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A B S T R A C T   

The cortical role of the motor symptoms reflected by kinematic characteristics in Parkinson’s disease (PD) is 
poorly understood. In this study, we aim to explore how PD affects cortico-kinematic interactions. Electroen
cephalographic (EEG) and kinematic data were recorded from seven healthy participants and eight participants 
diagnosed with PD during a set of self-paced finger tapping tasks. Event-related desynchronization (ERD) was 
compared between groups in the α (8−14 Hz), low-ß (14−20 Hz), and high-ß (20−35 Hz) frequency bands to 
investigate between-group differences in the cortical activities associated with movement. Average kinematic 
peak amplitudes and latencies were extracted alongside Sample Entropy (SaEn), a measure of signal complexity, 
as variables for comparison between groups. These variables were further correlated with average EEG power in 
each frequency band to establish within-group interactions between cortical motor functions and kinematic 
motor output. High ß-band power correlated with mean kinematic peak latency and signal complexity in the 
healthy group, while no correlation was found in the PD group. Also, the healthy group demonstrated stronger 
ERD in the broad ß-band than the PD participants. Our results suggest that cortical ß-band power in healthy 
populations is graded to finger tapping latency and complexity of movement, but this relationship is impaired in 
PD. These insights could help further enhance our understanding of the role of cortical ß-band oscillations in 
healthy movement and the possible disruption of that relationship in PD. These outcomes can provide further 
directions for treatment and therapeutic applications and potentially establish cortical biomarkers of Parkinson’s 
disease.   

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disease that mani
fests in motor and non-motor symptoms. The cardinal motor features of 
PD include bradykinesia, tremor, and rigidity [1]. Impairments of motor 
performance in PD are thought to reflect disruptions in the motor circuit, 
a network of cortical and subcortical neural structures in the brain. More 
specifically, impaired dopaminergic transmission in the basal ganglia 
causes disruptions in the motor circuit that affect movement generation 
[2]. The effects of these disruptions can be seen in multiple brain 
structures [3,4], in motor outcomes at rest [5], and during kinematic 
tasks [6–8]. 

Electroencephalography (EEG) has been widely used as a noninva
sive modality to explore the relationships between PD pathological 
cortical signatures and their associated symptomatic outcomes [9,10]. 
Several studies have found significant differences between both medi
cated and unmedicated PD patients and healthy controls with respect to 
β-band power in the motor and premotor cortex during kinematic tasks 

[11–14]. Abnormal interactions between cortical β-band power and ki
nematic outcomes are suggested to be associated with PD, although no 
clear pattern has been determined. For example, Stegmöller et al. (2016) 
found that both medicated and unmedicated PD patients demonstrated 
greater desynchronization in the β-band than the healthy control pop
ulation after normalizing five second epochs centered around a single 
finger movement taken from a paced finger-tap task with a previously 
recorded rest period [11]. The same group found greater desynchroni
zation in medicated and unmedicated patients over the premotor cortex 
using a similar task and baseline normalization scheme [12]. However, 
Cheng et al. (2018) found that several interventions resulted in greater 
event-related desynchronization (ERD) magnitude that correlated with 
improved postural and gait outcomes [13]. Additionally, Brown and 
Mardsen (1999) found that attenuation of the β-band over the sensori
motor, premotor, and prefrontal channels was reduced in the 
off-medication state when compared to the on-medication state during a 
kinematic tracking task [14]. In this study, the authors reported β-band 
changes as a reflection of the maintenance of the current motor state. 
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Engel and Fries (2010) posit that abnormally strong β-band synchrony in 
the resting state may contribute to several motor symptoms common to 
PD by making it more difficult for individuals to change their current 
motor state [15]. There is also accumulating evidence that β-band may, 
in fact, consist of two functionally discrete sub-bands of low and high β 
[16,17]. This has also been shown in our previous studies in which, we 
demonstrated that pallidal DBS in PD differentially modulates local and 
network activities in the context of low-β and high-β respectively [16]. 

Upper limb kinematic outcomes have been recorded using multiple 
paradigms and assessment modalities to explore pathological patterns in 
PD. Tapping latency, intra-individual variability [18], tapping force 
[19], and frequency [20,21] have been extracted during paced and 
unpaced finger-tapping tasks to determine potential markers for disease 
and to assess the effectiveness of treatments and therapies. Kinematic 
complexity has been shown to have promising clinical potential in 
assessing PD patients [22,23]. For example, in a study conducted by Gil 
et al. (2010), the authors introduced the use of Approximate Entropy 
(ApEn) in upper limb kinematic analyses to classify accelerometer data 
collected from individuals with PD and healthy controls. The authors 
claim that ApEn measures were able to discriminate between the two 
groups, while more standard frequency features were unable to do so 
[24], suggesting the family of related algorithms that have emerged 
since the inception of ApEn could provide discriminatory information in 
similar time-series kinematic data. Richman and Moorman (2000) pro
posed the Sample Entropy (SaEn) algorithm, an alternative measure of 
complexity in real-world data, to address several concerns surrounding 
ApEn, including reduced sensitivity to parameter settings while 
addressing the bias towards regularity present in ApEn [25]. 

Although many studies have attempted to characterize pathological 
patterns in both the cortex and motor outcomes, few have attempted to 
directly relate these two. Among the available literature investigating 
brain-body interactions in PD, many assess postural and gait outcomes 
[26,27], and compare them to cortical signatures recorded using EEG. 
However, fewer studies have addressed upper limb symptoms in 
movement tasks [28,29]. In a recent study, Polar et al. found that β-band 
power in a PD rat model lacked a significant correlation with gait speed 
that was present during baseline recordings, in which no symptoms were 
present [30]. Stegmöller et al. (2017) have also suggested that the 
graded β-band response in the premotor cortex to increased tapping 
speed present in the healthy group was absent in the PD group [12], 
although no quantitative analysis was performed to further explore this 
observation. 

To date, the role of cortical ß-band activity in movement generation 
in PD, as reflected by kinematic characteristics, is not yet well under
stood. Despite showing promise as a possible marker of PD, only a few 
studies have explored upper limb cortico-kinematic interactions be
tween oscillatory cortical band power and kinematic outcomes in PD 
when compared with healthy controls. In this study, we aim to explore 
the relationships between EEG α and low/high-β band powers and ki
nematic outcomes during an unpaced finger-tapping task and compare 
these measures between a group of participants with PD and a group of 
healthy controls. Extending existing literature, we hypothesized that the 
relationships between cortical β-band oscillatory activities and kine
matic outcomes are impaired in participants with PD. To test our hy
pothesis, we correlated α and low/high-β band powers recorded during 
the finger-tap task with mean peak latency, amplitude, and Sample 
Entropy values extracted from the kinematic signal recorded via a 
wearable smart glove. Understanding cortico-kinematic relationships 
could in turn help to elucidate the neural mechanisms that drive the 
motor symptoms characteristic of Parkinson’s disease, provide further 
direction for treatments and therapies including neurofeedback [31,32], 
and deep brain stimulation (DBS) [33], and potentially establish cortical 
biomarkers of Parkinson’s disease. 

2. Methods 

2.1. Participants 

Eight individuals diagnosed with PD (age 72.4 ± 8.9, five female), 
and seven healthy controls (age 65.4 ± 9.1, five female) were recruited 
to participate in this study. Reported symptoms in the PD group include 
hypokinesia, dystonia, bradykinesia, tremor, and abnormal gait. All 
participants in the PD group were in the ON-medication state during 
data 

recording, and no patients exhibited visible tremor or dyskinesia 
during the recording. Participants in the PD group all completed the 
Montreal Cognitive Assessment (MOCA); each member of the PD group 
aside from one was found to have mild cognitive impairment (MOCA 
score < 26) [34]. Control participants reported no known history of 
neurological disorder. Demographic information about the studied PD is 
presented in Table 1. The study protocol was approved by the Institu
tional Review Board (IRB) of the University of Rhode Island (URI), and 
all participants provided informed consent for the study. 

2.2. Experimental protocol 

Each participant completed all data recording within a single session 
lasting about 60 min. EEG and kinematic signals were recorded simul
taneously from a single experimental run consisting of five trials. Each 
trial consisted of 10 s of rest, followed by 10 s of self-paced finger tap
ping. Participants were seated and instructed to repeatedly oppose their 
right index finger to their thumb in a wide motion at a pace comfortable 
to them. A cue presented on a monitor in front of the participants 
prompted each task (i.e., rest or finger tap) during the experiment. A 
visual representation of the experimental paradigm is included in 
Fig. 1A. 

2.3. Data acquisition 

EEG signals were recorded using a g.USBamp (g.tec Medical Tech.) 
and digitized at 256 Hz. Data were recorded from a 13 channel EEG 
montage over regions surrounding and including the motor cortex: Fc3, 
Fc4, C1, C2, C3, C4, Cp1, Cp2, Cp3, Cp4, P3, and P4. Subsequent ana
lyses were performed on channel C3 due to its position over the motor 
cortex contralateral to the hand used to perform the task. 

Kinematic signals were recorded using a smart glove (WearUP 
glove), which was previously designed and validated by our group [35]. 
The WearUP glove consists of two flexible sensors sewn into fabric, 
providing a single data channel that represents a unidirectional relative 
approximation of the flexion of the finger. The WearUP glove was 
connected directly to the g.USBamp amplifier and the data were digi
tized using the same EEG g.USBamp amplifier at 256 Hz (Fig. 1B). 

Table 1 
PD Participant’s demographic information.  

Participant Age Sex Years Since 
Diagnosis 

MOCA 
Score 

Motor Symptoms 

PD1 78 F 1 25 Bradykinesia 
PD2 76 F 3 26 Gait imbalance, 

Bradykinesia 
PD3 73 F 1 19 Tremor 
PD4 80 M 10 17 Impaired speech 

and gait 
PD5 56 M 3 23 Tremor, Dystonia, 

Freezing gait 
PD6 76 F 15 21 Tremor 
PD7 79 F 10 19 Tremor 
PD8 61 M 5 20 Bradykinesia, 

Rigidity 
Mean ± SD 72.4 ±

8.9 
– 6.0 ± 5.1 21.2 ±

3.1 
–  

J. McLinden et al.                                                                                                                                                                                                                               



Behavioural Brain Research 404 (2021) 113153

3

Participants wore the glove on their right hands, and EEG and kinematic 
signals were recorded and monitored using the BCI2000 software 
package [36]. 

2.4. EEG data processing 

All data preprocessing/processing was performed using MATLAB 
(R2016b). EEG data preprocessing was accomplished using the EEGLab 
toolbox [37]. Further processing of the EEG data was completed using 
custom scripts in MATLAB. EEG signals were first band-pass filtered 
0.5−40 Hz using a 1691-point FIR Hamming windowed-sinc filter. Data 
were then subjected to Independent Components Analysis (ICA, runica 
algorithm). Components containing artifacts, including those related to 
eye blinks and instrumentation noise were marked and rejected from 
further analysis (5.9 ± 1.6 components rejected). Segments of EEG data 
were epoched from -10 s to 10 s relative to the cue indicating movement 
onset. Each epoch, therefore, consisted of 10 s of rest followed by 10 s of 
movement. Trials were also visually inspected, and artifactual trials 
were discarded. 

EEG data were subjected to two distinct analyses. A time-frequency 
decomposition was performed via complex morlet wavelet decomposi
tion. 20 complex morlet wavelets ranging from 2 to 40 Hz in 2 Hz steps 
were generated using a variable number of cycles (4–8 cycles). These 
wavelets were convolved with the 20-second epochs and squared power 
was extracted from the result. A percentage change baseline correction 
was applied to the mean time-frequency map for each participant using a 
baseline window of −4 to −2 s relative to movement onset as below: 

TFcorrected(t, f , channel) =
TF(t, f , channel) − TFbaseline(f , channel)

TFbaseline(f , channel)
(1)  

where t is time, f is frequency, TFcorrected is the baseline-corrected time- 
frequency map, TF is the uncorrected time-frequency map, and TFbaseline 
is the time average over the baseline window of the uncorrected time- 
frequency map. Coefficients were then summed over the frequency 
ranges of the α (8−14 Hz), low-β (14−20 Hz), and high-β (20−35 Hz) 
bands, and averaged over the time window from movement onset to 7 s 
after movement onset to determine an average ERD value for each 
participant. 

The power spectral density (PSD) of each trial was also estimated 
using Welch’s spectral estimate in order to correlate the aforementioned 
EEG band powers with kinematic features explained in the following 
sections. This was accomplished using 2-second windows with a 50 % 
overlap over the same sub-epoch of 0–7 s relative to movement onset. 

2.5. Kinematic data processing 

Kinematic data were first zero-phase filtered using a 3rd order But
terworth high-pass filter with a cutoff frequency of 0.5 Hz. Peak am
plitudes and latencies were then extracted by finding all local maxima in 
the signal 1–8 s after movement onset. The peaks were then retained 
based on individual thresholds for minimum distance between peaks 
and peak prominence. Peak prominence is a single value determined by 
comparing each local maximum with the larger of the two minima in the 

regions extending outwards from the point of the maximum to either the 
point where the value of that local maximum is reached again or the end 
of the signal. A list of peak amplitudes was generated by taking the value 
of the signal at the detected peaks, while latencies were determined by 
subtracting the time indices of subsequent peaks. Average peak ampli
tude and latency were calculated for each trial within that window. 

Sample Entropy (SaEn), an estimate of signal complexity, was also 
determined for each trial to quantify the irregularity of the kinematic 
data for each study group using a premade script [38]. Sample entropy is 
parameterized by two input parameters, along with the length of the 
data vector N: the embedding dimension m and the tolerance distance r. 
The value of m determines the length of the vectors to be compared, and 
r acts as a filtering threshold. Following similar previous works, we set 
the value of m to 2 [39] and the value of r to 0.2 times the standard 
deviation of the input data of each participant [40] Sample entropy is 
defined as below: 

SaEn(m, r, N) = − ln
(

Φ’m+1(r)

Φ’m(r)

)

(2)  

Φ’m(r) = [N − m]
−1

∑N−m

i=1

Bi

N − (m + 1)

Bi = number of j, where 
⃒
⃒Xi − Xj

⃒
⃒ < r, i ∕= j 

Xi = (xi, xi+1, …, xi+(m−1))

Xj = (xj, xj+1, …, xj+(m−1))

where Xi and Xj are non-matching template vectors sampled starting 
from the ith and jth index of the time series data, Φ’m is the average of the 
natural logarithm of the probability of the number of matching pairs of 
embedding vectors of length m within the data series with a distance less 
than or equal to r. The algorithm was applied to the same 7-second 
window used in the peak picking analysis (1–8 s relative to movement 
onset), resulting in an N of 1792 consistent with previous suggestions 
[39]. 

2.6. Cortico-kinematic analysis 

A repeated-measures correlation (rrm) analysis was applied to 
correlate the PSD measures of each trial with the corresponding kine
matic variables, including mean peak latency, mean peak amplitude, 
and SaEn. Repeated-measures correlation analysis determines within- 
group correlations when each individual contributes multiple non- 
independent observations [41]. This analysis was applied to explore 
the linear cortico-kinematic relationships between repeated variables 
within each participant in each group. Each trial was treated as a 
measure, and trials in each group were labeled by participants to ac
count for individuals’ contributions to the overall correlation. 

2.7. Statistical analysis 

Univariate statistical analyses were performed on the means of the 
kinematic variables and the mean ERD variables for each frequency 

Fig. 1. A: Visual representation of task protocol: 10 s of rest precede 10 s of finger tapping. B: WearUP glove used for kinematic data collection.  
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band and participant. Due to the low sample size and lack of normality in 
our data, a non-parametric permutation test was used to determine if the 
groups differed significantly in any of the obtained variables. To do so, a 
null distribution of test statistics (t-values) was generated by random
izing the group labels of each observation and performing a two-sample 
t-test on each of 1000 iterations. The t-values of each iteration were 
stored and compared against the observed t-value. The ratio of null- 
distribution test statistics more extreme than the observed test statistic 
to the number of iterations was used to determine the p-value. A sig
nificance threshold was set to α = 0.05. Spearman correlation between 
MOCA scores and cortical and kinematic with a significance threshold α 
= 0.05 was also conducted to assess the univariate impact of cognitive 
state in PD on the physiological outcomes measured during this study. 

3. Results 

3.1. EEG analysis 

Fig. 2 depicts the average baseline-corrected time-frequency map of 
each group. Overall, the healthy group showed greater desynchroniza
tion at motor-related frequencies (α and β-band frequencies) for the 
duration of the task when compared with the PD participants. 
Desynchronization was strongest in both groups at the beginning of the 
task and continued for the duration. The healthy group demonstrated 
mean desynchronization values of -34.5 ± 14.7 % in the α band, -47.9 ±
15.9 % in the low-β band, and -30.5 ± 11.4 % in the high-β band. The PD 
group demonstrated mean desynchronization values of -21.6 ± 27.0 % 
in the α band, -28.1 ± 19.5.0 % in the low-β band, and -11.0 ± 21.7 % in 
the high-β band. There was significantly stronger desynchronization in 
the healthy group than in the PD group in both the low-β (p = 0.044) and 
high-β (p = 0.039) bands within the 0–7 s time window relative to 
movement onset. However, no such significant difference was seen in 
the α band (p > 0.05). Fig. 3 shows a series of boxplots comparing EEG 
power statistics in each band between the two groups. As shown, the 
healthy group demonstrated greater desynchronization in all three fre
quency bands, though these differences were only significant in the low- 
and high-β bands. Furthermore, no significant correlation between 
MOCA scores and power in any of the assessed EEG bands was deter
mined (p > 0.05). 

3.2. Kinematic analysis 

The kinematic data analysis revealed that the healthy group 
demonstrated a mean peak amplitude value of 1.04 ± 0.35 mV, a mean 
latency of 0.52 ± 0.19 s, and a mean entropy value of 0.20 ± 0.068. The 
PD group demonstrated a mean peak amplitude value of 0.97 ± 0.29 
mV, a mean peak latency value of 0.50 ± 0.11 s, and a mean entropy 

value of 0.16 ± 0.08. However, no statistically significant differences 
between groups were found between the means of finger tap amplitude, 
latency, or Sample Entropy (p > 0.05). Fig. 4 illustrates kinematic data 
from two representative trials for one participant in each group, 
demonstrating the implemented peak-picking and Sample Entropy al
gorithms. As shown, the healthy participant exhibits a near-sinusoidal 
oscillatory pattern, though not all healthy participants showed this 
pattern. In the PD participant, a distinct pattern of larger amplitude 
peaks followed by a smaller peak is visible. Although not all participants 
in the PD group demonstrated this pattern, it was present in several, 
while no healthy participant showed this pattern. No significant corre
lation between MOCA scores and any of the assessed kinematic out
comes was observed (p > 0.05). 

3.3. Cortico-kinematic analysis 

Fig. 5depicts the repeated measures correlations (rrm) between α, 
low-β, and high-β EEG band powers and kinematic peak latency mea
sures in both groups. Power in the high-β (rrm = 0.46, p = 0.04) band 
significantly correlated with average peak latency in the healthy group, 
while power in the α band (rrm = 0.15, p = 0.54) and low-β band (rrm =

0.13, p = 0.59) did not. In the PD group, no significant correlation was 
observed between α band power (rrm = 0.01, p = 0.97), low-β band 
power (rrm = 0.08, p = 0.72), and high-β band power (rrm = 0.26, p =
0.24) and latency measures. This translates to a direct relationship be
tween high-β power and tapping peak latency–as peak latency decreases 
(faster finger tapping), high-β power is also lowered. 

However, no significant correlation was observed between kinematic 
peak amplitude and the aforementioned frequency bands in either group 
(i.e., healthy group: correlations between mean peak amplitude and α 
band power (rrm = -0.09, p = 0.71), low-ß band power (rrm = 0.35, p =
0.13), and high-ß band power (rrm = 0.34, p = 0.14) and PD group: 
correlations between mean peak amplitude and α band power (rrm =

-0.04, p = 0.87), low-ß band power (rrm = 0.05, p = 0.82), and high-ß 
band power (rrm = 0.16, p = 0.47). 

Fig. 6 depicts the repeated measures correlations (rrm) between α, 
low-β, and high-β EEG band powers and kinematic sample entropy 
(SaEn) measures for each group. As shown, the healthy group demon
strated a significant correlation between sample entropy and high-β (rrm 
= -0.54, p = 0.01), while the correlations between sample entropy and α 
band (rrm = -0.17, p = 0.47) and low-β band (rrm =-0.18, p = 0.45) were 
not significant. In other words, trials demonstrating higher kinematic 
signal complexity were associated with lower high-β band power. 
However, in the PD group, sample entropy did not significantly correlate 
with α (rrm = 0.11, p = 0.63), low-β (rrm = 0.09, p = 0.68), or high-β (rrm 
= -0.06, p = 0.81) band power. 

Fig. 2. Average baseline-corrected time-frequency maps for both groups of healthy (H) and Parkinson’s disease (PD). Redder areas depict areas of greater syn
chronization, and bluer areas represent areas of greater desynchronization during the finger tapping task relative to the baseline. Black boxes denote the time/ 
frequency ranges averaged over for each band. 
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4. Discussion 

This study aims to assess the effects of Parkinson’s disease on 
cortical, kinematic, and cortico-kinematic interactions during self-paced 
finger tapping tasks. Our main finding is that peak latency, and Sample 
Entropy in the kinematic data correlate with cortical high-β power in the 
healthy group, but this relationship is disrupted in the PD group. 
Additionally, the healthy group demonstrated stronger broad-β band 
reduction than the PD group, suggesting that one possible reason for 
these observed differences in relationships between variables might be 
partially associated with disruptions at the cortical level. 

Although none of our kinematic outcomes significantly differed be
tween groups (peak amplitude, peak latency, Sample Entropy), certain 

qualitative differences between groups could be observed in the kine
matic data, especially within specific individuals with PD. Individuals 
within both groups exhibited different tapping patterns; however, 
several PD participants demonstrated a pattern of a high amplitude peak 
directly followed by a lower amplitude peak. Rejection of these shorter 
peaks would drastically increase the inter-tap latency measures of these 
participants in the PD group. Similar abnormal kinematic patterns in PD 
have been previously reported by other groups. For example, Puyjarinet 
et al. (2019) observed arrhythmicity in several motor systems, including 
upper limb motor systems, in individuals with PD even in the on- 
medication state [42]. Joundi et al. (2012) also found that finger tap 
rhythmicity was impaired in a PD cohort, which was improved after DBS 
of the subthalamic nucleus (STN) [43], while Freeman et al. (1993) 

Fig. 3. Boxplots of EEG power. Significant (p < 0.05) differences between groups are marked with an asterisk (*). Means of each measure are denoted with a red bar. 
The upper bound of the box represents the 75th percentile and the lower bound represents the 25th percentile. Outliers are marked with a red cross. 

Fig. 4. Examples of kinematic data from two representative trials demonstrating the detected peaks and Sample Entropy values corresponding with individual trials 
taken from a participant in the PD group (top) and healthy (bottom). 
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found that tap latency variability was increased in a medicated PD 
group, attributing this increased variability to disruptions in the basal 
ganglia that occur in PD [20]. One potential explanation for the lack of 
direct kinematic differences between groups could be the methods of 
data recording and peak detection- our analysis included the smaller 
kinematic peaks that may not be detected using other recording mo
dalities (i.e. contact/pressure plates). The inclusion of more peaks de
creases the mean peak latency of the PD group. These smaller peaks are 
also accounted for in the Sample Entropy as their associated 
discrete-time waveforms are included in the data segments over which 
the algorithm was applied. 

In the healthy group, the significant positive correlation between 
kinematic peak latency and β-band power suggests that as the mean 
latency between consecutive finger taps decreases, β-band power de
creases as well. Decreased β synchronization is suggested to correspond 
with the changing of motor states, while increased β synchronization is 
suggested to correspond with the maintenance of the current motor state 
[44]. Furthermore, studies have demonstrated that increased β syn
chronization is associated with slowed voluntary movement in neuro
typical individuals [45] and animal models [30], a finding that is 
reflected in our peak latency analysis as well. Additionally, the speed of 
repeated kinematic tasks has been shown to correlate with β-band power 
in healthy groups [46]. The lack of correlation in the PD group can 
complement the results observed by Polar et al. (2018), who determined 
that a correlation present in healthy animals between cortical β-band 
power and gait speed was disrupted in an animal model of PD. However, 
when the abnormally elevated cortical β-band power of the PD model 
cohort was reduced via STN DBS, the amount of β reduction did not 
strongly correlate with motor improvement [30]. Joundi et al. (2013) 
also describe a similar lack of a linear STN β-band desynchronization 
when movement speed was varied in a PD population [47]. A possible 

interpretation of these observations is that impaired desynchronization 
during motor tasks in PD drives the disruption of the normal association 
between motor performance and β-band desynchronization, but does 
not necessarily drive motor task pathological disruption. We also found 
no significant differences between groups in the motor task, which 
supports this observation. It appears likely that the cortical 
between-group differences observed are reflective of disruptions of the 
basal ganglia that appear further along the motor circuit. Several studies 
have also determined that PD patients exhibit pathologically disrupted 
functional connectivity and coupling between deeper brain structures, 
including the basal ganglia [48,49] and globus pallidus internus (GPi) 
[16] and motor/sensorimotor cortex. For example, Tinkhauser et al. 
observed that pathological β-band bursts in the STN in unmedicated 
individuals with PD exhibited increased phasic coupling with the β-band 
activity over the sensorimotor cortex during rest. This group interprets 
the β-band burst activity as potentially limiting the amount of motor 
information encoded across the motor circuit. Similarly, in one of our 
previous studies we found that deep brain stimulation in PD participants 
targeting the GPi reduced coherence between the GPi and the motor 
cortex in the high β-band during a motor task, further suggesting that 
network-level disruptions in the cortical circuit may be present in PD 
[16]. Further work could elucidate the relationship between short-time 
β-burst activity in the cortex and deeper brain structures and kinematic 
outcomes more commonly used in the clinical setting to develop 
enhanced methods to diagnose and characterize PD. Furthermore, 
additional research should be done to explore whether 
cortico-kinematic characteristics can be clinically viable biomarkers for 
the diagnosis and assessment for PD. The discovery and standardized 
assessment of biomarkers of PD may prove to effectively supplement 
current objective clinical assessments by providing quantitative infor
mation from patients’ cortical and kinematic data that is known to be 

Fig. 5. Repeated measures correlations (rrm) between mean kinematic latency measures and α (top), low-β (middle), and high-β powers (bottom) in the healthy (left) 
and PD (right) groups. Each color represents an individual within each group, and points correspond to single trial data. Note: A variable number of trials per 
participant were retained after trial rejection. 
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relevant to the disease state [50].” 
Our results also demonstrated that Sample Entropy significantly 

correlates with high-β band power in the healthy group, while no such 
correlation was found in the PD group. Cortical ERD has been shown to 
intensify along with increased movement complexity [51], though it has 
not been correlated with a quantitative assessment of kinematic 
complexity such as Sample Entropy. This correlation was slightly 
stronger than the correlation between mean peak latency and high 
β-band power in our analysis, suggesting that Sample Entropy is capable 
of effectively capturing meaningful kinematic information from a single 
trial in healthy populations. It also establishes that this relationship 
between movement complexity and cortical high β-band ERD can be 
represented linearly. However, the lack of correlation in the PD group 
reinforces the notion that there is a level of cortico-kinematic decoupling 
in PD by establishing that the graded reduction of high β-band power 
during more complex kinematic tasks in the healthy group does not 
occur in PD. 

The observation of greater desynchronization in the broad β-band in 
the healthy group when compared to the PD group contributes to a 
number of conflicting reports. Several studies have demonstrated that 
stronger ERD in the β-band is observed in the on-medication state 
relative to the off medication state during kinematic tasks [14,29], 
suggesting that low ERD could be associated with the pathological motor 
functions that medication is used to treat. Others claim that there is no 
clear pathological increase in cortical β-band in PD groups [52,53], 
although characteristics of waveform shape in that band or interactions 
with other frequency bands are indicative of disease. Still others have 
observed increased β-band ERD in a PD population relative to a control 
population, including Stegmöller et al. (2015) [11], who determined 
that β-band ERD was stronger in the PD group relative to the healthy 
group in both the off and on medication states. The same study also 

found that cortical β-band desynchronization was stronger in both PD 
groups at rest relative to the control group. However, Pollok et al. (2012) 
reported that cortical β-band oscillations were stronger in the PD group 
at rest when compared to a healthy group in the early disease stage [54]. 
The lack of a clear difference in cortical β-band power between groups 
suggests that band power alone does not differentiate groups, and that 
further work is required to fully understand and characterize the role of 
β-band ERD in PD compared to healthy populations. However, in our 
study, we demonstrated that the relationships between cortical band 
power and kinematic outcomes in real movement tasks could potentially 
be used to differentiate PD patients from healthy controls. 

The main limitation of this study is the small number of trials and 
sample-size. Repeating this study with a greater number of trials and 
larger sample size would substantially increase the generalizability of 
our findings as well as the signal-to-noise ratio of our observations, 
especially those recorded using EEG and thus would inspire greater 
confidence in any subsequent findings. Including a cued finger-tap ex
amination would also provide more critical information, as it has been 
shown that PD groups respond differently to different cued movement 
rates [11,12]. Recruiting PD participants from a more homogeneous 
pool (same affected side, similar symptom profile, etc.) would also be 
appropriate to investigate more detailed cortico-kinematic interactive 
features. Another potential limitation of this study is the use of EEG, 
which is notably susceptible to movement artifacts [55] during a kine
matic task. The integration of other imaging modalities, including 
functional near-infrared spectroscopy (fNIRS) into further analyses 
during a similar experimental task, could provide additional insight into 
cortical dynamics during movement tasks. fNIRS has been demonstrated 
to be somewhat resistant to the motion artifacts that are common to EEG 
[56] and could be more appropriate for future clinical applications 
involving cortical monitoring during kinematic tasks in PD patients and 

Fig. 6. Repeated measures correlations (rrm) between the α (top), low-β (middle), and high-β powers (bottom) and entropy measures for the healthy (left) and PD 
(right) groups. Individual colors represent data from a single participant, and points correspond to single trial data. Note: A variable number of trials per participant 
were retained after trial rejection. 
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other neuromotor diseases. Other studies also utilize invasive methods 
to image the sensorimotor cortex, such as electrocorticography (ECoG) 
[33,57], which has been shown to provide higher signal quality when 
compared with EEG at the cost of accessibility and increased risk due to 
the invasive nature of the technique [58]. Further clinical applications of 
the findings of this study also remain limited by the relatively high cost 
of the EEG systems and their maintenance. EEG systems also require 
significant training to use appropriately and interpret results in a 
meaningful way. Additionally, due to clinical constraint, this study did 
not explore the associations with clinical measures of disease severity 
including Unified Parkinson’s disease Rating Scale (UPDRS) scores, nor 
did this study control for levodopa equivalent dose (LED) [59], although 
the lack of correlation between MOCA scores and cortical or kinematic 
outcomes suggests that cognitive state of the participants did not impact 
the patterns observed. Thus, including clinical measures of disease 
progression and medication dose into future studies has the potential to 
provide more clinically relevant understanding about the role of cortical 
signatures in measured kinematic outcomes. 

5. Conclusion 

This study investigated the interactions between cortical oscillatory 
changes and kinematic outcomes through simultaneously recorded EEG 
and kinematic signals during a self-paced finger tapping task in two 
groups of people with PD and healthy controls. Overall, we demon
strated that the relationship between high-ß band cortical oscillations 
and kinematic measures are disrupted during a self-paced finger tap 
task, measured as mean kinematic peak latency and SaEn in PD groups. 
Our results additionally suggest that motor cortical high-ß band power 
inversely correlates with movement complexity in healthy groups and 
that this inverse correlation is absent in participants with PD. We also 
observed stronger broad ß-band ERD in the healthy group when 
compared with the PD group. These results suggest that cortical ß-band 
oscillations and their function in the normal movement are disrupted in 
people with PD, plausibly due to malfunctions of deeper brain structures 
in these cohorts. Our findings contribute to a better understanding of 
mechanisms underlying impaired interactive associations between 
cortical motor functions and motor kinematic outputs in Parkinson’s 
disease. These outcomes can provide further directions for treatment 
and therapeutic applications and potentially establish cortical bio
markers of PD. Further studies of cortico-kinematic interactions could 
help to elucidate the pathological mechanisms through which motor 
symptoms of PD manifest and the role of cortical oscillations in normal 
motor function, as well as address the clinical need for objective as
sessments of clinical outcomes in PD on both the cortical and kinematic 
levels. 
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