
Chaining, Group Leverage Score Overestimates, and Fast Spectral
Hypergraph Sparsification∗

Arun Jambulapati
jmblpati@uw.edu

University of Washington
USA

Yang P. Liu
yangpliu@stanford.edu
Stanford University

USA

Aaron Sidford
sidford@stanford.edu
Stanford University

USA

ABSTRACT
We present an algorithm that given any =-vertex,<-edge, rank A
hypergraph constructs a spectral sparsi�er with$ (=Y�2 log= log A)
hyperedges in nearly-linear e$ (<A) time. This improves in both size
and e�ciency over a line of work [Bansal-Svensson-Trevisan 2019,
Kapralov-Krauthgamer-Tardos-Yoshida 2021] for which the previ-
ous best size was $ (min{=Y�4 log3 =,=A3Y�2 log=}) and runtime
was e$ (<A + =$ (1)

).

CCS CONCEPTS
• Theory of computation! Sparsi�cation and spanners.

KEYWORDS
hypergraph sparsi�cation, generic chaining, leverage scores
ACM Reference Format:
Arun Jambulapati, Yang P. Liu, and Aaron Sidford. 2023. Chaining, Group
Leverage Score Overestimates, and Fast Spectral Hypergraph Sparsi�cation.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC ’23), June 20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3564246.3585136

1 INTRODUCTION
The problem of sparsi�cation asks to reduce the size of an object
while preserving some desired properties. For example, a cut spar-
si�er reduces the number of edges in a graph while approximately
preserving the total weight of each cut, and a spectral sparsi�er
reduces the number of edges in a graph while approximately pre-
serving the spectral form of the Laplacian, or equivalently the
electrical energy of any potentials. Over the last few decades, a
variety of e�cient and e�ective algorithms have been developed
for these notions of graph sparsi�cation [3, 4, 33].

In recent years there has been a variety of work seeking to
sparsify more complex objectives (see e.g. [26]). One such example
is the problem of spectral hypergraph sparsi�cation (see [31] for
discussion), which has seen signi�cant attention. In this setting,
formalized by [31], we have a hypergraph G = (+ , ⇢, E), where +
denotes a �nite vertex set, ⇢ denotes the edge set, and E 2 R⇢

�0
∗The full version is available at https://arxiv.org/pdf/2209.10539v1.pdf.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00
https://doi.org/10.1145/3564246.3585136

denotes non-negative edge weights. Here the edge set is a collection
of subsets of + of size at least two, i.e. ⇢ ✓ {0, 1}+ and |(| � 2 for
all (2 ⇢ and ⌧ is said to be of rank A if the cardinality of each
hyperedge is at most A , i.e. |(|  A for all (2 ⇢. Consequently, when
A = 2 a hypergraph is simply an undirected graph. For every vector
G 2 R+ we de�ne its associated energy in ⌧ as

5G (G)
def=

’
(2⇢

E(max
8, 92(

(G8 � G 9)
2 . (1)

The problem of spectral hypergraph sparsi�cation asks to produce
a hypergraph H consisting of a small subset of the hyperedges of
G, possibly reweighted, whose energy approximates the energy of
G on all vectors G 2 R= up to a (1+Y) multiplicative approximation.

When A = 2, spectral hypergraph sparsi�cation exactly reduces
to spectral sparsi�cation, where it is known that a random-sampling
algorithm can produce a sparsi�er with $ (=Y�2 log=) edges [33]
(it is known how to improve this bound to $ (=Y�2) with more
adaptive edge choices [3]). For spectral hypergraph sparsi�cation,
a line of work [2, 16, 17] has shown that every hypergraph G

admits a sparsi�er with a nearly-linear $ (=Y�4 log3 =) edges, and
is surprisingly independent of the rank A . Additionally, [16] proved
that there is a random-sampling algorithm that constructs such a
sparsi�er with high probability in time e$ (<A + =$ (1)

).
Building on this line of work, in particular [16], the main result

of this paper is the following Theorem 1.1.

T������ 1.1 (H��������� S�������������). There is an algo-
rithm that given a rank A hypergraph G = (+ , ⇢, E) with = ver-
tices computes a (1 + Y)-approximate spectral hypergraph sparsi-
�er with $ (=Y�2 log= log A) hyperedges in nearly-linear time, i.e.e$ (

Õ
(2⇢ |(|), with high probability in =.

This result consists of two key ingredients. First, we introduce a
broad class of sampling probabilities which we call group leverage
score overestimates (De�nition 1.3). While the sampling weights in
[16] took time e$ (<A +=$ (1)

) to calculate, we show how to compute
our more general weights in nearly-linear, e$ (<A), time. Second, we
use the generic chaining machinery developed by Talagrand [37] to
show that that the sampling algorithm of [16], with group leverage
score overestimates, actually produces a (1+Y)-spectral hypergraph
sparsi�er with $ (=Y�2 log= log A) edges. This improves over the
previous bounds of $ (=Y�4 log3 =) [16], and $ (=Y�2A3 log=) [2].

Paper Organization. In the remainder of the introduction we
discuss our high level setup required to show Theorem 1.1. After
providing notation in Section 1.1, in Section 1.2 we describe a more
general matrix formulation of hypergraph sparsi�cation that we
workwith, whichwe call amatrix hypergraph. In Section 1.3we then
introduce our new de�nition of group leverage score overestimates

https://doi.org/10.1145/3564246.3585136
https://arxiv.org/pdf/2209.10539v1.pdf
https://doi.org/10.1145/3564246.3585136

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arun Jambulapati, Yang P. Liu, and Aaron Sidford

(De�nition 1.3) which can be computed e�ciently and still su�ces
for sampling when constructing sparsi�ers. Then, in Section 1.4, we
provide a high-level overview of the ideas behind generic chaining,
which we use to improve the size bound to $ (=Y�2 log= log A).

After the introduction, we provide our e�cient algorithm for
computing group leverage score overestimates in Section 2. In
Section 3, we analyze a sampling algorithm that produces a spec-
tral hypergraph sparsi�er by using a simpli�ed form of chaining
known as Dudley’s inequality. The number of hyperedges will be
$ (=Y�2 log3 =). In Section 4 we use the powerful generic chain-
ing machinery presented in [37], speci�cally the growth functional
framework, to improve the hyperedge bound to$ (=Y�2 log= log A).

1.1 General Notation
Throughout, we use ⇠ (or ⇠ with a subscript denoting a lemma,
theorem, or equation number for clarity) to denote a universal
constant. We let Z�U = Z \ [U, +1) and R�U = R \ [U, +1). We
de�ne Æ18 to be indicator vectors for coordinate 8 , and let Æ0 be the
zero vector. We let nnz(A) denote the number of nonzero entries in
a matrixA. We use † to denote the Moore-Penrose pseudoinverse of
a matrix.. We assume all logs are base 4 unless otherwise denoted.
We say that an algorithm succeeds with high probability in = if
for any constant ⇠ � 1, there is some choice of constants in the
algorithm that makes it have success probability at least 1 � =�⇠ .
The reader should think of ⇠ as �xed but arbitrary throughout the
paper. The constants in our main result Theorem 1.1 will depend
on this constant ⇠ (see Theorem 3.4).

1.2 A Matrix Generalization of Hypergraph
Sparsi�cation

We introduce a generalization of hypergraph sparsi�cation to gen-
eral matrices that we use throughout the paper. Let 01, . . . ,0< 2 R=
denote the rows of a matrix A 2 R<⇥= , let S = {(1, . . . , (: } be a
partition of [<] into : subsets, so : = |S|, and let each set (8 have
a non-negative weight E8 , forming a vector E 2 R: . We denote the
tuple of the matrix A, the partition S, and the weights E as the
(matrix) hypergraph G = (S,A, E) (henceforth referred to simply
as a hypergraph). We de�ne the rank of a matrix hypergraph as
A = max(2S |(|. We will assume A � 2 throughout, as we can du-
plicate rows 08 . We let 5G : R3 ! R denote the energy function of
G where 5G (G), the energy of G of G , is de�ned as

5G (G)
def=

’
82 [:]

E8 max
92(8
h0 9 , Gi

2 . (2)

Note that (2) generalizes the hypergraph energy in (1), because
for a hypergraph with = = |+ | vertices and : = |⇢ | hyperedges,
a hyperedge of weight E containing the vertices � ✓ + can be
captured with the vectors 08 = (Æ1D1 �

Æ1D2) for all pairs D1,D2 2 �
with weight E . The rank of the matrix hypergraph will be at most
A (A�1)/2 if the hypergraph has rank A . By de�nition, in this case the
matrixAwill be the incidence matrix of somemultigraph⌧ . Wewill
call matrix hypergraphs where A comes from a normal hypergraph
spectral sparsi�cation instance graphical hypergraphs. We will use
the term graphical hypergraphs primarily in Theorem 2.6, when
we show how to e�ciently compute sampling weights for them.

We show that this matrix generalization of hypergraph energy
can be sparsi�ed essentially as well as graphical hypergraphs. Here,
we say that a matrix hypergraphH is a (1+Y)-approximate spectral
sparsi�er of G if (1 + Y)�1 5H(G)  5G (G)  (1 + Y) 5H(G) for all
G 2 R= .

T������ 1.2 (M����� ���������� ��������������). There is
an algorithm that given a matrix hypergraph G = (S,A, E) with
A 2 R<⇥= , and A = max(2S |(| computes a (1 + Y)-approximate
spectral hypergraph sparsi�er with $ (=Y�2 log< log A) hyperedges
in e$ (nnz(A) + =l) time.

Unit matrix hypergraphs: A nice bene�t of the general matrix
setup is that we may assume that the base hypergraph G = (S,A, E)
has unit weights, i.e. all E8 = 1. This is without loss of generality, by
scaling rows of A, i.e. A V1/2A for V = diag(E). We make this
assumption for the remainder of the paper, and denote unit matrix
hypergraphs as G = (S,A), omitting the E .

1.3 Group Leverage Score Overestimates
A critical component of the $ (=Y�4 log3 =) size sparsi�er in the
previous work was the balanced weight assignment [16, De�nition
5.1] (elaborated on after De�nition 1.3) This was used to prove that
the sum of “importances” of the hyperedges was bounded by at
most =, generalizing the notion of leverage scores in graphs. In
this paper, we introduce a weaker version of a balanced weight
assignment, in that we only enforce a one-sided inequality and a
total size bound, instead of the substantially tighter condition in
[16].

De�nition 1.3 (Group Leverage Score Overestimates). We say that
g 2 RS

�0 are a-(bounded group leverage score) overestimates for a
unit hypergraph G = (S,A) with A 2 R<⇥= if kg k1  a and there
exist an associated set of weights,F 2 R<

�0, such that
Õ

92(8 F 9 = 1
for all 8 2 [:], and max92(8 0

>
9 (A

>WA)†0 9  g8 for all 8 2 [:]
whereW = diag(F).

Our goal is to give an algorithm which computes group leverage
score overestimates a with

Õ
82 [:] a8 = $ (=). Compared to our

De�nition 1.3, the balanced weight assignment in [16, De�nition
5.1] enforced that for all 9 2 (8 , eitherF 9 = 0 or 0>9 (A

>WA)†0 9 2
[g8/W, g8] for a constant W = $ (1), without initially enforcing thatÕ
82 [:] g8  $ (=). However, it is not di�cult to show that this

stronger condition implies that
Õ
82 [:] g8  W= (see [16, Lemma

6.1]). One reason the balanced weight assignment is a natural def-
inition is that when W = 1, the weights F 2 R< producing the
assignment are a minimizer of the convex optimization problem

min
F2R<

�0Õ
9 2(8

F9=1 for all 82 [:]

� log det(A>WA) .

This is essentially the spanning tree potential in [16], by the matrix
tree theorem.

Nonetheless, we show that the weaker notion in De�nition 1.3
still su�ces for sampling, as long as

Õ
82 [:] g8  $ (=). Precisely, we

analyze the following simple sampling algorithm (variants of which
were studied in [16, 33]) where an edge 4 is kept with probability

Chaining, Group Leverage Score Overestimates, and Fast Spectral Hypergraph Sparsification STOC ’23, June 20–23, 2023, Orlando, FL, USA

?8 de�ned as

?8 =

(
1/2 if d · g8  1/2
1 otherwise

(3)

for an oversampling parameter d , and upweighted by a factor of
?�18 so that its value is the same in expectation.

Algorithm 1: Subsample(G = (S,A), g 2 R:
�0, d)

input :Rank A unit hypergraph G = (S,A), group leverage
score overestimates g (De�nition 1.3), and
oversampling parameter d

1 Initialize a vector E 2 R: .
2 for 8 2 [:] do
3 ?8 1/2 if d · g8  1 and 1 otherwise.
4 Set E 08 ?�18 with probability ?8 , and 0 otherwise.
5 end
6 Return H

def= (S,A, E 0). // Can remove all sets (8 of

S in H where E 08 = 0

To understand why group leverage scores are useful for sub-
sampling, we introduce the following facts which ultimately show
that group leverage score overestimates upper bound the maximum
contribution of each coordinate 8 2 [:] to the total energy.

L���� 1.4. For any unit hypergraph G = (S,A) with A 2 R<⇥=
and F 2 R<

�0 where
Õ

92(8 F 9 = 1 for all 8 2 [:], G>A>WAG 
5G (G) for all G 2 R= .

P����. Note that
Õ

92(8 F 9 h0 9 , Gi2  max92(8 h0 9 , Gi
2 for all

8 2 [:] since
Õ

92(8 F 9 = 1. Hence

G>A>WAG =
’
82 [:]

’
92(8

F 9 h0 9 , Gi
2


’
82 [:]

max
92(8
h0 9 , Gi

2
 5G (G).

⇤

L���� 1.5. For any group leverage scores g 2 RS
�0 and associated

weights F 2 R<
�0 for unit hypergraph G = (S,A) with A 2 R<⇥= ,

max92(8 h0 9 , Gi
2
 g8 · G>A>WAG for all 8 2 [:].

P����. We can assume that G>A>WAG = 1 by scaling. Note
that

max
G>A>WAG=1

h0 9 , Gi
2 = 0>9 (A

>WA)†0 9  g8

for all 9 2 (8 by De�nition 1.3. ⇤

Combining Lemmas 1.4 and 1.5 shows that max92(8 h0 9 , Gi
2


g8 5G (G), for all G , i.e. coordinate 8 2 [:] can only contribute g8 frac-
tion of the hypergraph energy. Intuitively, this means that sampling
proportional to g8 should produce a sparsi�er, though formalizing
this intuition and achieving tight bounds is challenging. This is the
main goal of Sections 3 and 4.

It is worth remarking on some general connections between
the group leverage scores de�ned in De�nition 1.3, and similar
notions de�ned for Lewis weights. In general, there are several
settings where iterative/contractive procedures produce weights
satisfying a one-sided bound, and where such a bound su�ces for
applications. Our iterative algorithm for computing group leverage
score overestimates (Algorithm 2) is inspired by the algorithm of

[8] for computing an approximate John ellipse, corresponding to ✓1
Lewis weights [11]. The notion of approximate weights in [8] is very
similar to De�nition 1.3. Additionally, a one-sided ✓? Lewis weight
computation su�ced for the algorithm of [14] for ✓? regression.

1.4 Overview of Chaining
In the section we introduce the basic intuition behind chaining
methods, in particular when applied to analyze our sparsi�cation
algorithm which samples by group leverage score overestimates
(Algorithm 1). The sampling algorithm proposed in Algorithm 1
keeps a hyperedge (8 2 S and assigns it weight ?�18 for some
probability ?8 to produce a hypergraph H . We want to prove that,
for an appropriate choice of d , the value of 5G (G) is preserved up to
a multiplicative (1 + Y) approximation for all G 2 R= . Even though
it is straightforward to show that 5G (G) is preserved up to (1 + Y)-
multiplicatively for each �xed G 2 R= , there are in�nitely many
G 2 R= which prevents us from applying a union bound. Even a
naïve discretization leaves exponentially many G to check.

The idea behind chaining is to introduce a sequence of �ner and
�ner n-nets to approximate each G at di�erent scales. De�ne ⌫ as
the unit ball of 5G , i.e. ⌫ = {G : 5G (G)  1}. Consider �nite subsets
)0,)1, · · · ✓ ⌫ of increasing size, which are our nets. For each # � 0
let G# 2)# be the closest point to G in the metric 3 (·, ·) which we
de�ne shortly. Write

5G (G) = 5G (G0) +
’
�0

5G (G#+1) � 5G (G#),

where the sum converges because G# ! G . LetH be the subsam-
pled hypergraph, so we get

|5G (G) � 5H(G) |  |5G (G0) � 5H(G0) | (4)

+

’
�0

| (5G (G#+1) � 5G (G#)) � (5H(G#+1) � 5H(G#)) | (5)

by the triangle inequality. Thuswewant to bound | (5G (~)�5G (I))�
(5H(~) � 5H(I)) | for several pairs (~, I). To analyze this, note that
EH[(5G (~) � 5G (I)) � (5H(~) � 5H(I))] = 0 by the de�nition of
H . If we de�ne a distance

3 (~, I) := VarH[5H(~) � 5H(I)]1/2

= EH[((5G (~) � 5G (I)) � (5H(~) � 5H(I)))2]1/2,

by Hoe�ding’s inequality we know that

Pr[| (5G (~) � 5G (I)) � (5H(~) � 5H(I)) | � ^3 (~, I)]

 2 exp(�2^2).

Hence, the probability that for # � 0, parameter^# , and all G#+1 2
)#+1, G# 2)# ,

| (5G (G#+1) � 5G (G#)) � (5H(G#+1) � 5H(G#)) | (6)
 ^#3 (G# , G#+1) (7)

is at least 1 � 2|)# | |)#+1 | exp(�^2#). At this point, up to constants,
it makes sense to set |)# | = 22

#
for all # , and ^# = ⇠ · 2# /2

for su�ciently large constant ⇠ , so that 2|)# | |)#+1 | exp(�^2#) 

exp(�22
#
). Thus (7) holds for all # � 0 by a union bound. Plug-

ging this all back into (5) and using that 3 (·, ·) satis�es the triangle
inequality (at least up to constants), proves the main chaining theo-
rem, which we formally state in Theorem 3.4.

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arun Jambulapati, Yang P. Liu, and Aaron Sidford

With the chaining theorem in hand, proving the desired sam-
pling bounds in Theorem 1.1 reduces to constructing sets)# such
that the distances3 (G,)#) = min~2)# 3 (G,~) are suitably bounded.
Surprisingly, the celebrated majorizing measures theorem [13, 34]
says in variants of the above setting when the sampling distribution
is Gaussian instead of Bernoulli (as in our case), this proof method
is optimal, i.e. there exist nets)# with |)# | = 22

#
that achieve the

true optimal bound. We also believe that in our hypergraph spar-
si�cation setting, the Gaussian and Bernoulli sampling processes
behave similarly. However, the majorizing measures theorem does
not shed light on how to construct the sets)# . Many previous
works on chaining have thus settled for suboptimal bounds such
as Dudley’s inequality [12], which we use in Section 3 to achieve
an $ (=Y�2 log3 =) bound, or rely on analysis frameworks which
require additional structure. Towards achieving a better bound in
Section 4, we apply a powerful growth function framework of Ta-
lagrand which shows how to construct the sets)# given access
to a family of functions satisfying a certain growth condition. We
defer a more detailed explanation of our application of the growth
function framework and deviations from prior work (in particular,
the proof of matrix Cherno� for rank one matrices [28, 37]) to the
start of Section 4.

1.5 Related Work
We discuss relevant related work on chaining and sparsi�cation by
sampling.

Hypergraph spectral sparsi�cation. Previous works showed that
hypergraphs admit sparsi�ers with$ (=3Y�2) [31],$ (=Y�2A3 log=)
[2], $ (=A (Y�1 log=)$ (1)

) [17], and �nally $ (=Y�4 log3 =) [16] hy-
peredges. The independent and concurrent work of Lee [24] also
used chaining to show that hypergraphs admit spectral sparsi�ers
with $ (=Y�2 log= log A) hyperedges, matching our Theorem 1.1.
The result [2] also used chaining methods, however, their chaining
was over the space of matrices, instead of vectors as is done in this
paper.

Hypergraph cut sparsi�cation. The problem of hypergraph cut
sparsi�cation [6, 19] asks to maintain the energy of the hypergraph
(see (1)), but only for vectors G 2 {0, 1}= . This generalizes the
notion of cut sparsi�cation in graphs. In this setting it is known
how to construct hypergraph cut sparsi�ers with $ (=Y�2 log=)
edges with a random sampling algorithm based on a di�erent no-
tion of “balanced weight assignments” [7]. Their algorithm runs
in time e$ (<A + =$ (1)

). Because hypergraph spectral sparsi�ca-
tion strictly generalizes cut sparsi�cation, our Theorem 1.1 pro-
duces a hypergraph cut sparsi�er in runtime e$ (<A), albeit with
$ (=Y�2 log= log A) hyperedges instead of $ (=Y�2 log=) as shown
in [7].

Other sparsi�cation objectives. In general, one can study sparsi�-
cation of functions 5 : R= ! R�0 de�ned as 5 (G) =

Õ
82 [:] 58 (G).

When 58 (G) = h08 , Gi2 for a vector 08 2 R= , this is exactly spec-
tral sparsi�cation of matrices and is now well-understood using
tools such as the matrix Cherno� bound. On the contrary, for other
functions 58 (G), the best known sparsi�cation results often pro-
ceed via chaining methods. Nearly tight (up to logarithmic factors)

sparsi�cation results are known for sparsi�cation of ✓? norms of
matrices, i.e. 5 (G) = kAG k?? =

Õ
82 [:] |h08 , Gi |

? for all ? 2 [0,1)
[5, 29, 30, 35, 36], and the proofs generally rely on combining chain-
ing methods with ✓? Lewis weights, a natural importance measure
for rows ofA analogous to our group leverage scores (De�nition 1.3).
For more discussion on ✓? norm sparsi�cation, see [11].

Sparsi�cation of several additional convex functions, including
Tukey and Huber losses, gamma functions for ✓? regression, Orlicz
norms, etc., is studied in [26]. The analysis uses chaining methods,
among other techniques.

Future work. The authors are optimistic that the methods in
[16], this paper, and [36], can provide sparsi�cation results for
“✓? hypergraph sparsi�cation” for ? 2 [1, 2], i.e. when the energy
function is 5G (G)

def=
Õ
82 [:] max92(8 |h0 9 , Gi |

? , or even beyond.
This paper leaves these questions as an interesting direction for
future work.

2 GROUP LEVERAGE SCORE
OVERESTIMATES

In this section we provide and analyze e�cient algorithms for
computing group leverage score overestimates as de�ned in De�-
nition 1.3. Our principal subroutine is the following Algorithm 2
which turns an algorithm for computing leverage score overesti-
mates for row-reweightings of a matrix A into group leverage score
overestimates for a hypergraph induced by A. In this section we
introduce leverage scores, their overestimates, and procedures for
computing them, introduce and analyze Algorithm 2, and then use
these results to compute group leverages score overestimates for
matrix hypergraphs and graphical hypergraphs.

First, we introduce leverage scores (De�nition 2.1) as well as
leverage score overestimates and algorithms for computing them
(De�nition 2.2).

De�nition 2.1 (Leverage scores). For a matrix A 2 R<⇥= , the
leverage score of row 8 2 [<] is de�ned as f8 (A)

def= 0>8 (A
>A)†08 .

Let f (A) 2 R< be the corresponding vector of leverage scores.

It is standard that
Õ

92 [<] f 9 (A) = rank(A)  =. Additionally,
f8 (A) 2 [0, 1] and f8 (A) = 0 if and only if 08 = Æ0. In all hypergraphs
in this paper we assume that it is not the case that 08 = Æ0 as it would
make no contribution to the energy. It is known how to estimate
the leverage scores to constant accuracy in e$ (1) calls to linear
system solvers for A>DA for positive diagonal matrices D (see
Theorem 2.3).

In the following de�nition we overload the term “overestimate”
with De�nition 1.3 when it is clear if the subject is a matrix or a
hypergraph.

De�nition 2.2 (Leverage Score Overestimates). We call ef 2 R< , a-
(bounded leverage score) overestimates forA 2 R<⇥= if kef k1  a andef � f (A) entrywise. Further, we call a procedure A a a-(bounded
leverage score) overestimator for A if on input F 2 R<

�0 it outputs
A(F) 2 R<

�0 which are a-bounded leverage score overestimates

for fA (F)
def= f (W1/2A) whereW def= diag(F).

Leverage score overestimates have played a prominent role in
sparsifcation and linear system solving [9, 15, 18, 20–23, 27, 32]. Our

Chaining, Group Leverage Score Overestimates, and Fast Spectral Hypergraph Sparsification STOC ’23, June 20–23, 2023, Orlando, FL, USA

choice of notation in De�nition 2.2 is strongly in�uenced by these
works. Further, there are known e�cient algorithms for computing
leverage score overestimates in general and faster algorithms in
the case of graphs as summarized in the following Theorem 2.3.

T������ 2.3 (L������� ����� �������������, [10, 25, 33]).
There is an algorithm that given a matrix A 2 R<⇥= produces $ (=)-
overestimates of A in e$ (nnz(A) + =l) time with high probability
in =. If A is additionally the weighted incidence matrix of a graph,
i.e. every row 8 is all zero except for a singleF8 and a single �F8 for
F8 < 0, then the runtime improves to e$ (nnz(A)).

P����. In both cases, the cited works compute bf 2 R<
�0 withbf 9 2 [(1 � X)f 9 (A), (1 + X)f 9 (A)] with high probability in = for

any X > 0 in the stated runtimes multiplied by$ (poly(1/X)). Since
kf (A)k1 = rank(A)  = the result follows by invoking these
algorithms for constant X > 0 and outputting (1 � X)�1bf . ⇤

Given Theorem 2.3, it su�ces to provide an algorithm which
carefully combines e$ (1) overestimates for matrices to produce
overestimates for hypergraphs. We provide an algorithm which
does this in Algorithm 2. This algorithm is a natural generaliza-
tion of the algorithm of [8] for computing an approximate John
ellipse mentioned in Section 1.3. The procedure simply iterates on
a weight vector F (C) , computing ef (C) as leverage score overesti-
mates for fA (F) (Line 2), and then letting F (C+1) be the natural
re-normalization of those weights (Line 4). The procedure then
outputs the average of these weights (Line 7) as the weights as-
sociated with an overestimate g 2 R:

�0 where each entry of g is
an appropriately scaled up aggregation of the computed leverage
score overestimates (Line 6).

Algorithm 2: GroupLeverageOverestimate(G =
(S,A),) ,A)

input :Rank A unit hypergraph G = (S,A) with A 2 R<⇥= ,
iteration count) 2 Z�1, and a-overestimator A for
A (De�nition 2.2)

1 InitializeF (1)
2 R<
�0 withF

(1)
9 = 1/|(8 | for all 8 2 [:] and

9 2 (8 ;
2 for C = 1 to) do
3 ef (C) A(F (C)

) ; // ef (C) 2 R<
�0 with kef (C) k1  a

and ef (C) � fA (F (C)
) entrywise

4 SetF (C+1)
2 R<>0 withF

(C+1)
9 ef (C)9 /(

Õ
9 0 2(8 ef (C)9 0) for

all 8 2 [:] and 9 2 (8 ;
5 end
6 Set g 2 R:

�0 with
g8 exp() �1 log A) · 1

)
Õ
C 2 [)]

Õ
92(8 ef (C)9 for all 8 2 [:] ;

7 F 1
)

Õ
C 2 [)] F

(C) ;
8 return (g,F) ;

For intuition behind this algorithm, consider the optimal weights
F⇤ and group leverage scores g⇤, corresponding to W = 1 as dis-
cussed in Section 1.3. Precisely, for the hypergraph G = (S,A) we
have that 0>9 (A

>W⇤A)†0 9 = g⇤8 for all 8 2 [:] and 9 2 (8 , unless

F 9 = 0. This can be more compactly written as [fA (F⇤)] 9 = F⇤9 g
⇤
8

for all 8 2 [:] and 9 2 (8 . Because
Õ

92(8 F
⇤
9 = 1, we know that

g⇤8 =
Õ

9 0 2(8 [fA (F
⇤
)] 9 0 and therefore

F⇤9 = [fA (F
⇤
)] 9/

’
9 0 2(8

[fA (F
⇤
)] 9 0

for all 8 2 [:] and 9 2 (8 . Thus, Algorithm 2 can be viewed as
simply updating F (C) as if the above equation was an equality,
using overestimates for leverage score, and then averaging the
weights over all C 2 [)].

In Theorem 2.4 we prove that this algorithm does successfully
compute leverage score overestimates. In fact, the theorem implies
that it su�ces to compute $ (=)-bounded leverage score overesti-
mates of $ (log A) di�erent reweightings of A 2 R<⇥= in order to
compute $ (=)-bounded group leverage score overestimates of a
rank A hypergraph associated with A. The proof is similar to that
of [8] for computing approximate John ellipses and uses a critical
technical tool of it, the convexity of log([fA (F)] 9/F 9) with respect
toF for any 9 .

We note that is not actually clear that g � g⇤ where g are the
overestimates produced by Algorithm 2 for G and g⇤ are the optimal
group leverage scores discussed earlier. It is an interesting open
problem to determine whether or not this is the case and if it is
false, the term “group leverage score overestimates” is perhaps
a misnomer. However, in either case the overestimates produced
are su�cient for hypergraph spectral spars�cation as we prove in
Sections 3 and 4.

T������ 2.4 (G���� L������� S���� O������������� A��
�������). Given any rank A unit hypergraph G = (S,A) with
A 2 R<⇥= ,) 2 Z�1, and a-overestimator A for A (De�nition 2.2),
GroupLeverageOverestimate(G,) ,a) in Algorithm 2 outputs
exp() �1 log A)a-overestimates g 2 RS>0 for G and associated weights
F 2 R<

�0. The algorithm can be implemented in$ (<)) time plus the
time of invoking A on) di�erent inputs.

P����. The runtime is immediate from the pseudocode (there
are) iterations each of which takes time $ (<) plus the time to
invoke A) and consequently it su�ces to show that g are
exp() �1 log A)a-overestimates for G with associated weightsF 2
R<
�0. By the de�nition of g (Line 6) andef (Line 2 and De�nition 2.2)

it follows that

kg k1 = exp() �1 log A) ·
’
82 [:]

266664
1
)

’
C 2 [)]

’
92(8

ef (C)9

377775
=

exp() �1 log A)
)

’
C 2 [)]

kef (C) k1
 exp() �1 log A)a .

Next, for any 8 2 [:] and 9 2 (8 since log([fA (F)] 9/F 9) is convex
inF [8, Lemma 3.4] it follows that

log
✓
[fA (F)] 9

F 9

◆


1
)

’
C 2 [)]

log ©≠
´
[fA (F (C)

)] 9

F (C)
9

™Æ
¨

(convexity [8, Lemma 3.4])

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arun Jambulapati, Yang P. Liu, and Aaron Sidford


1
)

’
C 2 [)]

log ©≠
´
ef (C)9

F (C)
9

™Æ
¨

(De�nition of ef (Line 2 and De�nition 2.2))

=
1
)

’
C 2 [)]

266664
log ©≠

´
F (C+1)
9

F (C)
9

™Æ
¨
+ log ©≠

´
’
9 0 2(8

ef (C)9 0
™Æ
¨
377775


1
)
log ©≠

´
F ()+1)
9

F (1)
9

™Æ
¨
+ log ©≠

´
1
)

’
C 2 [)]

’
9 0 2(8

ef (C)9 0
™Æ
¨

(concavity of log(·))

=
1
)
log ©≠

´
F ()+1)
9

F (1)
9

™Æ
¨
�

1
)
log(A) + log(g8) .

(De�nition of g (Line 6))

Now observe that F ())

9  1 (since leverage scores are at most 1)

andF (1)
9 = 1

|(9 |
�

1
A (by de�nition ofF (1)

9 and A). ThusF ()+1)
9 

A ·F (1)
9 and we have the desired bound as

g8 �
[fA (F)] 9

F 9
= 0>9 (AWA)†0 9 whereW = diag(F) . ⇤

As an immediate consequence of Theorems 2.3 and 2.4 we obtain
an e�cient algorithm for computing group leverage score overesti-
mates for general hypergraphs.

T������ 2.5 (E�������� O������������ �� G������ H�����
������). There is an algorithm which given any rank A unit hyper-
graph G = (S,A) withA 2 R<⇥= in time e$ (nnz(A) +=l) computes
$ (=)-overestimates for G with high probability in =.

P����. Apply Theorem 2.4 with) = ⇥(log A) using Theorem 2.3
to e�ciently implement the $ (=)-overestimator. ⇤

Finally we show how to use Theorems 2.3 and 2.4 to obtain
an e�cient algorithm for computing group leverage score over-
estimates for graphical hypergraphs. Naïvely applying these re-
sults would yield an algorithm that in e$ (

Õ
82 [:] |(8 |

2
) computes

$ (=)-overestimates for an =-node hypergraph with hyperedges
(1, ..., (: . In the following theorem we show how to improve this
to e$ (

Õ
82 [:] |(8 |) using the trick of using stars to overestimate hy-

peredges [16, Section 3].

T������ 2.6 (E�������� O������������ �� G�������� H�����
������). There is an an algorithm that given any =-node graphical
hypergraph G = (+ , ⇢, E) in time e$ (

Õ
(8 2⇢ |(8 |) outputs with high

probability in =, $ (=)-overestimates for the matrix unit-hypergraph
associated with G.

P����. Note that the the matrix unit-hypergraph associated
with G, is (S,A) where A 2 R<⇥+ where< =

Õ
(8 2⇢

�
|(8 |
2

�
and

each 0,1 2 (8 with 0 < 1 has an associated row in A, which we call
90,1,8 , that is

p
E8 (Æ10 � Æ11). Further, each (8 2 ⇢ corresponds to a

(8 2 S containing 90,1,8 for each 0,1 2 (8 with 0 < 1.
Now, for each (8 2 ⇢ �x an arbitrary vertex 08 2 (8 . Further,

consider the unit hypergraph (S
0,A0) that consists of discarding

from G the rows 90,1,8 where it is not the case that 0 = 08 and

1 < 08 . Note that A0 2 R<
0
⇥+ with<0 =

Õ
(8 2⇢ (|(8 | � 1) and A0

is a weighted incidence matrix of a graph. Consequently, using
Theorem 2.4 and Theorem 2.3 we can compute g 2 R: that are
$ (=)-overestimates for (S0,A0) with associated weightsF 0 2 R<

0

�0
with high probability in =.

Consequently, to complete the proof it su�ces to show that
g = 2g 0 are$ (=)-overestimates for (S,A). Clearly kg k1 = 2kg 0 k1 
$ (=) and consequently it su�ces to produce associated weights
F 2 R<

�0. De�ne such a F 2 R<
�0 by setting F 9 to have the value

of the associated entry in F 09 if row 9 is in both A and A0 and 0
otherwise. SinceF 0 were the weights associated with g 0, and the
only new weights inF are 0, we clearly have the property that for
all (8 2 S ’

98,0,1 :0,12(8 with 0<1

F 98,0,1 = 1.

The result then follows from the next equation, whereW def= diag(F)

andW0 def= diag(F 0), and 98,0,1 2 (8 :

0>98,0,1 (A
>WA)†0 98,0,1

(8)
= E8 (Æ10 � Æ11) ((A0)>W0A0)† (Æ10 � Æ11)
(88)
 E8 (Æ10 � Æ108) ((A

0
)
>W0A0)† (Æ10 � Æ108)

+ E8 (Æ108 � Æ11) ((A
0
)
>W0A0)† (Æ108 � Æ11)

(888)
 g 08 + g

0
8 = g

Here, (8) follows from the de�nition of 0 98,0,1 and F 0, and (888)
follows because g 0 are overestimates for A0 with weightsF 0. (88)
follows from the triangle inequality for e�ective resistances in
graphs (see [38]). It is worth remarking that if instead set g8 = 4g 08
(so kg k1  $ (kg 0 k1) still) that we can simply use the triangle
inequality for norms in this line. ⇤

3 SIZE BOUND FROM DUDLEY’S INEQUALITY
In this section, we prove that sampling hyperedges (8 by probabil-
ities ?8 produces a sparsi�er with high probability. As a warmup
to the results in the following Section 4, we �rst prove Subsample
achieves a weaker size bound of 3:/4 + $ (=Y�2 log3<) using a
simple form of chaining. (We discuss how to iterate this bound
to $ (=Y�2 log3 (=/Y)) at the end of this section.) In the context of
previous work on chaining, our proof is essentially just applying
Dudley’s entropy bound [12] instead of the full generic chaining
(we elaborate on this after Theorem 3.4). Because the proof is rela-
tively simple and provides nice intuition for the more complicated
analysis in Section 4, we give a self-contained analysis except for
an ✓1 ball covering theorem from [1].

Speci�cally, we prove the following theorem.

T������ 3.1. Let G = (S,A) be a unit hypergraph with : hy-
peredges, and let g be given group leverage scores (De�nition 1.3)
with valid weightsF (which do not need to be known). For any con-
stant ⇠ , there is an absolute constant ⇠1 (depending on ⇠) such that
H = Subsample(G, g, d) (Algorithm 1) with d = ⇠1Y�2 log3< sat-
is�es with probability at least 1 � =�⇠ that

(1 � Y) 5G (G)  5H(G)  (1 + Y) 5H(G) for all G 2 R=

and has at most 3:/4 +$ (=Y�2 log3<) edges.

Chaining, Group Leverage Score Overestimates, and Fast Spectral Hypergraph Sparsification STOC ’23, June 20–23, 2023, Orlando, FL, USA

If g is given by Theorem 2.4, the above applied to an :-edge
hypergraph gives a sparsi�er with 3:/4 +$ (=Y�2 log3<). We will
later improve this bound to $ (=Y�2 log< log A) in Section 4.

Let us discuss our general proof strategy for Theorem 3.1. In a
chaining argument, it is useful to study how the di�erence between
energies of two points G,~ 2 R= , i.e. 5G (G) � 5G (~), is a�ected
by sampling. By construction, the sampling is unbiased for any
�xed input G 2 R= , so EH[5H(G) � 5H(~)] = 5G (G) � 5G (~). As
is standard in chaining setups, we now de�ne a distance function
which is an upper bound on the variance.

De�nition 3.2 (Metric Space). For a �xed hypergraph G = (S,A),
de�ne 68 (G)

def= max92(8 |h0 9 , Gi | for all (8 2 S. We let ⌫ be the
unit ball of the energy function, i.e. ⌫ def= {5G (G)  1 : G 2 R=}.
Additionally, for given sampling probabilities ?8 2 {1/2, 1}, we
de�ne the distance function 3 : R= ⇥ R= ! R for all G,~ 2 R= as

3 (G,~)
def= ©≠

´
’
82 [:]

1{?8<1}?
�1
8 (68 (G)

2
� 68 (~)

2
)
2™Æ
¨
1/2

. (8)

Further, for a �nite subset) ✓ R= , we de�ne3 (G,)) def= minC 2) 3 (G, C).

We observe that the functions 68 are convex and satisfy 5G (G) =Õ
82 [:] 68 (G)

2 . We formalize additional key properties of the dis-
tance function 3 in the following lemma.

L���� 3.3. Let G = (S,A) be a hypergraph, let ?8 2 (0, 1] be
given, and let 3 (·, ·) be de�ned as in De�nition 3.2. LetH = (S,A,bE),
where bE 2 R: is de�ned as bE8 = ?�18 with probability ?8 and 0
otherwise. 3 satis�es the following properties for any G,~, I 2 R= :

• VarH[5H(G) � 5H(~)]  3 (G,~)2

• 3 (G, I)  3 (G,~) + 3 (~, I).

P����. To bound the variance, note that 5H(G)� 5H(~) is a sum
of : independent random variables, where the 8C⌘ variable is either
0 or ?�18 (68 (G)2 � 68 (~)2) if ?8 < 1 and always (68 (G)2 � 68 (~)2)
otherwise. Thus we have

Var[5H(G) � 5H(~)] =
’
82 [:]

1 � ?8
?8

(68 (G)
2
� 68 (~)

2
)
2

 3 (G,~)2

as ?8 2 (0, 1]. This shows the �rst property. For the second property,
de�ne EG 2 R: as the vector with coordinates

EG8
def=

q
1{?8<1}?

�1
8 68 (G)

2

for all 8 2 [<]. De�ne E~, EI similarly. Now the desired bound of
the �nal property follows because 3 (G,~) = kEG � E~ k2, and by
triangle inequality

3 (G, I) = kEG�EI k2  kEG�E~ k2+kE~�EI k2 = 3 (G,~)+3 (~, I) . ⇤

With these facts in hand, we describe our formal chaining setup.

T������ 3.4 (C�������). De�ne G, ?8 , 3 , H as in Lemma 3.3.
For B � dlog2 (log=)e, de�ne

W
def= inf

)B ,)B+1,...

)# ✓⌫, |)# |22# for all # �B

sup
G2⌫

2B/2 · 3 (G, Æ0) +
’
�B

2# /23 (G,)#).

(9)

Then there is an absolute constant ⇠2 such that with high probability
(i.e. at least 1 � =�⇠ , and ⇠2 depends on ⇠) for all G 2 R=

(1 �⇠2W) 5G (G)  5H(G)  (1 +⇠2W) 5H(G) .

To prove Theorem 3.4 we �rst note the following simple applica-
tion of Hoe�ding’s inequality.

L���� 3.5. For any subsets - ,. ✓ R= and � 0 we have that
with probability at least 1 � 2|- | |. | exp(�2 2

) over choices of H
that for all G 2 - ,~ 2 . that | (5G (G)� 5G (~))� (5H(G)� 5H(~)) | 
 · 3 (G,~).

P����. Note that for each pair G 2 - ,~ 2 . we have that
E[5H(G) � 5H(~)] = 5G (G) � 5G (~) and that 5H(G) � 5H(~) is a
sum of : independent random variables, where the 8C⌘ variable is
either 0 or ?�18 (68 (G)2 � 68 (~)2) if ?8 < 1 and always (68 (G)2 �
68 (~)2) otherwise by Lemma 3.3. Applying Hoe�ding’s inequality,
the de�nition of 3 (see Lemma 3.3), and the fact that ?8 2 {1/2, 1}
yields

Pr
H

⇥
| (5G (G) � 5G (~)) � (5H(G) � 5H(~)) | > · 3 (G,~)

⇤
= Pr

H

⇥
|E[5H(G) � 5H(~)] � (5H(G) � 5H(~)) | > · 3 (G,~)

⇤

 2 exp

�

2 2
· 3 (G,~)2Õ

82 [:] 1{?8<1}?
�1
8 (68 (G)2 � 68 (~)2)2

!

= 2 exp
✓
�
2 2

· 3 (G,~)2

3 (G,~)2

◆
= 2 exp(�2 2

) .

The claim follows by union bounding over all G 2 - ,~ 2 . . ⇤

To prove Theorem 3.4 we apply Lemma 3.5 on all levels # � 0
and add them up.

P���� �� T������ 3.4. Consider the event ⇢# that for all G 2
)# ,~ 2)#+1

| (5G (G) � 5G (~)) � (5H(G) � 5H(~)) |  2
p
⇠ · 2# /23 (G,~).

We claim that PrH[⇢#] � 1� 1/2 ·=�⇠2�2
#
. Indeed this is true by

taking - =)# ,. =)#+1, and = 2
p
⇠ · 2# /2 in Lemma 3.5 and

noting that

2|)# | |)#+1 | exp(�2 2
)  2 · 23·2

#
exp(�8⇠ · 2#)  1/2 · =�⇠2�2

#

because we assume ⇠ � 1 and 2# � 2B � log=. Hence all events
⇢B , ⇢B+1, . . . hold with probability at least 1�

Õ
�0 1/2·=�⇠2�2

#
�

1 � 1/2 · =�⇠ .
By setting - =)B ,. = {0}, = 2

p
⇠ · 2B/2 and again applying

Lemma 3.5 we get that

|5G (G) � 5H(G) |  2
p
⇠ · 2B/2 · 3 (G, Æ0) for all G 2)# (10)

for all G 2)B with probability at least

1 � |)B | exp(�8⇠ · 2B) � 1 � 1/2 · =�⇠

becausewe assume⇠ � 1 and 2B � log=. Hence all events⇢B , ⇢B+1, . . .
and (10) hold with probability at least 1�=�⇠ . Now, for each G 2 ⌫

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arun Jambulapati, Yang P. Liu, and Aaron Sidford

let G# = argmin~2)# 3 (G,~). If all events above hold, then

|5G (G) � 5H(G) |  |5G (GB) � 5H(GB) |

+

’
�B

|5G (G#) � 5G (G#+1) � (5H(G#) � 5H(G#+1)) |

 2
p
⇠ · 2B/2 · 3 (GB , 0) + 2

p
⇠

’
�B

2# /23 (G# , G#+1)

(8)
 2
p
⇠ · 2B/2 · (3 (GB , G) + 3 (G, Æ0))

+ 2
p
⇠

’
�B

2# /2
(3 (G, G#) + 3 (G, G#+1))

 2
p
⇠ · 2B/2 · 3 (G, Æ0) + 2

p
⇠

’
�B

⇣
2(#�1)/2 + 2# /2

⌘
3 (G,)#)

 4
p
⇠ · 2B/2 · 3 (G, Æ0) + 4

p
⇠

’
�B

2# /23 (G,)#)  4
p
⇠W,

where (8) uses that 3 is a metric (Lemma 3.3). Thus we may set
⇠2 = 4

p
⇠ . ⇤

The goal of the remainder of this section is to bound the quantity
in (9) for sampling probabilities ?8 given by (3), where d is an over-
sampling parameter. In this section, we will set d = ⇠1Y�2 log3<:
later in Section 4 we modify the chaining argument to show d =
⇠Y�2 log< log A still su�ces for some su�ciently large constant ⇠ .
Because

Õ
82 [:] g8  $ (=) by Theorem 2.4, the hypergraph H will

have 3:/4 +$ (d=) edges with high probability.
We �rst handle the term 2B/2 · 3 (G, Æ0) in Theorem 3.4. This cal-

culation provides critical intuition for why group leverage scores
are su�cient for sampling.

L���� 3.6 (H������� 3 (G, Æ0)). For group leverage score overesti-
mates g and corresponding weightsF (De�nition 1.3), G 2 ⌫, and ?8
given by (3) we have 3 (G, Æ0)  d�1/2.

P����. Note that 1?8<1?�18 g8  d�1 and 68 (0) = 0 for all 8 2 [:].
Hence

3 (G, Æ0) = ©≠
´

’
82 [:]

1?8<1?
�1
8 68 (G)

4™Æ
¨
1/2

(8)


©≠
´

’
82 [:]

1?8<1?
�1
8 g8 · G

>A>WAG · 68 (G)
2™Æ
¨
1/2

(88)
 d�1/2 (G>A>WAG)1/2 ©≠

´
’
82 [:]

68 (G)
2™Æ
¨
1/2

(888)
 d�1/2 5G (G)  d

�1/2 .

Here, (8) follows from Lemma 1.5, (88) follows from 1?8<1?�18 

d�1g�18 as noted, and (888) follows from Lemma 1.4. ⇤

Next we will construct nets)# for # � ⇠ log< for su�ciently
large constant⇠ that will show show that the contribution of those
terms to (9) is negligible. At this scale we have |)# | = 22

#
=

exp(poly(<)), while there are only< vectors 08 . Consequently our
net will simply just approximate each inner product |h08 , Gi | up to

additive X accuracy for properly chosen X . This creates (1/X)< net
centers, which is much less than the allowed 22

#
� exp(poly(<)).

L���� 3.7 (L���� #). Consider group leverage score overesti-
mates g and corresponding weightsF (De�nition 1.3), G 2 ⌫, and ?8
given by (3). For all # � 0, there is)# ✓ ⌫ with |)# |  22

#
and

3 (G,)#)  2 · 2�2
�1

/< for all G 2 ⌫.

P����. Fix an# . Recall from previous arguments (e.g. Lemma 3.6)
that

1?8<1?
�1
8 68 (G)

2
 1?8<1?

�1
8 g8G

>A>WAG  d�1 < 1,

by Lemmas 1.4 and 1.5. For each G 2 ⌫ and X = 2�2
#
/< , consider

the vector EG 2 R: de�ned as

EG8
def= X b1?8<1?

�1
8 68 (G)

2
/Xc .

Note that EG8 can only be one of at most (1/X):  (1/X)< distinct
vectors. Thus, we can pick)# to contain one representative G 2 ⌫
for each distinct EG8 , and |)# |  22

#
because (1/X)< = 22

#
. For

any G 2 ⌫, let ~ be such that E~ = EG . The result then follows as

3 (G,)#)  3 (G,~) = ©≠
´

’
82 [:]

1{?8<1}?
�1
8 (68 (G)

2
� 68 (~)

2
)
2™Æ
¨
1/2


©≠
´

’
82 [:]

1{?8<1}?
�1
8 |68 (G)

2
� 68 (~)

2
| · (68 (G)

2
+ 68 (~)

2
)
™Æ
¨
1/2


©≠
´

’
82 [:]

X (68 (G)
2
+ 68 (~)

2
)
™Æ
¨
1/2



q
X (5G (G) + 5G (~)) 

p

2X

 2 · 2�2
�1

/< . ⇤

This means that the terms # � 4(log< + log2 log(1/Y)) in (9)
have low contribution, as’

�4(log<+log2 log(1/Y))
2# /2

· 2 · 2�2
�1

/<
 Y .

We conclude this section by bounding the remaining terms in (9).

L���� 3.8. Consider group leverage score overestimates g and
corresponding weightsF (De�nition 1.3), G 2 ⌫, and probabilities ?8
given by (3). For all # � 0, there is)# ✓ ⌫ with |)# |  22

#
and

3 (G,)#)  ⇠4d�1/22�# /2plog< where ⇠4 is an absolute constant.

The proof of this lemma uses the following result, which gives
a covering of the unit ball with balls of radius [in the norm
max82 [<] |hD8 , Gi | for unit vectors D1, . . . ,D< 2 R= .

T������ 3.9 (T������ VI.1 �� [1]). Let D1, . . . ,D< 2 R= be
vectors with kD8 k2  1 for all 8 2 [<], and [> 0. There is a universal
constant ⇠3 such that the ball ⌫2

def= {G : G 2 R=, kG k2  1} can be
covered with at most (=<⇠3/[2 subsets %1, . . . , %(satisfying

max
82 [<], 92 [(]

G,~2% 9

|hD8 , G � ~i |  [.

Chaining, Group Leverage Score Overestimates, and Fast Spectral Hypergraph Sparsification STOC ’23, June 20–23, 2023, Orlando, FL, USA

P���� �� L���� 3.8. De�ne D 9 = g
�1/2
8 (A>WA)�1/20 9 for 9 2

(8 . Note that for any G 2 ⌫ we have k (A>WA)1/2G k2  1 by
Lemma 1.4 and G 2 ⌫. In addition,

h0 9 , Gi = h(A>WA)�1/20 9 , (A>WA)1/2Gi = g1/28 hD 9 , (A
>WA)1/2Gi

and kD 9 k2 = g�18 0>9 (A
>WA)�10 9  1 by De�nition 1.3. Let [sat-

isfy<⇠3/[2 = 22
#
, so [=

p
⇠32�# /2plog2<, and let %1, . . . , %(be

the sets guaranteed by Theorem 3.9 for the vectorsD8 and parameter
[. Note that the above facts guarantee

max
82 [<], 92 [(]

I,F2% 9

|hD8 , I �Fi |  [. (11)

For each 8 let E8 be an arbitrary point from %8 , and let)# be the set
of (A>WA)�1/2E8 for all 8 .

For G 2 ⌫, let % 9 be a subset containing (A>WA)1/2G . Such a 9
must exist since %1, . . . %B cover the unit ball and k (A>WA)1/2G k2 
1. Let ~ = (A>WA)�1/2E 9 . Then

3 (G,)#)  3 (G,~) = ©≠
´

’
82 [:]

1{?8<1}?
�1
8 (68 (G)

2
� 68 (~)

2
)
2™Æ
¨
1/2


©≠
´

’
82 [:]

1{?8<1}?
�1
8 max

92(8
(68 (G) � 68 (~))

2
(68 (G) + 68 (~))

2™Æ
¨
1/2

(8)


©≠
´

’
82 [:]

1{?8<1}?
�1
8 max

92(8
h0 9 , G � ~i

2
(68 (G) + 68 (~))

2™Æ
¨
1/2

(88)


©≠
´

’
82 [:]

1{?8<1}?
�1
8 g8[

2
(68 (G) + 68 (~))

2™Æ
¨
1/2

(888)
 [d�1/2

©≠
´

’
82 [:]

2(68 (G)2 + 68 (~)2)
™Æ
¨
1/2

 2[d�1/2 = 2
p
⇠3d

�1/22�# /2plog2<.

Here, (8) follows from |68 (G)�68 (~) |  68 (G�~) = max92(8 |h0 9 , G�
~i |, (88) holds because (A>WA)1/2G, (A>WA)1/2~ 2 % 9 and

h0 9 , G � ~i
2 = g8 hD 9 , (A>WA)1/2G � (A>WA)1/2~i2  g8[2

by Equation (11) and (88) follows from the choice of ?8 . The claim
follows from choosing ⇠4 = 2

p
⇠3 (log 2)�1/2. ⇤

With these facts, we now complete the proof of Theorem 3.1.

P���� �� T������ 3.1. Observe that we may assume Y � 1/<,
as otherwise we can simply return G as our output sparsi�er. Sim-
ilarly, we may assume < � =, or else G itself is a good enough
sparsi�er. We bound the constant W in Theorem 3.4 using Lem-
mas 3.6 to 3.8. For the sets)B ,)B+1, . . . constructed in Lemmas 3.7
and 3.8, we have

W  sup
G2⌫

2B/2 · 3 (G, Æ0) +
’
�B

2# /23 (G,)#) . (12)

For the choices B = dlog2 log=e and / = 2 log(8(1+⇠2)<), write’
�B

2# /23 (G,)#) =
’

2 [B,/]

2# /23 (G,)#) +

’
�/

2# /23 (G,)#).

Lemma 3.7 implies’
�/

2# /23 (G,)#)  2
’
�/

2# /2�2# �1/<
 2

’
�/

2�2
#
/(4<)


1

100⇠2<


Y

100⇠2
.

On the other hand, for d = ⇠1Y�2 log3< Lemma 3.8 implies’
2 [B,/]

2# /23 (G,)#) 

’
2 [B,/]

⇠4d
�1/2plog<


⇠4/Y

p
log<

p
⇠1 log3/2<

=
2⇠4Y log(8(1 +⇠2)<)

p
⇠1 log<

.

Finally, Lemma 3.6 implies 3 (G, 0)  d�1/2. Plugging these into (12)
and using< � = yields

W 
2Y

p
log<

p
⇠1 log3/2<

+
2⇠4Y log(8(1 +⇠2)<)

p
⇠1 log<

+
Y

100⇠2

As< � 2 without loss of generality we have

8(1 +⇠2)<  <4+log2 (1+⇠2) :

the above yields

W 
2Y
p
⇠1

+
(8 + 2 log2 (1 +⇠2))⇠4Y

p
⇠1

+
Y

100⇠2
.

For ⇠1 = 2⇠2
2 (2 + (8 + 2 log2 (1 +⇠2))⇠4)2 the above gives W 

Y
⇠2

:
the result follows from Theorem 3.4. ⇤

We �nally discuss how to iterate the bound Theorem 3.1 to con-
struct hypergraph sparsi�ers with $ (=Y�2 log3 (=/Y)) edges. We
de�ne G0 = G and :0 = : , and iteratively construct a new hy-
pergraph G8+1 from G8 with at most :8+1 = 0.9:8 hyperedges. To
do so, we call Theorem 3.1 on G8 and ensure the output G8+1 is

a (1 + Y8)-spectral sparsi�er of G8 with Y8 = ⇥

 r
= log3<

:8

!
. For

an appropriately-chosen implicit constant the output has at most
0.9:8 edges as desired. If this iteration is continued until GA has
$ (=Y�2 log3<) edges, GA is a

ŒA�1
8=0 (1 + Y8)-sparsi�er of G, where

A�1÷
8=0

(1 + Y8)  exp

A�1’
8=0

Y8

!

 exp⇥ ©≠
´

s
= log3<
:A

™Æ
¨

= exp⇥(Y) = 1 +$ (Y),

implying the result.

4 IMPROVED SIZE BOUND FROM CHAINING
In this section, we obtain an improved size bound of
$ (=Y�2 log< log A) using a more sophisticated chaining argument.
Before we begin, it is helpful to describe how we di�er from the
result obtained in Section 3. Informally, the analysis of the previous
section constructed sets)8 where supG2⌫ 3 (G,)8) was su�ciently

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arun Jambulapati, Yang P. Liu, and Aaron Sidford

small. These give a bound on W , as

W  sup
G2⌫

2B/2 · 3 (G, Æ0) +
’
�B

2# /23 (G,)#)

 2B/2
✓
sup
G2⌫

3 (G, Æ0)
◆
+

’
�B

2# /2
✓
sup
G2⌫

3 (G,)#)

◆
.

Constructing the sets)8 in turn is relatively straightforward, as a
simple greedy packing argument reduces the problem to estimating
the entropy numbers1 of ⌫ with respect to the distance 3 .

Unfortunately, the bounds obtained by this technique (�rst de-
veloped in an explicit form by Dudley [12]) are suboptimal in many
settings: our approach for bounding supG2⌫ 3 (G,)8) is essentially
tight (Theorem 3.9 is tight up to constant factors in the exponent,
as is stated in Theorem 6.1 of [1]), and the analysis loses from up to
$ (log<) levels of the scale parameter # . On the other hand, the
expression for W critically takes the supremum over the sum of all
scales: if only a small number of the values 3 (G,)8) can be near
the supremum for a �xed G , the resulting bound we obtain can be
signi�cantly tighter.

Actually exploiting this potential for amortization is challenging
however, as doing so seems to require additional geometric struc-
ture of the metric distance 3 . In this section we employ a chaining
framework of [37] based on growth functionals, a powerful tech-
nique which uses the geometry of the space of events to control W .
This framework is based on providing a sequence of functions �8
satisfying a certain growth condition. Our approach in this section
mirrors previous applications [28, 37] of the framework in proving
matrix concentration bounds for sums of rank-1matrices. However,
our setting introduces additional complications beyond the matrix
setting, which we brie�y discuss here.

A key source of di�culty in applying the technique of [28, 37]
is the fact that 5G (G) is not strongly convex. This strongly di�ers
from the rank-1 Cherno� setting, where the sum of rank-1matrices
yields G>

�Õ
8 E8E

>
8

�
G , which is strongly convex in the matrix norm

formed by
Õ
8 E8E

>
8 . Strong convexity enables us to prove lower

bounds on the di�erence of growth functionals (??): in the rank-
1 matrix case this property immediately allows us to obtain the
optimal sparsity bounds. Without this property (as noted in [37]),
the growth functional framework seems to break down at d =
Y�2 log2<. While we have access to a natural matrix A>WA to
perform the analysis in, it unfortunately does not approximate
5G (G) well enough for our purposes: for some vectors G we may
have G>A>WAG ⌧ 5G (G). Thus, we perform our analysis in a
“mixed” (F + 5)-norm which contains both A>WA and the energy
5G (G) and establish a strong convexity bound which su�ces for
our purposes.

A secondary issue related to strong convexity arises from the
distance function 3 de�ned in the previous section. A feature of
the growth functional framework its use of “well-separated” sets
(??), which have small 3-diameter but are in some sense “far apart”
under 3 . However, the analysis of our growth functional requires a
stronger property: namely, that convex hulls of the well-separated

1The =C⌘ entropy number of a set ⌫ with respect to distance 3 is the smallest n such
that there exists a set) with |) |  22= and 3 (G,))  Y for all G 2 ⌫. Lemma 3.8
in fact bounds exactly these entropy numbers, although we do not call them that
explicitly.

sets have small 3-diameter. If 3 (G, ·) (for every �xed G) were a
convex function, this fact would hold immediately: however we
believe that convex combinations of points may grow the3-distance
arbitrarily. To avoid this issue, we introduce a carefully designed
proxy distance function b3 which overestimates 3 . We show that
while b3 (G, ·) is still not convex (and in fact does not satisfy the
triangle inequality) it has these properties in an approximate sense
(Lemmas 4.2 and 4.3 in the full version) which su�ces for our
analysis.

We state the main technical result of this section.

T������ 4.1. Let G = (S,A) be a unit hypergraph, and let g
be given group leverage scores (De�nition 1.3) with valid weights
F (which do not need to be known). For any constant ⇠ , there is
an absolute constant ⇠13 (which depends on ⇠) such that the ma-
trix hypergraph H = Subsample(G, g, d) (Algorithm 1) with d =
⇠13Y�2 log< log A satis�es with probability at least 1 � =�⇠ the fol-
lowing:

(1 � Y) 5G (G)  5H(G)  (1 + Y) 5H(G) for all G 2 R=

The proof of this theorem is deferred to the full version in https:
//arxiv.org/pdf/2209.10539v1.pdf.

ACKNOWLEDGMENTS
We thank James Lee for coordinating submissions.

Yang P. Liu is supported by the Google PhD Fellowship Program.
Aaron Sidford is supported by a Microsoft Research Faculty Fellow-
ship, NSF CAREER Award CCF-1844855, NSF Grant CCF-1955039,
a PayPal research award, and a Sloan Research Fellowship.

REFERENCES
[1] Noga Alon and Bo’az Klartag. 2017. Optimal compression of approximate inner

products and dimension reduction. In 58th Annual IEEE Symposium on Founda-
tions of Computer Science—FOCS 2017. IEEE Computer Soc., Los Alamitos, CA,
639–650. https://doi.org/10.1109/FOCS.2017.65

[2] Nikhil Bansal, Ola Svensson, and Luca Trevisan. 2019. NewNotions and Construc-
tions of Sparsi�cation for Graphs and Hypergraphs. In FOCS. IEEE Computer
Society, 910–928. https://doi.org/10.1109/FOCS.2019.00059

[3] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. 2014. Twice-
Ramanujan Sparsi�ers. SIAM Rev. 56, 2 (2014), 315–334. https://doi.org/10.
1137/090772873

[4] András A. Benczúr and David R. Karger. 2015. Randomized Approximation
Schemes for Cuts and Flows in Capacitated Graphs. SIAM J. Comput. 44, 2 (2015),
290–319. https://doi.org/10.1137/070705970

[5] Jean Bourgain, Joram Lindenstrauss, and Vitali Milman. 1989. Approximation of
zonoids by zonotopes. Acta mathematica 162 (1989), 73–141.

[6] Chandra Chekuri and Chao Xu. 2018. Minimum cuts and sparsi�cation in hy-
pergraphs. SIAM J. Comput. 47, 6 (2018), 2118–2156. https://doi.org/10.1137/
18M1163865

[7] Yu Chen, Sanjeev Khanna, and Ansh Nagda. 2020. Near-linear Size Hypergraph
Cut Sparsi�ers. In FOCS. IEEE, 61–72. https://doi.org/10.1109/FOCS46700.2020.
00015

[8] Michael B. Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. 2019. A near-optimal
algorithm for approximating the John Ellipsoid. In COLT (Proceedings of Machine
Learning Research, Vol. 99). PMLR, 849–873.

[9] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard
Peng, Anup Rao, and Shen Chen Xu. 2014. Solving SDD linear systems in nearly
< log1/2 = time. In STOC. 343–352. https://doi.org/10.1145/2591796.2591833

[10] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. 2015. Uniform Sampling for Matrix Approximation. In
ITCS. ACM, 181–190. https://doi.org/10.1145/2688073.2688113

[11] Michael B. Cohen and Richard Peng. 2015. !? Row Sampling by Lewis Weights.
In STOC. ACM, 183–192. https://doi.org/10.1145/2746539.2746567

[12] R. M. Dudley. 1967. The sizes of compact subsets of Hilbert space and continuity
of Gaussian processes. J. Functional Analysis 1 (1967), 290–330. https://doi.org/
10.1016/0022-1236(67)90017-1

https://arxiv.org/pdf/2209.10539v1.pdf
https://arxiv.org/pdf/2209.10539v1.pdf
https://doi.org/10.1109/FOCS.2017.65
https://doi.org/10.1109/FOCS.2019.00059
https://doi.org/10.1137/090772873
https://doi.org/10.1137/090772873
https://doi.org/10.1137/070705970
https://doi.org/10.1137/18M1163865
https://doi.org/10.1137/18M1163865
https://doi.org/10.1109/FOCS46700.2020.00015
https://doi.org/10.1109/FOCS46700.2020.00015
https://doi.org/10.1145/2591796.2591833
https://doi.org/10.1145/2688073.2688113
https://doi.org/10.1145/2746539.2746567
https://doi.org/10.1016/0022-1236(67)90017-1
https://doi.org/10.1016/0022-1236(67)90017-1

Chaining, Group Leverage Score Overestimates, and Fast Spectral Hypergraph Sparsification STOC ’23, June 20–23, 2023, Orlando, FL, USA

[13] X. Fernique. 1975. Regularité des trajectoires des fonctions aléatoires gaussiennes.
In École d’Été de Probabilités de Saint-Flour, IV-1974. Springer, Berlin, 1–96.

[14] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. 2022. Improved iteration
complexities for overconstrained ?-norm regression. In STOC. ACM, 529–542.
https://doi.org/10.1145/3519935.3519971

[15] Arun Jambulapati and Aaron Sidford. 2021. Ultrasparse ultrasparsi�ers and faster
laplacian system solvers. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 540–559. https://doi.org/10.5555/3458064.
3458097

[16] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. 2021.
Spectral Hypergraph Sparsi�ers of Nearly Linear Size. In FOCS. IEEE, 1159–1170.
https://doi.org/10.1109/FOCS52979.2021.00114

[17] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. 2021.
Towards tight bounds for spectral sparsi�cation of hypergraphs. In STOC. ACM,
598–611. https://doi.org/10.1145/3406325.3451061

[18] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu.
2013. A simple, combinatorial algorithm for solving SDD systems in nearly-linear
time. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013. 911–920. https://doi.org/10.1145/2488608.2488724

[19] Dmitry Kogan and Robert Krauthgamer. 2015. Sketching cuts in graphs and
hypergraphs. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science. 367–376.

[20] Ioannis Koutis, Gary L. Miller, and Richard Peng. 2010. Approaching Optimality
for Solving SDD Linear Systems. In 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA.
235–244. https://doi.org/10.1137/110845914

[21] Ioannis Koutis, Gary L. Miller, and Richard Peng. 2011. A Nearly-< log= Time
Solver for SDD Linear Systems. In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. 590–598.
https://doi.org/10.1109/FOCS.2011.85

[22] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spiel-
man. 2016. Sparsi�ed Cholesky and multigrid solvers for connection laplacians.
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, Daniel Wichs and Yishay
Mansour (Eds.). ACM, 842–850. https://doi.org/10.1145/2897518.2897640

[23] Rasmus Kyng and Sushant Sachdeva. 2016. Approximate Gaussian Elimination
for Laplacians - Fast, Sparse, and Simple. In IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, Irit Dinur (Ed.). IEEE Computer Society, 573–582.
https://doi.org/10.1109/FOCS.2016.68

[24] James R Lee. 2022. Spectral hypergraph sparsi�cation via chaining. arXiv preprint
arXiv:2209.04539 (2022).

[25] Mu Li, Gary L Miller, and Richard Peng. 2013. Iterative row sampling. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE, 127–136.
https://doi.org/10.1109/FOCS.2013.22

[26] Cameron Musco, Christopher Musco, David P. Woodru�, and Taisuke Yasuda.
2022. Active Linear Regression for ✓? Norms and Beyond. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA,
October 31 - November 3, 2022. IEEE, 744–753. https://doi.org/10.1109/FOCS54457.
2022.00076

[27] Richard Peng and Daniel A. Spielman. 2014. An e�cient parallel solver for
SDD linear systems. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, David B. Shmoys (Ed.). ACM, 333–342.
https://doi.org/10.1145/2591796.2591832

[28] Mark Rudelson. 1996. Random vectors in the isotropic position. MSRI Preprint
1996-060 (1996).

[29] Gideon Schechtman. 2011. Tight embedding of subspaces of !? into ✓#? for even
? . Proc. Amer. Math. Soc. 139, 12 (2011), 4419–4421.

[30] Gideon Schechtman and Artem Zvavitch. 2001. Embedding Subspaces of !? into
✓#? , 0 < ? < 1. Mathematische Nachrichten 227, 1 (2001), 133–142.

[31] Tasuku Soma and Yuichi Yoshida. 2019. Spectral Sparsi�cation of Hypergraphs.
In SODA. SIAM, 2570–2581. https://doi.org/10.1137/1.9781611975482.159

[32] D. Spielman and S. Teng. 2014. Nearly Linear Time Algorithms for Precondi-
tioning and Solving Symmetric, Diagonally Dominant Linear Systems. SIAM
J. Matrix Anal. Appl. 35, 3 (2014), 835–885. https://doi.org/10.1137/090771430
Available at http://arxiv.org/abs/cs/0607105.

[33] Daniel A. Spielman and Nikhil Srivastava. 2011. Graph sparsi�cation by e�ective
resistances. SIAM J. Comput. 40, 6 (2011), 1913–1926. https://doi.org/10.1137/
080734029

[34] Michel Talagrand. 1987. Regularity of Gaussian processes. Acta Math. 159, 1-2
(1987), 99–149. https://doi.org/10.1007/BF02392556

[35] Michel Talagrand. 1990. Embedding subspaces of !1 into ✓#1 . Proc. Amer. Math.
Soc. 108, 2 (1990), 363–369.

[36] M. Talagrand. 1995. Embedding subspaces of !? in ;#? . In Geometric as-
pects of functional analysis (Israel, 1992–1994). Oper. Theory Adv. Appl., Vol. 77.
Birkhäuser, Basel, 311–325.

[37] Michel Talagrand. 2014. Upper and lower bounds for stochastic processes. Vol. 60.
Springer.

[38] Prasad Tetali. 1991. Random walks and the e�ective resistance of networks. J.
Theoret. Probab. 4, 1 (1991), 101–109. https://doi.org/10.1007/BF01046996

Received 2022-11-07; accepted 2023-02-06

https://doi.org/10.1145/3519935.3519971
https://doi.org/10.5555/3458064.3458097
https://doi.org/10.5555/3458064.3458097
https://doi.org/10.1109/FOCS52979.2021.00114
https://doi.org/10.1145/3406325.3451061
https://doi.org/10.1145/2488608.2488724
https://doi.org/10.1137/110845914
https://doi.org/10.1109/FOCS.2011.85
https://doi.org/10.1145/2897518.2897640
https://doi.org/10.1109/FOCS.2016.68
https://doi.org/10.1109/FOCS.2013.22
https://doi.org/10.1109/FOCS54457.2022.00076
https://doi.org/10.1109/FOCS54457.2022.00076
https://doi.org/10.1145/2591796.2591832
https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1137/090771430
https://doi.org/10.1137/080734029
https://doi.org/10.1137/080734029
https://doi.org/10.1007/BF02392556
https://doi.org/10.1007/BF01046996

	Abstract
	1 Introduction
	1.1 General Notation
	1.2 A Matrix Generalization of Hypergraph Sparsification
	1.3 Group Leverage Score Overestimates
	1.4 Overview of Chaining
	1.5 Related Work

	2 Group Leverage Score Overestimates
	3 Size Bound from Dudley's Inequality
	4 Improved Size Bound from Chaining
	References

