from the pseudocode (there
are T iterations each of which takes time O(m) plus the time to
invoke A) and consequently it suffices to show that 7 are
exp(T ! log r)v-overestimates for G with associated weights w €
RT. By the definition of 7 (Line 6) and & (Line 2 and Definition 2.2)
it follows that

lI7lly = exp(T~ logr) - " % IR

ie[k] te[T] jeSi
3 exp(T~!logr) ()
= SP_ED 3 1501,
te[T]

< exp(T tlogr)v.

Next, for any i € [k] and j € S; since log([oa(w)]j/w;) is convex
in w [8, Lemma 3.4] it follows that

()
log([ oa(w)l; ) Z log O'A(W) )
te [T] J

(convexity [8, Lemma 3.4])



STOC ’23, June 20-23, 2023, Orlando, FL, USA

1 A
J
T 2, o W
te[T]
(Definition of ¢ (Line 2 and Definition 2.2))

. (t+1)
Yj ~(t)
T Z lOg T + log Z o,

te[T] j'€S;
. w(T+1) .
- J - ~(t)
Tlog 0 +log T Z Z
j te[T] j €S;
(concavity of log(-))

IA

IN

(T+1)
= l10 i - llo (r) +log(z;)
- T g w(l) T g glzi) .
J

(Definition of 7 (Line 6))
(T)

Now observe that Wj

m_ 1 5
andwj _ISI_

r- w](.l) nd we have the desired bound as

. [oa(W)];

i = —

wj

< 1 (since leverage scores are at most 1)

(by definition of w( ) and r). Thus W(T+1)

= a]T (AWA)Taj where W = diag(w). O

As an immediate consequence of Theorems 2.3 and 2.4 we obtain
an efficient algorithm for computing group leverage score overesti-
mates for general hypergraphs.

THEOREM 2.5 (EFFICIENT OVERESTIMATES OF GENERAL HYPER-
GRAPHS). There is an algorithm which given any rank r unit hyper-
graph G = (S, A) with A € R™*" in time O(nnz(A)+n®) computes
O(n)-overestimates for G with high probability in n.

Proor. Apply Theorem 2.4 with T = ©(log r) using Theorem 2.3
to efficiently implement the O(n)-overestimator. O

Finally we show how to use Theorems 2.3 and 2.4 to obtain
an efficient algorithm for computing group leverage score over-
estimates for graphical hypergraphs. Naively applying these re-
sults would yield an algorithm that in O(3;c (k] ISi |2) computes
O(n)-overestimates for an n-node hypergraph with hyperedges
S1, .. Sg. In the following theorem we show how to improve this
to O(Ye [k] ISi]) using the trick of using stars to overestimate hy-
peredges [16, Section 3].

THEOREM 2.6 (EFFICIENT OVERESTIMATES OF GRAPHICAL HYPER-
GRAPHS). There is an an algorithm that given any n-node graphical
hypergraph G = (V,E,v) in time 5(ZS,~6E |Si|) outputs with high
probability in n, O(n)-overestimates for the matrix unit-hypergraph
associated with G.

Proor. Note that the the matrix unit-hypergraph associated
with G, is (S,A) where A € R™V where m = ¥, EE( ’l) and
each a,b € S; with a # b has an associated row in A, which we call
Ja,b,i» that is \/v_i(_fa —1p). Further, each S; € E corresponds to a
S; € S containing j, 5 ; for each a,b € S; with a # b.

Now, for each S; € E fix an arbitrary vertex a; € S;. Further,
consider the unit hypergraph (S’, A”) that consists of discarding
from G the rows j,p; where it is not the case that a = a; and
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b # a;. Note that A’ € R™ >V with m’ = Ys,ep(ISil = 1) and A’
is a weighted incidence matrix of a graph. Consequently, using
Theorem 2.4 and Theorem 2.3 we can compute 7 € R¥ that are
O(n)-overestimates for (S’, A”) with associated weights w” € R’Z”(/)
with high probability in n.

Consequently, to complete the proof it suffices to show that
7 = 27" are O(n)-overestimates for (S, A). Clearly ||7||; = 2||7'||1 <
O(n) and consequently it suffices to produce associated weights
w € R . Define such a w € RT by setting w; to have the value
of the assocmted entry in w] 1f row j is in both A and A’ and 0
otherwise. Since w’ were the weights associated with 7’, and the
only new weights in w are 0, we clearly have the property that for
allS; € S

Wjiap = 1
Jiab:a,b€S; with a#b

The result then follows from the next equation, where W o diag(w)
and W & diag(w’), and j; 4 € Si:

@ = = 22
al  (ATWA)Y ¢, = 0;(1a - 1,)(A)TWA) (10 - Tp)
(i) . o ..
< 0i(la — o) (A)TWA) (1 - 1a)
+0i(1a; = 1) (A) TW'A) (Tg, — 1p)
(iii)
< T +T =7
Here, (i) follows from the definition of aj,,, and w’, and (iii)
follows because 7’ are overestimates for A’ with weights w’. (ii)
follows from the triangle inequality for effective resistances in
graphs (see [38]). It is worth remarking that if instead set 7; = 4fi’
(so |I7lli < O(|I7’|l1) still) that we can simply use the triangle
inequality for norms in this line. O

3 SIZE BOUND FROM DUDLEY’S INEQUALITY

In this section, we prove that sampling hyperedges S; by probabil-
ities p; produces a sparsifier with high probability. As a warmup
to the results in the following Section 4, we first prove Subsample
achieves a weaker size bound of 3k/4 + O(ne™2 log3 m) using a
simple form of chaining. (We discuss how to iterate this bound
to O(ne2log3(n/e)) at the end of this section.) In the context of
previous work on chaining, our proof is essentially just applying
Dudley’s entropy bound [12] instead of the full generic chaining
(we elaborate on this after Theorem 3.4). Because the proof is rela-
tively simple and provides nice intuition for the more complicated
analysis in Section 4, we give a self-contained analysis except for
an £ ball covering theorem from [1].
Specifically, we prove the following theorem.

THEOREM 3.1. Let G = (S, A) be a unit hypergraph with k hy-
peredges, and let T be given group leverage scores (Definition 1.3)
with valid weights w (which do not need to be known). For any con-
stant C, there is an absolute constant C; (depending on C) such that
H = Subsample(G, 7, p) (Algorithm 1) with p = C1e=2log> m sat-
isfies with probability at least 1 — n=C that

(1-6)fg(x) < fyr(x) < (1 +¢)fpy(x) forallx e R"
and has at most 3k /4 + O(ne ™% log® m) edges.
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If 7 is given by Theorem 2.4, the above applied to an k-edge
hypergraph gives a sparsifier with 3k/4 + O(ne ™2 log® m). We will
later improve this bound to O(ne=2log mlogr) in Section 4.

Let us discuss our general proof strategy for Theorem 3.1.In a
chaining argument, it is useful to study how the difference between
energies of two points x,y € R", i.e. fg(x) — fg(y), is affected
by sampling. By construction, the sampling is unbiased for any
fixed input x € R", so Eq([f(x) - fu(y)] = fg(x) - fg(y). As
is standard in chaining setups, we now define a distance function
which is an upper bound on the variance.

Definition 3.2 (Metric Space). For a fixed hypergraph G = (S, A),
define g;(x) o maxjes, [{aj, x)| for all S; € S. We let B be the
unit ball of the energy function, i.e. B o {fg(x) <1:x eR"}.
Additionally, for given sampling probabilities p; € {1/2,1}, we
define the distance functiond : R x R"™ — R for all x,y € R" as

1/2

deoy) £ D 1 @ -a@H?| . ©)
ielk]

Further, for a finite subset T C R", we define d(x, T) & minge7 d(x, t).

We observe that the functions g; are convex and satisfy fg (x) =
2ie[k] gi(x)%. We formalize additional key properties of the dis-
tance function d in the following lemma.

LEMMA 3.3. Let G = (S, A) be a hypergraph, let p; € (0,1] be
given, and let d(-,-) be defined as in Definition 3.2. Let H = (S, A, 0),
where 0 € RK is defined as 5; = p; ! with probability p; and 0
otherwise. d satisfies the following properties for any x,y,z € R™:

o Varg[f(x) - frr(y)] < d(x,y)*
o d(x,z) <d(x,y) +d(y, 2).

Proor. To bound the variance, note that f4;(x) — fo7(y) is a sum
of k independent random variables, where the ith variable is either

0 or pi_l(g,-(x)2 - g,—(y)z) if p; # 1 and always (gi(x)2 - gi(y)z)
otherwise. Thus we have

Varlfu(x) = )] = 3, P 0u0? -
ie[k]

< d(x,y)?

as p; € (0, 1]. This shows the first property. For the second property,
define o™ € R¥ as the vector with coordinates

ef _
of & 1 p 1Py 9i(x)?

for all i € [m]. Define vY, v? similarly. Now the desired bound of
the final property follows because d(x,y) = |[o* — vY||, and by
triangle inequality

d(x,2) = [[0* =0%[l2 < llo*=0Y]l2+[l0Y=0*|lz = d(x, y)+d(y.2) . D
With these facts in hand, we describe our formal chaining setup.

THEOREM 3.4 (CHAINING). Define G, p;, d, H as in Lemma 3.3.
Fors > [log,(logn)], define

def . s
v = inf sup 2°/% - d(x,0) + Z 2N24(x, Ti).
Ts:TerIl;--- x€B N>s
TNCB,|Tn|<2%" forall N>s -

©)
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Then there is an absolute constant Cy such that with high probability
(i.e. at least 1 — n=C, and C, depends on C) for all x € R"

(1-Cy)fg(x) < fr(x) < (1+Coy) f(x) -

To prove Theorem 3.4 we first note the following simple applica-
tion of Hoeffding’s inequality.

LEMMA 3.5. For any subsets X,Y C R" and K > 0 we have that
with probability at least 1 — 2|X||Y| exp(—2K?) over choices of H

that for all x € X,y € Y that |(fg(x) - fg(y)) = (fr (x) = fr(y))| <
K-d(x,y).

ProOF. Note that for each pair x € X,y € Y we have that
E[fn (%) = fr(y)] = fg(x) - fg(y) and that fp(x) - f(y) isa
sum of k independent random variables, where the ith variable is
either 0 or pi_l(gi(x)2 - gi(y)?) if p; # 1 and always (g;(x)? —
gi(y)?) otherwise by Lemma 3.3. Applying Hoeffding’s inequality,
the definition of d (see Lemma 3.3), and the fact that p; € {1/2,1}
yields

EZ [1(fg(x) = fo() = (fr(x) = fre(y))] > K - d(x,1)]
=Pbr E[fr(x) = fre)] = (e (x) = fe(y)| > K - d(x, )]
2K? - d(x,y)?
Sietk] Ypiz11P; ' (9i(x)? = gi(y)?)?

2 2
e 2K d(x,y)
d(x,y)?

The claim follows by union bounding over all x € X,y € Y. O

< 2exp (—

) =2 exp(—ZKz).

To prove Theorem 3.4 we apply Lemma 3.5 on all levels N > 0
and add them up.

ProoFr oF THEOREM 3.4. Consider the event Ep; that for all x €
N,y € TN+1
1(fg(x) = fo () = (Fr(x) = fr()] < 2VC - 2N/ 2d (x, y).

We claim that Prgy[En] > 1-1/2- n~C272" Indeed this is true by
taking X = Ty, Y = T4, and K = 2v/C - 2N/2 in Lemma 3.5 and
noting that

2\Tw || Tt | exp(—2K2) < 2 - 232" exp(-8C - 2N) < 1/2-n~C272"

because we assume C > 1 and 2V > 2% > log n. Hence all events
Eq, Egs1, ... hold with probability at least 1- ¥ 5 1/2:n~C272" >
1-1/2-nC.

By setting X = Ty, Y = {0},K = 2V/C - 25/2 and again applying
Lemma 3.5 we get that

fg (x) = fr(x)| < 2VC - 2/% . d(x,0) forallx e Ty (10)
for all x € T with probability at least
1-|Ts|exp(-8C-2%) >1-1/2-n"C

because we assume C > 1and 2° > log n. Hence all events Es, Es41, . . .
and (10) hold with probability at least 1 — n~C. Now, for each x € B
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let x5 = argminyeTN d(x,y). If all events above hold, then

fe () = fr ()] < Ifg (x5) = fire ()]
+ 2 1fe(an) = fo Gensn) = (Fr(an) = Frenan)|

N=>s
<2VC- 2% d(x;,0) +2VC )" 2N d(xn, xnia)
N=>s

D oVC - 2572 . (d(xe,x) +d(x,5))

+2VC 37 2N (d(x, xn) +d(x, xn41))
N=>s

<2VC 22 d(x.0)+2VC (2<N—1>/2 +2N/2) d(x,Ty)
N=s

<4VC-2%/% . d(x,0) + 4VC Z 2N/24(x, Ty) < 4VCy,
N>s

where (i) uses that d is a metric (Lemma 3.3). Thus we may set
Cy = 4\/6. O

The goal of the remainder of this section is to bound the quantity
in (9) for sampling probabilities p; given by (3), where p is an over-
sampling parameter. In this section, we will set p = C;e~2 log® m:
later in Section 4 we modify the chaining argument to show p =
Ce~2log mlog r still suffices for some sufficiently large constant C.
Because };c[k] 7i < O(n) by Theorem 2.4, the hypergraph # will
have 3k/4 + O(pn) edges with high probability.

We first handle the term 2%/2 - d(x, 0) in Theorem 3.4. This cal-
culation provides critical intuition for why group leverage scores
are sufficient for sampling.

LEMMA 3.6 (HANDLING d(x, 6)). For group leverage score overesti-
mates T and corresponding weights w (Definition 1.3), x € B, and p;
given by (3) we have d(x, 0) < p_l/z.

Proor. Note that lpi;f:lpi_lfi < p~landg;(0) = 0foralli € [k].
Hence
1/2
d(x,0) = > 1pe1p; lgi(0)*
i€lk]
1/2
(i)
é Z lpiilplflr,- -xTATWAx - gi(x)?
ie[k]
1/2
(ii)
2 p—l/Z(xTATWAx)l/Z Z gi(x)z
ie[k]

(iii) _ _
< p VP fe(x) < p7V2

Here, (i) follows from Lemma 1.5, (ii) follows from lpi;&lpi_l <
1.-1

p~ ;" as noted, and (iii) follows from Lemma 1.4. O

Next we will construct nets Ty for N > Clog m for sufficiently
large constant C that will show show that the contribution of those
terms to (9) is negligible. At this scale we have |Tn| = 22V =
exp(poly(m)), while there are only m vectors a;. Consequently our
net will simply just approximate each inner product |{a;, x)| up to
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additive § accuracy for properly chosen 8. This creates (1/6)™ net
centers, which is much less than the allowed 22" > exp(poly(m)).

LEmMA 3.7 (LARGE N). Consider group leverage score overesti-
mates T and corresponding weights w (Definition 1.3), x € B, and p;

given by (3). For all N > 0, there is Ty € B with |Ty| < 22" and
d(x, Ty) <2272 '/™ foralix € B.

Proor. Fixan N.Recall from previous arguments (e.g. Lemma 3.6)
that

1

1p,21P; 'gi(x)? < 1p,21p; 'rix TATWAx < p~1 < 1,

by Lemmas 1.4 and 1.5. For each x € Band § = 2’2N/m, consider
the vector 0¥ € R¥ defined as

oF € 5| 1p,21p; ' gi ()2 /5]

Note that oY can only be one of at most (1/8)k < (1/8)™ distinct
vectors. Thus, we can pick Ty to contain one representative x € B

for each distinct 07, and |Tn| < 22" because (1/6)™ = 22" For
any x € B, let y be such that v¥ = v*. The result then follows as

1/2
dxTy) <dxy) =| D) Lpenypi (G607 = iv)*)’
ie[k] s
<| D 1penypi 19i(0% = gi()? - (9:(x)* + i (1))
ic[k] y
<| 2 s ra| < VoUfg () + fo(w) < V25
<2. 2[‘]2N71/’”. O

This means that the terms N > 4(log m + log, log(1/¢)) in (9)
have low contribution, as

aN/2 g =2V m

N>4(log m+log, log(1/¢))
We conclude this section by bounding the remaining terms in (9).

LEMMA 3.8. Consider group leverage score overestimates T and
corresponding weights w (Definition 1.3), x € B, and probabilities p;
given by (3). For all N > 0, there is Ty € B with |Ty| < 22" and
d(x,Ty) < C4p’1/22’N/2\/10g m where Cy is an absolute constant.

The proof of this lemma uses the following result, which gives
a covering of the unit ball with balls of radius 5 in the norm
maX;e [y, [(wi, x)| for unit vectors uy, ..., um € R™.

THEOREM 3.9 (THEOREM VL1 OF [1]). Let uy,...,u;m € R™ be
vectors with ||uj||2 < 1 foralli € [m], andn > 0. There is a universal
constant Cs such that the ball By & {x:x € R, ||x|l2 < 1} can be
covered with at most S = mC3/"" subsets Py,...,Ps satisfying

max  [(u,x —y)| < 7.

ie[m].je[S]
x,y€P;
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PROOF OF LEMMA 3.8. Define u; = rl._l/z (ATWA)~1/2g; for j €

Si. Note that for any x € B we have ||(ATWA)1/2x||z < 1by
Lemma 1.4 and x € B. In addition,

(aj,x) = (ATWA)"Y2a;, (ATWA)Y2x) = !/ (u;, (ATWA)/2x)
and |[uj|l2 =7, "a. “aj <1 efinition 1.3. Let n sat-
d|lujllz = ;'] (ATWA)~la; < 1 by Definiti Let

isfy mci‘/’72 = 22N, son = \/C_32_N/2\/10g2 m, and let Py,..., Ps be
the sets guaranteed by Theorem 3.9 for the vectors u; and parameter
n. Note that the above facts guarantee
ma uj,z—w)| <n. 11
e I(ui N<n (11)
z,weP;

For each i let v; be an arbitrary point from P;, and let Tyy be the set
of (ATWA)~1/2y; for all i.

For x € B, let P; be a subset containing (ATWA)I/Zx. Such a j
must exist since P;, . . . P cover the unit ball and || (ATWA)!/2x||, <
1.Lety = (ATWA)_l/ZzJj. Then

1/2
d(x,Ty) <d(xy) =| > Lpenypi (0:(0)7 - g:i(m)H)?
ie[k]

1/2
s ( Z 1p21307 " %%X(gi(x) - gi(y)%(gi(x) +gi(y))2)
ie[k] '

1/2

i

= ‘%J Lpeenypi max(aj,x = 4)*(9i(x) +9i(y)*
L

—
=

1/2

(i) i

< (Z 1(p,#1}P; 1Ti’72(gi(x)+gi(y))2)
ielk]

1/2

(iii)

< np ”2(2 2(9i(x)* +9:(1)*)
ie[k]

< 217/3_1/2 = 2\/C_3p_1/22_N/2\/10g2 m.
Here, (i) follows from |g; (x)—gi(y)| < gi(x~y) = maxjeg, [{aj, x—
y)|, (ii) holds because (ATWA) /2, (ATWA)I/Zy € Pjand
(aj,x — y>2 = 1;(uj, (ATWA)I/Zx - (ATWA)I/zy)2 < rmz
by Equation (11) and (ii) follows from the choice of p;. The claim
follows from choosing Cy = 2+/C3 (log 2)~1/2. ]

With these facts, we now complete the proof of Theorem 3.1.

PrOOF OF THEOREM 3.1. Observe that we may assume ¢ > 1/m,
as otherwise we can simply return G as our output sparsifier. Sim-
ilarly, we may assume m > n, or else G itself is a good enough
sparsifier. We bound the constant y in Theorem 3.4 using Lem-
mas 3.6 to 3.8. For the sets T, Ts+1, . .. constructed in Lemmas 3.7
and 3.8, we have

y < sup 282 . d(x,0) + Z 2N24(x, Ty). 12)
X€B N>s
For the choices s = [log, logn] and Z = 2log(8(1+Cy)m), write
Z 2N (x, Ty) = Z oN24(x, Ty) + Z 2N124(x, Ty).

N>s Nels.Z] N>Z
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Lemma 3.7 implies

DN a Ty s 2 Y 2N m g g KT o2 Gm)
N>Z N>Z N>Z
1 £

< .
100Cam ~— 100C2

<

On the other hand, for p = C;e7%log® m Lemma 3.8 implies

Z 2N/2d(x,TN)S Z C4p_1/2\/10gm

Nels,Z] Nels,Z]
- CyZer/logm _ 2C4elog(8(1+C2)m)
a \/CTlog3/2m VCilogm '

Finally, Lemma 3.6 implies d(x, 0) < p~1/2

and using m > n yields
< 2eq/logm
y <
VCilog®/2 m

As m > 2 without loss of generality we have

. Plugging these into (12)

2C4elog(8(1 + Cy)m) £
\/CTllog m 100C,

8(1 +C2)m < m4+10g2(1+C2) .

the above yields

2¢ N (8+2logy(1+Cy))Cye £

< = .
Ve VG 100C;
For C; = 2C3(2 + (8 + 2log, (1 + C2))C4)? the above gives y < &
the result follows from Theorem 3.4. O

We finally discuss how to iterate the bound Theorem 3.1 to con-
struct hypergraph sparsifiers with O(ne=2log?(n/¢)) edges. We
define Gy = G and ko = k, and iteratively construct a new hy-
pergraph Gi;1 from G; with at most ki1 = 0.9k; hyperedges. To
do so, we call Theorem 3.1 on G; and ensure the output Gj;1 is

3
a (1 + ¢;)-spectral sparsifier of G; with ¢; = © (1 / nlokﬁ) For

an appropriately-chosen implicit constant the output has at most
0.9k; edges as desired. If this iteration is continued until G, has
O(ne? log3 m) edges, Gr is a ]_[lrz_ol(l + ¢;)-sparsifier of G, where

r—1 r—1

l—[(l +¢&i) < exp Z ei)

i=0 i=0

nlog®m
<expO|y|———
"k
=expO(e) =1+ 0(e),
implying the result.

4 IMPROVED SIZE BOUND FROM CHAINING

In this section, we obtain an improved size bound of

O(ne~%log mlog r) using a more sophisticated chaining argument.
Before we begin, it is helpful to describe how we differ from the
result obtained in Section 3. Informally, the analysis of the previous
section constructed sets T; where sup,.¢g d(x, T;) was sufficiently
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small. These give a bound on y, as

y < sup 25/2 -d(x,0) + Z 2N/2d(x,TN)

X€EB N>s
< 2502 (sup d(x, 6)) + Z oN/2 (sup d(x, TN)) .
x€B N>s x€B

Constructing the sets T; in turn is relatively straightforward, as a
simple greedy packing argument reduces the problem to estimating
the entropy numbers' of B with respect to the distance d.

Unfortunately, the bounds obtained by this technique (first de-
veloped in an explicit form by Dudley [12]) are suboptimal in many
settings: our approach for bounding sup, g d(x, T;) is essentially
tight (Theorem 3.9 is tight up to constant factors in the exponent,
as is stated in Theorem 6.1 of [1]), and the analysis loses from up to
O(log m) levels of the scale parameter N. On the other hand, the
expression for y critically takes the supremum over the sum of all
scales: if only a small number of the values d(x, T;) can be near
the supremum for a fixed x, the resulting bound we obtain can be
significantly tighter.

Actually exploiting this potential for amortization is challenging
however, as doing so seems to require additional geometric struc-
ture of the metric distance d. In this section we employ a chaining
framework of [37] based on growth functionals, a powerful tech-
nique which uses the geometry of the space of events to control y.
This framework is based on providing a sequence of functions F;
satisfying a certain growth condition. Our approach in this section
mirrors previous applications [28, 37] of the framework in proving
matrix concentration bounds for sums of rank-1 matrices. However,
our setting introduces additional complications beyond the matrix
setting, which we briefly discuss here.

A key source of difficulty in applying the technique of [28, 37]
is the fact that fg (x) is not strongly convex. This strongly differs
from the rank-1 Chernoff setting, where the sum of rank-1 matrices
yields x T (¥; vjv;) x, which is strongly convex in the matrix norm
formed by }; viviT. Strong convexity enables us to prove lower
bounds on the difference of growth functionals (??): in the rank-
1 matrix case this property immediately allows us to obtain the
optimal sparsity bounds. Without this property (as noted in [37]),
the growth functional framework seems to break down at p =
£ % log? m. While we have access to a natural matrix ATWA to
perform the analysis in, it unfortunately does not approximate
fg (x) well enough for our purposes: for some vectors x we may
have xTATWAx < fg(x). Thus, we perform our analysis in a
“mixed” (w + f)-norm which contains both AT WA and the energy
fg(x) and establish a strong convexity bound which suffices for
our purposes.

A secondary issue related to strong convexity arises from the
distance function d defined in the previous section. A feature of
the growth functional framework its use of “well-separated” sets
(??), which have small d-diameter but are in some sense “far apart”
under d. However, the analysis of our growth functional requires a
stronger property: namely, that convex hulls of the well-separated

The n*”* entropy number of a set B with respect to distance d is the smallest € such
that there exists a set T with |T| < 22" and d(x,T) < ¢ forall x € B. Lemma 3.8
in fact bounds exactly these entropy numbers, although we do not call them that
explicitly.
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sets have small d-diameter. If d(x,-) (for every fixed x) were a
convex function, this fact would hold immediately: however we
believe that convex combinations of points may grow the d-distance
arbitrarily. To avoid this issue, we introduce a carefully designed
proxy distance function d which overestimates d. We show that
while d( (x,-) is still not convex (and in fact does not satisfy the
triangle inequality) it has these properties in an approximate sense
(Lemmas 4.2 and 4.3 in the full version) which suffices for our
analysis.
We state the main technical result of this section.

THEOREM 4.1. Let G = (S, A) be a unit hypergraph, and let T
be given group leverage scores (Definition 1.3) with valid weights
w (which do not need to be known). For any constant C, there is
an absolute constant C13 (which depends on C) such that the ma-
trix hypergraph H = Subsample(G, 7, p) (Algorithm 1) with p =
Ci3e2log mlog r satisfies with probability at least 1 — n~C the fol-
lowing:

(1-e)fg(x) < fyr(x) < (1 +¢)fpy(x) forallx € R"

The proof of this theorem is deferred to the full version in https:
//arxiv.org/pdf/2209.10539v1.pdf.
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