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ABSTRACT

The cortical role of the motor symptoms reflected by kinematic characteristics in Parkinson’s disease (PD) is
poorly understood. In this study, we aim to explore how PD affects cortico-kinematic interactions. Electroen-
cephalographic (EEG) and kinematic data were recorded from seven healthy participants and eight participants
diagnosed with PD during a set of self-paced finger tapping tasks. Event-related desynchronization (ERD) was
compared between groups in the o (8—14 Hz), low- (14—20 Hz), and high-B (20—35 Hz) frequency bands to
investigate between-group differences in the cortical activities associated with movement. Average kinematic
peak amplitudes and latencies were extracted alongside Sample Entropy (SaEn), a measure of signal complexity,
as variables for comparison between groups. These variables were further correlated with average EEG power in
each frequency band to establish within-group interactions between cortical motor functions and kinematic
motor output. High B-band power correlated with mean kinematic peak latency and signal complexity in the
healthy group, while no correlation was found in the PD group. Also, the healthy group demonstrated stronger
ERD in the broad B-band than the PD participants. Our results suggest that cortical B-band power in healthy
populations is graded to finger tapping latency and complexity of movement, but this relationship is impaired in
PD. These insights could help further enhance our understanding of the role of cortical 8-band oscillations in
healthy movement and the possible disruption of that relationship in PD. These outcomes can provide further
directions for treatment and therapeutic applications and potentially establish cortical biomarkers of Parkinson’s
disease.

1. Introduction

[11-14]. Abnormal interactions between cortical p-band power and ki-
nematic outcomes are suggested to be associated with PD, although no

Parkinson’s disease (PD) is a neurodegenerative disease that mani-
fests in motor and non-motor symptoms. The cardinal motor features of
PD include bradykinesia, tremor, and rigidity [1]. Impairments of motor
performance in PD are thought to reflect disruptions in the motor circuit,
a network of cortical and subcortical neural structures in the brain. More
specifically, impaired dopaminergic transmission in the basal ganglia
causes disruptions in the motor circuit that affect movement generation
[2]. The effects of these disruptions can be seen in multiple brain
structures [3,4], in motor outcomes at rest [5], and during kinematic
tasks [6-8].

Electroencephalography (EEG) has been widely used as a noninva-
sive modality to explore the relationships between PD pathological
cortical signatures and their associated symptomatic outcomes [9,10].
Several studies have found significant differences between both medi-
cated and unmedicated PD patients and healthy controls with respect to
B-band power in the motor and premotor cortex during kinematic tasks
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clear pattern has been determined. For example, Stegmoller et al. (2016)
found that both medicated and unmedicated PD patients demonstrated
greater desynchronization in the f-band than the healthy control pop-
ulation after normalizing five second epochs centered around a single
finger movement taken from a paced finger-tap task with a previously
recorded rest period [11]. The same group found greater desynchroni-
zation in medicated and unmedicated patients over the premotor cortex
using a similar task and baseline normalization scheme [12]. However,
Cheng et al. (2018) found that several interventions resulted in greater
event-related desynchronization (ERD) magnitude that correlated with
improved postural and gait outcomes [13]. Additionally, Brown and
Mardsen (1999) found that attenuation of the p-band over the sensori-
motor, premotor, and prefrontal channels was reduced in the
off-medication state when compared to the on-medication state during a
kinematic tracking task [14]. In this study, the authors reported p-band
changes as a reflection of the maintenance of the current motor state.
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Engel and Fries (2010) posit that abnormally strong p-band synchrony in
the resting state may contribute to several motor symptoms common to
PD by making it more difficult for individuals to change their current
motor state [15]. There is also accumulating evidence that -band may,
in fact, consist of two functionally discrete sub-bands of low and high f
[16,17]. This has also been shown in our previous studies in which, we
demonstrated that pallidal DBS in PD differentially modulates local and
network activities in the context of low-f and high-p respectively [16].

Upper limb kinematic outcomes have been recorded using multiple
paradigms and assessment modalities to explore pathological patterns in
PD. Tapping latency, intra-individual variability [18], tapping force
[19], and frequency [20,21] have been extracted during paced and
unpaced finger-tapping tasks to determine potential markers for disease
and to assess the effectiveness of treatments and therapies. Kinematic
complexity has been shown to have promising clinical potential in
assessing PD patients [22,23]. For example, in a study conducted by Gil
et al. (2010), the authors introduced the use of Approximate Entropy
(ApEn) in upper limb kinematic analyses to classify accelerometer data
collected from individuals with PD and healthy controls. The authors
claim that ApEn measures were able to discriminate between the two
groups, while more standard frequency features were unable to do so
[24], suggesting the family of related algorithms that have emerged
since the inception of ApEn could provide discriminatory information in
similar time-series kinematic data. Richman and Moorman (2000) pro-
posed the Sample Entropy (SaEn) algorithm, an alternative measure of
complexity in real-world data, to address several concerns surrounding
ApEn, including reduced sensitivity to parameter settings while
addressing the bias towards regularity present in ApEn [25].

Although many studies have attempted to characterize pathological
patterns in both the cortex and motor outcomes, few have attempted to
directly relate these two. Among the available literature investigating
brain-body interactions in PD, many assess postural and gait outcomes
[26,27], and compare them to cortical signatures recorded using EEG.
However, fewer studies have addressed upper limb symptoms in
movement tasks [28,29]. In a recent study, Polar et al. found that p-band
power in a PD rat model lacked a significant correlation with gait speed
that was present during baseline recordings, in which no symptoms were
present [30]. Stegmoller et al. (2017) have also suggested that the
graded fB-band response in the premotor cortex to increased tapping
speed present in the healthy group was absent in the PD group [12],
although no quantitative analysis was performed to further explore this
observation.

To date, the role of cortical 8-band activity in movement generation
in PD, as reflected by kinematic characteristics, is not yet well under-
stood. Despite showing promise as a possible marker of PD, only a few
studies have explored upper limb cortico-kinematic interactions be-
tween oscillatory cortical band power and kinematic outcomes in PD
when compared with healthy controls. In this study, we aim to explore
the relationships between EEG a and low/high- band powers and ki-
nematic outcomes during an unpaced finger-tapping task and compare
these measures between a group of participants with PD and a group of
healthy controls. Extending existing literature, we hypothesized that the
relationships between cortical f-band oscillatory activities and kine-
matic outcomes are impaired in participants with PD. To test our hy-
pothesis, we correlated a and low/high-p band powers recorded during
the finger-tap task with mean peak latency, amplitude, and Sample
Entropy values extracted from the kinematic signal recorded via a
wearable smart glove. Understanding cortico-kinematic relationships
could in turn help to elucidate the neural mechanisms that drive the
motor symptoms characteristic of Parkinson’s disease, provide further
direction for treatments and therapies including neurofeedback [31,32],
and deep brain stimulation (DBS) [33], and potentially establish cortical
biomarkers of Parkinson’s disease.
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2. Methods
2.1. Participants

Eight individuals diagnosed with PD (age 72.4 + 8.9, five female),
and seven healthy controls (age 65.4 + 9.1, five female) were recruited
to participate in this study. Reported symptoms in the PD group include
hypokinesia, dystonia, bradykinesia, tremor, and abnormal gait. All
participants in the PD group were in the ON-medication state during
data

recording, and no patients exhibited visible tremor or dyskinesia
during the recording. Participants in the PD group all completed the
Montreal Cognitive Assessment (MOCA); each member of the PD group
aside from one was found to have mild cognitive impairment (MOCA
score < 26) [34]. Control participants reported no known history of
neurological disorder. Demographic information about the studied PD is
presented in Table 1. The study protocol was approved by the Institu-
tional Review Board (IRB) of the University of Rhode Island (URI), and
all participants provided informed consent for the study.

2.2. Experimental protocol

Each participant completed all data recording within a single session
lasting about 60 min. EEG and kinematic signals were recorded simul-
taneously from a single experimental run consisting of five trials. Each
trial consisted of 10 s of rest, followed by 10 s of self-paced finger tap-
ping. Participants were seated and instructed to repeatedly oppose their
right index finger to their thumb in a wide motion at a pace comfortable
to them. A cue presented on a monitor in front of the participants
prompted each task (i.e., rest or finger tap) during the experiment. A
visual representation of the experimental paradigm is included in
Fig. 1A.

2.3. Data acquisition

EEG signals were recorded using a g.USBamp (g.tec Medical Tech.)
and digitized at 256 Hz. Data were recorded from a 13 channel EEG
montage over regions surrounding and including the motor cortex: Fc3,
Fc4, C1, C2, C3, C4, Cpl, Cp2, Cp3, Cp4, P3, and P4. Subsequent ana-
lyses were performed on channel C3 due to its position over the motor
cortex contralateral to the hand used to perform the task.

Kinematic signals were recorded using a smart glove (WearUP
glove), which was previously designed and validated by our group [35].
The WearUP glove consists of two flexible sensors sewn into fabric,
providing a single data channel that represents a unidirectional relative
approximation of the flexion of the finger. The WearUP glove was
connected directly to the g.USBamp amplifier and the data were digi-
tized using the same EEG g.USBamp amplifier at 256 Hz (Fig. 1B).

Table 1
PD Participant’s demographic information.

Participant ~ Age Sex  Years Since MOCA Motor Symptoms
Diagnosis Score

PD1 78 F 1 25 Bradykinesia

PD2 76 F 3 26 Gait imbalance,
Bradykinesia

PD3 73 F 1 19 Tremor

PD4 80 M 10 17 Impaired speech
and gait

PD5 56 M 3 23 Tremor, Dystonia,
Freezing gait

PD6 76 F 15 21 Tremor

PD7 79 F 10 19 Tremor

PD8 61 M 5 20 Bradykinesia,
Rigidity

Mean + SD 72.4 + - 6.0 £ 5.1 21.2 £ -

8.9 3.1
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Fig. 1. A: Visual representation of task protocol: 10 s of rest precede 10 s of finger tapping. B: WearUP glove used for kinematic data collection.

Participants wore the glove on their right hands, and EEG and kinematic
signals were recorded and monitored using the BCI2000 software
package [36].

2.4. EEG data processing

All data preprocessing/processing was performed using MATLAB
(R2016b). EEG data preprocessing was accomplished using the EEGLab
toolbox [37]. Further processing of the EEG data was completed using
custom scripts in MATLAB. EEG signals were first band-pass filtered
0.5—40 Hz using a 1691-point FIR Hamming windowed-sinc filter. Data
were then subjected to Independent Components Analysis (ICA, runica
algorithm). Components containing artifacts, including those related to
eye blinks and instrumentation noise were marked and rejected from
further analysis (5.9 + 1.6 components rejected). Segments of EEG data
were epoched from -10 s to 10 s relative to the cue indicating movement
onset. Each epoch, therefore, consisted of 10 s of rest followed by 10 s of
movement. Trials were also visually inspected, and artifactual trials
were discarded.

EEG data were subjected to two distinct analyses. A time-frequency
decomposition was performed via complex morlet wavelet decomposi-
tion. 20 complex morlet wavelets ranging from 2 to 40 Hz in 2 Hz steps
were generated using a variable number of cycles (4-8 cycles). These
wavelets were convolved with the 20-second epochs and squared power
was extracted from the result. A percentage change baseline correction
was applied to the mean time-frequency map for each participant using a
baseline window of —4 to —2 s relative to movement onset as below:

TF(t,f, channel) — TF paseiine (f , channel)

TFcarrec/ed(t:f: Channel) = TF (f Charmel)
baseline\J >

(€8]

where t is time, f is frequency, TFcoreceqa iS the baseline-corrected time-
frequency map, TF is the uncorrected time-frequency map, and TFpqseiine
is the time average over the baseline window of the uncorrected time-
frequency map. Coefficients were then summed over the frequency
ranges of the o (8—14 Hz), low-p (14—20 Hz), and high-p (20—35 Hz)
bands, and averaged over the time window from movement onset to 7 s
after movement onset to determine an average ERD value for each
participant.

The power spectral density (PSD) of each trial was also estimated
using Welch’s spectral estimate in order to correlate the aforementioned
EEG band powers with kinematic features explained in the following
sections. This was accomplished using 2-second windows with a 50 %
overlap over the same sub-epoch of 0-7 s relative to movement onset.

2.5. Kinematic data processing

Kinematic data were first zero-phase filtered using a 3rd order But-
terworth high-pass filter with a cutoff frequency of 0.5 Hz. Peak am-
plitudes and latencies were then extracted by finding all local maxima in
the signal 1-8 s after movement onset. The peaks were then retained
based on individual thresholds for minimum distance between peaks
and peak prominence. Peak prominence is a single value determined by
comparing each local maximum with the larger of the two minima in the

regions extending outwards from the point of the maximum to either the
point where the value of that local maximum is reached again or the end
of the signal. A list of peak amplitudes was generated by taking the value
of the signal at the detected peaks, while latencies were determined by
subtracting the time indices of subsequent peaks. Average peak ampli-
tude and latency were calculated for each trial within that window.

Sample Entropy (SaEn), an estimate of signal complexity, was also
determined for each trial to quantify the irregularity of the kinematic
data for each study group using a premade script [38]. Sample entropy is
parameterized by two input parameters, along with the length of the
data vector N: the embedding dimension m and the tolerance distance r.
The value of m determines the length of the vectors to be compared, and
r acts as a filtering threshold. Following similar previous works, we set
the value of m to 2 [39] and the value of r to 0.2 times the standard
deviation of the input data of each participant [40] Sample entropy is
defined as below:

_ (p’m+l (r)
SaEn(m,r,N) = —1In (W) (2)

N—m
B;

o0 S

B; = number of j, where |X; — Xj| <r, i #j

Xi = (Xi, Xists - Xig (me1))
X = (X5, X515 -y X))

where X; and Xj are non-matching template vectors sampled starting
from the iy, and jy, index of the time series data, &™ is the average of the
natural logarithm of the probability of the number of matching pairs of
embedding vectors of length m within the data series with a distance less
than or equal to r. The algorithm was applied to the same 7-second
window used in the peak picking analysis (1-8 s relative to movement
onset), resulting in an N of 1792 consistent with previous suggestions
[39].

2.6. Cortico-kinematic analysis

A repeated-measures correlation (ry,) analysis was applied to
correlate the PSD measures of each trial with the corresponding kine-
matic variables, including mean peak latency, mean peak amplitude,
and SaEn. Repeated-measures correlation analysis determines within-
group correlations when each individual contributes multiple non-
independent observations [41]. This analysis was applied to explore
the linear cortico-kinematic relationships between repeated variables
within each participant in each group. Each trial was treated as a
measure, and trials in each group were labeled by participants to ac-
count for individuals’ contributions to the overall correlation.

2.7. Statistical analysis

Univariate statistical analyses were performed on the means of the
kinematic variables and the mean ERD variables for each frequency
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band and participant. Due to the low sample size and lack of normality in
our data, a non-parametric permutation test was used to determine if the
groups differed significantly in any of the obtained variables. To do so, a
null distribution of test statistics (t-values) was generated by random-
izing the group labels of each observation and performing a two-sample
t-test on each of 1000 iterations. The t-values of each iteration were
stored and compared against the observed t-value. The ratio of null-
distribution test statistics more extreme than the observed test statistic
to the number of iterations was used to determine the p-value. A sig-
nificance threshold was set to « = 0.05. Spearman correlation between
MOCA scores and cortical and kinematic with a significance threshold a
= 0.05 was also conducted to assess the univariate impact of cognitive
state in PD on the physiological outcomes measured during this study.

3. Results
3.1. EEG analysis

Fig. 2 depicts the average baseline-corrected time-frequency map of
each group. Overall, the healthy group showed greater desynchroniza-
tion at motor-related frequencies (a and f-band frequencies) for the
duration of the task when compared with the PD participants.
Desynchronization was strongest in both groups at the beginning of the
task and continued for the duration. The healthy group demonstrated
mean desynchronization values of -34.5 + 14.7 % in the o band, -47.9 +
15.9 % in the low-f band, and -30.5 & 11.4 % in the high-p band. The PD
group demonstrated mean desynchronization values of -21.6 + 27.0 %
in the a band, -28.1 + 19.5.0 % in the low-p band, and -11.0 + 21.7 % in
the high-p band. There was significantly stronger desynchronization in
the healthy group than in the PD group in both the low-p (p = 0.044) and
high-p (p = 0.039) bands within the 0-7 s time window relative to
movement onset. However, no such significant difference was seen in
the o band (p > 0.05). Fig. 3 shows a series of boxplots comparing EEG
power statistics in each band between the two groups. As shown, the
healthy group demonstrated greater desynchronization in all three fre-
quency bands, though these differences were only significant in the low-
and high-p bands. Furthermore, no significant correlation between
MOCA scores and power in any of the assessed EEG bands was deter-
mined (p > 0.05).

3.2. Kinematic analysis

The kinematic data analysis revealed that the healthy group
demonstrated a mean peak amplitude value of 1.04 + 0.35 mV, a mean
latency of 0.52 + 0.19 s, and a mean entropy value of 0.20 & 0.068. The
PD group demonstrated a mean peak amplitude value of 0.97 + 0.29
mV, a mean peak latency value of 0.50 £+ 0.11 s, and a mean entropy

Frequency (Hz)

Time (s)
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value of 0.16 + 0.08. However, no statistically significant differences
between groups were found between the means of finger tap amplitude,
latency, or Sample Entropy (p > 0.05). Fig. 4 illustrates kinematic data
from two representative trials for one participant in each group,
demonstrating the implemented peak-picking and Sample Entropy al-
gorithms. As shown, the healthy participant exhibits a near-sinusoidal
oscillatory pattern, though not all healthy participants showed this
pattern. In the PD participant, a distinct pattern of larger amplitude
peaks followed by a smaller peak is visible. Although not all participants
in the PD group demonstrated this pattern, it was present in several,
while no healthy participant showed this pattern. No significant corre-
lation between MOCA scores and any of the assessed kinematic out-
comes was observed (p > 0.05).

3.3. Cortico-kinematic analysis

Fig. 5depicts the repeated measures correlations (r;;,) between a,
low-f, and high-p EEG band powers and kinematic peak latency mea-
sures in both groups. Power in the high-p (r;,, = 0.46, p = 0.04) band
significantly correlated with average peak latency in the healthy group,
while power in the a band (7, = 0.15, p = 0.54) and low-p band (r;,,, =
0.13, p = 0.59) did not. In the PD group, no significant correlation was
observed between a band power (r, = 0.01, p = 0.97), low-p band
power (rrym = 0.08, p = 0.72), and high-f band power (r;,, = 0.26, p =
0.24) and latency measures. This translates to a direct relationship be-
tween high-p power and tapping peak latency-as peak latency decreases
(faster finger tapping), high-p power is also lowered.

However, no significant correlation was observed between kinematic
peak amplitude and the aforementioned frequency bands in either group
(i.e., healthy group: correlations between mean peak amplitude and o
band power (r;, = -0.09, p = 0.71), low-8 band power (r;, = 0.35, p =
0.13), and high-8 band power (r;; = 0.34, p = 0.14) and PD group:
correlations between mean peak amplitude and « band power (1, =
-0.04, p = 0.87), low-B band power (r;;;, = 0.05, p = 0.82), and high-8
band power (r;; = 0.16, p = 0.47).

Fig. 6 depicts the repeated measures correlations (r;,;) between a,
low-B, and high-p EEG band powers and kinematic sample entropy
(SaEn) measures for each group. As shown, the healthy group demon-
strated a significant correlation between sample entropy and high-p (rrm,
=-0.54, p = 0.01), while the correlations between sample entropy and o
band (r;, = -0.17, p = 0.47) and low-p band (r;;, =-0.18, p = 0.45) were
not significant. In other words, trials demonstrating higher kinematic
signal complexity were associated with lower high-f band power.
However, in the PD group, sample entropy did not significantly correlate
with o (rrm = 0.11, p = 0.63), low-p (77, = 0.09, p = 0.68), or high-f (r,
=-0.06, p = 0.81) band power.

PD
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Fig. 2. Average baseline-corrected time-frequency maps for both groups of healthy (H) and Parkinson’s disease (PD). Redder areas depict areas of greater syn-
chronization, and bluer areas represent areas of greater desynchronization during the finger tapping task relative to the baseline. Black boxes denote the time/

frequency ranges averaged over for each band.
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Fig. 4. Examples of kinematic data from two representative trials demonstrating the detected peaks and Sample Entropy values corresponding with individual trials

taken from a participant in the PD group (top) and healthy (bottom).
4. Discussion

This study aims to assess the effects of Parkinson’s disease on
cortical, kinematic, and cortico-kinematic interactions during self-paced
finger tapping tasks. Our main finding is that peak latency, and Sample
Entropy in the kinematic data correlate with cortical high-p power in the
healthy group, but this relationship is disrupted in the PD group.
Additionally, the healthy group demonstrated stronger broad-p band
reduction than the PD group, suggesting that one possible reason for
these observed differences in relationships between variables might be
partially associated with disruptions at the cortical level.

Although none of our kinematic outcomes significantly differed be-
tween groups (peak amplitude, peak latency, Sample Entropy), certain

qualitative differences between groups could be observed in the kine-
matic data, especially within specific individuals with PD. Individuals
within both groups exhibited different tapping patterns; however,
several PD participants demonstrated a pattern of a high amplitude peak
directly followed by a lower amplitude peak. Rejection of these shorter
peaks would drastically increase the inter-tap latency measures of these
participants in the PD group. Similar abnormal kinematic patterns in PD
have been previously reported by other groups. For example, Puyjarinet
et al. (2019) observed arrhythmicity in several motor systems, including
upper limb motor systems, in individuals with PD even in the on-
medication state [42]. Joundi et al. (2012) also found that finger tap
rhythmicity was impaired in a PD cohort, which was improved after DBS
of the subthalamic nucleus (STN) [43], while Freeman et al. (1993)
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participant were retained after trial rejection.

found that tap latency variability was increased in a medicated PD
group, attributing this increased variability to disruptions in the basal
ganglia that occur in PD [20]. One potential explanation for the lack of
direct kinematic differences between groups could be the methods of
data recording and peak detection- our analysis included the smaller
kinematic peaks that may not be detected using other recording mo-
dalities (i.e. contact/pressure plates). The inclusion of more peaks de-
creases the mean peak latency of the PD group. These smaller peaks are
also accounted for in the Sample Entropy as their associated
discrete-time waveforms are included in the data segments over which
the algorithm was applied.

In the healthy group, the significant positive correlation between
kinematic peak latency and p-band power suggests that as the mean
latency between consecutive finger taps decreases, f-band power de-
creases as well. Decreased p synchronization is suggested to correspond
with the changing of motor states, while increased f§ synchronization is
suggested to correspond with the maintenance of the current motor state
[44]. Furthermore, studies have demonstrated that increased f syn-
chronization is associated with slowed voluntary movement in neuro-
typical individuals [45] and animal models [30], a finding that is
reflected in our peak latency analysis as well. Additionally, the speed of
repeated kinematic tasks has been shown to correlate with -band power
in healthy groups [46]. The lack of correlation in the PD group can
complement the results observed by Polar et al. (2018), who determined
that a correlation present in healthy animals between cortical p-band
power and gait speed was disrupted in an animal model of PD. However,
when the abnormally elevated cortical p-band power of the PD model
cohort was reduced via STN DBS, the amount of § reduction did not
strongly correlate with motor improvement [30]. Joundi et al. (2013)
also describe a similar lack of a linear STN p-band desynchronization
when movement speed was varied in a PD population [47]. A possible

interpretation of these observations is that impaired desynchronization
during motor tasks in PD drives the disruption of the normal association
between motor performance and p-band desynchronization, but does
not necessarily drive motor task pathological disruption. We also found
no significant differences between groups in the motor task, which
supports this observation. It appears likely that the cortical
between-group differences observed are reflective of disruptions of the
basal ganglia that appear further along the motor circuit. Several studies
have also determined that PD patients exhibit pathologically disrupted
functional connectivity and coupling between deeper brain structures,
including the basal ganglia [48,49] and globus pallidus internus (GPi)
[16] and motor/sensorimotor cortex. For example, Tinkhauser et al.
observed that pathological p-band bursts in the STN in unmedicated
individuals with PD exhibited increased phasic coupling with the -band
activity over the sensorimotor cortex during rest. This group interprets
the f-band burst activity as potentially limiting the amount of motor
information encoded across the motor circuit. Similarly, in one of our
previous studies we found that deep brain stimulation in PD participants
targeting the GPi reduced coherence between the GPi and the motor
cortex in the high p-band during a motor task, further suggesting that
network-level disruptions in the cortical circuit may be present in PD
[16]. Further work could elucidate the relationship between short-time
pB-burst activity in the cortex and deeper brain structures and kinematic
outcomes more commonly used in the clinical setting to develop
enhanced methods to diagnose and characterize PD. Furthermore,
additional research should be done to explore whether
cortico-kinematic characteristics can be clinically viable biomarkers for
the diagnosis and assessment for PD. The discovery and standardized
assessment of biomarkers of PD may prove to effectively supplement
current objective clinical assessments by providing quantitative infor-
mation from patients’ cortical and kinematic data that is known to be
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were retained after trial rejection.

relevant to the disease state [50].”

Our results also demonstrated that Sample Entropy significantly
correlates with high-f band power in the healthy group, while no such
correlation was found in the PD group. Cortical ERD has been shown to
intensify along with increased movement complexity [51], though it has
not been correlated with a quantitative assessment of kinematic
complexity such as Sample Entropy. This correlation was slightly
stronger than the correlation between mean peak latency and high
B-band power in our analysis, suggesting that Sample Entropy is capable
of effectively capturing meaningful kinematic information from a single
trial in healthy populations. It also establishes that this relationship
between movement complexity and cortical high p-band ERD can be
represented linearly. However, the lack of correlation in the PD group
reinforces the notion that there is a level of cortico-kinematic decoupling
in PD by establishing that the graded reduction of high -band power
during more complex kinematic tasks in the healthy group does not
occur in PD.

The observation of greater desynchronization in the broad -band in
the healthy group when compared to the PD group contributes to a
number of conflicting reports. Several studies have demonstrated that
stronger ERD in the p-band is observed in the on-medication state
relative to the off medication state during kinematic tasks [14,29],
suggesting that low ERD could be associated with the pathological motor
functions that medication is used to treat. Others claim that there is no
clear pathological increase in cortical p-band in PD groups [52,53],
although characteristics of waveform shape in that band or interactions
with other frequency bands are indicative of disease. Still others have
observed increased f-band ERD in a PD population relative to a control
population, including Stegmoller et al. (2015) [11], who determined
that p-band ERD was stronger in the PD group relative to the healthy
group in both the off and on medication states. The same study also

found that cortical p-band desynchronization was stronger in both PD
groups at rest relative to the control group. However, Pollok et al. (2012)
reported that cortical B-band oscillations were stronger in the PD group
at rest when compared to a healthy group in the early disease stage [54].
The lack of a clear difference in cortical p-band power between groups
suggests that band power alone does not differentiate groups, and that
further work is required to fully understand and characterize the role of
f-band ERD in PD compared to healthy populations. However, in our
study, we demonstrated that the relationships between cortical band
power and kinematic outcomes in real movement tasks could potentially
be used to differentiate PD patients from healthy controls.

The main limitation of this study is the small number of trials and
sample-size. Repeating this study with a greater number of trials and
larger sample size would substantially increase the generalizability of
our findings as well as the signal-to-noise ratio of our observations,
especially those recorded using EEG and thus would inspire greater
confidence in any subsequent findings. Including a cued finger-tap ex-
amination would also provide more critical information, as it has been
shown that PD groups respond differently to different cued movement
rates [11,12]. Recruiting PD participants from a more homogeneous
pool (same affected side, similar symptom profile, etc.) would also be
appropriate to investigate more detailed cortico-kinematic interactive
features. Another potential limitation of this study is the use of EEG,
which is notably susceptible to movement artifacts [55] during a kine-
matic task. The integration of other imaging modalities, including
functional near-infrared spectroscopy (fNIRS) into further analyses
during a similar experimental task, could provide additional insight into
cortical dynamics during movement tasks. fNIRS has been demonstrated
to be somewhat resistant to the motion artifacts that are common to EEG
[56] and could be more appropriate for future clinical applications
involving cortical monitoring during kinematic tasks in PD patients and
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other neuromotor diseases. Other studies also utilize invasive methods
to image the sensorimotor cortex, such as electrocorticography (ECoG)
[33,57], which has been shown to provide higher signal quality when
compared with EEG at the cost of accessibility and increased risk due to
the invasive nature of the technique [58]. Further clinical applications of
the findings of this study also remain limited by the relatively high cost
of the EEG systems and their maintenance. EEG systems also require
significant training to use appropriately and interpret results in a
meaningful way. Additionally, due to clinical constraint, this study did
not explore the associations with clinical measures of disease severity
including Unified Parkinson’s disease Rating Scale (UPDRS) scores, nor
did this study control for levodopa equivalent dose (LED) [59], although
the lack of correlation between MOCA scores and cortical or kinematic
outcomes suggests that cognitive state of the participants did not impact
the patterns observed. Thus, including clinical measures of disease
progression and medication dose into future studies has the potential to
provide more clinically relevant understanding about the role of cortical
signatures in measured kinematic outcomes.

5. Conclusion

This study investigated the interactions between cortical oscillatory
changes and kinematic outcomes through simultaneously recorded EEG
and kinematic signals during a self-paced finger tapping task in two
groups of people with PD and healthy controls. Overall, we demon-
strated that the relationship between high-8 band cortical oscillations
and kinematic measures are disrupted during a self-paced finger tap
task, measured as mean kinematic peak latency and SaEn in PD groups.
Our results additionally suggest that motor cortical high-8 band power
inversely correlates with movement complexity in healthy groups and
that this inverse correlation is absent in participants with PD. We also
observed stronger broad B-band ERD in the healthy group when
compared with the PD group. These results suggest that cortical 8-band
oscillations and their function in the normal movement are disrupted in
people with PD, plausibly due to malfunctions of deeper brain structures
in these cohorts. Our findings contribute to a better understanding of
mechanisms underlying impaired interactive associations between
cortical motor functions and motor kinematic outputs in Parkinson’s
disease. These outcomes can provide further directions for treatment
and therapeutic applications and potentially establish cortical bio-
markers of PD. Further studies of cortico-kinematic interactions could
help to elucidate the pathological mechanisms through which motor
symptoms of PD manifest and the role of cortical oscillations in normal
motor function, as well as address the clinical need for objective as-
sessments of clinical outcomes in PD on both the cortical and kinematic
levels.
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