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ABSTRACT

Data augmentation (DA) algorithms are slow in massive data settings due to multiple passes through
the entire data. We address this problem by developing a DA extension that exploits asynchronous and
distributed computing. The extended DA algorithm is called Asynchronous and Distributed (AD) DA with
the original DA as its parent. Any ADDA is indexed by a parameter r € (0, 1) and starts by dividing the entire
data into k disjoint subsets and storing them on k processes. Every iteration of ADDA augments only an r-
fraction of the k data subsets with some positive probability and leaves the remaining (1 — r)-fraction of
the augmented data unchanged. The parameter draws are obtained using the r-fraction of new and (1 —r)-
fraction of old augmented data. We show that the ADDA Markov chain is Harris ergodic with the desired
stationary distribution under mild conditions on the parent DA algorithm. We demonstrate that ADDA is
significantly faster than its parent for many (k, r) choices in three representative models. We also establish
the geometric ergodicity of the ADDA Markov chain for all the three models, which yields asymptotically
valid standard errors for estimates of desired posterior quantities. Supplementary materials for this article
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1. Introduction

DA algorithms are a popular choice for Bayesian inference
using Markov chain Monte Carlo due to their simplicity and
numerical stability; however, DA algorithms are slow in massive
data applications because they pass through the full data in every
iteration. Taking advantage of asynchronous and distributed
computations, we propose the ADDA class of algorithms as
a scalable generalization of any DA-type algorithm. ADDA is
useful for fitting flexible Bayesian models to arbitrarily large
datasets, retains the convergence properties of its parent DA,
and reduces to the parent DA under certain assumptions.

Consider the setup of DA algorithms. In a typical DA appli-
cation, we augment “missing data” to the observed data and
obtain the “augmented data” model, where the term missing
data is interpreted broadly to include any additional parameters
or latent variables. Under the augmented data model, the impu-
tation (I) step draws the missing data from their conditional
distribution given the observed data and the current parameter
value. The I step is followed by the prediction (P) step that
draws the “original” parameter from its conditional distribution
given the augmented data. This completes one cycle of a DA
algorithm. Starting from some initial value of the parameter, the
I and P steps are repeated sequentially to obtain a Markov chain
for the missing data and parameter. The marginal parameter
samples from the DA algorithm form a Markov chain with the
posterior distribution of parameters given the observed data
as its stationary distribution (Hobert 2011; Robert and Casella
2013).

The convergence of the DA Markov chain to its stationary
distribution can be extremely slow. The inefficiency of DA-
type algorithms in massive data settings has received significant
attention. This is addressed using online EM and subsampling
based algorithms; see (Nemeth and Fearnhead 2021) for a recent
overview. All these algorithms are scalable, have convergence
guarantees, and are broadly applicable; however, the perfor-
mance of these algorithms is sensitive to the specification of
tuning parameters, including subsample size, gradient step-
size, and the learning rate. Their optimal performance requires
proposal tuning, which is a major limitation in their use as off-
the-shelf algorithms for Bayesian inference.

Distributed Bayesian inference approaches based on the
divide-and-conquer technique also rely on DA and exploit its
ease of implementation. A typical application involves dividing
the full data into smaller subsets, obtaining parameter draws
in parallel on all the subsets using a DA-type algorithm, and
combining parameter draws from all the subsets. The combined
parameter draws are used for inference and predictions. A
variety of algorithms have been developed at an increasing
level of generality, but they have two major limitations (Scott
et al. 2016; Li, Srivastava, and Dunson 2017; Srivastava, Li,
and Dunson 2018; Xue and Liang 2019; Jordan, Lee, and
Yang 2019; Wang and Srivastava 2021). First, the combined
parameter draws do not provide a Markov chain with the
target posterior based on the entire data as the stationary
distribution, which implies that quantification of the Monte
Carlo error is challenging. Second, the theoretical guarantees
of these methods are based on a normal approximation of
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the target posterior as the subset sample size tends to infinity.
No guarantees are available about distance between the target
posterior distribution and that of the combined parameter
draws.

Addressing both these problems, the proposed ADDA offers
an simple approach for bypassing problems due to the slow I
step using asynchronous and distributed computations, but at
the same time producing a single Markov chain with the target
posterior as a marginal of its stationary distribution. The key
observation which enables such a construction is that for many
DA settings, the missing data can be partitioned into several
sub-blocks such that two conditions are satisfied. First, all these
sub-blocks are mutually independent given the original param-
eter and the observed data. Second, the conditional posterior
distribution (given the original parameter) of each sub-block
depends only on an exclusive subset of the observed data; see the
representative examples in Sections 3.1-3.3 for greater details.

An ADDA algorithm starts by reserving (k 4+ I) computing
units called processes, where | < k, k and [ are the number of
workers and managers, and processes could be cores in a CPU
or machines in a cluster. The full data are divided into smaller k
disjoint subsets and stored on the k worker processes. ADDA
performs the I step in parallel on the k workers. They com-
municate the results of their I steps to the manager processes,
which perform the P step. The managers also track progress
of ADDA by maintaining the latest copies of I step results for
every worker. For given r € (0,1) and € € (0, 1), the managers
wait for all workers to return their results with probability €.
With probability 1 — € the managers wait to receive the I step
results from an r-fraction of the workers and perform the P step
using an data augmented model that depends on the r-fraction
of new I step results and the (1 — r)-fraction of old I step results.
This sequence of I and P steps is repeated until convergence.
ADDA reduces to a distributed generalization of the parent DA
algorithm when r = 1.

The parameter € is introduced as a theoretical device for
ensuring that any ADDA algorithm produces a Markov chain.
Any positive € ensures that the missing data sub-block corre-
sponding to each worker has a positive probability to be updated
at every iteration. This is crucial for establishing theoretical
results for the ADDA chain, including Harris ergodicity and
geometric ergodicity. In practice, € can be set small for faster
computations.

It is important to compare and contrast the proposed ADDA
algorithm with Asynchronous Gibbs sampling algorithms. This
class of algorithms have been initially developed for topic mod-
eling (Newman et al. 2009). The only similarity between this
class of algorithms and ADDA is that the data are partitioned
and stored on the workers, which run the sampling algorithm
locally. The manager process is absent in asynchronous Gibbs
sampling because every worker draws its local set of parameters
and latent variables from the local full conditional without
waiting for the full Gibbs cycle to finish. This also implies that
the parameter and latent variable updates do not form a Markov
chain. In simple Gaussian models, this strategy produces draws
from a distribution that fails to converge to the target (Johnson,
Saunderson, and Willsky 2013).

Terenin, Simpson, and Draper (2020) fix this issue by intro-
ducing a correction step that allows a worker to accept or reject

a draw with a probability based on the corresponding accep-
tance ratio. This additional Metropolis step increases the com-
putational burden and the amount of information that needs
to be communicated among the workers, but the authors are
able to establish convergence to the desired stationary distri-
bution under additional regularity conditions. The sequence of
iterates generated by this exact algorithm still do not form a
Markov chain in general, and hence one does not have access to
the standard Markov chain central limit theorem (CLT) based
approaches to quantify the Monte Carlo standard error (see the
discussion below). Developing a general theoretical understand-
ing of these asynchronous Gibbs algorithms is still an active area
of research (Atchadé and Wang 2021).

Any ADDA algorithm inherits several attractive properties
of its parent DA. First, ADDA is numerically stable. Second,
ADDA is the stochastic counterpart of the distributed EM
(DEM) and is independent of the computer architecture
(Srivastava, DePalma, and Liu 2019). The only similarity
between the ADDA and DEM algorithms is that the I and P steps
are the stochastic counterparts of the E and M steps. We focus on
understanding the distributional convergence of the stochastic
iterates produced by our ADDA. Our geometric ergodicity
results help provide standard errors for these approximations,
which are justified by the Markov chain central limit theorem.
The analogous results are absent in Srivastava, DePalma, and
Liu (2019). Finally, while the marginal sequence of original
parameter values generated by the ADDA algorithm is not a
Markov chain (unlike the DA algorithm), the joint sequence
of original and augmented parameter values is a Markov chain
whose stationary distribution has the targeted posterior as a
marginal. This facilitates a simpler theoretical analysis of the
Monte Carlo error based on the familiar tools for analyzing
Markov chains in sampling-based posterior inference.

We now describe our key contributions. We develop the
general ADDA framework and establish Harris ergodicity of the
ADDA Markov chain in Theorem 2.1 (Section 2.1). We apply
this framework on three representative DA algorithms for two
kinds of massive data settings (Sections 3.1-3.3). The first is
the “massive n setting,” where the number of observations or
samples 7 is extremely large, typically in the order of millions or
larger. We consider two illustrative examples: the Polya-Gamma
DA algorithm for Bayesian logistic regression (Polson, Scott,
and Windle 2013) and the marginal DA algorithm for linear
mixed-effects modeling (Van Dyk and Meng 2001). The number
of augmented parameters in both DAs equals the number of
observations, implying that their I steps are prohibitively slow.
Algorithms 1 and 3 outline their ADDA extensions. The other
setting arises in models with extremely large number of variables
p (i.e., “massive p setting”). We develop an ADDA extension in
Algorithm 2 for Bayesian lasso DA algorithm, which has been
used for high-dimensional Bayesian variable selection using
shrinkage priors (Rajaratnam et al. 2019).

The two hallmarks of ADDA are distributed and asyn-
chronous posterior computations. Parallel processing by
distributing the independent draws of the appropriate sub-
blocks of the missing data to the k workers obviously leads
to faster computations with no adverse impact on mixing of
the Markov chain. The asynchronous updates, however, come
with a tradeoff. Smaller values of the fraction r lead to faster



computations per iteration, but also slow down the mixing of
the Markov chain; therefore, compared to the parent DA, the
same number of iterations of the ADDA algorithm take much
less time but provide less accurate estimates of desired posterior
quantities. The idea, as demonstrated by our simulations, is
that typically the computational gain is quite significant with
a comparatively small loss of accuracy. For example, the real
data analyses using logistic regression and linear mixed-effects
models show that ADDA is anywhere between three to five
times faster and only around 2% less accurate than its parent
after 10, 000 iterations; see Section 4.3 and Figure 4.

The iterates generated by the ADDA algorithm form a
Markov chain whose stationary distribution has the target
posterior as a marginal. This potentially allows us to directly
leverage standard approaches to quantify the Monte Carlo
standard error of the resulting estimators of posterior quantities.
All asymptotically consistent estimators of the standard error,
however, rely on the existence of a Markov chain CLT, which is
typically established by showing geometric ergodicity; that is,
the distribution of the Markov chain converges geometrically
fast to the stationary distribution as the number of iterations
increase. Establishing geometric ergodicity of statistical con-
tinuous state space Markov chains is known to be challenging
(Jones and Hobert 2001). The drift and minorization analysis
typically needed for this purpose can be quite involved and “a
matter of art,” requiring the analysis to be heavily adapted to the
structure of individual Markov chains. The geometric ergodicity
of the Markov chains corresponding to the three DA algorithms
has been established, but adapting these analyses to establish
similar results for the ADDA extensions is not feasible given
the complications introduced by the asynchronous updates.
Through a fresh analysis, we establish geometric ergodicity for
the three ADDA extensions in Theorems 3.1-3.3.

2. Asynchronous and Distributed Data Augmentation
2.1. The General Framework

Consider the setup of a general ADDA algorithm. Assume that
we have chosen an r € (0,1) and reserved k worker and 1
manager processes. Let 6 be the model parameter, Dgps and D
be the observed and missing data, Daug = {Dgbs, D} be the
augmented data. Let Ml and © denote the missing data and the
parameter spaces, respectively. We assume that both sets are
equipped with countably generated o -algebras, and respective
o -finite measures p and v. Let f(D,0 | Dghs) denote the
joint posterior density (with respect to p x v) of D and 6,
and f(D | 0,Dgps) and f(O | D, Dyps) denote the conditional
posterior densities of the missing data given the parameter, and
the parameter given the augmented data, respectively. Let D;
denote the missing data subset distributed to worker i so that
D = (Dy,...,Dy). We assume that Dy, D,, ..., DDy are con-
ditionally independent given Dqps, 0 so that f(D | 6, Dyps) =
]_[f»(:l fi(Di | 6, Dops). If the parameter 6 can also be divided into
conditionally independent blocks, one could introduce more
than one manager process, but for ease of exposition we restrict
ourselves to a setting with one manager process.

Foranr € (0,1) and an € € (0, 1), any ADDA algorithm is
implemented as follows:
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1. The manager starts with some initial values (DO 9O at
t = 0 and sends 0© to the workers. For t = 0,1,...,00,
the manager

(M-a) waits to receive only an r-fraction of updated Di(t'H)s
(see below) from the workers with probability 1 — ¢,
and with probability €, waits to receive all the updated

DE[-H)S from the workers;

(M-b) creates DD by replacing the relevant D\”’s with the

newly received Di(tH);

(M-c) draws 8%*+D from p(8 | DU*V, Dyye); and

(M-d) sends 8tV to all the worker processes and resets t =
t+ 1.

2. Fort=0,...,00,theworkeri(i=1,...,k)

(W-a) waits to receive 6) from the manager process;

(W-b) draws Di(tH) from p(D; | Dgps, 0P); and

(W-¢) sends D;t“) to the manager process, resets t = t + 1,
and goes to (W-a) if #UF1 is not received from the
manager before the draw is complete; otherwise, it
truncates the sampling process, resets t = t + 1, and
goes to (W-b).

These steps are summarized into Asynchronous and Distributed
(AD) Iand P steps. For t = 0,1, ..., 00, the (t + 1)th iteration
of an ADDA algorithm has the following two steps:

AD-I step: Each worker draws thﬂ) from f(D; | Dobs» 0) for
i = 1,...,k in parallel and sends D;Hl) to the manager (if
the draw is finished before receiving #*1).

AD-P step: As soon as the manager receives the required frac-
tion (r with probability 1 — € and 1 with probability €) of

updated D" values from the workers, 0+ is drawn from

f@ ] DYH), s D,itﬂ), Dobs), and sent to the workers.

Note that if the r-fraction update regime is chosen, then the
manager sets Di(tﬂ) = th) for the remaining (1 — r)-fraction.
As soon as the workers receive #*1, they stop any ongoing
activity and proceed with the AD-I step for the (¢t + 2)th
iteration.

One cycle of ADDA consists of AD-I step followed by
AD-P step, and they are repeated sequentially to obtain the
{(DW,0®) : t = 0,1,...,00} chain for the missing data
and parameter. We emphasize again that at the end of iteration
t+ 1, with probability 1 — €, only an r-fraction of Dit), e Dlgt)
are replaced by the manager with new draws received from
the workers, whereas the remaining (1 — r)-fraction of them
haven't changed. The AD-I and AD-P in ADDA are distributed
generalizations of the I and P steps in its parent DA. If r = 1,
then AD-I and AD-P steps reduce to the I and P steps of their
parent DA. The next section investigates crucial theoretical
properties of the ADDA algorithm which guarantee that the
ADDA Markov chain can be used to effectively approximate
relevant posterior quantities.

2.2. Markov Property and Harris Ergodicity

The classical (parent) DA algorithm (the ADDA with r = 1)
corresponds to a systematic scan two-block Gibbs sampler



898 J.ZHOU, K. KHARE, AND S. SRIVASTAVA

from the joint density f(D,0 Dobs). Furthermore, in the
classical DA setting, *V solely depends on DUV given
DD (DY, 69)){_, and DU+V depends solely on 6 given
(DY, 90))}1?:0. This implies that §“+1 solely depends on 6”
given {6 0 };ZO so that the marginal {6®} process is Markov.
This fact is often useful when establishing theoretical properties
such as geometric ergodicity of the DA Markov chain.

The ADDA can be interpreted as a hybrid Gibbs sampler. The
AD-P step is a systematic scan step for sampling the parameter 6
from its conditional posterior distribution given D, but the AD-
I step is a “random subset scan” step which updates a random
subset of the missing data D = (Dy, ..., Dk). Other hybrid
versions of systematic and random scan Gibbs steps have been
considered in the literature. Backlund et al. (2021) consider a DA
setup where the parameter 0 is partitioned into two blocks. They
construct and study a hybrid sampler that performs a systematic
scan step for the entire missing data D at each iteration and
updates exactly one of the two parameter blocks with fixed
probabilities s and 1—s, respectively. A general (non-DA) setting
with multiple blocks is considered in Levine et al. (2005), where
a sampler updates a single coordinate in each iteration. The
choice of the block to update is made randomly based on a vector
of fixed probabilities which depend on the block index that
was updated in the previous iteration; therefore, this strategy
subsumes the traditional systematic and random scan samplers
as special cases. The ADDA is significantly different from the
above strategies and updates a randomly chosen subset of the
conditionally independent blocks of the missing data D, while
performing a systematic scan update of the entire parameter
6. Note also that the probabilities of choosing various relevant
subsets at a given iteration can in general depend on the current
value of the parameter 6.

A simple observation shows that {D®, Q(t)} process in
ADDA is Markov. For an ADDA algorithm w1th r € (0,1),
the knowledge of (D®,0®) makes the entire past irrelevant
for generating (DD, gU+D), Speciﬁcally, (D(t“) oDy s
conditionally independent of {(D(]) 90))} given (DO, 9Dy,

therefore, the process {D(t) Q(t)} _o isstill Markov. It is also eas-
ily seen that both the AD-P step and the AD-I step leave f(D, 0 |

Dobs) invariant. This is promising but to use the ADDA iterates
to approximate relevant posterior expectations and quantiles,
we need to establish Harris ergodicity. The following theorem
shows that the ADDA Markov chain is Harris ergodic as long
as € is positive, the original DA chain is Harris ergodic, and its
transition kernel satisfies a mild absolute continuity condition.

Theorem 2.1. Let Kpy be the transition kernel of the parent
DA chain which is equivalent to the ADDA chain with r = 1,
and IT (- | D,ps) be the joint posterior distribution of D and
0. Assume that Kpa((D,0),-) is absolutely continuous with
respect to I1 for every (D,0). Then, if € > 0 and the parent
DA chain is Harris ergodic, the ADDA chain is Harris ergodic.

The proof of the theorem is given in the supplementary
materials. The assumption € > 0 is needed because it ensures
that there is a positive probability that each worker returns an
updated value at each iteration. This allows us to leverage the
Harris ergodicity of the parent DA chain to establish relevant

properties of the ADDA chain. If ¢ = 0, then assumptions
regarding the computer architecture of the workers are required
to guarantee Harris ergodicity; for example, see Terenin, Simp-
son, and Draper (2020). This can get quite messy and tricky to
ensure in real-life computing. Using € > 0 is an elegant and
clean way of side-stepping these issues. Of course, smaller values
of epsilon are preferred for faster computations. Theorem 2.1 is
a fundamental step toward understanding theoretical properties
of the {(DW,0®)} process in ADDA but is still far from the
end. We need to establish a CLT for the {(D®,0?")} process
by proving geometric ergodicity, which is quite challenging in
general. For Markov chains where a proof is available, it is
typically based on drift and minorization conditions, which are
specifically tailored for the particular chain at hand.

In the next section, we illustrate the application of ADDA
on logistic regression, high-dimensional variable selection,
and linear mixed-effects modeling. For the three examples,
the {(D®W,0®)} process in the parent DA is known to be
geometrically ergodic. Extension of each of these proofs to
ADDA is difficult for at least one of two main reasons. First,
each cycle of ADDA updates (with 1 — € probability) a random
r-fraction of the D,...,D. This random subset update
significantly complicates the transition density in terms of
establishing a minorization condition involved in the proof of
geometric ergodicity. Second, some proofs for the geometric
ergodicity of the parent DA focus on the marginal process {6},
which is a Markov chain in the parent DA setting, and extend the
result to the full process {(D¥,6®)}. This strategy fails in for
ADDA because the {#("} process is not Markov in general. We
provide results establishing geometric ergodicity for the ADDA
chains in the three models in the next section. A key idea in the
proofs is to identify and establish geometric drift conditions,
where the drift functions are unbounded off compact sets. Some
of these proofs are established under weaker conditions than
those required for the parent DA chains.

3. Applications
3.1. ADDA for Bayesian Logistic Regression

Consider the implementation of Pdlya-Gamma DA for Bayesian
logistic regression (Polson, Scott, and Windle 2013). Let n be
the sample size, 8 = (,31,...,,BP)T € RRP be the regression
coefficients, and yj,s;,x; = (xil,...,xip)T be the response,
number of trials, covariates for sample i, respectively, where

€ {0,1,...,s;},si € N, x; € RP. The hierarchical model for
logistic regression is

yi | B Binomialfs;, 1/(1 + ¢ %)),
Vi = xip, B~ N(up,Zp). (1)

The DA algorithm augments the model in (1) with n Pdlya-
Gamma random variables w;, . . ., w, specific to the n samples,
and cycles between the I and P steps for a large number of
iterations starting from a given value of B:

PG-1 (I step) Draw w; given B from PG(s;, |x;f,3|) for i =
1,...,n, where PG is the Pélya-Gamma distribution.

PG-2 (P step) Draw f given wi,...,w, and yj,...,y, from
N(my, V), where V,, = (XTQX + ZEI)_I, my, =

i=1,...,n



Vw(XTK + Egluﬂ), k = (1 —5s1/2,...,¥n — sn/Z)T,
and €2 is the diagonal matrix of w;s.

The marginal Markov chain {8} of the 8 draws collected
in step PG-2 has the posterior distribution of 8 in (1) as its
invariant distribution (Choi and Hobert 2013; Wang and Roy
2018b, 2018a).

The ADDA algorithm with Pélya-Gamma DA algorithm as
its parent DA modifies step PG-1. Let s = (s,...,s,) and w =
{w1,...,wn}. Then, following the notation of Section 2.1, the
Pélya-Gamma DA has

9 = {ﬂ}) DObS = {}’)S>X},
Daug = {(yi;Si,xi,a)i) i=1,...

D = {w},

,n}.

For many datasets, the sample size n can be really large. For
example, the MovieLens data analyzed in Section 4.3 has 10
million samples. Instead of updating #n w;s in every iteration,
ADDA updates only an r fraction of them (with probability
1 — €) and reduces to its parent DA when r = 1. The ADDA
algorithm runs after we randomly split the n samples into k
disjoint subsets and store them on k worker processes. Let n; be
the number of samples assigned to worker i, (¥ji)» Sji)> Xji)> @j(i))
be the jth augmented sample on worker i (j = 1,...,#;) and
D; = {wi1(3j)s - - - > 0ny(i)}. Note that wj(;s in D; are rearranged
to match the ordering of samples in Dyps so that D = v =
{wy, ... w4}

The ADDA extension of Pélya-Gamma DA for a given (k, r)
initializes (w, B) at (@@, B®) and the AD-I and AD-P steps
in the (¢ 4 1)th iteration are described in Algorithm 1. ADDA
generates the Markov chain ®sppg = {0®, ,B(t)}‘t’io. The fol-
lowing Theorem establishes the geometric ergodicity of ® appg
when € > 0 and its proof is in the supplementary material.

Algorithm 1 AD Pélya-Gamma DA
AD-I step

1. Draw a)(t'H)

i given B® from PG(sj, |xI,B"]) on

j)
workeriforj=1,...,n;.
t+1) (t+1) (t+1)
2. Send D; = {a)l(i) see e @y
process if these draws are finished before receiving g¢+1
i=1,...,k).

AD-P step

} to the manager

1. With probability 1 — ¢,

o wait to receive updated DfH_l) values from an r-

fraction of workers, set Di(tH) = th) for the remain-
ing (1 — r)-fraction of workers, and define QU+D =
diag(@™), Ve = X'QUTIX 4+ x7H7,
My = Ve XTie + Zglﬂﬁﬁ and
FGRY oD Dy,

o draw from N

(m 1), Vyatn).

given

2. With probability €, wait to receive updated thH) values
from all the workers, and then proceed to drawing g¢+1
given @ and Dops.
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Theorem 3.1. If € > 0, the Markov chain ®sppg in Algorithm 1
is geometrically ergodic.

The convergence analysis of the parent PG DA chain has
been performed in the literature. In particular, Choi and Hobert
(2013) show that the parent PG DA chain is uniformly ergodic
(using the marginal ) chain) if proper priors are used. Fol-
lowing this work, Wang and Roy (2018b) show the geometric
ergodicity of the PG DA chain with flat priors. The uniform
ergodicity proof for the parent DA chain in Choi and Hobert
(2013) for the binary and proper prior setting is based on a
minorization argument on the marginal { B®Y chain; however,
this proof strategy fails for ADDA because the {8} process for
®Appg is not Markov. As a result, we take a different approach
where we establish a geometric drift condition using a function
of (B8, w), which is unbounded oft compact sets. Wang and
Roy (2018b) follow a similar strategy for the proving geometric
ergodicity of the parent DA chain with improper priors, but
they focus on the marginal w chain instead of the (8, w) chain.
Furthermore, the previous two works consider the parent DA
chain when the response is binary, whereas Theorem 3.1 deals
with the ADDA chain in a more general binomial setting.

3.2. ADDA for Bayesian High Dimensional Variable
Selection

Consider high dimensional variable selection using a Bayesian
lasso shrinkage prior Rajaratnam et al. (2019). Let n be the
sample size, 8 = (B1,...,Bp) be the regression coefficients,
¥y = 1,...,¥n) € R" be the response vector, and X € R"*? be
the design matrix. The Bayesian lasso DA algorithm augments
dimension j with local shrinkage parameter 7; (j = 1,...,p),
and the hierarchical model for variable selection is

y | B,0% ~N(XB,o%I,), B|o*t~N(©0,0°D,),

T = (11,...,Tp), Dr = diag(z),

ind.
o2~ Inverse-Gamma(a, b), T e Exponential(k2 /2),
i=1....p @

where I, is an n x n identity matrix, 02 > 0 is the variance of
idiosyncratic error term, T = (71,...,7p),and «, b, A are hyper-
parameters. The DA algorithm starts with some initial values of
B and o2 and cycles between the I and P steps for a large number
of iterations:

BL-1 (I step) Draw 7j given B,0* from Inverse-Gaussian

(el a2y forj=1,....p.

BL-2 (P step) Draw (8,02) given 7 and y as

o | 7,y ~ Inverse-Gamma(n/2 + a,yT
(I—-XA7'XT)y/2+b), A, =X'X+D;!,
Blotty~ N(A;IXTy,azA;I). 3)

The Markov chain {8®, 02} of the (8, 0'2) draws collected in
step BL-2 has the posterior distribution of (8,52) in (2) as its
invariant distribution (Rajaratnam et al. 2019).

This DA is different from Pélya-Gamma DA in that the I
step in BL-1 draws p latent variables instead of n. In high-
dimensional problems, n <« p and updating 71, ..., 7, in every
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iteration is time consuming even when 7 is small. Following
Section 2.1,

0= {13362}) Dobs = {)’)X}) D= {T}>
Dag = {Qpxip7) ti=1,...,mj=1,...p}

in the Bayesian lasso DA. Unlike Pélya-Gamma DA, the com-
putational bottleneck in the I step happens when p is large. The
ADDA algorithm starts by partitioning {1, . . ., p} into k disjoint
subsets denoted as P4y, ..., Pk The elements of T and B are
stored on k worker processes. Let p; = | Pil, ((Bji)» Tji) : j € Pi)
be the B and t elements on worker i, and D; = {13y, - - - » Tp;(i)}
(i=1,...,k). The disjoint partitioning ensures that p; + - - - +
Pk = p- Note that the 7j(;)’s are rearranged so that D = © =
{t1,.. > 1}

The ADDA extension of Bayesian lasso DA, at any iteration,
updates (with probability 1 —€) only an r fraction of Dy, . . ., Dy,
and with probability € updates all of Dy, ..., D. Clearly, the
ADDA extension reduces to the parent DA when r = 1. For
a given k and r, the ADDA extension of the Bayesian Lasso DA
initializes (7, 8, 0%) at (t(©, B, 52(9) and the AD-Iand AD-P
steps in the (¢t + 1)th iteration are given in Algorithm 2.

Similar to the Pdlya-Gamma DA extension, this ADDA
cycles generate the Markov chain ® sppr, = {t®, ®, o2® 120-
The following theorem establishes the geometric ergodicity of
®AppL, when € > 0, and the proof is given in the supplementary
material.

Theorem 3.2. If ¢ > 0 and n > 3, the Markov chain ®4pp; in
Algorithm 2 is geometrically ergodic.

Geometric ergodicity of a three block version of the parent
DA chain was established in Khare and Hobert (2013), and
geometric ergodicity for the parent DA chain described in BL.1
and BL.2 above was established in Rajaratnam et al. (2019).
Both these proofs make use of drift and minorization. In par-
ticular, Rajaratnam et al. (2019) prove results on the marginal

(B,0?) chain, and leverage them to establish geometric ergod-
icity of the parent DA chain. We are unable to follow this route
because the marginal (8, o) chain is not Markov, and establish-
ing minorization with the asynchronous updates is nontrivial.
As such, our proof of Theorem 3.2 is based on establishing a geo-
metric drift condition using a drift function that is unbounded
off compact sets.

3.3. ADDA for Linear Mixed-Effects Modeling

Consider the setup for linear mixed-effects models (Van Dyk
and Meng 2001). Let n be the number of observations, m be the
number of subjects, (y;,Xi,Z;) be the response, fixed effects
covariates, and random effects covariates, respectively, for
subject i, p, and g be the number of fixed and random effects, 8 €
R? be the fixed effect, and X be a g x q positive definite covari-
ance matrix. Then, the linear mixed-effects model assumes
that

yi == Xl,B + Zibi + €, bi ~ N(O) E),
ei ~N(,0%), bile, i=1,...,m, (4)

where b; € R? and ¢; € R" are the random effect and
idiosyncratic error for subject i, b; and e; are mutually inde-
pendent, ¥ is the covariance matrix of random effects, o2 is
the error variance, I is an identity matrix, y; € R", n =
>, nj,and the dimensions of X;, Z;, e;, I are chosen appropri-
ately. The b;s are unobserved and the interest lies in inference
onf = {B,%,0%).

** The DA algorithm for posterior inference on 6 is based on
modified random effects. Let I' be a non-singular matrix, y =
vec(I") stacks the columns of T into a g*>-dimensional vector,
p=p+@y =0l ) eR,E =T713I T, a =
(B,y), and X € R™ P be the matrix with [X; (dl.T ® Z;)] as its
ith row block, where d; = I'"!b; for i = 1,..., m. The prior

Algorithm 2 AD Bayesian Lasso DA

AD-I step

1. Draw t.(t'H)

(t+1)
10 >

(t+1)

t+1) __
2. Send D, = {1: - Tp.(i)

L,...,k).
AD-P step
1. With probability 1 — ¢,

 wait to receive updated Di(tH) values from an r-fraction of workers, set D
of workers, and define D_ (1) = diag(z V), A s = X X + D7}

(®)

i) given B®, 2 from Inverse-Gaussian(|A||o @ 1/1Bi¢i) 1> 2%) on worker i forj = 1,...,p;.

} to the manager process if these draws are finished before receiving g¢+1, o2+ (i =

i(t+1) _ Di(t) for the remaining (1 — r)-fraction

Ly and

o draw (84D, 02(+D) given DYH), . ,DI(CH_I) and Dy as

o2+ | D

(t+D)

y ~ Inverse-Gamma(n/2 + a,yT a—- XA:(}H)XT))//Z +b),
ﬂ(t+l) | 02(t+1),f(t+1),y ~ N(A

XTy) G20 ALy

T+

2. With probability €, wait to receive updated D;tﬂ) values from all the workers, and then proceed to drawing ﬂ(t‘H), o 2t+D

given Ditﬂ), s D,((t'H) and Dps.




distributions on (o2, ) and ¥ are assigned as

M
% ~ —5 | o? ’\'N(O,UZVO[_I),
Xa

Y ~IWW,s), M>0,a>0s>qg+1, (5)

where Vo, > 0,W > 0, > 0 denotes a symmetric positive
definite matrix, and IW stands for inverse Wishart distribution.
Then, the DA algorithm for posterior inference in linear mixed-
effects modeling starts with some given value of 6 and repeats
the following I and P steps for a large number of iterations:

LM-1 (Istep) Draw d; given 6 and y; from Normal(rmg;, V,) for
i=1,...,m,where

~ ~ —1
mg = STTZT (zirerz,.T + 021) i — Xi),

~ ~ ~ -1 ~
Vg =5 - Er'Zf (zrSr'zf + ') ZirE.

(6)
LM-2 (P step) Draw £,02 and o = (B,y) given dy, ..., dm,
Y1> - . .»Ym in three steps:
m -1
$-1 Wishart, s—g (Z did;r—i—W) ,
i=1
—I2+M
o2 ~ ||}’2 v+ )
Xn+a—p—q2
a|o? ~ N{a,o>(XTX+V,) ™1, 7)

where @ = S}‘N(TX—I—VQ)”;(T)/,)A/ = X&, T = unvec(y),
and T =TX7'TT.

This DA is different from the previous two DA algorithms
in Sections 3.1 and 3.2 due to the presence of random effects.
Following Section 2.1, we have

0= {ﬁ,F,E,O'Z}, Dops = {y,f(},
Daug = {()’i)Xi:Zh dl) : l = 1)- .

D ={dy,....dm},

, m},

The main computational bottleneck here is the repeated sam-
pling of di,...,d, in the I step LM-1 when m is large. For
example, the MovieLens data analyzed in Section 4.3 has m ~
72,000. The ADDA-based extension of this algorithm starts
by partitioning {1,...,m} into k disjoint subsets denoted as
Pis...,Pr.Letm; = [P, {()’j(i)axj(i)aZj(i)a dj(i)) ] € P;} bethe
augmented sample on worker 7, and 5g(i) = [Xj) (djT( H® Zii]
(j=1,...,m;). Note that m; +- - - +my = m due to the disjoint
partitioning. Define the statistics Sqa i), Sxx(i)> Sxy(i) for worker i
as

mi mi
T vT v
Saay = Y diodiy  Sai) = Y X Xj»
j=1 j=1

mi
v T
Sy = Y Ko ®
j=1

Then, the augmented data sufficient statistics {5(1(1-), s Xy
Sdd(iys Sxx(i)» Sxy(iy} for worker i play an important role in both
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the DA and ADDA algorithms. In particular, & and y in P step
of the parent DA in (7) become

k
a = (Sxx+Vo) Sxy, 7=Xa&, Sxx= stx(i),
i—1

k
Sxy = sty(i): 9
i1

-1
and Sgé = (ZL] de(i)—i—W) is the scale parameter of the

Wishart density in (7). Note that X is obtained by arranging
Xl(,-), .. ,Xmi(i) (i=1,...,k) in the order of samples in X and
binding them along the rows.

The ADDA extension of the linear mixed effects DA, at any
iteration, updates (with probability 1 — €) only an r fraction of
D, ..., Dk, and with probability € updates all of Dy, ..., Dy.
Clearly, the ADDA extension reduces to the parent DA in steps
LM-1-LM-2 when r = 1. For a given k and r, the ADDA exten-
sion of the marginal DA initializes (dy, da, - - - , d» @, B,0°2) at
(d§0), s diy?), a®, 50 520)) and the AD-Iand AD-P steps in
the (t + 1)th iteration are presented in Algorithm 3.

Denote the Markov chain obtained from this ADDA algo-
rithm as ®PapiMg = {d(t), ey dﬁ,t,), (X(t), E(t), O'z(t)}?io. The
convergence analysis of the linear mixed-effect model parent
DA chain is extremely challenging. In fact, the literature on
geometric ergodicity of the parent DA chain described in LM-
1 and LM-2, to the best of our knowledge, focuses only on the
special case when the ©*) is diagonal and T is fixed to be the
identity matrix; for example, see Roman and Hobert (2015) and
Abrahamsen and Hobert (2019). Following Roman and Hobert
(2015) and Abrahamsen and Hobert (2019), we assume that " =
I, for the convergence analysis; however, unlike these analyses
of the parent DA chain, we do not restrict ¥ to be a diagonal
matrix. Algorithm 3, without the I' updates (i.e., I is fixed at
1), provides a Markov chain {dit), o dD po wO), o200 .
In this setting, from the priors used in (5), only the prior for
given o2 is modified to the prior for 8 given 0% as N(0, o2 Vﬂ_l)
for some Vg > 0. We need the following assumptions for our
geometric ergodicity result.

Assumption 3.1.
(a) ZiTZ,' = 0@G = 1,...,m) and X*X > 0, where X =
T %T T1T
(X1 X

(b) The prior shape parameter s for ¥ satisfiess — g — 1 >
(1—e)m
—

(c) The matrix Vg from the prior distribution on g, and the
degrees of freedom a from the prior distribution on o2
satisfy nﬁf;n;@z (I — H) < €I, — H, where H = X(Vg +

XTX)~1XT and A; < A, denotes that Ay — A; > 0.

Assumption (a) is quite reasonable, especially since the
ADDA algorithm is geared toward applications with large m, n
and typically small values of p and g (such as the MovieLens
data analyzed in Section 4.3.3). Assumptions (b) and (c) on the
prior hyper-parameters s, a, Vg might seem restrictive, but it is
important to keep in mind that we are in a challenging setting
with a general non-diagonal ¥ for which convergence results
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Algorithm 3 AD linear mixed-effects model DA

AD-I step

(t+1)
1. Draw dj@

given 0 = (@®, £®,52") and yji from N(my,

Vdj<,-)) onworkeriforj=1,...,m; where Mg, » Vdj(i) are

[OK

obtained by replacing (y;, X;, Z;) in (6) with (yj), Xj(i)» Zj(i)-

(t+1) (t+1)
2. Compute D, from the sampled d].(l.)

receiving 8+ = (@FD, £ D 520Dy (=1, k).

AD-P step
1. With probability 1 — ¢,

o wait to receive updated Di(t'H)

values from an r-fraction of workers, set

values and send DZQH) to the manager process if these draws are finished before

Di(t'H) = th) for the remaining (1 — r)-fraction

of workers, and define @+, (+D_ s UFD yging (9); and
o draw (@D, ¢+ 520+ given ’DYH), .. ,’DI((H_I) and Dy as follows:

- -1 -1
(E(t+1)> ~ Wishart,,_q {(Sg;fl)) } 2D o

ly — 3012 + M
2 b

Xn+a—p—q2

oD | g2t o N(&(t+1))02(t+1)(5§§1) + Va)—l)) D) _ pEHD S ED REDT

2. With probability €, wait to receive updated Di(t'H)

D R E+D 520+D given D{Hl), o ,D£t+1) and Dops.

values from all the workers, and then proceed to drawing

are unavailable even in the parent DA setting. As discussed
previously, the asynchronous updates in the ADDA setting
present additional challenges in the analysis; however, we are
still able to establish geometric ergodicity in this more general
ADDA setting, as described in the result below. The proof is
provided in the supplementary materials.

Theorem 3.3. If € > 0 and Assumption 3.1 holds, the Markov
chain ®sppmE in Algorithm 3 (adjusted for I' = 1) is geomet-
rically ergodic.

4. Experiments
4.1. Setup

We evaluate the numerical accuracy and computational effi-
ciency of ADDA algorithms for k € {10,25,50} and r €
{0.20, 0.40, 0.60, 0.80} using their parents as the benchmarks.
Every experiment with a given choice of (n, k, r) is replicated
10 times. Before running an ADDA algorithm, the samples or
the parameter dimensions are split into k disjoint subsets that
are stored on k worker machines, whereas the parent DA uses
the full data stored on a single machine. We set ¢ = 0 in our
simulations and € = 0,0.01,0.10 in the real data analyses. The
€ = 0 setting is best for fast computations that are required for
multiple simulation replications, but it is not clear if the ADDA
chain is Harris ergodic because Theorem 2.1 requires thate > 0.
In our simulations for ADDA algorithms with ¢ = 0 that run
for 20,000 iterations, we have rarely encountered a situation
where a worker never sends its I step results to the manager. Our
observations from the real data analyses suggests that one could
set € to be 107 or 107> to maintain theoretical convergence
guarantees while compromising very little on the computational
gains.

The (empirical) accuracy of an ADDA algorithm relative
to its parent DA algorithm is defined using the total variation
distance. Let n h(®) = (n1,...,n.) be a function of the
underlying parameter 6 with ¢ components and g, (1;) and
p'(nj) be the posterior density estimates of n; after ¢ iterations
of ADDA and its parent, respectively. Then, the accuracy metric
based on 7; for the ADDA algorithm at the end of ¢ iterations is
defined as

Accyj() =1—TV(p',q) =1-1 fR o' () — gt ()| dn,
(10)

where rand kare given, TV (p', ¢',) is the total variation distance
between p* and ¢, and Acc j(t) € [0, 1] because TV(p', q',) €
[0, 1] for every 1, k, t. We estimate Accyxj(t) using kernel density
estimation in two steps. First, we select the first ¢ draws of 7;
from the ADDA algorithm and its parent DA, respectively, to
estimate g, and p' using the bkde function in the KernSmooth
R package. Second, these estimates are used to numerically
approximate the integral in (10) and obtain the Accyj(f) (j =
1,...,c) estimates. The overall accuracy metric estimate based
on 7 for the ADDA algorithm is defined as

c
Accp(t) = ¢! Z Accyj(D).
j=1

(11)

The larger the Acck(t) value, the better an ADDA is at approx-
imating its parent DA.

We use the mcse function in the R package mcmcse to com-
pute the Monte Carlo standard errors for ADDAs and its parent’s
Markov chains based on the overlapping batch means method
(Jones et al. 2006; Vats, Flegal, and Jones 2019). Following the
notation from the previous paragraph, let SEfk i@ and SEJP(t),
respectively be outputs of the mcse function using the first ¢
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Figure 1. Accy () and SE(t) metrics for inferenceon P(Y =1 | x; = 1,...,xp = 1) using the ADDA Algorithm 1 for logistic regression with r = 0.20, 0.40, 0.60, 0.80

and k = 10, 25, 50.

draws of n; from the ADDA algorithm for a given (r,k) and
its parent DA algorithm (j = 1,...,¢). Then, a metric for
comparing their overall Monte Carlo standard errors is defined
as

Cc
SEn(t) = ¢ ) " ASEp (D),
j=1

ASE (1) = |SEﬁc,j(t) — SE; (1)I.

(12)
The smaller the SE,«(t) value, the closer are the standard errors
of ADDA and its parent.

All ADDA algorithms are implemented in R using the par-
allel package. The ease of implementation and reproducibility
drive this choice. Our ADDA implementation in real data anal-

yses shows three to five times gains in run-times (Figure 4).

4.2. Simulated Data Analyses

The computational bottlenecks in DA for logistic regression and
linear mixed-effects models arise due to massive sample sizes
(Sections 4.2.1 and 4.2.3). In these models, we partition the sam-
ples into k subsets and store them on the worker machines. On
the other hand, the augmentation of local shrinkage parameters
specific to the regression coefficients leads to the inefficiency
of the DA for Bayesian lasso (Section 4.2.2). The augmented
parameters here are partitioned into k subsets and stored on the
worker machines. The sample or missing data sizes are relatively
small in this section to facilitate multiple replications for various
choices of (k, ), so we defer run-time comparisons to the real
data analyses in Section 4.3. The ADDA algorithm and its parent
DA run for 20,000 iterations in this section.

4.2.1. Logistic Regression

We simulate the data using the model in (1). We set p = 10,
BT = (=2,2,...,-2,2), s; = 10 for every i, and generate the
entries of X as independent standard normal random variables.
Varying n € {10% 10°,10%}, we simulate y;, ..., using the
hierarchical model in (1). The rows of X and y are randomly
split into k subsets that are stored on the worker machines.

The Acck(t) and SE,;(t) metrics are evaluated for n =
PY =1 ]| x1 = 1,...,x, = 1) (Figure 1). The Accy(t)
and SE,(¢) values are insensitive to the choices of n,r, k. The
Accy(t) and SE () values quickly increase to 1 and decrease
to 0, respectively, as t increases. Our simulations demonstrate
that after a sufficiently large number of iterations, the ADDA
Algorithm 1 has similar accuracy and Monte Carlo standard
errors as its parent DA irrespective of the choice of n,r, and k.
In the supplementary material, we provide additional results for
n = B and show that a similar conclusion holds.

4.2.2. High-Dimensional Variable Selection

We simulate the data using the model in (2). We set the first
0.90p entries of 8 to 0 and the next 0.10p entries to —2 and 2
alternatively starting from —2. The entries of X are independent
standard normal random variables. Varying n and p such that
n = pand p € {50,500, 5000}, we simulate y1, ..., y, following
(2) with 62 = 0.01. The columns of X are randomly split into k
subsets that are stored on the worker machines.

For n = B and every p, 1, k, t, the Acc(t) value is high and
SE,« (t) value is low (Figure 2). The Acc(t) values are fairly high
even for small t, increase slightly with ¢, and are insensitive to the
choice of k and r. Agreeing with this observation, SE (t) values
also decay to 0 as t increases and the decay is insensitive to the
choices of p, k, and r. We conclude that ADDA Algorithm 2 is an
accurate asynchronous and distributed generalization its parent
DA.

4.2.3. Linear Mixed-Effects Modeling

We evaluate the empirical performance of the ADDA Algo-
rithm 3 for linear mixed-effects modeling with m € {100, 1000,
10,000}, p = 4,q = 3, and n; = n/m for every i. Fol-
lowing Li, Srivastava, and Dunson (2017), the entries of 8 =
(=2,2,—2,2)", the entries of X, Z are set to 1 or —1 with equal
probability satisfying Assumption 3.1, 02 = 1,and &; = i
(i=1,2,3), 12 = —0.56, X371 = 0.52, X33 = 0.0025. Finally,
Y1»...,¥m are simulated using the model in (4). The rows of
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Figure 3. Accy (t) and SE(t) metrics for inference on X in (4) using the ADDA Algorithm 3 for linear mixed-effects modeling with r = 0.20, 0.40, 0.60,0.80 and k =

10, 25,50.

X, Z, and y are split into k disjoint subsets that are stored on the
worker machines.

We evaluate the Acc(¢) and SE« (¢) metrics for n = X (Fig-
ure 3). The Acc,,(t) and SE,(¢) values insensitive to the choices
of n, r, k. If t is sufficiently large, then Acc(¢) and SE,«(t) values
are close to 1 and 0, respectively. We conclude that the ADDA
Algorithm 3 and its parent have similar accuracy and Monte
Carlo standard errors in estimating the posterior distribution of
Y. We provide additional results in the supplementary material
showing that a similar conclusion holds for n = 8 and n = o2,
respectively.

4.3. Real Data Analysis

4.3.1. Movielens Data

We use the MovieLens ratings data (http://grouplens.org) that
contain more than 10 million movie ratings from about 72
thousand users, where each rating ranges from 0.5 to 5 in
increments of 0.5. Starting with Perry (2017), a modified form

of this data has been used for illustrating scalable inference
in linear mixed-effects models (Srivastava, DePalma, and Liu
2019; Srivastava and Xu 2021). Specifically, a movie’s category is
defined using its genre: action category includes action, adven-
ture, fantasy, horror, sci-fi, or thriller genres; children category
includes animation or children; drama category includes crime,
documentary, drama, film-noir, musical, mystery, romance, war,
or western; and comedy category includes comedy genre only.

Three predictors are defined using this data. The first pre-
dictor encodes a movies category using three dummy variables
with action category as the baseline. If a movie belongs to C
categories, then its category predictor is 1/C for each of the C
categories. The second and third predictors are numeric vari-
ables that capture a movie’s popularity and a user’s mood. The
popularity predictor of a movie equals logit{(! + 0.5)/(r + 1)},
where r users rated the movie and [ of them gave a rating of 4
or higher. The user’s mood predictor equals 1 if the user gave
the previously 30 rated movies a rating of 4 or higher and 0
otherwise.
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Figure 4. Gaininrun times for the logistic regression and linear mixed-effects models used in MovieLens data analysis for r = 0.20, 0.40, 0.60, 0.80, 1.00 and k = 10, 25, 50.
The distributed (or parallel) implementation of the parent DA corresponds to r = 1.00 (or € = 1.00). The gain is defined as the ratio of run times of the parent DA and its
ADDA-based extension. The dashed black line indicates equal run times for an ADDA algorithm and its parent.

We model this data using logistic regression and linear
mixed-effects model in Sections 4.3.2 and 4.3.3. Before fitting
the logistic regression model, the response in MovieLens data
is modified for defining the 0/1-valued response. If the user’s
rating in a given sample is greater than 3, then the response
is 1; otherwise, the response is 0. No modification is required
for the application of linear mixed-effects model. The original
PG DA and marginal DA algorithms for logistic regression
and linear mixed-effects modeling, respectively, are slow if
we use with the full MovieLens data; therefore, we analyze
randomly selected subsets of the MovieLens data to facilitate
posterior computations. The conclusions from Acc(t) and
SE«(t) metrics agree with those in the simulation studies of
Sections 4.2.1 and 4.2.3, so we have presented them in the
supplementary material. In this section, we only provide run-
time comparisons between the ADDA algorithms and their
parents (Figure 4).

4.3.2. Logistic Regression

We randomly select two subsets of users in the MovieLens data
such that the total number of ratings in them are about 10°
and 107, respectively. The MovieLens data with modified 0/1-
valued responses are analyzed using logistic regression model in
(1) with six predictors, including an intercept. There are three
dummy variables for the movie categories and one each for
a movie’s popularity and a user’s mood. The B vector is six-
dimensional. The responses and predictors in the modified data
are collected into the response vector y and design matrix X.
We apply the ADDA Algorithm 1 used in Section 4.2.1 with
two modifications: the number of iterations is 10,000 instead of
20,000 and € = 0,0.01, 0.10. This setup is replicated 10 times by
randomly choosing the users in each replication.

Accy(t) and SE(t) comparisons. The Accy(t) and SE(f)
metrics are evaluated for n = B, P(Y = 1 | x), where
x = (0,0,0,0,1,0) is the predictor for a popular movie. When
€ # 0, the Acck(t) and SE () values are insensitive to the
choices of n,r,k and converge to 1 and 0, respectively, after
t = 2000. If ¢ = 0, then the setup of Theorem 3.1 is violated.
This results in slower convergence of Acc,(t) and SE,«(t) values
when k and r are relatively large and small, respectively (k = 50;
r = 0.20, 0.40); see supplementary material for figures.

Run-time comparisons. The ADDA Algorithm 1 is three to
five times faster than its parent DA (Figure 4(a)). The gain
in run-times are insensitive to the choices of n,7,k, or €.

The minor variations in run-time gains are present due to
the varying loads on the cluster. A distributed (or parallel)
implementation of the parent DA corresponds to an ADDA
with » = 1.00 (or ¢ = 1.00). For every choice of n,k, and
€ € {0.00,0.01,0.10}, the asynchronous implementations of
ADDA with r € {0.20,0.40,0.60,0.80} are two to three times
faster than the distributed implementation of parent DA. An
interesting observation is that the gain in runtime going from
r = 1to r = 0.8 is more significant than going from r = 0.8 to
r = 0.2. One possible reason is that there is a small minority of
workers in each iteration who take significantly more time than
others. Asynchronous computations allow us to bypass these
workers for that particular iteration (with probability 1 —¢) and
speed up the computation.

Conclusions. For a sufficiently large t and every n,r,k, the
Accyi (1) and SE(¢) values for the ADDA chain corresponding
to Algorithm 1 are close to 1 and 0, respectively, as long as € is
positive. The ADDA chain is also three to five times faster than
its parent DA depending on (k, r). The asynchronous compu-
tations are advantageous in that ADDA with r < 1 are two to
three times faster than the distributed implementation of parent
DA.

4.3.3. Mixed-Effects Modeling

We randomly select two subsets of users such that the total
number of ratings in them are approximately 10° and 10°,
respectively, and fit the model in (4). There are six fixed and
random effects predictors, including an intercept, three dummy
variables for the movie categories, and one each for a movie’s
popularity and a user’s mood. The dimensions of 8 and ¥ are
6 x 1 and 6 x 6. We run Algorithm 3 with € = 0,0.01,0.10 and
its parent for 10,000 iterations. This setup is replicated 10 times
by randomly choosing the users.

Accy (1) and SE(t) comparisons. When € # 0 and r # 0.2,
the Acc(¢) and SE(¢) values for f and X converge to 1 and
0, respectively, for every n,k after ¢t = 5000. For smaller ¢
values, Accy(t) is relatively low for n = 10° and r = 0.2
however, the differences between Acc,«(t) and SE,(t) values,
respectively, disappear for a sufficiently large t given € # 0.
If ¢ = 0, then an assumption of Theorem 3.3 is violated that
results in slower convergence of Acc,«(t) and SE(t) compared
to the previous cases, especially when r € {0.20,0.40}; see
supplementary material for figures. Therefore, we recommend
choosing a small but positive € in practice.
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Run-time comparisons. The ADDA Algorithm 3 is three to
five times faster than its parent DA for all the choices of n, 1, k,
and e (Figure 4(b)). For a given k, the gain in run-time increases
with 7 for every € and r. On the other hand, for a given #, the gain
in run-times decreases with increasing k for every € and r due
to the increased communication among manager and worker
processes. Similar to our observations in logistic regression, a
distributed (or parallel) implementation of the parent DA is two
to three times slower than the asynchronous implementations
of ADDA with r < 1and € < 1 for every choice of n, k, and
€. Varying loads on the cluster have a minimal impact on the
run-times.

Conclusions. If € is positive and ¢ is sufficiently large, then the
Acck(t) and SE () values of Algorithm 3 are close to 1 and 0,
respectively, for every n, r, k. The ADDA chain corresponding to
Algorithm 3 is also three to five times faster than its parent DA
depending on (k, r). The asynchronous computations are more
efficient than parallel computations in that ADDA with r < 11is
faster than the distributed implementation of parent DA.

5. Discussion

Our schemes and theoretical results can be extended to other
models. For example, assigning a multivariate ¢ distribution to
the random effects of the linear mixed-effects model in Sec-
tion 3.3 motivates robust extensions of Algorithm 3 (Pinheiro,
Liu, and Wu 2001). On a related note, Pélya-Gamma data aug-
mentation algorithm converges extremely slowly to its station-
ary distribution in massive data settings where the number of
1s and Os are unbalanced (Johndrow et al. 2019). Our simulated
and real data analyses have focused on the balanced case, so we
have not encountered this problem. It is interesting to explore
if our scheme with nonrandom partitions is able to bypass this
problem.

Second, our real data analysis illustrates the dependence of
accuracy and Monte Carlo standard errors on the choice of
(k,7,€). Due to varying loads on worker processes in a cluster,
some workers return their I step results to the manager more
often than others. Our empirical results suggest this variability
decreases with n. For example, if we define the empirical esti-
mate of r for a worker as the fraction of the number of times
the manager accepts its I step results over the total number of
iterations, then empirical estimates of r are closer to the true r
as n increases for every worker and k choices; see supplementary
material for the figure. Additionally, the Bernstein-von Mises
theorem implies that the posterior distribution is accurately
approximated as a Gaussian for a large n. We are exploring
techniques for balancing the Monte Carlo and statistical errors
that depend on (¢, k, 7, €) and n, respectively, for choosing the
total number of Monte Carlo iterations to achieve a desired
accuracy.

Our ADDA extensions exploit two features of the augmented
data model. First, the k augmented data subsets are mutually
independent given the original parameter and the observed
data. Second, the conditional posterior distribution of the miss-
ing data on any subset depends only on the local copy of the
observed data. Both assumptions are violated in models for time
series data (e.g., hidden Markov models). Data augmentation

has been widely used for posterior inference and predictions
in these models, but it suffers from similar computational bot-
tlenecks in massive data settings that have been highlighted in
this article. Recently, this problem has been addressed partly
using stochastic gradient descent (Cappé 2011; Le Corffand Fort
2013). As part of future research, we will explore extensions of
our scheme to hidden Markov models and Gaussian state-space
models.

Supplementary Materials

The supplementary material contains the proofs of Theorems 2.1, and 3.1
3.3 and additional numerical results for the simulated and real data analyses
presented in Section 4.
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