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Abstract—The digital transformation is characterized by the
convergence of technologies—from the Internet of Things (IoT)
to edge—fog—cloud computing, artificial intelligence (AI), and
Blockchain—in multiple dimensions, blurring the lines between
the physical and digital worlds. Although these innovations have
evolved independently over time, they are increasingly becom-
ing more intertwined, driving the development of new business
models. With more adaptation, embracement, and development,
we are witnessing a steady convergence and fusion of these tech-
nologies resulting in an unprecedented paradigm shift that is
expected to disrupt and reshape the next-generation systems in
vertical domains in a way that the capabilities of the technologies
are aligned in the best possible way to complement each other.
Despite the fact that the convergence of the four technologies can
potentially tackle the main shortcomings of the existing systems,
its adoption is still in its infancy phase, suffering from several
issues, such as the absence of consensus toward any reference
models or best practices. This article provides a comprehen-
sive insight into the fusions of these paradigms by discussing
a blend of topics addressing all the importation aspects from
design to deployment. We will begin this article by providing an
in-depth discussion on the main requirements, state-of-the-art
reference architectures, applications, and challenges. Following
this, we will present a reference architecture and a case study on
privacy-preserving stress monitoring and management to better
elaborate on the corresponding details and considerations.

Index Terms—Artificial intelligence (AI), big data, blockchain,
cloud computing, edge computing (EC), eHealth, federated learn-
ing (FL), fog computing (FC), healthcare, Internet of Medical
Things (IoMT), Internet of Things (IoT), medicine, privacy
preserving.
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I. INTRODUCTION

HE Internet of Things (IoT), artificial intelligence
T (AI), distributed ledger technology (DLT), and
edge—fog—cloud computing continue to drive digital
transformation and the convergence of these technologies
paves the way for the development of creative applications,
innovative business models, and new opportunities in vertical
domains, from healthcare to finance, mobility, energy, supply
chain, and industry 4.0 [1]-[4]. These technologies have
the ability to enhance business processes and disrupt entire
sectors or industries. However, to date, a few concepts
and applications have experienced this convergence with
positive outcomes. Until recently, the correlation between
these technologies has often been overlooked as they were
mostly used independently of one another. Nevertheless, these
technologies are complementary and when fused together
can shift the paradigm (See Fig. 1). The convergence of the
technologies creates synergy with the potential to transform
how industries, businesses, and economies work. Combining
Al, IoT, edge-fog—cloud, and DLTs empowers companies
and organizations to leverage the benefits of each technology
while simultaneously mitigating the limitations or risks each
presents.

The IoT is a network of things and a chain of gadgets in
the environment that are interconnected in order to gener-
ate uninterrupted communication and services [3]. The IoT
includes an unprecedented number of connections between
things as well as between things and people. With more than
35 billion connected devices in 2021 [5], the IoT is one of
the primary contributors to the increasing volumes of big
data [6]. The success of the current and future IoT landscape
demands service provision characterized by scalability, ubig-
uity, reliability, and high performance, among others. Cloud
IoT (i.e., a new paradigm where Cloud and IoT have fused) has
emerged as an enabler to fulfill these attributes by providing
smart services specific to aggregating, storing, and processing
data generated by IoT [7]. While the fusion of Cloud com-
puting and IoT brings opportunities, Cloud IoT suffers from
shortcomings, e.g., latency, connectivity, and bandwidth that
cannot to handle the time and context-sensitive needs of the a
large variety of IoT applications. Thereby, computing models
are now moving away from centralized models to distributed
computing paradigms, such as Mobile-edge computing (EC),

2327-4662 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Rhode Island. Downloaded on September 24,2023 at 21:03:02 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-8359-4304
https://orcid.org/0000-0001-6979-3334
https://orcid.org/0000-0003-4475-6435
https://orcid.org/0000-0002-7016-6853
https://orcid.org/0000-0002-6116-2156
https://orcid.org/0000-0002-2157-9651
https://orcid.org/0000-0001-6423-0823

FIROUZI et al.: FUSION OF IoT, Al, EDGE-FOG-CLOUD, AND BLOCKCHAIN

Intelligence & Insight & Automation

Smart Management
& Maintenance
& Security

Security
& Privacy

Speed | Elasticity |

Big Data Computing & Storage

i
Intelligence
& Automation

Platform for
Training
& Inference

Trust & Data Sharing
& Decentralization

Edge, Fog,
& Cloud

Security & Privacy

Infrastructure

Fig. 1. Correlation among IoT, AI, DLT, and edge—fog—cloud. In nutshell, IoT
generates data for AI/ML, enabling holistic models that can add an intelligent
layer to the IoT. IoT also provides data to DLT/Blockchain in exchange for
trust, transparency, and decentralization. Similarly, IoT is a new source of
data for Edge/Fog/Cloud and in return, it benefits from low-latency hyperscale
resources.

Cloudlet, fog computing (FC), and transparent computing [1].
In this context, EC and FC add new dimensions to the Cloud
IoT by bridge the gap between the cloud and endpoint IoT
devices through the deployment of computing power closer
to the edge near the source of data [8]-[14]. It should be
noted that the characteristics of EC/FC suggest it was not
created as a cloud computing replacement, but it is consid-
ered a as complementary solution to cloud computing by
expanding the cloud to the edge of networks. This technology
enables the realization of distributed applications address-
ing the growing demand to tackle latency challenges of
real-time applications, processing the increasing amount of
IoT data on edge, and improving resilience to network con-
nection issues [1], [15], [16]. Combining the capabilities of
EC/FC with cloud computing results in a hierarchical, hetero-
geneous, and dynamic paradigm, known as edge—fog—cloud,
enhancing resource usage and Quality of Experience of IoT
services thanks to its flexibility in terms of latency versus
computation [1], [17]-[19].

Al and IoT have also been blending, and several businesses
have already adopted Al in their IoT applications [20]. While
IoT deals with data collection and device management, Al
simulates smart behavior and enables automation, intelligence,
reasoning, planning, and perception. Augmented intelligence
has also emerged as a new section of Al by combining
the complementary strengths and problem-solving capabili-
ties of humans and Al leading to human—computer symbiosis
in IoT. In general, the fusion of Al and IoT, known as the
Artificial/Augmented Intelligence of Things (AloT), empow-
ers data management and analytics, enhances human-machine
interactions, and improves the efficiency of IoT. The IoT’s
highest potential can only be achieved through combination
with Al—including, machine learning (ML), deep learning
(DL), augmented intelligence, and big data analytics—that
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continues to remove the barriers and obstacles found in con-
ventional IoT models [20]-[26]. The following are some of
the most common benefits of merging these two disruptive
streams [15], [27]-[30].

1) The precise value of IoT is specified by its analysis
step and Al can wring insights from the generated data
unlocking IoT potentials. Al enables the processing and
analyzing large amounts of multiscale, multimodal, and
heterogeneous data generated in IoT devices, networks,
and infrastructures.

2) In addition, because IoT networks/infrastructures are
made up of a multitude of devices/servers, there are
many points of vulnerability, making them open to data
theft, hacking, and fraud. To safeguard security/privacy,
Al can fend off hackers or attacks. Network, infras-
tructures, and data security can also be protected by
Al because it prevents unauthorized access and data
modification.

3) Al also improves IoT functionality by making it
more autonomous and smarter (e.g., Al-enabled task
offloading in edge-fog—cloud IoT), forecasting oper-
ation circumstances, enhancing Operational efficiency
(e.g., Al-enabled thermal management of IoT data cen-
ters), evaluating maintenance and minimizing unplanned
downtime (e.g., predictive maintenance of IoT infras-
tructures), enabling real-time monitoring and traffic
management, and increasing scalability (e.g., compress-
ing and managing vast amounts of data generated by the
IoT ecosystem).

DLT, of which blockchain is a popular example, pro-
vides a robust and secure decentralization, automation of
contracts as well as transparency, accountability, integrity, scal-
ability, cost-efficiency, security, and privacy [1], [31]-[33].
The convergence of blockchain and IoT technologies is an
unprecedented paradigm shift that is expected to be a game
changer driving the next wave of digital transformation.
DLT has exactly what is needed to tackle the shortcomings,
vulnerabilities, and weaknesses of IoT. Security challenges
have hindered many large-scale deployments of IoT. Another
issue with the current IoT solutions is rooted in central-
ized systems and their scalability. DLTs have the potential
to help alleviate some of the security and scalability con-
cerns associated with IoT [2], [32]-[35]. For instance, DLT
removes the need for trust among stakeholders by provid-
ing a tamper-resistant record of shared transactions. The
shortcomings of client/server systems can be tackled by the
peer-to-peer nature of DLTs. It brings a revolutionary level
of transparency in a way that has not existed in traditional
IoT systems [32]-[36]. In addition, DLT can accelerate the
adoption of the data/device/service marketplace [23].

These four transformational technologies represent an
unprecedented opportunity in many areas on their own
but they are exponentially more powerful when combined
to synergize their competencies. Before these converg-
ing systems get widely adopted, the corresponding chal-
lenges and design/deployment implications must be identified
and addressed. This article explores the properties, value
propositions, and practical implications of these distinct but
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increasingly converging technologies. This article is also
geared toward providing interdisciplinary insight into oppor-
tunities, challenges, issues, and reference models of the
convergence of these technologies.

The remainder of this article is organized as follows.
Section II demonstrates data monetization strategies, tech-
niques, and architectures, including data sharing and data/Al
marketplaces. Section IIl presents the fundamentals of the
Convergence of IoT and edge—fog—cloud. In Section IV, we
discuss how Al could benefit the IoT and what challenges
and barriers need to be addressed to grow further. This
section also describes the main techniques and models for
privacy-preserving ML (PPML) and edge analytics. Section V
presents the integration of DLT and IoT. Section VI presents
a conceptual reference architecture for the convergence of
these technologies in healthcare with the help of a case study.
Finally, Section VII concludes this article.

II. IOT: WHERE DO THE DATA GO

As the IoT rapidly evolves and the public embracement
of wearable devices increases, many companies are inundated
with huge amounts of data. Discovering how to profit from all
of that data can help companies thrive in the market because
data can add significant value to various parts of the business.
Data monetization has already begun across several verti-
cals as connected devices are layered with AI/ML-enabled
smart services and Software-as-a-Services (SaaS) options like
additional smart insights or subscription services. These devel-
opments create space for a “machine economy” in which
accurately monetizing data will produce a substantial advan-
tage in the digital environment. Recent advances in the areas
of Al, analytics, and Big Data have created new opportunities
for competition because IoT data can be used strategically to
open new revenue streams. This growth has created space for
new business models, tools, marketplaces, architectures, and
platforms that companies use to monetize data. At this point,
new business models are working to change the balance of
power between companies that gather data, and the users [23].
Creating revenue using IoT data is typically possible through
indirect or direct data monetization [23], [37], [38].

1) Direct Data Monetization: There are buyers for raw
data. While several methods of selling data are available,
information is largely sold in data marketplaces.

2) Indirect Data Monetization: Data can be helpful when it
comes to enhancing business operations, generating new
services or products, and developing innovative business
models. Optimizing IoT data typically requires the use
of [23] and [37].

a) Data-Driven Optimization: Data are utilized to
lower costs and improve process efficiency using
Big Data analytics and Al or ML. However, it is
worth noting that AI/ML and analytics can be han-
dled by one participant or by multiple parties in
a collaborative environment by employing multi-
party and privacy-saving computational techniques.
This method of data optimization can be used by
multiple industries. For example, it can shorten
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manufacturing test periods, or data could be uti-
lized to influence the design of a product [23], [37].

b) Data-Driven Business Models: Data could be used
to facilitate business development or customer
acquisition through the generation of new services
or products. Such a business model enables data
owners to create entirely new data-driven busi-
nesses instead of only adjacent businesses. These
business models are also elemental to support-
ing various revenue streams. For example, Bosch
utilizes manufacturing data to create personalized
subscription services that take care of hydraulic
monitoring for customers [23], [37].

Typically, there are two means of data exchange to turn IoT

into a data economy.

1) Centralized Solutions: Solutions, such as online stores,
collaborative environments, data markets, or shared
repositories are often created using a cloud platform
that facilitates the sharing, storing, and selling of data
through an access management system. The main con-
cern when a single organization (i.e., market owner)
gathers massive amounts of data from various data
providers or producers is that data maintained on a
centralized server can be vulnerable to hacking, leaks,
or other security breaches. When critical data are held
by the server owner and all data passes through that
single point, data providers cannot control how their
data are utilized once the data has been released to the
platform owner. Such issues are foundational to central-
ized solutions, making them less enticing for primary
stakeholders. In addition, the opportunity for exposure,
competitiveness, or a lack of trust often keeps stakehold-
ers from storing private data via a centralized solution
with the potential to reveal proprietary information or
business strategy [23].

2) Decentralized Solutions: These solutions have been
offered as a means of handing power back to data
providers by enabling them to control the information
they generate or share. Decentralized solutions allow
data producers and consumers to interact, communicate
and exchange, or share data in a peer-to-peer environ-
ment without the need for centralized administration.
Such a method is fault tolerant, so there is no single
point of system failure. Typically, decentralized mar-
kets, such as Enigma Data, Ocean Protocol, Streamer,
or IOTA are used via a secure smart contract, DLT, and
blockchain that allows data producers to directly com-
plete transactions with data consumers while completely
controlling data [23].

a) Blockchain Based: Storing data on the blockchain
can generally be done using two techniques.
On-Chain  Solutions—Data  producers  store
raw, encrypted data directly on the blockchain.
However, such a method is not typically scal-
able because of the throughput and transaction
processing ability of blockchain. Off-Chain
Solutions—Raw data are stored off chain, and
reference points for the raw data are stored on the
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Fig. 2. Blockchain-based data marketplace, data sharing, and data monetization.
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blockchain. The raw data are not maintained on
the chain because it is more scalable and secure
to keep and exchange metadata that refers to raw
data. Data producers can maintain ownership of
the data and decide if they want to share data
by exchanging reference points. An off-chain
solution also stops any party that intercepts a
reference point from accessing data without
authorization [39]-[45]. Fig. 2 demonstrates a
conceptual blockchain-based data sharing solution.
Federated Systems: Fig. 3 illustrates a conceptual
decentralized architecture, such as GAIA-X [46]
and international data space (IDS) [47], providing
a sovereign data sharing via a peer-to-peer connec-
tion between consumers and producers. Federated
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Systems not only can be applied to monetize

data but also can be applied to infrastructures

and smart services. As shown in this figure, the
solution consists of the following components/

roles [23].

1) Data Producers/Suppliers/Vendor/Provider: A
producer is an entity, organization, or busi-
ness that generates or legally owns/controls the
data. On the other hand, providers are mediators
that collect the generated data from different
producers and offer those data assets to the
ecosystem on behalf of the producers. Note that
Producers can also act as providers themselves.

ii) Service Provider: Service providers offer soft-
ware and ML models to the ecosystem.
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iii) Consumer: A Consumer is an entity that
consumes  some  resources/assets  (e.g.,
data, services) in accordance with the
usage guidelines and policies provided by
Producers/Providers.

iv) Infrastructure Provider: An infrastructure
provider, known as a node, is a participant
that provides computing resources to the
ecosystem.

V) Broker: A broker facilitates the registration and
discovery of available resources (e.g., infras-
tructures, services, and data sets) via managing
a set of metadata and self-descriptions. Note
that this role is not ot exclusive and, thus, a
number of brokers can exist simultaneously in
the system.

vi) Identity Provider: Identity Providers create and

manage the identity information of the partici-

pants.

Federator: A federator enables and facilitates

the interaction between providers and con-

sumers.

vii)

III. CONVERGENCE OF 10T AND EDGE-F0OG-CLOUD

Traditionally, the widespread popularity of cloud computing
resulted in reduced local edge storage demand and enabled
edge devices to offload computing tasks. However, more
and more data are produced at the network’s edge; there-
fore, it is most adequate to analyze data at the edge of the
network. Several technologies, such as Cloudlet, have been
introduced because as cloud computing might not lead to the
best data processing performance when the data are gener-
ated near the network’s edge, particularly for delay-sensitive
and bandwidth-hungry applications. The rapid expansion of
the IoT and the rapid embracement of cloud services have
pushed the limits of edge/FC, that requires processing data
at the edge. EC/FC has the capability to resolve challenges
around latency, data privacy and security, battery life, and
response time while saving bandwidth costs. The main reasons
behind the integration of edge and FC into IoT applications
are listed below [1], [48]-[50].

1) Big Data Meets Edge: Virtually, all types of devices will
eventually become part of the IoT and produce or con-
sume data. Therefore, many IoT applications are facing
the challenge of incremental volumes of data generated
on the edge of the network. Although centralized cloud
computing as the standard route for computational data
could be the answer to some data processing demands,
it cannot accommodate the tsunami of data under the
presence of billions of devices leading to latency, con-
gestion, and connectivity-related issues. Moreover, most
of that IoT data will be consumed at the network’s
edge. However, the current IoT-cloud paradigm is not
sufficient leading to unnecessary computing and band-
width resource use. Additionally, the privacy needed will
create a challenge for cloud computing. Finally, most
IoT devices are generally energy constrained (powered
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with batteries) and, thus, offloading a task to the cloud
may not be very efficient as wireless communication is
resource hungry [48]

2) Push From Cloud Services: Moving computing and
data processing to the cloud has emerged as an effec-
tive means of data processing because cloud computing
power outpaces edge device capability. However, in
comparison to the quickly evolving data processing tech-
niques, network bandwidth has ground to a halt [48].
As the amount of data produced at the edge grows, data
transmission speed has created a bottleneck for cloud-
based computing models. If all data must be transmitted
to the cloud, the response time becomes too lengthy. In
such cases, data should be processed at the network’s
edge to shorten the response time and reduce network
pressure [48].

Besides EC/FG, there are a number of other computing
models that can be exploited in IoT applications to address
the shortcomings of the existing Cloud-based IoT models.
The frequently debated and most promising technologies are
summarized in Fig. 4 [1]. In a nutshell, EC pushes the intelli-
gence and processing capabilities down closer to the endpoint
devices. In EC, processing resources are placed one or a few
hops away from devices. FC is a mediator between the edge
and the cloud. Compared to EC, FC has a broader concept
providing a hierarchical model consisting of computing, stor-
age, networking, and control anywhere across the edge devices
and the cloud. Mobile computing (MC) refers to wireless
technology enabling mobile hardware (e.g., smartphones, lap-
tops, portable PCs, and tablet PCs) to transport data over a
network without getting any physical link. Mist Computing
harvests the extreme edge of the network, typically consist-
ing of microcontrollers and sensors (i.e., computations, local
analytics, and decision-making are provisioned and conducted
directly on the IoT device itself). Mobile cloud comput-
ing (MCC) is the fusion of cloud and mobile intended to
tackle mobile devices’ processing/storage limitations. MCC is
designed based on the idea of remote execution of offloaded
tasks outside of the mobile device. However, MCC is not
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geographically distributed and cannot provide ultralow latency
services. Multiaccess EC (MEC), formerly known as mobile
EC, provides capabilities and features of the cloud computing
at the edge of the cellular network via existing base stations.
Typically, MEC is considered as a subset of EC because EC
is a more general technology covering all types of connectiv-
ity (e.g., Cellular, WiFi, and LAN). MEC is also a different
technology from MCC in a way that the operator of MEC is a
network infrastructure provider while the operator of MEC can
be either a user or a cloud provider. Moreover, the comput-
ing resource of MEC is lower than MEC. Additionally, MCC
latency is higher than MEC. The concept of Cloudlet is very
similar to MEC. Cloudlets consist of virtual machine infras-
tructures (small-scale local clouds) present in logical vicinity
to the IoT devices addressing data interactivity in real time.
However, this paradigm is different from FC in a such a
way that FC is heterogeneous (e.g., routers, switches, access
points, and gateways) and provided over one or multiple hops
(placed anywhere between cloud and IoT devices), whereas
Cloudlets are small servers provided over one-hop access.
Finally, mobile ad hoc cloud computing (MACC) is a sub-
set of MCC that aims to provide more efficient services by
forming a temporary group of mobile devices in the vicinity
to create an ad hoc cloud [1].

While neither EC/FC nor Cloud computing is perfect, the
insightful integration of edge—fog—cloud allows IoT to benefit
from the combined competencies and attributes [1].

1) Collaborative and Distributed Computing: Al unleashes
IoT potential by drawing insights from data faster.
Because of the velocity, variety, volume, and veracity of
IoT data, traditional cloud-based models are unable to
meet the needs of emerging IoT applications, making it
vital that intelligence be distributed across all IoT layers
to shorten response time and lower data transmission.

2) Reduced Network Load: Managing data streams at the
network’s edge by locating computing nearer to data
sources more evenly distributes the workload and lessens
the backhaul burden. Therefore, it is not necessary to
increase the rate of backhaul data, and data linked to
the far side of the network are saved for the services
that need them most.

3) Scalability: Scalability is the main need when IoT is
spread across a large geographic area with various lev-
els of density. This requires that IoT depend on various
distributed configurations and topologies to adapt to each
network’s needs.

4) Latency-Aware Computing: Spreading resources across
the network reduces the network load and improves task
processing time. FC significantly increases the Quality
of Service (QoS), enabling latency-critical applications
to offload tasks without infringing on latency restraints.

5) Native Support for Mobility: Moving resources nearer
to the edge enables the network to react to user mobil-
ity more accurately and quickly. Because fog notes can
communicate horizontally, request handling and task
offloading can happen in higher mobility situations.

6) Providing Context: Because resources are located nearer
to end users, it is possible to provide content specific
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to particular geographical areas. Fog nodes (FNs) con-
scious of their absolute position can also provide extra
built-in services such as precise localization.

7) No Single Point of Failure: Moving resources through-
out a network also means that if a specific data link is
disabled due to maintenance or an FN goes down due to
a cyberattack, other FNs can handle the workload while
the network continues functioning.

8) Extended Battery Life: Because FC reduces data pro-
cessing delays, devices at the edge can depend on task
offloading to reduce energy needs and expand battery
life, which provides greater long-term autonomy.

9) Reduced Energy Use: Because the majority of data is
processed near the source, long-distance data transfers
are not required, which lessens the network’s over-
all energy consumption. In addition, because power
loads are more equitably dispersed, power demands can
more easily be met by existing infrastructure as well as
renewable energy sources.

10) Heavy Load Support: Edge—fog—cloud computing mod-
els can depend on the cloud to have substantially more
resources than any FN. This means an overwhelmed FN
can send a heavy computational task to the cloud for
completion; however, the network propagation time is
longer in such scenarios.

11) Limitless Storage: Space-constrained devices can rely on
the cloud’s infinite storage and resource capabilities to
avoid the need to integrate additional storage capacities.

12) Location Awareness: This makes IoT applications
stronger by supporting improved adaptability and con-
sciousness while enhancing environment-sensing knowl-
edge that allows the network to improve the quality of
applications as well as task execution.

13) Mobility: As the IoT adapts to manage high mobility
devices, system knowledge has to transfer openly within
data-heavy mobile applications. Finding the right data
enhances performance, data models, and local caching.
IoT solutions must also allow mobile devices to transi-
tion between authority regions without creating a system
disruption.

The state-of-the-art architectures of EC/FC are illustrated
in Fig. 5 [1], [3], [51]-[54]. The three-layer IoT architec-
ture is undoubtedly the most widely used one. This model
consists of only one layer between the edge and cloud,
serving as the fog layer. In some applications, FNs are lat-
erally/vertically connected to each other, forming a grid to
address concerns associated with reliability, load balancing,
communication overhead, and data sharing. In this model, gen-
erally, data/tasks are shared vertically, whereas, typically, there
is no communication among peers inside the same horizontal
layer. Usually, FNs closer to the edge act as data collectors as
well as actuators/sensors controllers. On the other hand, FNs
in the above layers close to the cloud are concerned with data
filtering, near real-time processing/analytics, compressing, and
transforming. Moving further from the edge toward the cloud
typically provides more sophisticated ML and data processing
capabilities at the cost of higher latency and communication
overhead. Some architectures proposed to structure the fog in
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FNs can also be clustered based on geographical constraints
while facilitating inter and intrafog communication ability [1].
As shown in Fig. 6, a typical FN consists of the following
main components [1], [8], [11], [12], [50], [55], [56].
1) Fog Gateway Nodes (FGN): FGNs facilitate the con-

nection between endpoint IoT devices and the fog. In
other words, FGNs are gateways, access points, or entry
points.

2) Fog Orchestration Controller (FOC): These components

create a control layer in fog, creating a holistic and
ubiquitous picture of the whole fog. They continuously
monitor all the existing fog resources and provide a
set of resource performance metrics. Additionally, they
are responsible for coordinating communications within
a fog or among fogs. Task offloading, task migration,
scheduling, service placement, and resource provision-
ing and management are also orchestrated by FOCs.
Typically, these tasks need to consider communication
cost, computation/energy efficiency, and latency. The
existing solutions can be classified into the following
categories.

a) Offline Versus Online: Task placement and schedul-
ing using offline/static techniques are typically con-
ducted using optimization tools and solvers, such
as CPLEX, Choco, and Gurobi. Although these
solvers provide acceptable results, they are very
time consuming and cannot capture the dynamic
input patterns of the incoming workloads. On the
other hand, online techniques can better react to
online situations based on the information about
the tasks arrived rather than assuming prior knowl-
edge about arrival times, execution times, and
deadlines.

b) Centralized Versus Decentralized: Centralized
techniques utilize a central controller to optimize
the system. Such controllers need to have a com-
prehensive overview of the whole system to be able
to fulfill their tasks.
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Fig. 6. Conceptual architecture of an FN.

3) Fog Computing Nodes (FCNs): These entities are
formed by at least one or more physical devices with
processing and sensing capabilities enabling the fog to
run and execute a task assigned by FOCs.

4) Fog Storage Nodes (FSNs): FSNs implement a dis-
tributed database/repository inside a fog.

IV. CONVERGENCE OF I0T AND Al

Integrating Al into the IoT systems across the entire
stack—from infrastructures to applications—effectively cre-
ates a layer of intelligence. There are a number of ways to
implement this new paradigm, AloT, but generally, the role of
Al in the era of IoT can be classified into the following ways.

1) Role of Al in the Things (IoT Edge): The essence of

IoT is about collecting data from connected devices. Al
in the sensing layer provides innovative breakthroughs
when it comes to handling tsunami of data. The lever-
age of Al in IoT things brings actionable intelligence
and insights as close as possible to the source of
data minimizing the decision-to-action latency. In addi-
tion, balancing resource constraints of IoT devices and
the astonishing growth in data volume, variety, veloc-
ity, and veracity (known as the 4 V’s of Big Data)
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requires selective sensing; otherwise, ubiquitous sens-
ing will be a challenging task as it needs an extensive
pool of resources [57]. This means honing in on the
most appealing data by carefully selecting only those
data/information of interest from a noisy environment
with limited resources [21], [57]

2) Role of Al in the IoT Infrastructures: Another layer
of complication with IoT is the infrastructures. Indeed,
there are many aspects and subcomponents to IoT
infrastructures that Al is integrated as analyzing the del-
uge of constraints (e.g., energy consumption, latency,
and QoS) and data generated by IoT infrastructures
that otherwise was simply impossible for humans
to review and extract insights. The following are
some of the most common benefits of incorporating
Al into the IoT network/infrastructures layer: secu-
rity (e.g., tracking down a wide variety of cyber
threats from malware to phishing attacks, breach risk
prediction, and fog-assisted endpoint protection, among
others), optimization of connectivity/network, infras-
tructure and service monitoring, infrastructure mainte-
nance, load balancing, traffic management, capacity, and
resource planning (i.e., identify the optimal configu-
ration of resources by considering the location-based
user requests as well as the performance of the existing
hardware resources) [1], [58]-[60], resource provision-
ing (i.e., providing resources, such as memory and
computing resources), resource allocation (i.e., assign-
ment of resources to address an incoming request),
offline/online centralized/hierarchical/distributed service
orchestration, service migration, and task offload-
ing [61]-[66], [66]-[70].

3) Role of Al in the Application/Service Layer: The sheer
quantity of IoT data is significant. AlIoT surfaces rel-
evant insights, enabling the next level of automation
and productivity, rapidly transforming everything from
the supply chain to healthcare. AI/ML algorithms can
assist in making decisions on behalf of users in IoT
in a large variety of contexts. Al algorithms improve
model robustness and generalizability compared to non-
Al algorithms. They can also be employed to detect
security issues at the data, software, and system level.

A. Power of Combining Al With the IoT Edge

The explosive growth of smart devices and sensors used
everywhere, from factories to communities, produces vast
amounts of data. Constantly growing computing power pushes
computation from the cloud to the network’s edge. From smart
manufacturing to facial recognition and smart cities, Al-driven
applications/services are flourishing. However, because of
latency and bandwidth challenges, the traditional cloud com-
puting model is unable to support the full potential of Al
across all organizations and use cases. Therefore, deploy-
ing AI/ML/DL services and edge resources nearer to the
data’s origin presents viable solutions. The interaction and
convergence of IoT edge and Al can be summarized as
follows [71].
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1) Al For Edge: Al can be utilized to optimize EC

resources, networks, and systems, from edge caching to
resource management and maintenance, task scheduling,
offloading, communication, security, etc. [71].

a) Offloading: Depending on the application and
runtime requirements, offloading of IoT tasks is
required to transfer heavy computation and stor-
age to fog/cloud resources and, thus, handle the
latency and resource gaps. In this context, sev-
eral works have been conducted to investigate and
address various aspects of offloading, such as appli-
cation characteristics, latency challenges, resource
heterogeneity, uncertainty and the dynamics of
the environment, mobility, energy consumption,
load balancing, resource utilization, computational
time, communication overhead, among others. As
a consequence, there are many ongoing research
projects focusing on offloading from heuristic
methods to the Markov decision process, fuzzy
logic system, and reinforcement learning, among
others [72], [73].

b) Edge Caching: It has been shown that idle stor-
age resources can be utilized to tackle a series
of challenges (e.g., unnecessary end-to-end (E2E)
communication) raised by limited spectrum and
bandwidth resources of edge [74]. This promis-
ing approach, known as Edge caching, is mainly
constructed based on Al technology to address the
corresponding questions: where to cache, and when
and how to cache [74].

¢) Edge Management and Maintenance: To deal with
the edge management and maintenance problem, a
large number of Al techniques have been proposed.
For instance, Al techniques have been success-
fully applied to the handover problem of the edge
devices as well as control communication modes
for energy minimization.

d) Security/Privacy: The field of IoT security/privacy
is incredibly vast in its size and scope as IoT com-
prises many devices and heterogeneous network
systems in a multivendor environment with their
own unique features and vulnerabilities. Typically,
edge systems are prone to many attacks, such
as jamming attacks, DDoS attacks, side-channel
attacks, malware injection attacks, authentication,
and authorization attacks, mainly due to their
resource-constrained hardware and software het-
erogeneities [75], [76]. Incorporating AI brings
significant advantages [77]-[82]: 1) AI Inference
on the edge can significantly eliminate the need
for data transmission between edge and cloud,
resulting in higher data locality. Such Al-enabled
data locality assists with safeguarding user pri-
vacy when a gadget catches privacy-sensitive
data and 2) Al-enabled security/privacy solu-
tions can also enhance traditional cybersecu-
rity, especially among IoT devices, from scan-
ning devices to discovering vulnerabilities (e.g.,
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weak passwords identification), pattern recogni-

tion, threat prediction, and protection. It should
be noted that although the adoption of Al brings
new waves of innovation in cybersecurity solu-
tions, security is also needed to be implemented
throughout Al environments. Security needs to be
incorporated starting from the training phase to the
inference phase as Al also suffers from several vul-
nerabilities, such as evasion attacks (influencing
the model to provide incorrect predictions), data
poisoning, and privacy attacks (e.g., membership
inference attacks, and model inversion attacks).
2) Al Applications on Edge: There is an urgent need to
push the Al frontiers, including model training and infer-
ence, from the network core to the IoT edge to handle
the tremendous amount of data generated by billions of
mobile and IoT devices [71], [83].

a) Inference: Cloud-only inference cannot satisfy
the requirement of the emerging IoT appli-
cations, and it is significantly hindered by
the data safety/privacy challenges as well as
network latency leading to unacceptable real-time
performance and quality of experience, limiting
the ubiquitous deployment of ML/DL services.
Therefore, there is a necessity of striking a balance
between the inference accuracy and the execution
latency while considering the resource-constrained
environments of edge [71].

i) Model Optimization: ML/DL models should
be tailored and optimized to be able to
deploy them to edge devices. State-of-the-art
optimization techniques can be classified into:
weights quantization, parameter pruning and
sharing, low-rank factorization, knowledge
distillation, and transferred filters [71].

ii) Model Segmentation: In this technique, the
model is divided into several partitions
and distributed across heterogeneous local
resources (e.g., GPUs and CPUs) of the edge
device or across edge—fog—cloud [71].

iii) Early Exit: To strike a balance between accu-
racy, processing delay, and energy consump-
tion, the concept of early exit has evolved.
In this approach, the original baseline ML
model is augmented with additional side
models, each with different performance and
overhead/cost. The main idea is that a sim-
ple model/side may often be sufficient for
a majority of the inputs (data points). On
the other hand, more complex models (e.g.,
additional DL layers) might be required to
handle more complex samples. Early Exit
techniques switch between different models to
co-optimize the performance and costs [84].

b) Training: Typically, due to the limited capacity of
resource- and energy-constrained IoT devices, the
training phase takes place in the cloud with data
collected from IoT devices, and then the extracted
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model is deployed to the IoT edge. However, this
approach might not be appropriate for all use cases.
Distributed training techniques, as well as hard-
ware accelerators based on spiking neural networks
(SNNs), are some of the promising techniques that
emerged as a response to the challenge of training
at the edge.

B. Privacy-Preserving Machine Learning in loT

IoT data across vertical domains are severely fragmented
across silos for a range of inhibitor reasons—e.g., data
sovereignty, trust, compliance, and legal concerns—halting
discovery and technology-driven innovation. For instance, the
healthcare sector is currently in the midst of a paradigm tran-
sition. Digital advancements are producing massive amounts
of data inside healthcare organizations. The rapid expansion
of health data is due to the use of EHR, wearable IoT devices,
diagnostic lab results, social media feeds, external patient
information, and medical imaging. Comprehending that all of
this data is an asset that produces business opportunities for
healthcare systems and patients to take advantage of monetiz-
ing data. However, there are multiple barriers that can block
the monetization of IoT data in the healthcare industry. For
example, hospitals are understandably uncertain about sharing
patient data, and California’s Consumer Privacy Act (CCPA),
HIPPA, and GDPR regulations hamper the ability to inte-
grate private data. While HIPPA was the inaugural national
standard for safeguarding personal health data in the U.S.,
Europe’s GDPR also protects personal data by emphasizing
that the collection of user data must be clearly communicated
to users. After the GDPR was put into place, CCPA as well
as the China Internet Security Law, in conjunction with oth-
ers, provided additional data security. This means that data
from a variety of sources require that those analyzing it do so
in compliance with the requirements of multiple regulations,
which can complicate medical research. Additionally, data
continuously changes, and information must be merged repeat-
edly to research successfully, which is significantly harder to
do than combining data only one time. The fact that smart
data are heterogeneous, contain multiple dimensions, are often
complicated, and can come from fractured sources creates
additional obstacles to conducting research between multiple
organizations [23].

Valuable, even vital information often remains unshared and
unharnessed as the rise and adoption of Al parallel that of the
associated concerns centered around privacy. This adversely
impacts the collaborative use of AI/ML/DL not only among
institutes but also internally among departments of the same
organization. To alleviate this challenge, Collaborative and
PPML techniques—e.g., federated learning (FL), homomor-
phic encryption (HE), Secure multiparty computation (MPC),
and differential privacy (DP)—have emerged to bridge iso-
lated IoT data islands as well as the gap between reaping the
benefits of AI/ML and privacy concerns (See Fig. 7).

1) Federated Learning: In contrast to traditional central-
ized ML methods that require all local IoT data to be uploaded
to a single server, in FL, data and training remain on local
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nodes enabling many participants to build a robust common
ML model without exchanging data. FL seeks to overcome
issues around data privacy and governance through collabora-
tive algorithm training that does not require the exchange of
data. FL was originally created for use in the domains of edge
device use cases and mobile devices but has recently gained
popularity in the realm of healthcare applications. FL enables
ML from distributed data. Each data controller (participant or
party) defines the governance of its own processes as well as
associated privacy policies. Each data controller also oversees
data access throughout training and validation. With this goal
in mind, a typical FL utilizes the following strategy to train a
model [23], [85], [86].

1) A pretrained, centralized ML model (global model) and
parameters are initiated.

2) A subgroup of training participants is chosen for each
round and receives the most current global model copy
(e.g., from a server).

3) Each participating client trains and updates a local model
with their privacy-sensitive data.

4) Locally trained models are returned to the centralized
server and the server in which all local models are
aggregated to create/update the global model. The most
common aggregation technique is federated averaging
(FedAvg). FedAvg is based on parameter averaging
to aggregate local models. Once the global model is
updated, it is shared with participants for the next
iteration. This process is repeated until convergence is
achieved.

Generally, there are three methods for exchanging parame-

ters [87].

1) Round Robin: FL is run sequentially by participants.
Each participant downloads a portion of the cur-
rent parameters from the server, trains locally, and
then uploads chosen parameters (e.g., gradients). Then,
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the next participant does the same, following a set
order [21].

2) Random: Participants randomly download, learn, and
upload the model.

3) Asynchronous: Participants do not coordinate with one
another. While a participant is training, other participants
can update the server.

FL can be classified based on the network topology into

three main categories [23], [88]-[92].

1) Centralized FL: A centralized server manages vari-
ous algorithm steps and coordinates participating nodes
throughout the learning process. The central server han-
dles node selection at the start of training as well as
model update aggregation. Because all chosen nodes
must provide updates to only one entity, the server may
become a bottleneck point [88], [91], [93], [94].

2) Decentralized FL: No centralized server is utilized,
and participants (local nodes or parties) agree on a
decentralized protocol to receive and transmit shared
parameters until every participant has been included.
Nodes can coordinate independently to acquire the
global model. Because there is no concept of an actual
global ML model, each local node individually upgrades
its own local model by exchanging information with
neighbors, which averts single point failures because
updates are shared only by interconnected nodes [95].
Even so, the network topology can impact learn-
ing process performance. Generally, every participant
receives trained parameters from other participants.
Then, the weight is updated using small batches of
local data, and the updated values are sent to oth-
ers. Typically, only locally trained parameters, rather
than data, are shared; therefore, any privacy leaks are
indirect and generally occur because of local parame-
ters. Practically using completely decentralized learning
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requires the addition of other algorithms or technolo-
gies [88], [93], [94], [96].

3) Heterogeneous FL: Most current FL strategies assume
all participants (local ML models), regardless of their
different computation and communication capabili-
ties, use exactly the same global model architecture.
However, Heterogeneous FL techniques (e.g., HeteroFL)
enable heterogeneous local models while still producing
a single global model [97].

FL can also be categorized into Horizontal (HL), Vertical

(VL), or Transfer (TL) Learning [23], [89], [95].

1) Horizontal FL: Also known as sample-based FL or
Homogenous FL, this approach utilizes data sets with
identical feature space across all devices.

2) Vertical FL: Also known as feature-based FL or
Heterogeneous FL, this approach utilizes data sets con-
sisting of different features spaces. In other words, data
sets have the same sample space but different features
spaces. This approach often includes an intermediary
third party to provide encryption logic, ensuring only
common data are shared. For example, a healthcare com-
pany and social networking company in the same city
likely have a high level of user convergence. However,
because they capture different kinds of data, their fea-
ture spaces are not the same. VL enables participants
to gather data from different feature spaces while only
one party can see the label. Therefore, neither partici-
pant can train the model alone, which adds aggregation
complexity. Sample spaces must line up in order for par-
tial model updates to be exchanged. Similarly, a bank’s
credit card marketing team may want to enhance an
ML model by learning about customers’ online shop-
ping habits. Shopping data (only for common customers
between the bank and online shopping) would be shared
to train an ML model, and third-party encryption logic
would ensure security and restricted sharing. In the end,
the model would enable the bank to refine product offers,
and online shopping domains could revise credit card
point models [23], [95].

3) Transfer FL: This approach is FL used with a pretrained
model that was trained using similar data to solve a dif-
ferent problem. Note that transfer learning approaches
are employed to train new requirements on a pretrained
model used to solve another problem. When it comes
to FL, training with a pretrained model provides bet-
ter results when compared to results from a brand-new
model [95].

2) Homomorphic Encryption: HE is a centralized PPML
method in which raw data are encrypted and transmitted to
a server for computation. HE is specialized encryption that
allows a variety of computations to be executed on nonplain-
text (encrypted) data; therefore, results are also encrypted.
When decrypted, the outputs match plaintext operational
results [23], [98]-[102].

1) Partially Homomorphic Encryption: These

cryptosystems exhibit either a multiplicative or
additive homomorphic property but cannot satisfy
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both properties. Examples include: Paillier (additive),
ElGamal (multiplicative), or RSA (multiplicative).

2) Fully Homomorphic Encryption: These cryptosystems
exhibit both multiplicative and additive properties.

Technical Limitations: Currently, HE is challenging to scale,
making it impractical for real-world use. Additionally, exe-
cution is very sluggish in comparison to plaintext analysis.
Thereby, training an ML model is not feasible, but as research
evolves, it may become more practical in the future.

3) Secure Multiparty Computation: Secure MPC (sMPC or
MPC) seeks to develop methods for participants to collabo-
ratively compute while maintaining the privacy of inputs. In
contrast to conventional cryptography that protects data from
outsiders, MPC protects each participant’s privacy from the
other participants. MPC is centered on the secret sharing of
all inputs [23]. Each participant (p1, p2, pny) holds private data
(d1, da, dy). Every participant seeks to calculate the public
function value using private data: F(di, d2, dy), while main-
taining the secrecy of their own inputs/data. For example, if
three individuals want to determine who has the highest salary
without revealing their individual salaries, this would translate
into: F(x,y,z) = max(x,y,z).

There are significant differences between two-party com-
putation (2PC) and MPC techniques. In 1982, the secure
computation was introduced as secure 2PC to address the
Millionaires’ Problem, also known as a Boolean predicate. In
1986, Yao proposed a novel 2PC to address generally feasible
computations [103]. Later, Goldreich, Micali, and Wigderson
extended the concept of 2PC with further generalizations to
MPC [104], [105]. The majority of MPC protocols utilize
secret sharing. Secret sharing enables one party to dissemi-
nate a secret with other parties by giving a share of the secret
to each participant. In other words, when using secret shar-
ing, inputs are broken into pieces, and the pieces are given to
the other participants. Computing is carried out locally, and
no single participant can access whole inputs. When the local
computation outcomes are combined, a whole, accurate out-
put is shared with all participants. Secret sharing generally
takes the form of Additive Secret Sharing or Shamir secret
sharing (SSS) [98], [106].

1) Additive Secret Sharing: The main concept behind this
approach can be discussed using a simple example.
Suppose there are three colleagues who want to compute
their average salary without sharing individual salary
data with one another or a third party. If Colleague A’s
salary is U.S. $110K, then U.S. $110K would be bro-
ken into three random secret shares (i.e., U.S. $40K,
$50K, $20K). Colleague A would keep one share ($50K)
and then give another share ( U.S. $20K) to Colleague
B and Colleague C (U.S. $40K). All three colleagues
would share their salary information using the same
process. When all shares have been distributed, each col-
league has one share of each participant’s secret. Each
individual share gives no useful information because
it is incomplete. Secret sharing only generates value
when the shares are added together. Each participant
adds their shares together to compute a partial result.
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When the partial outcomes are added together and then
divided by the number of participants, the answer is
revealed.

2) Shamir Secret Sharing: In this approach, a secret is bro-
ken into shares. Revealing a secret using SSS requires
that a participant have a minimum number of shares,
known as the threshold. SSS is based on the foundational
concept that two points can create a line, three points
can define a parabola, four points can define a cubic
curve, etc. Therefore, it requires k points to define a
polynomial of degree k— 1. For example, if Participant A
wants to share a secret (secret = 6) with Participant B
and Participant C, Participant A chooses secret line f,
such that f(0) = 6. Two other points on that line are
chosen. Participants B and C are each given one point.
Participant B knows f(4) = 4 and Participant C knows
f(8) = 2. Having only one share of the secret, neither
Participant B nor C could reconstruct the secret using
only their shares because of the infinite number of points
that can define a line.

4) Differential Privacy: DP is a formalized mathematical
method used to manage and quantify privacy risks. This frame-
work has mainly been studied within the context of gathering,
analyzing, and sharing aggregated statistics, ranging from sim-
ple averages to ML. DP is not necessarily a solitary tool but
more of a criterion that tools must satisfy in order to ana-
lyze sensitive data. DP supplies a mathematically provable
guarantee of privacy in the face of privacy attacks designed
to learn individual-specific information from data [23]. DP
protects privacy through the addition of noise to personally
sensitive data. Generally, DP systems are categorized into local
privacy, and global privacy [107]. Global systems include a
trusted entity known as the curator that can access raw, private
data from many different participants [98]. The curator ana-
lyzes the data and injects noise into the output. For example,
a researcher wants to determine how many hospital patients
have an emerging human stigmatization virus (HSV). A hos-
pital administrator can utilize patient records to count the
actual number. When applying global privacy, the adminis-
trator picks a random number using a probability distribution
familiar to both parties, such as the Laplacian mechanism.
The noise is injected into the actual number, and the noisy
output is provided to the researcher. While the noisy output is
likely close to the actual output, it remains impossible to deter-
mine if any particular patient has HSV based on the hospital
administrator’s response.

Local privacy does not include a curator. On the other hand,
each individual is responsible for injecting noise into their
privacy-sensitive data prior to sharing it with others. In other
words, every participant acts as a curator of their own database.
Local DP systems could also include an untrusted aggregator
to collect data from everyone at once [98]. For example, a
political researcher could ask all residents of a town if they
have ever joined the Trump’s party. In order to safeguard pri-
vacy, the researcher would have each resident secretly flip a
coin. If the coin shows head, the participant provides a truth-
ful answer. If the coin initially lands on tails, the coin is
flipped again to generate their answer, with heads meaning
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yes and tails meaning no. Using this random response tech-
nique, approximately half of the residents will give truthful
answers while the remaining provide random answers. This
means that every participant maintains plausible deniability
around the veracity of their response, and their privacy is pro-
tected. In addition, with enough responses, the researcher can
accurately estimate how many in the town support Trump.

The DP model is known for providing the highest level
of privacy and the lowest chance of individual data identi-
fication. DP sets the boundaries for how much information
can be shared with an adversary or third party regarding indi-
vidual data’s presence in a data set. These boundaries are
usually set by a parameter € called Privacy Budget/Loss. This
parameter measures privacy loss in order to quantify what an
adversary can learn about a single individual’s data through
one query. €-DP can be formally defined by the following
equation [108]-[110]:

PIAKX) € S] < ¢ - P[A(X') € S]. ()

In the above equation, P stands for probability, and param-
eters X and X’ represent two adjacent (neighbor) data sets
(databases). Note that adjacent (neighbor) data sets means that
they differ in just one element. A is a protocol/function that
runs on data set X, producing some output (A(X)). S is all
potential output of A that could be predicted. Privacy decreases
with persistent queries and epsilon’s stack up. If a private
query where € = 1 is made twice and results in two differing
estimates, it is as if a single query was made with a loss of
€ = 2 because the answers can be averaged to generate a more
accurate estimate [98], [110]-[112].

In DP, a noise-adding mechanism serves to protect data
through predefined perturbation mechanisms. Generally, the
noise addition mechanisms utilized in DP include the follow-
ing [113]-[115].

1) Randomized Response: This technique was initially
proposed by Warner and extensively has been used
in structured survey interviews enabling respondents to
maintain confidentiality while collecting sensitive issues
(e.g., sexuality). This technique which acts very simi-
lar to plausible deniability removes evasive answer bias
through randomized responses. For instance, randomiza-
tion can occur by flipping two separate, unbiased coins.
An answer is considered true if Coin 1 lands on heads.
Otherwise, Coin 2 is flipped. If Coin 2 lands on heads,
the answer is yes. If Coin 2 lands on tails, the answer
is no. If it is assumed that a biased coin is utilized,
the probability of receiving a truthful answer is p (gen-
erates an untrue answer, with 1 — p probability). The
randomized response technique provides DP when

ee

T 1t

p 2)

2) Laplace Mechanism (LM): Noise is calculated utilizing
the Laplacian function. Each data coordinate is perturbed
via computed Laplacian noise using LM distribution.
The level of sensitivity of the DP function decides the
noise addition’s scale (i.e., noise ~ Lap(Af/€)) [116].

Authorized licensed use limited to: University of Rhode Island. Downloaded on September 24,2023 at 21:03:02 UTC from IEEE Xplore. Restrictions apply.



3698

3) Gaussian Mechanism: This mechanism has become
essential in some DP algorithms. Like the LM,
the Gaussian mechanism generates noise via normal,
Gaussian distribution.

4) Exponential Mechanism: This method generates DP in
the case of nonnumber outputs (categorical variables).

5) Compression Mechanism: Information-theory-centered
information distortion and compression techniques
have also been utilized in the literature to satisfy
(e, 8)-DP [117].

V. CONVERGENCE OF I0T AND BLOCKCHAIN

While blockchain and IoT are very different from
one another, the integration of the two creates a new
paradigm expected to disrupt systems across diverse indus-
tries. Blockchain has the ability to address IoT weaknesses
by resolving security faults between intelligent IoT devices
connecting in a trustless, public environment. In addition,
it can help resolve weaknesses in Cloud IoT client/server
models because of its distributed peer-to-peer setup (See
Fig. 8) [2], [32]-[36]. The IoT has huge potential, but mod-
ern IoT systems use devices with finite resources that can be
open to cyberattack. In addition, IoT networks are hard to
scale, maintenance is challenging, and single point of fail-
ure issues remain a problem. Additionally, data privacy and
security are primary concerns, and IoT data are impermanent.
Blockchain’s decentralized way of generating and maintain-
ing data as well as its consensus mechanism, contribute to
mitigating centralized IoT concerns. Multiple use cases have
illustrated blockchain’s applicability to every piece of the IoT
system. Blockchain can be utilized in communication networks
to verify and encrypt data, securely handle cloud data and as
well as that contained in distributed devices, and manage and
store device identifications. It is also capable of lessening risk
by using multiple nodes for peer-to-peer data sharing, which
makes it almost impossible to corrupt data. Blockchain con-
sensus requirements also prevent a compromised node from
becoming part of an IoT network or allowing the network to
accept altered data [2].

The various layers in a DLT/blockchain stack used with IoT
applications include (see Fig. 9) [2], [33], [118].

1) Device Layer: This layer includes actuators, smart
devices, controllers, edge/FNs, and sensors connected
via various wired or wireless communication mecha-
nisms to create the IoT.

2) Data Layer: This layer collects IoT data through trans-
actions from the lower layer and encases encrypted
data with hashes, digital signatures, and asymmetric
cryptographic algorithms.

3) Network Layer: The network layer functions as a
peer-to-peer network laid on top of the communication
layer. A peer-to-peer model is used because of the foun-
dational need for decentralization, which can only be
achieved using a network architecture that allows peers
to share resources without third-party assistance. Peers
are able to function as service providers or requestors
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and are organized based on support functions, such as
wallet, database, miner, or routing.

4) Consensus Layer: The consensus layer is responsible for
managing the distributed consensus needed to verify a
block’s trustworthiness and ensuring that every peer has
a correct ledger copy. Even so, nodes and agents can
have divergent views of a system’s status (i.e., forks)
because of malicious nodes, network faults, or commu-
nication latency. This makes avoiding forks one of the
main challenges facing consensus algorithms.

5) Contract Layer: This layer handles digital currency
as well as the generation and management of smart
contracts.

6) Application Layer: The application layer gives users
services needed across various industrial areas, such as
manufacturing, logistics, healthcare, or supply chains.

IoT and blockchain can be used together via tight integration

or loose integration (See Fig. 10) [2], [32], [36], [119], [120].
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1) Tight Integration: Tight Integration requires that all par-
ticipation communications occur through blockchain.
This means that every IoT device is a blockchain peer,
and every IoT interaction is recorded in the chain to
guarantee accountability. Tight integration enables the
monitoring of all communication between IoT services
and devices.

2) Loose Integration: Recording every IoT interaction
expands bandwidth and storage needs, which is not
always possible in every use case. Therefore, in loose
integration, IoT devices with plenty of resources, such
as FNs or gateways that register IoT devices, can han-
dle consensus or other heavy power-use interactions.
Devices with fewer resources are not required to process
or hold blockchain records. IoT devices are allowed to
communicate off-chain or through blockchain gateways.
While this requires discovery and routing protocols, it
ensures low latency between devices and generates an
option for recording interactions. In short, all transmitted
data does not have to be maintained on the blockchain.
The blockchain serves as a control mechanism because
smart contracts function as programmable logic when
data are sent via peer-to-peer technology. This enables
users to choose to use blockchain or a more traditional
cloud-IoT protocol to support IoT device interactions.
Loose integration combines the best of decentralized
recording using blockchain and IoT real-time com-
munication. This kind of integration works best in
scenarios with more frequent interaction, low latency,
high throughput, and dependable IoT data. However,
this level of integration has to optimize the distance
between blockchain interactions and those happening
in real-time. Additionally, the extent of decentralization
achieved through loose integration is not as impregnable
as transactions transmitted directly to the blockchain.

VI. CASE STUDY

The convergence of the Internet of Medical Things
(IoMT), edge—fog—cloud, Al, and DLTs generated new oppor-
tunities for personalized eHealth, transforming the tradi-
tional hospital-centric treatment to patient-centric personalized
healthcare. The following case study on stress monitoring and
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management illustrates how the healthcare industry can ben-
efit from this innovative combination. This case study also
sheds light on FL as a promising privacy-preserving distributed
learning technique to tackle privacy/security challenges of the
healthcare domain.

Stress is linked to serious health problems, such as depres-
sion, anxiety, obesity, heart disease, Alzheimer’s disease,
diabetes, gastrointestinal problems, and asthma [121]. The cur-
rent system of mental healthcare utilizes a reactive approach
focused on acute, symptom-centered care. A passive approach
to providing mental healthcare is one big disadvantage of such
a system because individuals often only become aware of
their condition when it has become severe enough that they
can see a need for care. In addition, a conventional periodic
medical or psychotherapy treatment model is based on the
idea that healthcare providers engage with patients at appoint-
ments that may be spaced apart by weeks. This framework
for mental healthcare puts a heavy burden of responsibil-
ity on the provider to integrate a significant amount of data
in a short period. It also places a burden on the patient
responsible for accurately assessing and reporting their expe-
riences. Moreover, the existing mental healthcare system is
also limited by a lack of holistic information about the con-
text of daily life when it comes to small changes in mental
health, emotions, and symptoms throughout activities of daily
living [121], [122].

Recent technological advancements in AloT and the
embracement of smart and connected health (SCH) solutions,
promoted by the predictive, preventative, personalized, and
participatory (P4) model, offer novel approaches capable of
addressing such limitations by integrating individual lifestyle
choices and genetics to develop customized interventions. In
this context, [oMT and Wearable Internet of Wearable Things
(WIoT) offer a ubiquitous healthcare surveillance system
based on a rich set of smart IoT medical devices and wear-
ables enabling individuals to monitor their stress-related data
anytime, from anywhere. Thanks to the sovereign data shar-
ing/exchanging technologies, cloud platform, and blockchain,
healthcare providers and patients whether they are traveling
on the road or relaxing at home, always have access to the
collected mental health data. WIoT, IoMT, and SCH naturally
produce vast amounts of data that are too big for humans to
handle. Fortunately, Al can tame the data deluge and wring
insight while growing ever more intelligent about what they
ingest [28].

A. Data Set

We utilized the wearable stress and affect detection
(WESAD) data set as a benchmark to illustrate customized
privacy-aware healthcare data analysis using FL [123]. The
data set is publicly available on the UCI ML Repository [124].
It contains multimodal physiological signals measured by two
types of devices: 1) RespiBAN, a wearable device placed on
the chest, and 2) Empatica E4, a wristband. RespiBAN mea-
sures ECG, EDA, respiratory signal, EMG, accelerometer data,
and temperature sampled at a rate of 700 Hz. Empatica E4
measures EDA, BVP, accelerometer data, and temperature. For
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demonstration purposes, we used only the ECG signal in our
study. The data set includes data recorded from 17 partici-
pants, with each wearing a RespiBAN and an Empatica E4.
Two participants were excluded due to low data quality. All
subjects performed a series of tasks, where each was associated
with a stress level. Stress levels studied in the experiment are
stress, amusement, and the baseline. The stress condition was
induced by performing public speaking and mental arithmetic
tasks according to the trier social stress test (TSST) [125].
The amusement condition was achieved by watching funny
video clips. The baseline was measured when the participants
were sitting, standing, or reading magazines. The order of the
groups of tasks was as illustrated in [123], with a meditation
interval between each condition session. The devices recorded
a total of 100-min data from each participant.

B. Setup and Evaluation Metrics

Computation Platform: We performed the FedAvg algo-
rithm on a server equipped with two NVIDIA TITAN V, each
with 12-GB memory and two GeForce RTX 2080 Ti, each with
11-GB memory. We segmented raw ECG based on R-peaks
and converted each segment to an image of size. 70% of the
samples were used as the training data. The training samples
were further partitioned to each client based on their origi-
nality. We utilized the convolutional neural network (CNN)
architecture proposed in our previous work in [121] as the
local client model. The client models were trained with a
batch size of 32 for five epochs in each communication round
between the client and the central server. We performed 80
communication rounds during the training. Based on [121],
we utilized cross-entropy loss for training the CNN. Stochastic
gradient descent (SGD) optimizer with a learning rate of 10-5
was applied. All the above-mentioned hyperparameters were
chosen based on the random search. All the experiments were
implemented using PyTorch.

C. Performance Evaluation

1) Stress Evaluation Using FedAvg: To investigate the
performance of FL, we implemented the most widely used and
effective algorithm FedAvg [126], utilizing all 15 clients with
their associated data. We trained the same CNN architecture
in a conventional setting for comparison. The classification
performance in terms of accuracy and F1 score is presented
in Table I. The generalized model using conventional train-
ing method achieved an accuracy of 94.26% and the FedAvg
model using 15 clients obtained an accuracy of 83.9%. We
see that both the accuracy and the F1 score of FedAvg are
around 10% lower than performance in the non-FL setting.
This difference is due to data heterogeneity. In FL, the dis-
tribution of the data from each client may differ due to
individual physiological patterns. After averaging parameters
from all local client models, the central model may not yield
the best parameters for all clients, resulting in a drop in the
performance of the stress level classification. However, in the
conventional model training, all the data are treated as from a
single distribution. The model is thus able to generalize better
compared to the model using FedAvg.
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TABLE I
PERFORMANCE COMPARISON BETWEEN CONVENTIONAL AND FL
TRAINING
Accuracy (%) | F1 score
Non-FL | 94.26 0.943
FedAvg | 839 0.847
100 1.00
—— Accuracy
---- Fl score
98 0.98
& o6 0.96 ¢
5 o
o 9% 0.941
<
92 0.92
90 0.90

No. of clients

Fig. 11. Performance of FedAvg using data partitioned to a different number
of clients. Each client holds data from multiple subjects, e.g., when client = 1,
the client holds data from all 15 subjects; when client = 3, each client holds
data from five subjects.

2) Effect of Partitioning Data to a Different Number of
Clients: Conventional training can lead to a generalized model
with high performance. However, the FedAvg model trained
on individuals caused degradation in task performance due to
data heterogeneity. To maintain a balance between the two
schemes, we propose to group the subjects to achieve cus-
tomization with high performance. We randomly partitioned
data from all 15 participants to n clients, where n € [1,7] ,
i.e., one client holds data from multiple participants. The stress
evaluation performance using FedAvg with data grouped into
a different number of clients is as shown in Fig. 11.

We observe both the accuracy and the F1 score fluctu-
ate as the number of clients increases. This pattern is due
to the different partitioning of the data. As mentioned ear-
lier in the section, data heterogeneity degrades classification
performance. We see all data partitioning presented in Fig. 11
yield performances around 94%, close to the accuracy obtained
in the non-FL setting. By comparing Fig. 11 with Table I,
we notice data grouping significantly increases the FedAvg
performance by 10%, compared with using individual 15
clients. The results suggest when having a client with skewed
data distribution, aggregating data from two subjects is suffi-
cient to minimize the effect of data heterogeneity. According
to Fig. 11, the most effective way of grouping is to partition
the data into six clients, achieving an accuracy of 94.2%.

We next report the local client training and aggregation time
in one communication round in FedAvg shown in Fig. 12. The
aggregation time increases as the number of clients increases.
The fluctuation of the client training time can be attributed
to the noise from uncontrollable processes running on the
platform.

3) Effect of the Number of Participating Clients: We have
examined the impact of data partitioning on stress-level classi-
fication performance. We next investigate the effect of utilizing
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Fig. 12. Runtime of FedAvg with a different number of clients in one
communication round.
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Fig. 13. Performance of FedAvg using a different number of participating

clients. All clients hold their own data, e.g., when client = 1, the client holds
data from one subject; when client = 3, each client holds data from one
subject.

a different number of participating clients on classification
performance, i.e., all 15 clients hold their own data. In each
communication round, we randomly selected n clients and
evaluated the performance in terms of accuracy and F1 score,
where n € [1, 15].

The accuracy and F'1 score using a different number of par-
ticipating clients are as shown in Fig. 13. We see in the figure
that the performance increases when the number of clients
increases. This trend is due to the increased data from the
new client fed to the model during the training. We see degra-
dation in performance when increasing five clients to six and
increasing nine clients to ten. The degradation is caused by the
difference between the distributions of the data from the new
client and the existing data. However, increased data samples
still positively affect the model, resulting in enhanced overall
performance.

We present the runtime of local client training and the
aggregation time in one communication round in Fig. 14. The
aggregation time positively correlates with the number of par-
ticipating clients. The client training time fluctuates but still
follows an overall increasing trend. The fluctuation is caused
by the difference in the amount of data each participating
client holds. As mentioned earlier in the section, we randomly
selected 70% of the data for training. The training data from
each client are therefore unbalanced. Some clients have fewer
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Fig. 14. Runtime of FedAvg using a different number of participating clients
in one communication round.

data samples than other clients. When selecting a client with a
larger data size, the local training time increases. When select-
ing all 15 clients, we recorded the local runtime of the client
with the most abundant data, resulting in the longest local
training time.

In addition, we consider the latency of transferring model
parameters between the client and the central server. To com-
pute the latency, we measured the upload and download
bandwidths of Wi-Fi using TestMy.net [127]. We computed
the size of the model parameters to be 1151 MB, assuming
all parameters are 32-bit floats. The latency of updating a client
model is thus 6.4 min.

We present Fig. 15 to show a clear pattern between the
FedAvg accuracy and total runtime. The total runtime is com-
posed of local client training, global server aggregation, and
model parameter transmission, multiplied by 80 communica-
tion rounds, as indicated earlier in the section. We observe
that the FedAvg total runtime slowly increases as the num-
ber of clients increases. Based on our experiment, the main
factor for the overall runtime is the model parameter trans-
mission. Although we see more obvious increasing trends in
Figs. 13 and 14, they have smaller contributions to the total
runtime. For future experiments, we propose to optimize neural
network architecture to obtain a smaller number of parameters
to reduce the overall runtime.

VII. CONCLUSION

Although IoT, Al, edge—fog—cloud, and DLT/blockchain
have evolved independently as four distinct technologies, they
are often complementary topics in technology, and one should
not be discussed without the other. As these technologies
increasingly converge over time to complement each other,
new paradigms emerge, leading to unprecedented opportu-
nities for the development of new kinds of platforms and
innovative services and products disrupting whole industries.
edge—fog—cloud computing collaborates with IoT technol-
ogy to provide efficient data processing, elastic storage,
cost-effective scalability, data-service integration, and pay-as-
you-go features. With the continuous growth of IoT devices,
DLT/blockchain can be utilized to help with the security
challenges of IoT and offer a decentralized alternative to
conventional centralized IoT solutions. The confluence of
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and runtime with a different number of participating clients.

IoT

and Al gives rise to Al of Things and Augmented

Intelligence of Things, becoming a catalyst for a new era

of t

echnological change. The AloT systems solve a wide

range of complex problems by offering a better insight into

data

and adding a smart layer of intelligence on top of

connected devices, redefining the way industries, businesses,

and
this

economies function. In line with these developments,
article comprehensively discussed all critical aspects,

opportunities, challenges, applications, solutions, and exist-

ing
and

architectures of the fusion of IoT, Al, edge—fog—cloud,
DLT/blockchain. Furthermore, a holistic case study on

privacy-preserving IoT-based stress monitoring was presented
to address better the role of federated analysis, MPC, and

data

sharing in the era of IoT, AIl, edge-fog—cloud, and

DLT/blockchain convergence.
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