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Abstract—With highly heterogeneous application require-
ments, 6G and beyond cellular networks are expected to be
demand-driven, elastic, user-centric, and capable of supporting
multiple services. A redesign of the one-size-fits-all cellular
architecture is needed to support heterogeneous application
needs. While several recent works have proposed user-centric
cloud radio access network (UCRAN) architectures, these works
do not consider the heterogeneity of application requirements
or the mobility of users. Even though significant gains in
performance have been reported, the inherent rigidity of these
methods limits their ability to meet the quality of service (QoS)
expected from future cellular networks. This paper addresses this
need by proposing an intelligent, demand-driven, elastic UCRAN
architecture capable of providing services to a diverse set of
use cases including augmented/virtual reality, high-speed rails,
industrial robots, E-health, and more applications. The proposed
framework leverages deep reinforcement learning to adjust the
size of a user-centered virtual cell based on each application’s
heterogeneous requirements. Furthermore, the proposed archi-
tecture is adaptable to varying user demands and mobility while
performing multi-objective optimization of key network perfor-
mance indicators (KPIs). Finally, numerical results are presented
to validate the convergence, adaptability, and performance of
the proposed approach against meta-heuristics and brute-force
methods.

Index Terms—User-centric, elastic architecture, demand-
driven, deep reinforcement learning, spectral efficiency, energy
efficiency, throughput.

I. INTRODUCTION

A. Background
A key feature of 6G and beyond networks will be ultra-

dense networks offering seamless coverage, very high through-
put, and ultra-low latency. Network operators are exploring
ultra-dense networks to meet the ever-growing demand for
throughput and latency envisioned for 6G and beyond users.
While researchers in both academia and industry agree that
network densification will enhance the coverage and capacity
of current cellular networks, it has its own complications [1].
By densifying the network, the average distance between users
and the interferring base stations reduces. This causes a shift
in pathloss exponent leading to a scenario where increase in
the interference from neighboring base stations overshadows
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benefits of the decreased average distance from serving base
stations. Earlier models that relied on single slope pathloss
models did not capture this phenomenon and led to the
belief that the distribution of signal-to-interference-noise ratio
(SINR) is independent of the base stations density. However,
use of more realistic multi-slope pathloss models in recent
works has led to the debunking of this myth, while proving
that dense networks are inherently interference-limited [2].

Further, 6G communications are envisioned to cater to a
wide range of user services with assorted throughput and
latency requirements [3]. In order to meet this requirement,
there is a need for an elastic architecture that can tailor to
the needs of each service, as opposed to traditional one-size-
fits-all architecture. This, along with the interference-limited
nature of dense networks, has prompted a shift to a user-centric
network paradigm from traditional networks. [4]–[6].

UCRAN’s ability to abate inter-cell interference and reduce
deployment/operational costs makes it the ideal architecture
for supporting user-centric services in dense cellular net-
works [7]. A typical UCRAN consists of a tier of low-
density large coverage control base station (CBS) underlaid
by a tier of high-density intermediate coverage switchable
data base stations (DBS). UCRAN introduces a new degree
of freedom that is elastic in nature, referred to as Service
Zone or S-zone in this paper. S-zone is defined as the size
of the user-centric virtual cell centered around scheduled user
equipment(s) (UEs). In each transmission time interval (TTI),
CBS activates the best DBS constituting a S-zone centered on
the scheduled UE while ensuring no overlap among S-zones.
With this concept, the macro-diversity gain is easily achieved
through the activation of the best DBS for a scheduled UE.

B. Related Work
In recent works, the impact of S-zone size in a UCRAN is

investigated using analytical models for both sub 6 Gigahertz
and millimeter frequency bands [5], [7]–[11]. The network
design in these works considers creating a non-overlapping
virtual cell (S-zone) around scheduled users that are scheduled
based on their priorities. The non-overlapping user-centric
cells and macro-diversity technique allows S-zone size to be
employed as a control parameter that can be optimized based
on the desired KPIs.

For instance, Hashmi et. al. [5] using a statistical framework
showed that there exists an optimal user-centric virtual cell size
at which both the area spectral efficiency and energy efficiency
can be maximized in UCRAN. The authors also noted that this
user-centric virtual cell size depends on both DBS and user
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density variations, thus requiring adaptation with variations
in these parameters. Hashmi et. al. [7] considers UCRAN
based on Stienen cells to characterize the SINR distribution,
area spectral efficiency, and energy efficiency as functions of
user-centric virtual cell coefficient, user scheduling probability,
and DBS density. They analyzed UCRAN in comparison with
non user-centric architectures, demonstrating that it not only
provides better SINR, but also can optimize area spectral
efficiency and energy efficiency by adjusting the design param-
eters. In an analytical study, we studied the interaction between
spectral and energy efficiencies in a coordinated multipoint-
enabled UCRAN architecture as the size of the UCRAN’s
virtual cell and the density of its DBSs is changed [9].
Humadi et. al. [8] have proposed a user-centric model for com-
bining base stations for millimeter-wave networks and used
stochastic geometry to determine the coverage probability and
optimal area spectral efficiency performance. They propose a
framework for optimizing the clustering parameter, leading to
increase in area spectral efficiency.

Although the existing literature on UCRAN provides some
useful information, it has two shortcomings. First, it deals with
static S-zone size for all UEs with the assumption that all
UEs will have similar throughput and latency requirements
which is not a practical assumption. Second, although the
analytical models in above studies are highly detailed, they
lack the interaction of controlling parameters (S-zone) with
the spatiotemporal changes in the wireless network such as
dynamic user application demands and mobility.

C. Motivation and Contributions
With user-centric services being considered as an essential

feature of future cellular communications, 6G in particular, an
elastic and demand-driven UCRAN is needed in which UEs
with various throughput and latency requirements are assigned
different S-zones. In this study, we present such an elastic
and demand-driven UCRAN model, detailed in Section II. We
formulate a multi-objective optimization problem to maximize
important KPIs such as area spectral efficiency, network en-
ergy efficiency, user service rate, and throughput satisfaction.
The S-zone size serves as a control parameter to form a Pareto-
optimal trade-off among these KPIs.

The core research objective of this work is to develop
a solution that can dynamically solve this multi-objective
optimization problem in UCRAN to achieve a Pareto-optimal
solution in real-time based on changes in the varying applica-
tion demands and user mobility. Inspired by our earlier work
on utilizing wireless network telemetric big data for enabling
zero touch optimization in future wireless networks [12], we
propose a deep reinforcement learning (DRL)-based frame-
work to solve this problem. This framework is hereafter
referred to as D-RAN: a deep reinforcement learning-based
user-centric RAN optimization framework under dynamic user
application demands and network conditions. D-RAN uses the
massive amount of control, signaling, and contextual data in
UCRAN network to update network parameters dynamically
to optimize the KPIs of interest in real-time.

Driven by the above motivations, this paper studies the deep
reinforcement learning approach owing to its ability to adapt

to dynamic environments to determine the optimal S-zone size
for each QoS category intelligently so that network KPIs such
as area spectral efficiency, energy efficiency are maximized
as well as throughput, and latency requirements of each QoS
category are met. To the best of our knowledge, this is the first
work to consider the allocation of dynamic S-zones to different
QoS categories with eclectic throughput and latency demands.
Specifically, the contributions of this paper are summarized as
follows.

• An architecture for demand-driven elastic user-centric
communication is proposed with the aim of providing
on-demand services to a diverse set of user applica-
tions ranging from augmented/virtual reality to industrial
robots to E-health applications, and more. The proposed
architecture allows the elastic user-centered S-zone to be
malleable to specific QoS category requirements.

• Considering the heterogeneous user requirements in fu-
ture cellular communications, a multi-objective problem
is formulated to optimize KPIs such as area spectral effi-
ciency, energy efficiency, user service rate, and through-
put satisfaction as a function of S-zone size for respective
QoS categories. Given the stringent requirement of very
high throughput and ultra-low latency, the multi-objective
problem is geared towards meeting users’ throughput
and latency requirements while also maximizing the area
spectral efficiency and network energy efficiency.

• Given the non-stationarity of user application demands
and mobility, we propose a deep reinforcement learning
framework to accurately learn the mapping of envi-
ronment state and action instilling intelligence in the
demand-driven elastic user-centric architecture. The pro-
posed intelligent deep reinforcement learning framework
for UCRAN networks, named D-RAN, dynamically allo-
cates S-zones to users such that a Pareto-optimal front is
found for the formulated multi-objective function.

• We evaluate the convergence, efficacy, and adaptability
of D-RAN to the non-stationary environment of the pro-
posed approach through numerical results. We also com-
pare D-RAN’s performance against brute-force and state-
of-the-art metaheuristics such as simulated annealing. The
simulation results show that D-RAN can achieve a gain
of up to 45% in the network-wide utility compared to an
simulated annealing-based solution. This paper has the
potential to change network mode from rigid cell-centric
to elastic user-centric through the use of an intelligent
module (D-RAN) that allows optimization of S-zones in
real-time, resulting in enhanced user experience, greater
system capacity, and improved energy savings.

The remainder of the paper is organized as follows. The
system model is discussed in Section II. A multi-objective
optimization problem as a function of S-zone size is formu-
lated in Section III. A brief summary of deep reinforcement
learning and simulated annealing algorithms are presented in
Section IV. The details of the proposed approach and the
results of the numerical analysis are presented in Section V
and Section VI, respectively. Finally, the paper is concluded
in Section VII.
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II. SYSTEM MODEL

This section presents the UCRAN architecture, S-zones
scheduling algorithm, network model, and channel model.

A. UCRAN Architecture
Fig. 1 provides a graphical illustration of a UCRAN network

with virtual user-centric cell boundaries for UEs belonging
to different QoS categories. These categories are classified
according to the UEs’ latency and throughput requirements
as illustrated in Fig. 1. The DBSs are connected to the pool of
base band units (BBUs) via flexible back haul (an optical fiber
network) [13], [14]. Most of the signal processing at baseband
level is delegated to the BBUs.

The virtual user-centric cell (S-zone) formation around a
UE effectively: i) enables interference protection by inducing
a guard-zone between scheduled UE and interfering DBSs
(i.e., UE user-centric cells do not overlap) paving the way for
increase in the system-wide SINR, throughput, and spectral
efficiency; ii) enables energy saving by selectively activating
a DBS when required to serve a scheduled UE, hence making
the network energy efficient; iii) enables provision of seamless
service experience to UEs (belonging to a panoply of traffic
types) by providing demand-based coverage.

A critical design parameter in UCRAN is the size of S-
zone which is defined by the radius of circular disk around
the UE. In the proposed model, the DBSs falling within
the S-zone of a UE are only allowed to associate with that
UE in a given TTI. Increasing the S-zone size ensures (i)
larger distances between a UE and interfering DBSs resulting
in high link-level SINR (hence, link-level high throughput
and spectral efficiency); (ii) yields high macro diversity gain
through selection among the larger number of DBSs in the
S-zone and (iii) offers high energy efficiency as large S-zones
keep more DBSs deactivated as compared to small S-zones.
However, larger S-zones also yield low user scheduling ratio
and low spectrum reuse resulting in negative impact on the
system-level capacity. Given these insights, the S-zone size
serves as a controlling parameter that yields an ideal tradeoff
between area spectral efficiency, energy efficiency, and other
system-level KPIs.

In UCRAN, a scheduled user in each TTI is allocated the
full bandwidth of the system for two reasons: i) to make the
system capable of providing maximum throughput to a user
that the total system bandwidth allows; ii) to keep the radio
resource scheduling at DBS simple and thus keep DBS cost
and energy consumption low. The spectrum waste is avoided
by managing the temporal scheduling where a user needing
a lower throughput is scheduled after larger number of TTIs.
The temporal gap in TTIs after which a user is scheduled is
inversely proportional to user bandwidth/throughput require-
ment.

Besides, to make the spectrum allocation more efficient,
there is a need to intelligently allocate both physical resource
blocks and S-zone size to scheduled users according to their
needs. Since the D-RAN framework is proposed mainly to
establish that the S-zone size of multiple QoS categories
(with varied QoS demands) can be intelligently controlled to
optimize the desired KPIs, the joint optimization of S-zone

Fig. 1: Dynamic S-zone UCRAN architecture with 𝑀 different
S-zone region of radius 𝑅𝑐 for scheduled UE’s.

size and physical resource blocks will be addressed in future
research. It is also important to mention that the intelligent
allocation of physical resource blocks in 5G cellular systems
has already been proposed in several publications [15], [16].

B. UE Scheduling Algorithm
In this work, we propose a scheduling mechanism to meet

the heterogeneous latency requirement of UEs in UCRAN.
Latency requirements of UEs are drawn from a uniform
distribution and rounded off to specified bins of latency
requirements corresponding to the QoS categories. Each UE 𝑥

is marked with 𝑝
𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝑥 ∼ 𝑈 (𝑎, 𝑏) by the BBU where 𝑎 and

𝑏 are measured in milliseconds (ms) and are determined by
the minimum and maximum latency of the considered QoS
categories. The lower the value of mark 𝑝

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝑥 ∼ 𝑈 (𝑎, 𝑏),

the higher will be the scheduling priority.

Algorithm 1: UE Scheduling Algorithm

Initialize the set of UEs and the DBS(s) ;
Assign priorities to UEs based on their latency
requirements ;

Sort UEs in the descending order according to their
priorities ;

for each UE in the sorted list do
if DBS available in S-zone region of UE and UE is
not overlapping with other scheduled UEs then

Schedule UE

The BBU based on these scheduling priorities schedules a
UE 𝑥 if and if only the scheduling priority of UE 𝑥 is highest in
the neighborhood which is characterized by the S-zone size 𝑅𝑐

for a specific QoS category. This means that within a circle of
radius 𝑅𝑐 centered at UE 𝑥, no other UE has a higher priority
than UE. For example, the scheduled UEs shown in Fig. 2
have a lower latency requirement than any other UE in the
S-zone of the respective QoS category. Note that larger the
S-zone size of QoS categories, lesser the number of UEs will
be scheduled with non-overlapping S-zones.
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Fig. 2: Graphical illustration of UEs scheduling with varied
latency requirements.

Once the UE is scheduled, a single DBS providing the
highest channel gain within the S-zone of the respective UE
is activated by the BBU to serve the UE. It is important
that the DBSs are deployed densely, so at least one DBS is
available within an S-zone to provide coverage to a scheduled
UE and thus avoid coverage holes in areas where no DBSs are
available within the user-centric circular disk. The scheduled
UEs with no DBS within their S-Zones are served by CBS.

C. Network Model
A downlink of a two-tier ultra-dense network is considered

consisting of a CBS and DBSs operating on sub 6 GHz
frequencies. The DBSs and UEs are randomly distributed
following two independent and homogeneous Poisson point
processes Π𝐷𝐵𝑆 and Π𝑈𝐸 with intensities 𝜆𝐷𝐵𝑆 and 𝜆𝑈𝐸

respectively. The location of each UE acts as a centering point
for the user-centric virtual cell (S-zone) which bounds the UE
to be associated with DBS only within the S-zone region. This
implies that each DBS can at most serve a single UE. This
work defines the S-zone as a disk of radius 𝑅𝑐, where 𝑐 ∈ 𝐶

is a QoS category present in the network model. The network
model in Fig. 1 for example, includes three QoS categories:
augmented/virtual reality, E-health, and monitoring sensors.

D. Channel Model
The communication channel between an arbitrary user

𝑥 ∈ Π𝑈𝐸 and activated DBS 𝑖 ∈ Π
′

𝐷𝐵𝑆
is modeled to

experience both large-scale and small-scale fading given by
ℎ𝑙−𝑃𝐿𝐸 , where ℎ is an exponential random distribution with
unit mean, 𝑙𝑥𝑖 represents the propagation distance between 𝑥

and 𝑖, 𝑃𝐿𝐸 < 2 is the pathloss exponent, and Π
′

𝐷𝐵𝑆
is the

Poisson point process of activated DBSs. UE and DBS are
equipped with a single antenna and the transmission power of
DBS is assumed to be equal. Each scheduled user is served by
a DBS providing the highest channel gain within an S-zone

of radius 𝑅𝑐 whose SINR (Γ𝑥) is given as:

Γ𝑥 =
ℎ𝑥𝑖 𝑙

−𝑃𝐿𝐸
𝑥𝑖∑

𝑗∈Π′
𝐷𝐵𝑆

ℎ𝑥 𝑗 𝑙
−𝑃𝐿𝐸
𝑥 𝑗

+ 𝑛𝑜
, (1)

where 𝑖 ≠ 𝑗 and 𝑛𝑜 denotes the additive white Gaussian noise.

III. PROBLEM FORMULATION

This section characterizes the KPIs, followed by the formu-
lation of a multi-objective optimization problem.

A. Characterizing Key Performance Indicators
This work measures system performance in terms of area

spectral efficiency, network energy efficiency, user service rate,
and throughput satisfaction as the desired set of KPIs. We
selected these KPIs to reflect that the objective is to meet
throughput and latency requirements while maximizing area
spectral efficiency and network energy efficiency.
1) Area Spectral Efficiency

The area spectral efficiency refers to the amount of infor-
mation that can be transmitted from a DBS per unit bandwidth
channel per unit area to a UE, which can be defined as follows
for each QoS category 𝑐:

A𝑐 =

∑
𝑥∈𝑁𝑐

log2 (1 + Γ𝑥)

Å
, (2)

where 𝑁𝑐 is the set of UEs belonging to QoS category 𝑐, and
Å is the target area considered in the simulations model.

There is a strong relationship between the QoS category’s
S-zone size and area spectral efficiency [5], [9]. Intuitively, in-
creasing the S-zone size decreases the scheduling ratio of UEs.
Nevertheless, decreasing the S-zone size increases the SINR
(due to the higher number of neighboring interfering DBSs).
There is, therefore, an optimal size for S-zones that balances
these two opposing effects to maximize the attainable area
spectral efficiency. To optimize the area spectral efficiency,
intelligent real-time optimization is needed to calibrate the S-
zone size of multiple QoS categories simultaneously.
2) Energy Efficiency

According to [5], [17], [18], the network-wide energy
efficiency is defined as the ratio of area spectral efficiency and
total power consumed for all scheduled UE’s. The power con-
sumption model in this paper is inspired by project Earth [19],
in that it represents the power consumption of CBS and DBSs
as a linear combination of fixed power and load-dependent
power consumption components. Since energy efficiency is
measured network-wide, these power consumption values are
summed for all scheduled users. The total power consumption
can be mathematically calculated as follows:

𝑃 = 𝜆𝐷𝐵𝑆𝑃 𝑓 +𝜆′
𝐷𝐵𝑆Δ𝐷𝐵𝑆𝑃𝐷𝐵𝑆+𝜆′

𝑈𝐸 (Δ𝑈𝐸𝑃𝑈𝐸+𝑃𝑑𝑖𝑠𝑐), (3)

where 𝜆𝐷𝐵𝑆 is the density of all deployed DBSs, 𝜆′
𝐷𝐵𝑆

is the
density of activated DBSs, 𝜆′

𝑈𝐸
is the density of scheduled

UEs, 𝑃 𝑓 is the fixed DBS power consumption required for
DBS to operate in listening mode, 𝑃𝐷𝐵𝑆 is the DBS transmis-
sion power, Δ𝐷𝐵𝑆 is the radio frequency component power
at DBS, 𝑃𝑈𝐸 is the UE transmission power, Δ𝑈𝐸 is the radio
frequency component power at UE, 𝑃𝑑𝑖𝑠𝑐 is the power required
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TABLE I: Power consumption parameters.
Symbol Parameter Name Parameter Value
𝑃 𝑓 DBS fixed power consumption 1.932 W

𝑃𝐷𝐵𝑆 DBS transmit power 10 W
Δ𝐷𝐵𝑆 Radio frequency component’s power consumption at DBS 23.22 W
𝑃𝑈𝐸 UE transmit power 1 W
Δ𝑈𝐸 Radio frequency component’s power consumption at UE 4 W
𝑃𝑑𝑖𝑠𝑐 UE cell discovery circuit power consumption 4.3 W

at UE for discovery of the DBS with the highest channel
gain. The typical values of these variable are summarized in
Table I [7]. The energy efficiency therefore can be given as:

E =

Å × ∑
𝑐∈𝐶

A𝑐

𝑃
. (4)

In a cellular DBS, radio frequency components and data
transmission account for the majority of total power con-
sumption [20]. DBSs can save significant amounts of energy
when they are dynamically activated, particularly in dense de-
ployments. The direct relationship between energy efficiency
and area spectral efficiency mandates that the S-zone size of
QoS categories will also influence network energy efficiency.
Intuitively, increasing the S-zone size decreases the number of
activated DBSs (decreasing the average power consumption).
The contrasting trends of area spectral efficiency and power
consumption raise an important design question: what S-
zone size should be selected for QoS categories to optimize
network-wide energy efficiency.
3) UE Service Rate

The UEs’ heterogeneous latency requirements necessitate
scheduling more UEs within each TTI while meeting UE
quality of experience requirements. The mean UE service rate
(user service rate) for any QoS category 𝑐 can be calculated
as:

U𝑐 =
𝜆𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑈𝐸𝑐

𝜆𝑈𝐸𝑐

, (5)

where 𝜆𝑈𝐸𝑐
is the density of all UEs belonging to QoS

category 𝑐 and 𝜆𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑈𝐸𝑐

is the density of UEs belonging to QoS
category 𝑐 whose minimum throughput requirement is met.

The S-zone size of QoS categories influences the user
service rate in two different ways. A decrease in the S-
zone size leads to the scheduling of more users. However,
decreasing the S-zone size also increases the average distance
between UE and DBS, thus, affecting the average SINR. Due
to these contrasting results with the change in S-zone size,
we anticipate that optimizing user service rate will require
intelligent optimization of S-zone sizes of QoS categories.
4) Throughput Satisfaction

There can be a wide variety of throughput requirements for
UEs belonging to different QoS categories. Operators must
satisfy the minimum throughput requirements of each QoS cat-
egory as part of their objective. Moreover, network operators
must ensure that they are utilizing their resources efficiently by
avoiding scenarios in which excess throughput is allocated to
a few UEs (or categories of UEs) while other UEs’ minimum
requirements are not met. For this reason, this work uses the

difference between required and obtained throughput, a metric
we define as throughput satisfaction (throughput satisfaction),
to measure system performance. Throughput satisfaction for a
specific QoS category 𝑐 is given as:

T𝑐 =
∏
𝑥∈𝑁𝑐

����𝑡 𝑝★𝑥 − 𝑡 𝑝♢𝑥

���� |𝑁𝑐 |
, (6)

where 𝑡 𝑝★𝑥 and 𝑡 𝑝♢𝑥 are the obtained and required throughput
for an arbitrary UE 𝑥 respectively. The required throughput
values for UEs are drawn from a uniform distribution and
rounded off to specified bins of throughput requirement of QoS
categories. While the obtained throughput values are obtained
by mapping the SINR values of UEs to its physical layer
throughput given in [21].

Intuitively, the increase in S-zone size of QoS category
is expected to improve the average SINR (and throughput
obtained) at the UE. However, the mere increase in throughput
of a few users is not the desired behavior. Instead, the S-zone
size should be adjusted such that the throughput achieved at
UEs belonging to a QoS category float near the throughput
requirement of that specific QoS category. This entails that the
S-zone size of QoS categories should be carefully calibrated
to ensure satisfaction is achieved throughput across all QoS
categories.

5) Multi-objective Optimization Problem Formulation
Hitherto, the above definition of KPIs demonstrate the need

for optimizing S-zone size of QoS categories to maximize
area spectral efficiency, energy efficiency, UE service rate
and throughput satisfaction individually. The challenge from a
network operator’s perspective is that all these KPIs should be
optimized simultaneously, leading to a Pareto-optimal tradeoff
between them. To account for this tradeoff, this study defines
the multi-objective optimization problem as follows:

max
𝑅𝑐

( ∑
𝑐∈𝐶

A′
𝑐

)𝛼 ( ∑
𝑐∈𝐶

U′
𝑐

)𝛽 (
E′
)1−𝛼−𝛽

∑
𝑐∈𝐶

T′
𝑐

s.t. 𝑅𝑚𝑖𝑛 ≤ 𝑅𝑐 ≤ 𝑅𝑚𝑎𝑥 ,

(7)

where 0 ≤ 𝛼, 𝛽 ≤ 1, 𝛼 + 𝛽 ≤ 1, A′
𝑐 is area spectral efficiency

normalized between [0, 1], E′ is energy efficiency normalized
between [0, 1], U′

𝑐 is UE service rate normalized between
[0, 1], T′

𝑐 is throughout satisfaction normalized between [1, 2],
𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are the minimum and maximum allowable
size for S-zone of QoS categories. To bring it to the reader’s
attention, throughput satisfaction is included in denominator to
ensure that the increase in the difference between required and
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obtained throughput of UEs reduces the utility of the solution.
The rationale behind the proposed objective function for-

mulation is to optimize holistic system-level performance
by combining network operators’ four most important and
common KPIs of interest. However, these KPIs have different
scales/units. This issue makes combining the multiple KPIs in
a single objective function far from a straightforward problem.
In this work, we address this problem by normalizing each
KPI value with its minimum and maximum value. These
minimum and maximum KPI values are determined through
pseudo brute force method. The pseudo brute force method
sweeps the solution space (with a pre-defined step size) in
numerous independent runs. Given the step sizes are large
enough to explore the possible extrema in the search space
within an affordable computational effort, this pseudo brute
force method gives values of KPIs that can be taken as
approximation of minimum and maximum values for the
normalization purposes. This way of approximating the true
Pareto optimal front is quite common in general reinforcement
learning problems [22].

The solution obtained from the pseudo brute force search is
then used to linearly scale/normalize the value of each KPI,
allowing the effective KPIs to be unitless and combined in
a multi-objective optimization problem. The real goal of the
system is to maximize the area spectral efficiency, energy
efficiency, and user service rate while keeping the gap between
target and achieved throughput values minimum. To be reflec-
tive of the real goals of the system, Eq. (7) is designed such
that the normalized values of area spectral efficiency (between
0 and 1), energy efficiency (between 0 and 1), and user service
rate (between 0 and 1) are multiplied in the numerator to
jointly maximize these KPIs while the normalized value of
throughput gap (between 1 and 2) is included in the denomi-
nator to minimize the difference between throughput obtained
and achieved by the users. This gap-based formulation to
model user satisfaction, instead of simple threshold based KPI
where throughput is maximized for some users without a cap,
is used as a clever way to avoid wasteful resource allocation.
Compared to alternative simpler formulation where all KPIs
are maximized as linear sum or product, this formulation is
chosen to minimize intrinsic conflict QoS KPIs has with other
two KPIs of area spectral efficiency and energy efficiency.

These four KPIs are representative of one of the four
key aspects of network performance, either at the network
level or user level. For instance, area spectral efficiency is
representative of network spectral efficiency, energy efficiency
is representative of network energy efficiency, user service
rate is representative of scheduling maximum users while
satisfying a certain data rate requirement, and throughput
satisfaction is representative of meeting specific user through-
put requirements. Note that using these many KPIs is not
common in academia due to the intractability of the analytical
models with complex multi-objective optimization functions.
However, optimizing tens of KPIs simultaneously is a standard
practice in real-time network optimization.

With the formulated optimization problem, a BBU controls
the S-zone size of QoS categories such that desired KPIs (area
spectral efficiency, energy efficiency, user service rate, and

throughput satisfaction) are optimized while keeping the S-
zone size within a specified range of 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 . The
problem in Eq. (7) is a mixed-integer nonlinear programming
problem with complexity of the order of O

(
(𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛 +

1) |𝐶 | ) . It is computationally difficult to achieve an optimal
solution for a non-convex multi-objective problem in a dy-
namically changing network, which makes its application in
real-time optimization systems impossible.

The legacy approaches to address such problem relies either
on analytical modeling, or simulation-based modeling or more
recently data-driven modeling. Our choice to leverage deep
reinforcement learning instead of aforementioned approaches
is motivated by its superiority to all three alternatives for the
particular problem in hand. This superiority stems from the
following reasons. Deep reinforcement learning-based frame-
work is better than analytical model-based framework due
to its ability to capture network dynamicity and complexity
that analytical models miss to achieve due to the abstraction
needed to obtain tractility. Compared to a simulator model-
based offline optimization approach, deep reinforcement learn-
ing can tune optimization parameters of interest using live
responses that reflect real-network behavior instead of an of-
fline simulator behavior. Finally, deep reinforcement learning
is advantageous compared to pure data-driven model-based
optimization (e.g., using deep learning) as deep reinforcement
learning does not require deluge of data that would be required
to train a complex system-level network behavior data-driven
model for performing the optimization. To this end, this paper
proposes a D-RAN (DRL-based) framework that is capable
of determining the optimal S-zone size for all QoS categories
with the objective of maximizing network KPIs.

IV. PRELIMINARIES

The following section gives a primer on deep reinforcement
learning and simulated annealing algorithms.

A. Deep Reinforcement Learning
In a general reinforcement learning (RL) problem, an agent

takes an action by observing the state from the environment
and receives a scalar reward in an iterative manner. An RL
agent aims to maximize the future cumulative rewards for
different states of environments to learn the best course of
action. Based on the specified set of actions, the RL algorithm
generates a mapping between these actions and environment
states. An implementation of RL includes these elements:

• Observations: Observations O ∈ R𝑝 are a set of measure-
ments provided by the environment where 𝑝 indicates the
number of measurements observed.

• States: States s𝑡 ∈ S are a subset of observations vector
observed at each epoch 𝑡 either through handcrafted or
non-handcrafted features where an epoch is a discretized
time interval, signifying a single forward or backward
pass of training samples.

• Actions: Actions a𝑡 ∈ A are a discrete/finite set of
allowed choices that an RL agent can send to the en-
vironment as an input at each epoch 𝑡. Ideally, the choice
of action should have an influence on the state of the
environment such that the input of action changes the
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state of the environment from s𝑡 to s𝑡+1.
• Policy: A policy 𝜋(s, a) is the mapping between the state

of the environment and an agent’s action.
• Value function: The value function (also called Q-

function) under a given policy is given as 𝑄 𝜋 (s, a) which
represents the discounted future expected return for a
state-action pair. The value function determines the value
of being at a particular state and taking a specific action
at that state [23].

• Rewards: The reward signal 𝑟 𝑡+1 ∈ R is a scalar value
returned by the environment when an action a𝑡 influences
the state of the environment from s𝑡 to s𝑡+1.

These elements in conjunction drive the RL agent to maxi-
mize the future cumulative reward which is given as:

𝐺 =

∞∑︁
𝑡=0

𝛾𝑡𝑟 𝑡+1, (8)

where 𝛾 ∈ [0, 1] is the discount factor. Through iterative
updates, the Q-function values are estimated using the Bellman
equation in a traditional Q-learning algorithm:

𝑄𝑡+1 (s𝑡 , a𝑡 ) = (1 − 𝜅)𝑄𝑡 (s𝑡 , a𝑡 )+
𝜅(𝑟 𝑡+1 + 𝛾 max

a
𝑄𝑡 (s𝑡+1, a𝑡+1)), (9)

where 𝜅 ∈ (0, 1] is the learning rate.
It is theoretically proven that Q-Learning algorithms con-

verge under certain conditions [23]. However, the drawback
of Q-learning is that it requires the agent to store a matrix of
the size of state space times the size of action space, which
is impossible for most real-world problems. To assuage that,
deep neural networks (deep neural network) are utilized in
RL algorithms, to act as universal Q-function approximators
and learn the better representation of handcrafted features.
The input dimension of deep reinforcement learning represents
the number of states in the state space |S|, while the output
dimension represents the number of possible actions |A|. The
loss function with 𝜃𝑄 as the trainable weights is used to train
deep reinforcement learning is given below [24]:

L(𝜃𝑄) = E
[
𝑟 𝑡+1 + 𝛾 max

a𝑡+1
𝑄𝑡 (s𝑡+1, a𝑡+1 |𝜃𝑄)−

𝑄𝑡 (s𝑡 , a𝑡 |𝜃𝑄)
]2
. (10)

B. Simulated Annealing
The simulated annealing technique approximates the global

optimum of nonlinear and non-convex objective functions by a
series of iterative searches. Simulated annealing methodology
is cognate to metallurgical annealing in which a metal is
heated to a specific temperature before slowly cooling it
down. simulated annealing begins its global optimum search
with a very high-temperature parameter 𝑇𝑒𝑚𝑝, which enables
it to explore a relatively wide area and then decreases the
temperature, progressively narrowing the exploration area as
it iteratively follows the steepest descent.

A fitness function associates a fitness value to each solu-
tion depending on the objective function. In each iteration,
simulated annealing compares the fitness value of the current
solution to the solutions that are available in the local neigh-

Fig. 3: Block diagram of the proposed D-RAN framework.

borhood 𝑊 . If the neighboring solution has a higher fitness
value than the current solution, then the neighboring solution is
chosen for the next iteration. The simulated annealing uses an
acceptance probability to avoid adhering to a local optimum.
The acceptance probability is given as follows [25]:

Acceptance Probability = exp
(
−
𝐹𝑐𝑢𝑟𝑟 − 𝐹𝑛𝑒𝑖𝑔

𝑇𝑒𝑚𝑝

)
,∀ 𝑛𝑒𝑖𝑔 ∈ 𝑊,

(11)
where 𝐹𝑐𝑢𝑟𝑟 represents the fitness value of current solution.

V. PROPOSED SOLUTION

This section discusses the design of the proposed D-
RAN framework. The multi-objective problem formulated in
Eq. 7, even though a mixed-integer nonlinear programming
problem with high complexity, can be solved using various
optimization techniques including DRL-based approaches and
meta-heuristics such as simulated annealing. To compare the
effectiveness of proposed D-RAN framework (DRL-based
approach) to a meta-heuristic approach, we have included
a simulated annealing solution. As simulated annealing is
also known to yield near optimal solutions for optimization
problem of kind under consideration [26], it offers a bench-
mark to evaluate the performance of the proposed D-RAN
framework in comparison to a state-of-the-art optimization
solution approach. A BBU implements the optimization agent,
which collects the network parameters and specifies the S-zone
size for each QoS category. This centralized implementation
facilitates the independence of processing times from UE and
DBS densities, thus allowing for practical realizability and
scalability of the optimization framework.
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Algorithm 2: D-RAN Framework
Data: A, 𝑃, 𝑇, 𝜂, 𝜖, 𝜖𝑚𝑎𝑥 , 𝜖𝑚𝑖𝑛, 𝜖𝑑𝑒𝑐𝑎𝑦 , 𝐸, 𝑅𝑖𝑛𝑖𝑡

Initialize state, action, reward, and experience replay
buffer D ;

while converged or aborted do
𝑣𝑖𝑜𝑙𝑎𝑡𝑒 := 0;
Initialize S-zone size of QoS categories as
𝑅𝑐 := 𝑅𝑖𝑛𝑖𝑡 ∀𝑐 ∈ 𝐶 ;

while 𝑡 ≤ 𝑇 do
Observe environment state s𝑡 ;
𝜖 := max(𝜖𝑚𝑖𝑛, 𝜖 − (𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛)𝜖𝑑𝑒𝑐𝑎𝑦);
if 𝑧𝑡 ∼ 𝑈 (0, 1) < 𝜖 then

Select an action a𝑡 ∈ A randomly;
else

Select an action a𝑡 = arg max
a𝑡

𝑄𝑡 (s𝑡 , a𝑡 |𝜃𝑄);

if a𝑡 violate 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 for any 𝑅𝑐 then
Assign penalty 𝑃;
𝑣𝑖𝑜𝑙𝑎𝑡𝑒 := 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 + 1;
if 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 > 𝜂𝑇 then

Abort the episode;

Compute reward using Eq. (15);
Observe next environment state s𝑡+1;
Store experience tuple {s𝑡 , a𝑡 , 𝑟 𝑡 , s𝑡+1} in the
experience pool;

Prioritize experiences using Eq. (16;
Sample experiences in minibatch from D
𝑒𝑦 ≜ {s𝑦 , a𝑦 , 𝑟 𝑦 , s𝑦+1};

Perform stochastic gradient descent on L(𝜃𝑄)
given in Eq. (10);

Update weight parameter 𝜃𝑄;
s𝑡 := s𝑡+1;

A. D-RAN Framework
A D-RAN framework is described in detail in terms of state

space, action space, reward function, and the procedure of
agent training and testing.
1) State Space

Section III-A establishes the linkage between the S-zone
size of QoS categories and KPIs considered in this work.
These KPIs define the state of the environment which if probed
further can be decomposed into three parts:

• The average SINR of each QoS category is impacted
by the change in S-zone size of QoS categories as
divulged in Eq. (1), which has an impact on the area
spectral efficiency, energy efficiency, user service rate,
and throughput satisfaction. Increasing the S-zone size
is expected to increase the average SINR inherently for
two reasons: (i) a large S-zone yields a large minimal sep-
aration gap and hence reduction in interference between
a scheduled UE and nearest interfering DBS; and (ii) a
larger S-zone should lead to a higher macro-diversity gain
due to selection among the larger number of DBSs in the
S-zone. However, average SINR’s impact on the listed
KPIs makes it a suitable choice for defining environment

state. The average SINR of each QoS category can be
given as:

𝜑𝑐 =

∑
𝑥∈𝑁𝑐

Γ𝑥

|𝑁𝑐 |
,∀𝑐 ∈ 𝐶. (12)

• The user service rate of each QoS category given in
Eq. (5) determines the ratio of UEs from each QoS
category that gets served, thus directly impacting the
learning objective.

• The throughput satisfaction of each QoS category given
in Eq. (6) relates to how well the achieved throughput
compares to the throughput demanded by UEs in each
QoS category. The high value of throughput satisfac-
tion indicates a network overshooting or undershooting
throughput, which requires some adjustment of S-zones.

In conjunction, the state vector of the proposed D-RAN
framework with the cardinality of 3|𝐶 | is defined as:

s𝑡 = {𝜑𝑡
1, ..., 𝜑

𝑡
|𝐶 | ,U

𝑡
1, ...,U

𝑡
|𝐶 | ,T

𝑡
1, ...,T

𝑡
|𝐶 |}. (13)

2) Action Space
For each QoS category, the action is to either increase or

decrease the S-zone radius by 𝑑 unit (measured in meters) or to
keep it the same, that is, a𝑐 = {−𝑑, 0, 𝑑}. Having a centralized
agent responsible for adjusting the S-zone size for all QoS
categories in the network will result in a combined action set.

The incremental action space has been selected to circum-
vent the combinatorically large action space that can be ob-
tained by considering each combination of the QoS categories
as an individual action, affecting the learning and convergence
of the deep reinforcement learning agent greatly. Even with the
incremental action space, the size of combined action space is
3 |𝐶 | for all QoS categories, which grows exponentially with
QoS categories.

Motivated by the method to reduce deep reinforcement
learning’s large action space in [27], [28], the action space
of each QoS category in D-RAN is considered as a separate
action branch that controls an individual degree of freedom
for each QoS category. By allowing individual action dimen-
sions to operate independently, this approach ensures a linear
increase in the size of combined action space with the number
of QoS categories, of the order of 2|𝐶 | + 1. For example, if
|𝐶 | = 2, the following binary coding with |𝐶 | + 1 bits is used
to represent the action space:

a =



101; increase 𝑅1 by 𝑑 meters.
001; decrease 𝑅1 by 𝑑 meters.
110; increase 𝑅2 by 𝑑 meters.
010; decrease 𝑅2 by 𝑑 meters.
000; keep 𝑅1 & 𝑅2 unchanged.

(14)

In a similar way, the combined action space dimensionality
reduction approach is scalable to networks with a greater
number of QoS categories.
3) Reward Function

The reward function in D-RAN primarily focuses on two
aspects for the S-zone size estimation in a dynamic environ-
ment: 1) finding the optimal trade-off between system-wide
KPIs formulated as a multi-objective function given in Eq. (7),
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Fig. 4: Reward scaling against utility function values.

and 2) penalizing the agent for failure to satisfy the S-zone
radius constraint given in Eq. (7). The utility function (𝑢𝑡 ) at
each TTI 𝑡 is given as the objective function given in Eq. (7).
Subsequently, the reward is calculated as follows:

𝑟 𝑡 =

{
𝑒𝜁 (𝑢

𝑡−1) if constraint given in Eq. (7) is met.
𝑍 otherwise,

(15)

where 𝜁 > 1 in the exponential term is used to amplify the
difference between values of the utility function and −1 < 𝑍 <

0 is a negative constant to punish the agent for choosing an
S-zone size that is not within the specified bounds of 𝑅𝑚𝑖𝑛 and
𝑅𝑚𝑎𝑥 . The exponential shaping of the reward against utility
values allows the deep reinforcement learning agent to give
a much higher reward when it achieves higher utility values
and much lesser when it achieves lesser or mid-range utility
values, as shown in Fig. 4. In contrast, the linear shaping of
reward has a higher reward even for mid-range utility values,
which may tempt the reinforcement learning agent to choose
sub-optimal actions. The reward function is designed to obtain
values between -1 and 1 to accelerate the stochastic gradient
descent algorithm in the deep neural network [29], [30].
4) Agent Training & Testing Procedure

The schematic diagram of the proposed D-RAN framework
is shown in Fig. 3. The learning agent located in BBU collects
state information from the environment and aims to find the
optimal action policy (S-zone size for all QoS categories) such
that the reward function given in Eq. (15) is maximized. The
deep neural network includes four fully connected layers, and
three rectified linear unit activation functions with input layer
neurons equal to the number of state variables 3|𝐶 | and output
layer equivalent to the number of actions 2|𝐶 | + 1.

As part of the training process, the agent stores the ex-
perience tuple {s𝑡 , a𝑡 , 𝑟 𝑡 , s𝑡+1} in the experience pool with
buffer size D and updates the deep neural network weights in
Eq. (10) by applying the stochastic gradient descent algorithm
to a minibatch of data at each epoch 𝑡 (equivalent to a TTI)
as detailed in Algorithm 2. As part of the execution/testing
process, the agent collects the state information from the
environment and outputs the action in each TTI. In every

Algorithm 3: Simulated Annealing Framework
Data: K, 𝑁, 𝑅𝑖𝑛𝑖𝑡

Initialize S-zone size of QoS categories as
𝑅𝑐 := 𝑅𝑖𝑛𝑖𝑡 ∀𝑐 ∈ 𝐶 ;

while 𝑡 ≤ 𝑇 do
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 := {𝑅1, 𝑅2, ..., 𝑅 |𝐶 |};
Compute utility using Eq. (7) for 𝑐𝑢𝑟𝑟;
Append 𝑁 neighboring solutions of 𝑐𝑢𝑟𝑟 to neigh
by choosing the adjacent combinations in K;

Compute utility using Eq. (7) for neigh;
Compute acceptance probability 𝐴𝑃 using Eq. (11);
if acceptance probability of 𝑖𝑡ℎ neigh > 𝑐𝑢𝑟𝑟 then

𝑐𝑢𝑟𝑟 := neigh(𝑖);
else

𝑐𝑢𝑟𝑟 := 𝑐𝑢𝑟𝑟

episode, consisting of 𝑇 epochs/TTIs, the agent is initialized at
𝑅𝑖𝑛𝑖𝑡 for all QoS categories, and the environment is initialized
with different random seeds to generate different mobility
patterns. An episode is ended prematurely only if the agent
chooses S-zone of any QoS category that is beyond the allowed
limits of S-zone size (𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥) for more than 𝜂𝑇 times,
where 0 ≤ 𝜂 ≤ 1 is a design parameter used to limit the
proportion of wrong actions to ensure that the agent learns
“what not to learn” [31].

The experiences drawn from experience replay during train-
ing are prioritized according to the importance of the tuple,
which is dependent on the temporal difference that measures
the unexpected deviation from the state transition value [32].
The prioritized experience replay algorithm stores the subse-
quent temporal difference error with each state transition and
assigns high priority to experiences that have high temporal
difference error and are recent. A stochastic sampling method
is used in the D-RAN framework to interpolate experience
samples between greedy and uniform random sampling by
using the following formula:

𝑌 =
𝑝𝜐
𝑦∑

𝑧 𝑝
𝜐
𝑧

, (16)

where 𝑝𝑦 > 0 is the priority of transition 𝑦 and the exponent
𝜐 determines the prioritization weightage, with 𝜐 = 0 cor-
responding to the uniform random sampling. The prioritized
experience replay model ensures stability and avoids local
minimum convergence. To further assist stability in D-RAN
training, a target deep neural network is used to predict the
target Q-values that are updated after every 𝑈 steps.

D-RAN adopts an exploration algorithm with the explo-
ration variable 𝜖 initialized at 𝜖𝑚𝑎𝑥 and decayed linearly at a
rate of 𝜖𝑑𝑒𝑐𝑎𝑦 until 𝜖𝑚𝑖𝑛 is reached. If the current exploration
rate 𝜖 is greater than a random uniform distribution sample,
then the deep reinforcement learning agent chooses a random
action. Learning is deemed to have converged when the
average reward function is flat and no longer increases in the
last 𝐸 episodes. The Algorithm 2 steps can be summarized as
follows:

• Initialize the environment and agent parameters.
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TABLE II: Network simulation and training parameters.
Symbol Parameter Name Parameter Value
𝜆𝑈𝐸 UE average density 103\𝑘𝑚2

𝜆𝐷𝐵𝑆 DBS average density 103\𝑘𝑚2

𝑃𝐿𝐸 Path-loss exponent 3
𝑅𝑚𝑖𝑛 Minimum S-zone size 10𝑚
𝑅𝑚𝑎𝑥 Maximum S-zone size 80𝑚
𝑅𝑖𝑛𝑖𝑡 Initial S-zone for each QoS category (𝑅𝑚𝑎𝑥 + 𝑅𝑚𝑖𝑛)/2𝑚
𝑑 Action space stepsize 3𝑚

𝛼, 𝛽 Weightage parameters in Eq. (7) 0.4, 0.4
𝑃 Penalty for wrong action -1
𝑇 Number of epochs/TTIs 1000
𝜂 Percentage of wrong actions allowed 5

𝜖𝑚𝑎𝑥 Maximum exploration rate 1.0
𝜖𝑚𝑖𝑛 Minimum exploration rate 0.1
𝜖𝑑𝑒𝑐𝑎𝑦 Exploration rate decay 0.0002/|𝐶 |
𝑈 Target deep neural network update epochs 50
𝐸 Convergence episodes 50
𝑁 Number of neighbor solutions 2

• Observe the state of the environment at TTI 𝑡.
• Select the action at TTI 𝑡.
• Compute the reward for the action taken based on

Eq. (15).
• Train the prioritized experience replay with the experi-

ence tuples.
• Repeat the above steps until learning has converged or

aborted.

B. Simulated Annealing Framework
Implementing a meta-heuristic such as simulated annealing

for S-zone optimization in principle is similar to implementing
a D-RAN framework, as the optimization agent is embedded
in the BBU that adjusts the size of S-zones for all QoS
categories. Instead of observing the environment state, the
simulated annealing algorithm takes into account the current
solution, defined as the concatenation of S-zones sizes of all
QoS categories; thus, 𝑐𝑢𝑟𝑟 = {𝑅1, 𝑅2, ..., 𝑅 |𝐶 |}. The simulated
annealing algorithm traverses several neighboring solutions
at each TTI and calculates the fitness of each of them. The
neighboring solution space is derived from the entire solution
search space K that includes the combinations of allowed
S-zone size of all QoS categories such that its size will be
( 𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛+1

𝑑
) |𝐶 | . As such, the neighboring search space will

be defined as the S-zones combinations that are adjacent to the
current solution in K. If the utility value of the neighboring
solution is greater than the current solution or its acceptance
probability is greater than a certain threshold, the neighboring
solution is accepted. The acceptance probability is calculated
using the formula given in Eq. (11) which is sensitive to
temperature parameter 𝑇𝑒𝑚𝑝 with the fitness function is
equivalent to the utility function given in Eq. (7) as detailed
in Algorithm 3.

VI. EXPERIMENTAL EVALUATION

Unlike the physical layer, not much data can be gathered
to build pure data-driven models for system-level optimization

problems. This is mainly because: 1) network operators cannot
afford to try all the parameter ranges in a live network for
empirical data generation, and 2) real-network data is not
currently available because novel architectures, such as the
user-centric architecture investigated in this paper, are still a
concept that will be implemented in 6G and beyond networks.
While D-RAN does not require deluge of data from live
network before-hand for training an explicit and static network
behavior model, it does require some interaction on the live
network, or some data from the network to build an implicit
dynamic sketch of the model. As, no UCRAN-based 6G or
beyond network yet exist, we resort to a system-level simulator
to meet this requirement. Although we use simulator-generated
data in this study to train D-RAN, the insights gained remain
valid for real scenarios, when the proposed D-RAN will be
eventually built using data from a live network, once the
proposed architecture shows benefit and is deployed in real-
networks. Even in that case, pre-training the D-RAN using
synthetic data from a simulator and then fine-tuning the
model from live network data might be needed to address the
data scarcity challenge, making the proposed synthetic data-
aided deep reinforcement learning training approach worthy
of investigation.

This section presents the performance of proposed D-RAN
framework with system model presented in Section II. The
target coverage area of CBS is 1 square kilometer. The UEs
and DBSs are distributed through an homogeneous Poisson
point processes within the CBS coverage region. This work
considers a maximum of three QoS categories with throughput
and latency requirements of 1: virtual/augmented reality, 2:
E-health, and 3: monitoring sensor networks, respectively.
The number of QoS categories is determined by the network
operator depending on the dominant traffic types in a specific
CBS coverage area. The minimum and maximum S-zone
size considered in this work are 10 meters and 80 meters,
respectively with the action space step size of 3 meters. The
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Fig. 5: Comparison of brute-force solution for different UE placement realizations in a two-dimensional S-zone space.

Fig. 6: Convergence of the average episodic reward values for
varying number of QoS categories. To improve readability,
these curves are smoothed with a moving average taken over
20 episodes. The shade represents the standard deviation.

choice of these user-centric cells (S-zone) size limits are
inspired by industry standards [33].

Python 3.6 and Pytorch are utilized to conduct these exper-
iments. The number of maximum epochs / TTIs (𝑇) in each
training and evaluation episode is set to 1000, where each
TTI’s duration is set to 1 ms. Both deep neural networks used
in the main and the target network have three hidden layers
containing 128-256-128 neurons. A careful choice of depth
and width of these deep neural networks is made to avoid
underfitting or overfitting of the nonlinear mapping between
inputs and outputs. The size of the minibatch for deep neural
network training is set to 64, and the target network is updated
after every 50 TTIs. The rest of the network parameters
and hyperparameters required to tune deep reinforcement
learning-assisted and simulated annealing-assisted frameworks
are shown in Table II.

Fig. 7: Convergence of the average episodic reward values for
varying maximum UE speeds. To improve readability, these
curves are smoothed with a moving average taken over 20
episodes. The shade represents the standard deviation.

A. Brute-Force Solution
The brute-force S-zone selection attempts to solves the

optimization problem given in Eq. (7) by exhaustively search-
ing the S-zone space of size ( 𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛+1

𝑑
) |𝐶 | . With the

considered values of 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛, the brute-force solution
may be a feasible option if the size of search space is less than
a million combinations (|𝐶 | < 4). However, the size of S-zone
space is not the only deterrent in making a brute-force solution
infeasible. UE mobility have a direct effect on SINR, which
in turn impacts the KPI values used in the utility function in
Eq. (7), making a static solution for S-zone selection infeasible

due to its complexity of the order of O
(
( 𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛+1

𝑑
) |𝐶 |×𝑇

)
.

Fig. 5a and Fig. 5b shows the averaged normalized utility
function for the different realizations of UEs positions for
|𝐶 | = 2. While the concave envelope of maximum utility
is somewhat maintained in the Fig. 5 (blue region), the
individual utility values corresponding to each S-zone size
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Fig. 8: Evaluation of the proposed D-RAN framework against
simulated annealing framework for maximum UE speeds equal
to 10 km/h.

combination as well as the apex of the utility function is
shown to change. For example, the maxima of utility function
(black square) changes from (𝑅1 = 27, 𝑅2 = 18) in Fig. 5a to
(𝑅1 = 22, 𝑅2 = 17) in Fig. 5b. Because UE mobility follows
random way point model, these values may change in each
TTI, which makes it necessary to assign S-zone sizes to the
QoS categories dynamically and intelligently by interacting
with the environment. To this end, deep reinforcement learning
is a more appropriate choices in solving non-deterministic and
real-time optimization of S-zone sizes.

B. Convergence Comparison for Varying Number of QoS
Categories

The convergence of the proposed D-RAN framework with
dynamicity in the network due to heterogeneous user applica-
tion demands is shown for different numbers of QoS categories
in Fig. 6. The value of the utility function is normalized with
the upper and lower limits, determined by the brute-force
solution so that the reward function can have a maximum
and minimum value of 1 and -1, respectively. For each of
the considered cases in Fig. 6, the learning converges towards
higher reward function values after a certain amount of training
episodes. The greater the number of QoS categories, the
longer it takes to converge due to a larger state space, action
space, and search space, requiring more TTIs to explore the
environment. Additionally, as the number of QoS categories
increases, the reward function tends to converge to a lower
reward value. This is mainly due to the expansion of S-zone
space and the increase in the minimum required number of
TTIs to reach to optimal S-zone (𝑅∗

𝑐) from the initial S-zone
(𝑅𝑖𝑛𝑖𝑡

𝑐 ) for each QoS category.

C. Convergence Comparison for Non-stationary UEs
Fig. 7 shows the convergence of D-RAN framework with

varying maximum UE mobility speeds for |𝐶 | = 2. In each
episode, a different random seed is used in the random
waypoint mobility model, effectively changing the mobility
pattern of UEs allowing the agent to learn the dynamics of the
environment. The purpose of training with non-stationary UEs
distribution is to determine whether the D-RAN framework
can dynamically adjust S-zone size as the distribution of

Fig. 9: Proactive real-time S-zone size optimization for |𝐶 | =
2. To improve readability, these curves are smoothed with a
moving average taken over 50 TTIs. The shade represents the
standard deviation.

UEs changes. In the figure, it can be seen that the reward
function tends to converge for each of the considered cases
with a decrease in steadiness as the UE speed increases.
This is mainly because the higher the UE speed, the more
significant the change in the user distribution, leading to
highly non-stationary maxima of the utility function causing
the oscillations in convergence. However, the reward function
on average converges to higher reward values, with the gap
between converged reward values and maximum possible
reward depicting the minimum required number of TTIs to
reach to optimal S-zone (𝑅∗

𝑐) from the initial S-zone (𝑅𝑖𝑛𝑖𝑡
𝑐 )

as discussed in Section VI-B.

D. Evaluation for Different QoS Categories
In this experiment, the proposed D-RAN and simulated

annealing-assisted frameworks are tested for varying number
of QoS categories. The D-RAN framework is evaluated using
the trained weights (state-action mapping), while the simulated
annealing-assisted framework is evaluated using heuristic op-
timization. Performance is measured by averaging 1000 TTIs
for 100 testing scenarios based on the utility function given
in Eq. (7). To compare the performance in relative terms to
maximum achievable utility, the utility values are normalized
from maximum and minimum utility values obtained from the
brute-force solution.

Compared to a brute-force solution that requires large com-
putations and cannot scale, the D-RAN framework exhibits
better adaptability to changing environmental conditions and
maintains utility at a near-optimal level, as shown in Fig. 8.
Additionally, the D-RAN framework surpasses the perfor-
mance of the simulated annealing-assisted framework due to
the slow convergence of simulated annealing optimization and
the high sample complexity required to reach a reasonable
solution if the search space is too large. Fig. 8 illustrates
this phenomenon, where simulated annealing performances
decrease as the number of QoS categories and the combi-
natorial search space increase. On the other hand, D-RAN
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(a) Exploration stage. (b) Exploitation stage.
Fig. 10: TTI-wise normalized utility comparison for exploration and exploitation stages of D-RAN training for |𝐶 | = 1. To
improve readability, these curves are smoothed with a moving average taken over 50 TTIs. The shade represents the standard
deviation.

framework manage to maintain a level of uniformity in terms
of average utility scores across the QoS categories due to their
ability to solve combinatorial optimization problems. Note that
the D-RAN framework is not learning on the channel fading
values directly since predicting/learning channel fading is too
complex a task for any learning framework, particularly at
a short time scale at which fast fading changes. However,
the channel fading does introduce randomness in the state
values and reward function of the D-RAN agent, which it
considers as a random perturbation of the environment. The
deep reinforcement learning agents have generally been shown
to better explore the environment with random perturbations
caused due to the slight imperfection of the state values
or reward function. The authors in [34] have also made a
similar observation where the deep reinforcement learning
agent observing noisy reward sometimes even outperforms the
case with the true reward, which they attribute to the implicit
exploration introduced by the perturbations in the reward.

E. Proactive Real-time S-zone Optimization

The epoch / TTI-wise S-zone size optimization is shown
in Fig. 9. To maximize the utility function, the proposed
D-RAN framework adjusts the S-zone size for each QoS
category to obtain the Pareto-optimal solution for area spectral
efficiency, energy efficiency, user service rate, and throughput
satisfaction. The S-zone size for each QoS category begins
with an initial S-zone size of 𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛

2 = 45𝑚 and then
move towards the near-optimal S-zone size for each cate-
gory as shown in Fig. 9. It can be observed that D-RAN
continuously adjusts S-zone size of each QoS category with
the changing network dynamics resulting in the maximization
of the normalized utility. Fig. 10 shows the changes in S-
zone size for |𝐶 | = 1 with associated utility scores during
the exploration and exploitation stages of D-RAN. In the
exploration stage, the D-RAN agent explores the environment
by executing random actions so as to gain knowledge of it as
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Fig. 11: One-size-fits-all versus elastic user-centric cell size
comparison for area spectral efficiency.

shown in Fig. 10a. While in the exploitation stage, the agent
uses its current knowledge (deep neural network weights and
state-action mapping) to change S-zones size to gain higher
rewards as shown in Fig. 10b. The results in Fig. 10b show that
the utility function is higher (near-optimal) in the exploitation
stage, indicating good learning of state-action mapping of the
environment.

F. S-zone’s Elasticity Impact on area spectral efficiency
Fig. 11 compares the one-size-fits-all S-zone size (green

circles) and elastic S-zone size for |𝐶 | = 2. This result
supports the claim in Section I-C that assigning the same
S-zone to all categories may not be optimal for accommo-
dating heterogeneous throughput and latency requirements.
The figure shows that the maximum achievable area spectral
efficiency (black square) does not even lie within a one-size-
fits-all S-zone space. The elastic S-zone architecture, however,
allows for adaption to heterogeneous QoS requirements, which



14

��� ��� 	�� 
��
�� ����#��!�"���2�

���

���

���

	��


��

���

���


��
��
 �
��
��
��
$�
��
��
�#

�����
����������% �����%�����
���
����������% �����%�����
���

(a) Number of scheduled UEs.

��� ��� 	�� ���
�������"�� �!���2�

�




��

�



#
�!
��
��
��
�
�
���

��

���
�
����
�����$������$�����
���
����
�����$������$�����
���

(b) Average SINR (dB).
Fig. 12: Comparison of user-centric (UC-RAN) and non-user-centric (C-RAN) networks.

maximizes area spectral efficiency for the whole network.

G. Comparison of User-centric with Non-user-centric archi-
tecture

To compare the performance of the proposed user-centric
approach with a non-user-centric approach, we simulate a
Cloud Radio Access Network (C-RAN) model which consid-
ers similar assumptions as taken for a user-centric architecture
to ensure a fair comparison between the two architectures.
These assumptions are: (i) the DBSs are deployed in high
density, (ii) each UE is allocated the full bandwidth of the
system, (iii) there is a one-to-one association between UE and
DBS, and (iv) the UE is associated with a DBS providing
the maximum channel gain. With these assumptions, the only
contrasting factor in C-RAN and UC-RAN architectures is the
S-zone parameter which ensures minimal separation between
the scheduled UEs.

Fig. 12 shows the average SINR and number of scheduled
UEs plots for varying UE densities. It can be observed that
the average SINR in the case of C-RAN falls drastically with
the increase in the density of UEs in the network. At the
same time, UC-RAN architecture with the additional degree of
freedom (S-zone size) is able to achieve much higher average
SINRs at the cost of lesser scheduled UEs. The S-zone size
controls the separation between the scheduled UEs, impacting
the average SINR and the number of scheduled UEs. From
Fig. 12, it can be hypothesized that the C-RAN (traditional
Heterogenous network) architecture will not be able to perform
better in a network with dense DBS deployment, which is
envisaged for 6G and beyond networks. On the other hand,
the UC-RAN architecture can provide an effective solution to
this problem by incorporating an additional degree of freedom
(S-zone size). Manually selecting the S-zone size will only be
applicable if the environment is not dynamic and the solution
space is too small. Therefore, intelligent control of S-zone size
is needed to optimally choose the S-zone size in a dynamic
environment with more than one QoS category.

VII. CONCLUSION

In this paper, we proposed D-RAN: a deep reinforcement
learning-based user-centric RAN optimization framework un-
der dynamic user application demands and network condi-
tions. Unlike previous cellular network approaches, D-RAN
employs a concept of elasticity within user-centric systems
that employ non-uniform virtual cells (also called S-zones) for
different QoS categories (e.g., Augmented/Virtual Reality and
E-health applications). To avoid searching exhaustively using
brute-force or meta-heuristics, a D-RAN framework has been
developed to adjust S-zone sizes based on changing network
dynamics such as user mobility. D-RAN introduces a less com-
plex approach than brute-force or meta-heuristic techniques by
accurately learning the mapping of environmental conditions
to S-zone size of corresponding QoS categories. A multi-
objective problem is optimized in real-time in the proposed
architecture based on KPIs like area spectral efficiency, en-
ergy efficiency, UE service rate, and throughput satisfaction.
Simulated results indicate that D-RAN framework is nearly as
effective as brute-force and surpasses meta-heuristics like sim-
ulated annealing, but with lower complexity and is adaptable to
dynamic changes in the network. In general, this research aims
to introduce intelligence into user-centric elastic networks to
accommodate user applications’ non-uniform throughput and
latency requirements. With the proposed D-RAN framework,
the paradigm of traditional cellular networks could be trans-
formed into demand-driven, elastic, user-centric systems in
future 6G and beyond networks.
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