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GENERALIZED SQUARE KNOTS AND HOMOTOPY
4-SPHERES
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Abstract

The purpose of this paper is to study geometrically simply-
connected homotopy 4-spheres by analyzing n-component links
in $3 with a Dehn surgery realizing #"(S* x S?). We call such
links nR-links. Our main result is that a homotopy 4-sphere that
can be built without 1-handles and with only two 2-handles is
diffeomorphic to the standard 4-sphere in the special case that
one of the 2-handles is attached along a knot of the form @, , =
Ty q#T_p,q, which we call a generalized square knot. This theorem
subsumes prior results of Akbulut and Gompf.

Along the way, we use thin position techniques from Heegaard
theory to give a characterization of 2R-links in which one compo-
nent is a fibered knot, showing that the second component can be
converted via trivial handle additions and handleslides to a deriv-
ative link contained in the fiber surface. We invoke a theorem of
Casson and Gordon and the Equivariant Loop Theorem to classify
handlebody-extensions for the closed monodromy of a generalized
square knot @), 4. As a consequence, we produce large families, for
all even n, of nR-links that are potential counterexamples to the
Generalized Property R Conjecture. We also obtain related clas-
sification statements for fibered, homotopy-ribbon disks bounded
by generalized square knots.

1. Introduction

The Smooth 4-Dimensional Poincaré Conjecture (S4PC) asserts that
if X is a homotopy 4-sphere, a closed, smooth 4-manifold homotopy
equivalent to the standard 4-sphere S4, then X is diffeomorphic to S*.
The topological version of the S4PC was established by Freedman
[Fre82|, and the S4PC is the final unsettled case of the Generalized
Poincaré Conjecture. In 1987, David Gabai resolved the famous Prop-
erty R Conjecture [Gab87], showing that the unknot is the only knot
in S2 that admits a Dehn surgery yielding S* x S2. This result can be
viewed as initial progress toward a positive resolution of the S4PC, since
it follows that a homotopy 4-sphere built with no 1-handles and a single
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2-handle must be diffeomorphic to S*. In this paper, we extend this
classification to a broader family of handle decompositions. We refer to
the knot Qpq = T} o#1—pq as a generalized square knot.

Theorem 1.1. Suppose that X is a homotopy 4-sphere that can be
built with no 1-handles and two 2-handles such that the attaching sphere
of one of the 2-handles is a generalized square knot Qpq. Then X is
diffeomorphic to S*.

At first glance, this class may appear somewhat restricted; however,
it includes a number of historically important examples of homotopy
4-spheres. The first such example was the Akbulut-Kirby sphere >,
which was introduced by Cappell and Shaneson in 1976 [CS76], stud-
ied in detail by Akbulut and Kirby in 1985 [AK85], and shown to be
standard by Gompf in 1991 [Gom91la]. Subsequently, Gompf drew
handlebody diagrams for an infinite family {¥,,} of Cappell-Shaneson
homotopy spheres in 1991 [Gom91b]|. This family remained one of
the most prominent classes of potential counterexamples to the S4PC
(see [FGMW10]) until Akbulut showed that each ¥, is standard in his
celebrated 2010 paper [Akb10]. Another infinite family H(n, k) gener-
alizing ¥y was introduced and standardized by Gompf [Gom91a] (cf.
Figure 14 of [GST10]). Each of these examples satisfies the hypotheses
of Theorem 1.1, so the present approach subsumes the proofs that these
manifolds are standard. Moreover, the methods here are qualitatively
different from the other approaches; whereas past results involved tech-
niques to simplify specific handle decompositions, our work is a more
flexible characterization of a substantially larger collection of homotopy
4-spheres.

A 4-manifold that can be built without 1-handles is called geomet-
rically simply-connected. If X is a geometrically simply-connected 4-
manifold that can be built with a single 0-handle, n 2-handles, n 3-
handles, and a single 4-handle, then x(X) = 2 and X is a homotopy
4-sphere. Since the attaching map of the 3-handles is unique up to
isotopy [LP72], the manifold X is completely characterized by the at-
taching spheres of the 2-handles, an n-component link L in S% with a
Dehn surgery to the manifold #"(S! x S?), which we denote by Y.
(The framings and linking numbers for L are determined by this Dehn
surgery and must all be zero.) We call an n-component link L with
the property that O-surgery on L yields Y,, an R-link (or an nR-link
when we wish to emphasize the number of components). Conversely,
every R-link L determines a handle decomposition of a 4-manifold we
denote X, and the above arguments imply that X is a geometrically
simply-connected homotopy 4-sphere.

In this vein, Gabai’s result establishes that the unknot is the only
1R-link. This simple structure quickly disappears for n > 1, since han-
dleslides of L preserve the result of Dehn surgery. The Generalized
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Property R Conjecture (GPRC) asserts that, modulo handleslides, the
only R-link is the unlink.

Generalized Property R Conjecture. Every R-link is handle-
slide-equivalent to an unlink.

If U is an unlink, then the induced handle decomposition of Xy con-
tains canceling 2-handle/3-handle pairs, implying that X can be built
with only a 0-handle and 4-handle, so Xy is diffeomorphic to the stan-
dard S*. The same is true for any link L handleslide-equivalent to
U, and thus, the GRPC implies the S4PC for geometrically simply-
connected 4-manifolds. In this case, we say that L has Property R.
There are other, weaker versions of the GPRC, which also have the
same implication. We denote the split union of two links L; and Ly by
LU Ls.

Stable Generalized Property R Conjecture. For every R-link
L, there is a O-framed unlink U such that LUU is handleslide-equivalent
to an unlink.

A Hopf pair is a Hopf link where one component is O-framed, while
the other is decorated with a dot and encodes a 4-dimensional 1-handle
in the standard way. (See [GS99] for details regarding handlebody
calculus for 4-manifolds.)

Weak Generalized Property R Conjecture. For every R-link
L, there is a 0-framed unlink U and a split collection of Hopf pairs V'
such that L LU UV is handleslide-equivalent to an unlink and a split
collection of Hopf pairs.

As above, if L satisfies the weak/stable GPRC, we say that L has
Weak/Stable Property R. If L has Stable Property R, then the handle
decomposition of X, can be converted to the standard handle decompo-
sition of S* after adding some canceling 2-handle/3-handle pairs (cor-
responding to the unlink U). If L has Weak Property R, the handle
decomposition of X, can be made standard after adding both canceling
1-handle/2-handle pairs and canceling 2-handle/3-handle pairs. It fol-
lows from Cerf Theory that the Weak GPRC is equivalent to the S4PC
for geometrically simply-connected 4-manifolds.

Following [GST10], we say that a given knot K in S® has (weak/
stable) Property nR if for every nR-link L having K as a constituent
knot, L has (Weak/Stable) Property nR. Using this language, we can
give a slightly stronger restatement of Theorem 1.1.

Theorem 1.2. Every generalized square knot Qp, 4 has Weak Property
2R; moreover, any 2R-link containing Qp 4 can be simplified after adding
at most two Hopf pairs.



72 J. MEIER & A. ZUPAN

As mentioned above, this proves the S4PC for a class of geometrically
simply-connected homotopy 4-spheres, including those standardized by
Gompf in 1991 [Gom91la] and Akbulut in 2010 [Akb10]. Notably,
our approach differs dramatically from previous work; in particular, no
(explicit) use of a fishtail neighborhood is made here. See Subsection 8.4
for details.

Corollary 1.3. The Cappell-Shaneson homotopy 4-spheres 3, and
the Gompf homotopy 4-spheres H(n, k) are standard.

The main theorem is also interesting from the perspective of the
GPRC and the Stable GPRC, since the consensus appears to be that
neither of these two conjectures is likely to be true. In [GST10], Gompf,
Scharlemann, and Thompson produced a family {L,,} of potential coun-
terexamples to the GPRC (building on work of Akbulut and Kirby
[AK85] and Gompf [Gom91a]), in which each L,, is a 2-component
R-link with a square knot component. If L, has Property R, then the
trivial group presentation

P, = (z,y|zyz = yzy,z" = y" )

satisfies the Andrews-Curtis Conjecture [AC65], which is widely be-
lieved not to be the case when n > 3. See [GST10] for further details
about the Andrews-Curtis Conjecture.

The family {L,,} of 2R-links, which have the property that one com-
ponent is the square knot ()3 2, was further studied and characterized by
Scharlemann in [Sch16]. We expand on Scharlemann’s characterization
to produce, for each generalized square knot (), 4, an infinite family of
R-links having (p — 1)(¢ — 1) components, most of which appear to be
potential counterexamples to the GPRC. These are the first potential
counterexamples having more than two components.

Proposition 1.4. Fiz a generalized square knot Qp 4. Forn = (p —
1)(¢ — 1) and for any c¢/d € Q with ¢ even, there is an nR-link LZ’/ZI
contained in a fiber for Qp 4.

In Section 9, we revisit a program by which to disprove the GPRC and
Stable GPRC using the theory of 4-manifold trisections introduced by
Gay and Kirby [GK16]. We show how to associate a natural trisection
to the homotopy 4-sphere X corresponding to an R-link L, and we
describe explicit trisection diagrams for these trisections in the case
of the 4-manifolds X 75 associated to the R-links of Proposition 1.4.

An R-link L satisfies the Stable GPRC precisely when these natural
trisections have a certain stable property.

The relevant characteristics of a generalized square knot are that
they are ribbon, fibered, and have periodic monodromy. In the course
of proving Theorem 1.1, we also prove the next theorem, which may be
of independent interest. By the closed monodromy of a fibered knot K
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in S2, we mean the monodromy of the associated closed surface-bundle
obtained as O-surgery on K.

Theorem 1.5. If L = Q U J is a 2R-link and Q is nontrivial and
fibered, then there is an unlink U such that Q U J U U is handleslide-
equivalent to Q U L™, such that

1) LT is n-component link with n = g(Q),

2) L™ is contained in a fiber F of Q, and

3) the closed monodromy of Q extends over the handlebody deter-
mined by L.

The proof of Theorem 1.5 revolves around the theory of Heegaard
splittings of 3-manifolds and thin position arguments initiated by
Scharlemann and Thompson [ST94]. This theorem could potentially
be used to prove that all fibered, homotopy-ribbon knots have Weak
Property 2R.

The link L™ in Theorem 1.5 has a special name; we call it a Casson-
Gordon derivative, in reference to the seminal work of Casson and Gor-
don characterizing the monodromies for fibered, homotopy-ribbon knots
[CG83]: A fibered knot K is homotopy-ribbon in a homotopy 4-ball
if and only if the closed monodromy of K extends across a handle-
body. Moreover, such an extension encodes a fibered, homotopy-ribbon
disk-knot bounded by K. (By a disk-knot we mean a properly embed-
ded disk D in homotopy 4-ball B.) Thus, the following classification
of fibered, homotopy-ribbon disk-knots bounded by generalized square
knots is closely related to Theorem 1.1.

Theorem 1.6. There is a family {(B./q, Rc/q)} of fibered, homotopy-

ribbon disk-knots for (S3,Qp.q), indexed by c/d € Q with ¢ even, such
that

1) (Bo, Ro) is the product ribbon disk (B3, Tg ) x I;

2) The members of {(Bc/q; Reja)} are pairwise non-diffeomorphic
rel-0;

3) For any fibered, homotopy-ribbon disk-knot (B, R) for (S3,Qp.q),
we have (B, R) € {(Bcq, Re/a)}; and

4) The members of {(Bca, Re/q)} have diffeomorphic exterior.

Finally, we return to the notion of extending a mapping class across a
handlebody. Long showed that there exists a fibered knot whose closed
(pseudo-Anosov) monodromy admits extensions over two distinct han-
dlebodies [Lon90]. In general, for a knot with pseudo-Anosov mon-
odromy, only finitely many extensions are possible [CL85]. We give the
following analogue of Long’s result for generalized square knots. By the

theorem of Casson and Gordon, each CG-derivative Li }(111 gives rise to an

extension ’C? ’/‘fi of the closed monodromy P of the generalized square
knot @ 4-
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Theorem 1.7. Every handlebody-extension of pP4 is isotopic to ¢*7,,
c/d

for some ¢/d € Q with ¢ even, and each (ﬁ’g}% represents an extension of
@P4 over a distinct handlebody for each choice of ¢/d € Q with ¢ even.

The common element of many of these theorems is the rational num-
ber ¢/d: For a fixed p and g, the exterior B./q \ v(R./q) is given by the
handlebody-bundle H x4_ /d 51, and the link L, /q bounds a cut system
for H in this extension.

Organization. In Section 2, we state general preliminary material and
give detailed discussions of disk-knots, R-links, and fibered, homotopy-
ribbon knots in the context of the theorem of Casson and Gordon. In
Section 3, we turn our attention to the theory of Heegaard splittings of
3-manifolds and apply thin position arguments to prove Theorem 1.5.
In Section 4, we give a detailed account of generalized square knots,
including a careful analysis of the fibrations of their exteriors and of
their O-surgeries. In Section 5, we give a detailed analysis of the sim-
plest Casson-Gordon derivative for a generalized square knot and show
that this link has Property R. In Section 6, we describe a pair of au-
tomorphisms of the Seifert fibered space obtained as zero-surgery on a
generalized square knot that are given by twisting along vertical tori.
These automorphisms are the key ingredient in the final part of the proof
of our main results. In Section 7, we give proofs of Theorems 1.1 and 1.2
by considering certain handle decompositions of the Casson-Gordon ho-
motopy 4-spheres corresponding to extensions of the closed monodromy
of generalized square knots that are well adapted to the automorphisms
referenced above. In Section 8, we turn our attention to a final anal-
ysis of monodromy extensions and disk-knots and prove Theorems 1.6
and 1.7. In Section 9, we give trisections for Casson-Gordon homotopy
4-spheres and discuss connections between the theory of trisections, the
GPRC, and the Slice-Ribbon Conjecture arising from considerations of
R-links and fibered, homotopy-ribbon knots.
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2. Preliminaries

We begin with some standard declarations. All manifolds are smooth
and orientable unless specified. If Y C X, we let v(Y) denote an open
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regular neighborhood of Y in X, and for ease of notation, we let X \
Y = X —v(Y). The term n-dimensional genus g handlebody refers
to the compact orientable n-manifold constructed by attaching g n-
dimensional 1-handles to an n-dimensional 0-handle. We use the word
handlebody to mean a 3-dimensional handlebody; otherwise, we will
specify dimension. Let L be a framed link in S2, with components L;
and Ly (and possibly others). A handleslide of L over Ly is the process
by which L is replaced with L' = (L — L) U L}, where L] is the framed
knot obtained by connecting L; to Lg with a band. (See Section 5
of [GS99] for complete details.) If a link L’ can be obtained from L
by a finite sequence of handleslides, we say L and L’ are handleslide-
equivalent. If U and U’ are unlinks and L L U is handleslide-equivalent
to L' UU’, we say L and L' are stably equivalent. Note that two stably
equivalent R-links L and L’ give rise to diffeomorphic 4-manifolds X7,
and Xp/. A curve contained in a surface ¥ is a free homotopy class of
a simple loop that does not bound a disk in ¥ and is not parallel to a
component of 9X.

2.1. Slice knots and links. Throughout this section, let B be a homo-
topy 4-ball; i.e., B is a smooth, contractible 4-manifold with 9B = 3.
By [Fre82], B is homeomorphic to B4, the standard smooth 4-ball; it is
unknown in general whether B and B* are diffeomorphic. A collection
D of smooth, properly embedded disks in B is called a disk-link, or a
disk-knot if D is a single disk. A disk-link is called homotopy-ribbon
if the natural inclusion map (S3,dD) — (B, D) induces a surjection
71(83\ 0D) — 71 (B \ D). A disk-link D in B* is called ribbon if D can
be isotoped to have no local maxima with respect to the radial height
function on B*.

A link L ¢ S2 is called slice in B (resp., homotopy-ribbon in B)
if (83, L) = (B, D) for a disk-link (resp., homotopy-ribbon disk-link)
D in some homotopy 4-ball B. If L is slice in B* (resp., homotopy-
ribbon in B*), we simply call L slice (resp., homotopy-ribbon). Finally,
if L bounds a ribbon disk-link in B*, we say that L is ribbon. These
collections of links are related as follows:

{ribbon links} C {homotopy-ribbon links} C {slice links}.

Moreover, it is unknown whether any of the above set inclusions are
set equalities. The notion of homotopy-ribbon links was introduced
in [CG83], while the notions of slice knots and ribbon knots date back
to Fox [Fox62a, Fox62b], who posited the famous Slice-Ribbon Con-
jecture, which asserts that every slice knot is ribbon.

For a link L C S%, we will set the convention that Y; denotes the
3-manifold obtained by zero-framed Dehn surgery on each component
of L. In addition, define the exterior of L to be Er, = S3\ L. Similarly,
if D is a disk link in B, we define the exterior of D to be Ep = B\ D.
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Lemma 2.1. If L is the boundary of a disk link D C B, then
OFp =Yp.

Proof. The boundary of the exterior Fp admits the following decom-
position:

0Ep = Er, U (0v(D) NInt(B)).

The second factor is diffeomorphic to ¢ disjoint copies of S x D?.
Thus, OEp is the result of some Dehn surgery on L. Note that H1(EL) =
H,(Ep) = Z¢, and the map on H; induced by the inclusion E7, — E(D)
is an isomorphism. Note, however, that this inclusion factors as Ej <
O0FEp — Ep, and thus H(0Ep) = Z°¢ as well. It follows that the
framing of the Dehn surgery on L yielding O0Fp is the O-framing, so
that 8ED = YL. q.e.d.

Recall that an n-component link L in S2 is an R-link if zero-framed
surgery on L gives Y, = #"(S! x §?).

Proposition 2.2. Every R-link is homotopy-ribbon in a homotopy
4-ball.

Proof. Suppose L C S2 is an R-link, and let B be the 4-manifold
obtained by attaching zero-framed 2-handles to the components of L and
capping off the resulting surgery manifold, which is Y,, by hypothesis,
with n 3-handles and a 4-handle (i.e. B is X without its 0-handle).
Let D denote the cores of the 2-handles. Then 9(B,D) = (53, L), so it
remains to show that B is a homotopy 4-ball and that D is a homotopy-
ribbon disk knot.

The first claim follows from the fact that B is built from S3 without
1-handles, so it is simply-connected and x(B) = 1. This implies, by
theorems of Whitehead and Hurewicz, that B is homotopic to a point
(Corollary 4.33 of [Hat02]).

To verify the second claim, observe that Y7, is obtained by Dehn filling
Epr, and thus the inclusion Ej < Y7, induces a surjection 71 (EL) —
m1(Yr). In addition, Y, = #"(S' x S?) = 9(Ep), where Ep is a 4-
dimensional handlebody of genus n, since it is composed of n 3-handles
and a 4-handle. Hence, m(Y7) = 71 (Ep), the free group on n letters,
and the inclusion Y7, < FEp induces an isomorphism of fundamental
groups. It follows that m (Er) surjects onto 71 (Ep), and L is homotopy-
ribbon in B. q.e.d.

Note that the proof shows something even stronger: Every n-compo-
nent R-link L is the boundary of a homotopy-ribbon disk-knot whose
complement has free fundamental group of rank n.
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2.2. Fibered, homotopy-ribbon knots. Let X be a compact man-
ifold, and let ®: X — X be a diffeomorphism. The mapping torus is
the identification space

X xS =(Xx1)/~,

where I = [0,1] and ~ is the equivalence relation (z,1) ~ (®(x),0)
for all z € X. Note that in the case that X # (), the boundary of a
mapping torus is a mapping torus:

I(X xg ST 20X X ®|yx st

The map ® is called the monodromy, and, for each § € S* = {*™ € C},
the submanifold X x¢ {0} = (X x {0})/ ~ C (X xI)/ ~ is called a
fiber. Recall that a knot K C S is called fibered if the knot exterior is
the mapping torus

Ex 2 F x, S,
with plgp = id.

Suppose that K is a fibered knot, with O-framed filling on Ex denoted
Yk, as above. Then Yx = (F x, S') U (D? x S1), where OF x,, {0} =
OD? x {0} for all # € S*, and thus this gluing has the effect of capping
off each fiber with a disk. Moreover, using |gr = id, we can (uniquely)
extend ¢ as the identity over this disk to a diffeomorphism @: F— ﬁ,
where F is the Aclosed surface F'U D?. Tt follows that Y is a closed
surface bundle F' x5 S1. We call  the closed monodromy of K.

We say that a diffeomorphism ¢ of a closed surface F admits an ez-
tension if there is a handlebody H with 0H = F and a diffeomorphism
®: H — H such that ¢ = ®[z. Note that we are restricting our at-
tention exclusively to the case where the monodromy extends over a
handlebody, as opposed to the more general cases where it might ex-
tend over a compression body or a more general type of 3-manifold. An
elegant characterization of fibered, homotopy-ribbon knots was given
by Casson and Gordon.

Theorem 2.3 ([CG83]). A fibered knot K in S® is homotopy-ribbon
in a homotopy 4-ball if and only if the closed monodromy for K admits
an extension.

The characterization also relates an extension of the monodromy of
a homotopy-ribbon knot to the topology of a homotopy-ribbon disk
exterior via the following corollary.

Corollary 2.4 ([CG83|]). Suppose K is a fibered knot in S* with
monodromy @. If K is homotopy-ribbon in some homotopy 4-ball B,
then there is an extension ® of ¢ and a disk Re in a homotopy 4-ball
Bg such that

Bq;.\Rq;.%HXq>Sl.
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The next lemma and discussion following it outlines a connection be-
tween the Casson-Gordon Theorem and the notion of R-links introduced
above. The lemma is well-known, but we offer a proof that is motivated
by the techniques used later in this paper.

Lemma 2.5. Suppose that Fisa genus g surface bounding a handle-
body H, and let ® : H — H be a diffeomorphism. Then H xo S' has a
handle decomposition with a 0-handle, g+ 1 1-handles, and g 2-handles.

Proof. We will show that H xg S' can be constructed by gluing ¢
4-dimensional 2-handles to (F Xp| .S DYx I followed by attaching (g+1) 3-
handles and a 4-handle. Inverting this decomposition gives the desired
result. Let L be a collection of ¢ pairwise disjoint curves in F that
bound a collection D of disks in H. Then F can be capped off with
g 3-dimensional 2-handles along L and one 3-dimensional 3-handle to
obtain H, and thus a collar Fx I can be capped off with g 4-dimensional
2-handles along L and one 4-dimensional 3-handle to obtain H x I.
Consider a collar neighborhood of H x4 {0} = H xg {1} C H x4 S!,
whose complement is H X¢ [¢,1 —¢] = H x I. Since H x [ is a 4-
dimensional genus g handlebody, it can be built with g 3-handles and a
4-handle. Thus, H x¢ S' can be obtained by attaching g 2-handles to
(ﬁ X - S1) x I along L followed by attaching (g + 1) 3-handles and a
4-handle. q.e.d.

Let F be a genus g Seifert surface for a knot K C S%. A g-component
link L = L1 U---U L, contained in F' is called a derivative for K if the
classes [L;] are independent in H;(F') and if ¢k(L;, L;) = 0 for all 4, j,
where (k(L;, L;) is calculated with a pushoff of L; in F. In light of the
previous lemma, suppose that K is a fibered knot with Seifert surface
F and monodromy ¢. Let L C F be a derivative for K, and let H be
the (abstract) handlebody determined by L. We call L a CG-derivative
(short for Casson-Gordon derivative) if the closed monodromy @ admits
an extension to H. CG-derivatives are central to this paper, as indicated
by Theorem 1.5 and the next proposition.

Proposition 2.6. Suppose K is a fibered knot with CG-derivative L.
Then both L and K U L are R-links.

Proof. As above, let F' be a genus g fiber for K, let H be the han-
dlebody determined by L, let ¢ be the monodromy of K, and let ®
be an extension of » to H. We construct a compact 4-manifold Bg by
the following process: First, attach a O-framed 2-handle to S? x I along
K x {1}. The resulting 4-manifold has two boundary components, one
diffeomorphic to S® and the other diffeomorphic to Y, the result of
0-surgery on K. Since Yxg = F X5 S1, we can cap off this boundary
component with H x¢S' to get a compact 4-manifold we call By, where
0By = S3. By Lemma 2.5, By has a handle decomposition relative to
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its boundary with g + 1 2-handles and g + 1 3-handles, and thus the
attaching link for the 2-handles, namely K U L, is an R-link in S3.

To see that L is also an R-link by itself, we note that F'\ L is a
connected planar surface with 2g+1 boundary components, one of which
corresponds to K. As such, there is a sequence of handleslides of K over
the components of L that takes K to K’, where K’ bounds a disk in
F\ L. Thus, after handleslides, the 2-handle that attaches to K’ in the
handle decomposition of Bg cancels a 3-handle, and so Bg can be built
with g 2-handles and ¢ 3-handles, where L is the R-link that serves at
the attaching link for the 2-handles. q.e.d.

We call the manifold Bg a Casson-Gordon homotopy 4-ball, or CG-
ball, for short. Since 0By = S°, we can cap off By with a standard B4
to obtain a homotopy four-sphere Xg, which we call a Casson-Gordon
homotopy 4-sphere, or CG-sphere, for short.

Let Rg denote the core of the 2-handle that is attached along K in
the handle decomposition of By described above. We have seen (cf.
Corollary 2.4) that Rg is a fibered, homotopy-ribbon disk for K in Bg.
We call Ry a Casson-Gordon disk, or CG-disk for short. We refer to
(Bs, Rg) as a CG-pair.

Finally, Casson and Gordon also provided a useful criterion to decide
whether a given derivative is a CG-derivative, using only the action @,

~

of the closed monodromy @ on 71 (F'). For any derivative L for K in F,
let N denote the normal subgroup of m; (ﬁ ) generated by the homotopy
classes of the components of L. Observe that if L is a CG-derivative,
then @,(N) = N, since there is an extension ® of @ and thus ¢ preserves
the kernel of the map 7 (F) — m(H) induced by inclusion, which is
equal to N. Casson and Gordon strengthened this connection with the

following converse.

Proposition 2.7 ([CG83]). Let L C F, where F is a Seifert surface
for a fibered knot K with closed monodromy @, such that F'\ L is a
connected planar surface, and let N be the normal subgroup of ﬂl(ﬁ)
generated by the homotopy classes of the components of L. If .(N) =
N, then L is a CG-derivative.

3. Stable equivalence classes of 2R-links

In this section, we prove Theorem 1.5, which asserts that if L = QU .J
is a 2R-link and @ is fibered, then L is stably equivalent to the link
Q U LT, where L™ is a CG-derivative for (. The machinery used in
the proof of this theorem includes a decomposition called a Heegaard
double (cf. [GST10]), along with ideas from thin position of Heegaard
splittings. The notation of this section is basically self-contained; we will
use letters and symbols here that denote unrelated objects elsewhere.
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Let S be a closed surface with one or two components; in the two-
component case, suppose neither component is a 2-sphere. Consider the
product S x I, letting ST = Sx {1} and S~ = Sx{0}. Let A" be a pair
of disks contained in ST, let A~ be a pair of disks in S, and let A be
the four disks AT U A~. We require that if S is disconnected, then A*
contains one disk in each component of S*. Attach 1-handles H* to S*
along A*. We let £+ denote the resulting two boundary components of
(Sx I)UH~UHT, noting that % and ¥~ are connected, even if S is
disconnected. Finally, suppose h: ©T — ¥~ is a diffeomorphism. Then
we can build a 3-manifold Y by gluing ¥ to ¥~ via h, and we call such a
decomposition (Y; S, A, h) a Heegaard double, observing that S, A, and
h uniquely determine Y. We let ¢t denote the boundary of the co-core
D# of the 1-handle H*, so that ¢* bounds a compressing disk for %,
Note that ¢* is non-separating if and only if S is connected, and thus
either both ¢t and ¢~ are separating or both are non-separating in ©*.
In addition, requiring that .S does not have a 2-sphere component in the
disconnected case guarantees that ¢ is an essential curve in X%, See
Figure 1.

Remark 3.1. The definition of a Heegaard double can be generalized
to allow HT to represent multiple 1-handles, but all Heegaard doubles
in the present article will be of the type described above, where each of
H?* contains a single 1-handle.

The observant reader will note that this definition is not the same
as that of [GST10]; however, we can obtain their version from ours by
cutting S x I open along S x {1/2}. This yields two compression bodies,
C*t and C~, where 9_C* and 0_C~ are identified via the identity map
and h: 0;CT — 9,C~ is the other gluing map. If (Y;S,Ah) is a
Heegaard double, we let Y* = C~ U, CT, so that Y* =Y \ (S x {1/2}).
Note that the decomposition Y* = C~ U, C* is a Heegaard splitting.
This Heegaard splitting is called reducible if there is an essential curve
¢ € 9,.CT such that ¢ bounds a disk in C* and h(c) bounds a disk
in C™.

Figure 1. A schematic of a Heegaard double
(Y;S,A,h), where Y is split into two compression
bodies C* with ¥* = 9,C* and 9_.C~ =0_CT = S.
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The next lemma also appears as Proposition 4.2 in [GST10].

Lemma 3.2. Suppose (Y;S,A,h) is a Heegaard double such that
h(c*) is isotopic to ¢~ in X .
1) If ¢t is non-separating in ©F, then Y = (S1 x S2)#Y, where Y’
is a fibered 3-manifold with fiber S.
2) If ¢t is separating in ©F, then either Y 2 Y'#Y" or Y = (S' x
SH#Y!, where Y' and Y are fibered 3-manifolds with fibers given
by the two components of S.

Proof. The assumption h(ct) = ¢~ implies that the Heegaard split-
ting Y* = C~ U, C7 is reducible. If ¢~ is non-separating, this Heegaard
splitting can be expressed as the connected sum of a genus one splitting
of ST x S? and the splitting given by compressing C* along D* and glu-
ing the resulting pieces together along the compressed positive boundary
surfaces. But C* compressed along D7 is the trivial compression body
O0_C* x I, and thus Y* = (S x S2)#((0_CT x I) U (0_C~ x I)). To
recover Y from Y*, we glue the two boundary components of 0_C* x I,
yielding the desired result.

For the second statement, suppose that h(c™) = ¢~ is separating, so
that the disks DT and D~ glue together to bound a reducing sphere P*
for the Heegaard splitting Y* = C~ U, CT. Cutting Y* open along P*
and capping off the resulting 2-sphere boundary components with 3-balls
has the same effect as compressing C along DT to get (CF) U (C)”
and O~ along D~ to get (C~) U(C™)", where (C*) LU(CF)" = 0_C* x
I =2 S x I. In this case, S has two components, S’ and S”. Then
Y* = (8" x I)#p«(S"” x I), and to recover Y from Y* we glue the
boundary components of Y*. There are two possibilities here: In the
first case, boundary components of S’ x I are identified and boundary
components of S” x I are identified, in which case Y = Y/#Y”. In
the second case, S' x {1} is glued to S” x {0} and S” x {1} is glued
to S’ x {0}. Here the reducing sphere P* for Y* is a non-separating
sphere for Y, and cutting Y open along P* and capping off with 3-
balls yields a fibered manifold with fiber S’ (equivalently, S”). Thus,
Y = (St x §2)#Y’, completing the proof. q.e.d.

As an example of the type of splitting arising in Lemma 3.2, let
S = 52?2, let A* C S* be parallel copies of two disks in S, and let h be the
identity map on the torus, giving rise to a Heegaard double (Y'; S, A, h).
By (1) of Lemma 3.2, Y = (S x §2)#Y’, where Y’ fibers over the 2-
sphere. It follows that Y' = S' x S? and so Y = Y5 = #2(S! x 52). We
call this the standard Heegaard double of the manifold Ys; it will feature
prominently in arguments below.

We say that the Heegaard splitting Y* = C~ U, C™T is weakly reducible
if there exist essential curves ¢ € 9, CT bounding a compressing disk
for CT and ¢ € 9, C~ bounding a compressing disk for C~ with the
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property that h(c) and ¢’ are isotopic to disjoint curves in ¥~. The next
lemma is a classical result from the theory of Heegaard splittings.

Lemma 3.3 ([ST09]). If (Y;S,A,h) is a Heegaard double and S x
{1/2} is compressible in'Y, then the Heegaard splitting Y* = C~ U, C*
1s weakly reducible.

We will use Lemma 3.3 in our analysis of Heegaard doubles on the
manifold Ys; note that every incompressible surface in Y5 is a 2-sphere;
thus, if (Ya; S, A, h) is a Heegaard double of Y2 and ¢(S) > 0, then the
Heegaard splitting Y5* = C~ U, CT is weakly reducible. In the next
lemmas, we analyze what weak reducibility tells us about the curves
c*, since compressing disks for C~ and C* are not necessarily unique.

The first lemma is Lemma 4.6 from [GST10].

Lemma 3.4 ([GST10]). Suppose a curve ¢ C 0+C* bounds a com-
pressing disk for CT. If ¢* is separating, then c is isotopic to c¢* in
0,C*. If ¢* is non-separating, then either c is isotopic to ¢ in 0,.CF,
or ¢ is separating and cuts off a genus one subsurface of 0.C* contain-
ing c*.

The next lemma shows how weak reducibility can be leveraged in the
present setting of Heegaard doubles.

Lemma 3.5. Let (Y;S,A,h) be a Heegaard double, and suppose the
Heegaard splitting Y* = C~ Uy, C* is weakly reducible. Then one of the
following holds:

1) Y is a fibered 3-manifold with fiber S,
2) Y = Y'#Y", where Y' is S x S? or a lens space and Y is a
fibered 3-manifold with fiber a component of S,

3) Y =Y'#Y", where Y' and Y" are fibered 3-manifolds with fibers

given by the two components of S, or

4) h(c*) and ¢~ are non-isotopic and can be isotoped to be disjoint

n X,

Proof. Suppose that ¢, ¢ are curves bounding compressing disks in
Ct and C~, respectively, and h(c) N ¢’ = (. There are several cases to
consider. First, suppose that ¢* is separating in 9, C*. By Lemma 3.4,
it follows that c is isotopic to ¢™ in 7 and ¢ is isotopic to ¢~ in ¥ .
If h(c) is isotopic to ¢ in X7, then by Lemma 3.2, conclusion (2) or (3)
holds. Otherwise, conclusion (4) holds.

On the other hand, suppose that ¢ is non-separating in ¥*. For the
first sub-case, suppose that c is isotopic to ¢ in £ and ¢ is isotopic to
¢~ in 7. If h(c) is also isotopic to ¢/, then by Lemma 3.2, conclusion
(2) is true. Otherwise, conclusion (4) holds. For the second sub-case,
suppose without loss of generality that ¢ is not isotopic to ¢t in X7,
so that by Lemma 3.4, ¢ cuts off a genus one subsurface T C T con-
taining ¢*. Isotope ¢~ in X7 so that it intersects Oh(7T') minimally. If
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¢~ C h(T), then Oh(T') = h(c) bounds a disk in C~. In this case, the
Heegaard splitting Y* = C~ U, CT is reducible, and the reducing sphere
given by ¢ and h(c) cuts off a genus one summand from the Heegaard
splitting of Y*, and thus Y* = Y'#(S x I) as in the proof of Lemma 3.2,
where Y’ is either S3, S x 82, or a lens space. It follows that Y is one
of the 3-manifolds described in (1) or (2).

For the final sub-case, suppose that ¢~ is not contained entirely within
the subsurface h(T). If ¢ is isotopic to ¢~ in X7, then the assumption
h(c) N ¢ = 0 implies A(T) N ¢~ = 0, and conclusion (4) is satisfied.
Otherwise, by Lemma 3.4, ¢’ cuts of a genus one subsurface 7" C ¥~
containing ¢~. Isotope ¢~ and 7" in ¥~ so that they meet Oh(T") min-
imally. Since ¢~ is not contained h(T'), the assumption h(c) N =0
implies h(T) NT’" = (. Thus, after isotopy, h(ct) Ne™ = (), and conclu-
sion (4) holds once again. q.e.d.

Lemma 3.5 has an important consequence, which we record as the
following lemma.

Lemma 3.6. Fvery Heegaard double of Yy is either the standard
Heegaard double, or h(ct) and ¢~ are non-isotopic and can be isotoped
to be disjoint in X~

Proof. Let (Y2;S,A,h) be a Heegaard double. If S is a 2-sphere,
then % is a torus and the only possible gluing map h yielding Y5 is
the identity map, so this is the standard Heegaard double. Otherwise,
g(S) > 0 (in either the connected or disconnected case). By Lemma 3.3,
the Heegaard splitting Y5* = C~ U, CT is weakly reducible, and by
Lemma 3.5, it must be true that conclusion (4) is satisfied. q.e.d.

We now undertake a deeper analysis of what can happen in the case
that h(c™) and ¢~ are non-isotopic and can be isotoped to be disjoint
in ¥7. In this case, we can simplify the Heegaard double in a process
called untelescoping. In order to define untelescoping, we require several
new definitions.

Suppose Y is a compact 3-manifold, and let Y’ be the result of at-
taching a 1-handle H along a pair of disks A C 9Y. We call the newly
constructed boundary surface of Y’ the surface induced by the 1-handle
attachment. On the other hand, let ¢’ be an essential curve in a bound-
ary component S of Y, and let Y” be the result of attaching a 2-handle
H' along ¢/. We call the newly constructed boundary surface S” the
surface induced by the 2-handle attachment. Note S” has one compo-
nent if ¢ is non-separating and two components if ¢ is separating. In
either case, H' N S” is two embedded disks, which we call scars.

Attaching 1-handles and 2-handles are dual processes, which we make
rigorous in the following standard lemma. The proof is left to the
reader.
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Lemma 3.7. Let S be a surface containing an essential curve c, let
Y be the result of attaching a 2-handle to S x I along ¢ C S x {0},
and let S’ be the surface induced by the 2-handle attachment containing
scars A. Let Y’ be the 3-manifold obtained by attaching a 1-handle to
S" x I along the pair of disks A x {1} C S’ x {1}. Then there is a
diffeomorphism f:Y — Y’ such that f|sy is the identity map. In this
case, the surface in 0Y' induced by the 1-handle attachment is S x {1}
and the boundary of a co-core of the 1-handle is the curve c.

In light of Lemma 3.7, we give the process of reinterpreting a 2-
handle attachment as a 1-handle attachment a name: Pushing a 2-
handle through the product S x I.

A Heegaard double (Y; S, A, h) decomposes Y as the union of S x I,
H~, and HT, where the general structure is set up to suggest attaching
H?* as a 1-handle to ST along AT, followed by gluing the resulting sur-
faces via the homeomorphism h. Under the assumption h(c™)Ne™ = 0,
we can rearrange the order of these gluings to get a new Heegaard
double, said to be related to the original by untelescoping. (More gen-
erally, untelescoping usually refers to the exchanging of a 1-handle and
a 2-handle; see [Kob03, ST94].) We describe this process in the next
proposition. It may aid the reader’s intuition to examine the schematic
of the case in which S; is connected, shown in Figure 2, before (or after)
reading the proof of Proposition 3.8. Recall that each of the handlebod-
ies H* contains a single 1-handle, as pointed out in Remark 3.1.

Proposition 3.8. Suppose that (Y;S1,A1,h1) is a Heegaard double
such that hi(cl) and ¢ are non-isotopic and can be isotoped to be
disjoint in X . Then there is another Heegaard double (Y'; Sa, A, ha)
such that x(S2) > x(S1).

In addition, if the resulting surface So is connected, then

(a) Sy is connected,
(b) 33 =S = (57 \ef)UAT, and
(c) h2|2§'\Af = hl|2f\cf"‘

Proof. First, isotope ¢ in X so that the resulting curve, call it ¢,
satisfies h1(c]) Ny = 0. Instead of attaching the 1-handle H;™ to AT
and gluing the resulting boundary Ef to X using hi, we attach H1+
to ¥ as a 2-handle, denoted H,, along the curve hi(c]) in 3. Let
A be the scars of the 2-handle attachment. Since X \ ¢ = S\ AT,
this induces a new gluing map h, taking 51+ to the closed surface ¥, =
(37 \ h(c])) U AL, where hy(Af) = A} and h*|sj\Af = hl’zf\cj"

There are two cases to consider. Suppose first that S is connected,
so that c{c is non-separating in Ef Recall that ¢ is isotopic to ¢, in
Y7, where hi(cf) Nc; = 0. This isotopy induces an isotopy from the
co-core D; of H; bounded by ¢ to a disk D, bounded by c;, such
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S, S,
AT + AT
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Figure 2. A sequence of schematics describing the pro-
cess of untelescoping a Heegaard double in the case that
S is connected.

that compressing (S1 x I) U H; along D, yields a 3-manifold S, x I
diffeomorphic to Sy x I, and such that S;7 = S, x {1} coincides with S;".
Let A; be the pair of disks in S, = S, x {0} such that attaching a
1-handle Hy to S. x I along A, yields the same submanifold of Y as
attaching H, to Si x I along A;. Here the disk D, is the co-core
of H, .

Next, observe that the attaching curve hi(cf) for H, is contained in
Y7\ ey = 57\ A;. Thus, H, is attached to a curve in S;", and by
Lemma 3.7 we can push the 2-handle H, through the product S, x I.
In other words, H, U (S, x I) can be replaced with (Sa x I)U H, , where
Sy = S x {0} is the surface

Sy =37 \ () Uey) U(ATUAy).

In addition, H, is a 1-handle attached to S5 = Sz x {1} along the
disks A = A} x {1}. Note that the boundary component of (Sz x
I)U Hy induced by the 1-handle attachment is the surface S, and the
other boundary component is S, . Let 35 denote the surface induced by
attaching H, to S, along A ; that is, ¥ = (37 \ h1(c])) UA], which
is the surface Y, defined at the beginning of the proof. Let ¥ = S,
and let ho = h), so ho takes Z; to X5 . It follows that (Y'; Sa, Ao, hg) is
a Heegaard double, and since S5 is obtained by attaching a 2-handle to
S, , we have x(S2) > x(Sx) = x(S1). Note that in this case, conditions
(a), (b), and (c) above are satisfied (whether Sy is connected or not). If
Sy is disconnected, the assumption that hi(cf) and ¢] are non-isotopic
guarantees that S5 does not have a 2-sphere component.

In the second, more complicated case, suppose that S; is not con-
nected, so that cf is separating in Ef. As above, we isotope ¢; onto
cy disjoint from hj(c]), inducing isotopies of disk Dy to disk D5, let
S, be obtained by compressing ¥; along D, , and let H, be the corre-
sponding 1-handle such that attaching H, to disks A, in S, yields X7 .
Then the 2-handle H, is attached to hi(c]) C X7 \¢; = Sy \ A
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Let S! and S” denote the components of S,, with (S.)*, (S”)* c SF,
chosen so that hi(cf) C (S.)~. As above, we push H, through the
product S, x I. By Lemma 3.7, we can replace H, U (S, x I) with
(Sy x I) U H, where Sy is given by

Sy =31\ (h1(cf) Uey) U (AT UAY),

the disks AJ are given by Ay = A} x {1} C Sy x {1}, and H; is a
1-handle attached to Sz x {1} along AJ. The boundary component of
(S2 x I)U Hy induced by the 1-handle attachment is the surface (%),
and the other boundary components are S, = (1)~ \ hi(c]) U Af.
Since hl(cf) is not isotopic to ¢ in 3 and separates X, it follows
that hi(c]) is separating in (S%)~, cutting (%)~ into two components of
positive genus. This implies that So is disconnected, with components
S, and SY. Since each surface (Si)~ and (S7)~ contains one attaching
disk in Ay for H,, we have that either (S5)” or (S5)” contains an
attaching disk in A, and so we choose S5 so that (S5)~ contains this
disk.

Note that by construction S = S;, and thus S is disconnected
with components (S,)* and (S7)". In this case, the gluing map h.
described at the beginning of the proof takes the disconnected surface
St = (S)TU(S!)* to (7 \ hi(c]))UA], and we may separate h, into
two maps i, and h/ on (S.)T and (S7)T. Observe that the image of hy,
the two components of (X7 \ h1(c]))UA], are obtained by attaching H,
to (SY)~U(S5)~U(Sy)~ along A5, where the disks of A} are contained
in (S7)~ and (S5)”. Hence, the image of h, consists of (S5)~ and X,
where X is induced by attaching H, to (S7)~ U (S5)~. It follows that
9(23) = g(S)) + g(S5) > g(SY), forcing K, to map (S,)* onto X5 and
R to map (S?)* to (S4)~. Since the result of attaching SY x I to Sa x I
by gluing (S7)* to (S4)~ is homeomorphic to Sz x I, we have a new
decomposition of Y obtained by attaching Hy to Sz x {0}, attaching H"
to Sy x {1}, and gluing the resulting boundary components ¥3 = (S’
and X5 . This can be represented by a Heegaard double (Y'; Sa, Ag, ha),
and by construction, x(S2) > x(S1). To complete the proof, we note
that in this case, S5 is never connected, and so the additional hypotheses
are not satisfied. q.e.d.

As stated above, we call the process of reducing the Heegaard double
(Y;51,A1,h1) to (Y;S2, Ag, ho) untelescoping. Note that the situation
for Heegaard doubles is somewhat different than for classical Heegaard
splittings, since untelescoping a Heegaard double produces another Hee-
gaard double. Returning to the manifold Yo = #2(S! x S?), we have
the following lemma.
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Lemma 3.9. Any Heegaard double (Ya;S1,Aq1,h1) of Yo can be re-
peatedly untelescoped until it becomes isotopic to the standard Heegaard
double of Yo. In addition, the curves cf are mon-separating in Eli.

Proof. 1If (Ya;S1,A1,h1) is not the standard Heegaard double, then
by Lemma 3.6, it can be untelescoped, increasing x(S1). After finitely
many untelescoping operations, Lemma 3.6 implies that the result
(Ya; S, Ap, hy) is the standard Heegaard double. In the standard Hee-
gaard double, S, is connected, and thus by repeated applications of
Lemma 3.8, the surface Sy is connected as well. We conclude cf is
non-separating in Ef. q.e.d.

Now we turn to the specific case of a 2R-link L = Q U J, where (@ is

fibered. Recall the notation and language set up in Section 1. We let F'
denote a fiber of @ in S3, Yq the result of 0-surgery on () with closed

fiber I and closed monodromy @. Recall also that two links L and L’
are stably equivalent if there are unlinks U and U’ such that L U U is
handleslide-equivalent to L' LIU’.

Lemma 3.10. Suppose L = QUJ is a 2R-link, where Q is non-trivial
and fibered knot with fiber F'. In Yq, the framed knot J can be isotoped

to lie in a closed fiber F with the surface framing, and J C F naturally
induces a Heegaard double (Y2;.5, A, h), where

1) % and X~ are copies of F;
2) S is the result of gluing disks A* to the boundary components of

F\ J;
3) A=ATUA™, where AT = A*x {1} C ST and A~ = A*x {0} C
S™; and

4) h: Xt — X7 is the closed monodromy .

Proof. Since J is disjoint from (), we may view J as a knot in Yp,
which we will also denote J in an abuse of notation. By Corollary 4.3
of [ST09], the knot J is isotopic in Yy into a closed fiber F for Yo,
where the surface slope of J in F is the 0-framing. We now describe the
process dubbed the surgery principle in Lemma 4.1 of [GST10].

Let F and F* denote two copies of the closed fiber in Yq such that
Yo is the union of F' x I and F* x I, where F* x {O} is identified with
F x {1} using the dlffeomorphlsm P: F* x {1} = F x {0}, and F x {1}
is identified with F* x {0} using the identity. Let £~ = F x {0}, and
let £ = F* x {1}.

Suppose now that J has been isotoped into F x {1}, and let J* be
a copy of J in F* x {0}, which is identified with J in Yo. We obtain
Ys, the result of 0-surgery on J, by attaching a 2-handle H to F x {1}
along a copy of J and another 2-handle H* to J* C F* x {0}. Then,
letting S and S* be the surfaces induced by the 2-handle attachments,
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with scars A’ and A* respectlvely, we glue S to S* with the identity
map and glue F* x {1} to F x {0} with @. Pushing the 2-handle H
across the product F x I and pushing H* across the product F*x 1
yields the desired Heegaard double, (Y2;S, A, h), where h = ¢ and A
consists of A’ x {0} and A* x {1}. q-e.d.

We remark that the surfaces ¥ and X~ of the induced Heegaard
double may be viewed as parallel copies of the fiber Fin Yq, in which
the compressing curves ¢ and ¢~ are parallel copies of J C F. The
natural next step is to untelescope this induced double, and with careful
bookkeeping, we can prove the main theorem from this section.

Theorem 1.5. Suppose L = Q U J is a 2R-link, where Q is non-
trivial and fibered. Then L is stably equivalent to Q U L™, where L™ is
a CG-derivative of Q.

Proof. Let (Y3;S51,A1,h1) be the Heegaard double described in
Lemma 3.10. We will use the same notation as in that lemma, so that
(Yz; S1, A1, hy) is induced by isotoping J to lie in a closed fiber F of
Yg. In addition, cf and c¢; are parallel copies of J contained in the
surfaces Ef and X7, which can be viewed as parallel copies of the fiber
Fin Yg. By Lemma 3.9, this Heegaard double can be untelescoped un-
til it becomes the standard Heegaard double of Y5. Each surface S, is
connected, which means that each untelescoping operation reduces the
genus of the surface S; by one and this process requires a total of g — 1
untelescoping operations, where g = g(ﬁ) Note that (Ya;S1, A1, hy) is
not standard since g > 2. We will let (Y2; Sy, A, hy) be the result of
untelescoping (Y2;S1, A1, h1) a total of n — 1 times, for 1 < n < g, so
that (Y2;.Sg, Ag, hy) is the standard Heegaard double of Y5.

Consider the surfaces ¥ and Y7, which (as noted above) may be
considered to be parallel copies of F in Yo = F x [0,1]/ ~, where
(z,1) ~ (h1(z),0) for hy: Bt — S~. Let 7: F x I — %} be the
projection map induced by the product structure. The map 7 is a
mechanism we use to keep track of a fixed copy, Ef, of ﬁ, as opposed
to working with two copies, ¥~ and X7, in parallel. For the remainder
of the proof, we will interpret @ as a map from Ef to itself, so that
hi: X1 — X7 satisfies 7o hy = @.

By Proposition 3.8, 7 = Ef \c]L U Af, and thus c; may be chosen
so that ¢ C Ef \ ¢/. By induction, we have ¥} = X\ (¢f U--- U

¢t ) u (A+ -U A ), so that ¢ may be chosen so that ¢, C
YT\ (¢ U---Uel |). For a set of choices cf,...,c;, we let LT be

the g-component link given by LT = ¢f U--- U cf, noting that L* is

a g-component link cutting the fiber surface Z‘l 1nt0 a planar surface.
Give LT the surface framing.



GENERALIZED SQUARE KNOTS AND HOMOTOPY 4-SPHERES 89
Claim 1. For some choice of the curves cf, ceey c;, the link LT is a
Casson-Gordon derivative for Q.

We remark that the claim is, in fact, true for all choices of c;-"; how-
ever, we need only this weaker statement for the proof of the theorem.

Proof of Claim 1. Since ci’, ..., C} are pairwise disjoint in Zf, repeated
applications of Proposition 3.8 yield that h,(c;') = hi(c)). Following
the proof of Proposition 3.8, there exist disks Al contained in OH,
such that X, = ¥, \ hi(¢f) UA], =57\ (ha(c]) U+~ Uhi(gf)) U
(AT U---UA). Observe that c,_, is necessarily contained in ¥ ;

we will assume that c has been chosen to be a curve disjoint from

n+1
hi(cl), ..., hi(ch) and isotopic to ¢, in X,

In order to prove the claim, we establish the following statement: For
every n such that 1 < n < g, the two sets of pairwise disjoint curves

Lf={cf,...,ct and L, ={n(c;),8(ch),...,o(c )}
define the same compression body as curves in Ef.

We induct on n. The case n = 1 follows from the fact that w(c]) = ¢}
Suppose n = 2. By the proof of Proposition 3.8, c; is isotopic to ¢
and disjoint from hj(c{) in X7, and we obtain ¥, by cutting along
hi(cf) and capping off with disks A}. There is a curve ¢} C X] such
that the disjoint pair (c;, hi(c])) is isotopic to the disjoint pair (¢, ¢})
in ¥7. Since ¢} Ne¢; = 0, there is a annulus A} C S; x I such that
0(S1 x I) = ¢, Um(cy); thus, we can let cf = m(c}). Since (c;, h1(c]))
is isotopic to (¢;,¢c}) in X7, we have (m(c; ), m(hi(c]))) is isotopic to
(m(ey),m(c})) in 2f . The former pair is Ly = (7(c; ), §(c])), while the
latter is L§ = (c¢],cd). Since L; is isotopic to L in X7, they define
the same compression body.

Now suppose by way of induction that L and L, define the same
compression body. This implies that the curves in L,; can be changed
into the curves in L;” by a sequence of isotopies and handleslides in Ef.
As above, the curve ¢, ; is isotopic to ¢, and disjoint from hy, () =
hi(c)) in X, where ¥, = X7\ (hi(c]) U---Uhi(ct ) U (AjU---U

n_1)- It follows that ¢, is isotopic to ¢, in ¥; modulo handleslides
over the curves of {h1(c{),...,h1(c}_;)}. Since ¢, 1Nhy(c;) = 0, there
is a curve ¢, C X7 \ (hi(cf)U---Uhi(c_;)) such that the disjoint
pair (¢, ,hi1(c})) is isotopic to the disjoint pair (¢, ,¢;,) in ¥, mod-
ulo handleslides over the curves of {hi(c{),...,h1(c: ;)}. By applying
the projection 7, we have that the pair (7 (¢, ), ?(c;})) is isotopic to
the pair (m(c,,),m(c},)) in ¥, modulo handleslides over the curves of
R = ()
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Now, observe that

(m(cy) Um(en) U(B(e) U...UB(en_y)) = Ly, U(ch).

There exists a curve ¢, 1 C Y7\ L;} such that the sequence of isotopies

and handleslides taking L., to L give rise to a sequence of isotopies and
handleslides taking L,, Un(c},) to L} Uc;' ;. Note that S c ©F\ L,
and thus isotopies and handleslides over the curves in L, describe an
isotopy from hi(c;}) to ¢, in the product S, x I, verifying that the

curve cZH obtained via this process is isotopic in S} = X . to a

n+1
co-core of H:{ 41 We conclude that LZH and L, define t}:re same
compression body, and by induction this holds for all n.

To complete the proof of the claim, we note that (Ya; Sy, Ag, hy) is
the standard Heegaard double, which implies that hy(c)) = hi(c]) is
isotopic to ¢, in ¥ '; equivalently, (c;) is isotopic to ¢, in 37 modulo
handleslides over hy(c]),..., k1 (c;_l). It follows that the curves G(L,)
define the same handlebody as L/, which defines the same handlebody
as L;r by the above argument. We conclude that ¢ extends over the

handlebody determined by L* = L.
Claim 2. L = QU J is stably equivalent to Q U L.

Proof of Claim 2. Let U denote a split, (¢ — 1)-component O-framed
unlink in F(L). We can isotope U in E(L) so that U C F' and U bounds
a collection of g—1 disjoint disks in F'. By a sequence of handleslides, one
for each component of U, we may change U to a (g — 1)-component link
in which each component is a parallel copy of J in F. Since U C E(L),
we may view U as a link in Y5, with each component of U surface-framed
and isotopic to cf' in ET, as c]L is parallel to J in Yg. In other words,
each component of U is a parallel push-off in Ef of the boundary c;r
of the co-core Df of the 1-handle H f . As we untelescope g — 1 times,
we isotope the 1-handle Hf , and for each iteration, we leave behind a

component of U as one of the pairwise disjoint curves c;, . ,c;r.
It follows that U is isotopic to the link ¢§ U--- U ¢y in Yz, which

implies that U is isotopic to c; U---u cg+ modulo handleslides over J
in Yy, and thus J U U is handleslide equivalent to LT in Yg. Finally,
it follows that Q U J U U is handleslide equivalent to Q U Lt in S3,
completing the proof of the theorem. q.e.d.

4. Curves on the fiber of a generalized square knot

In the previous section, we showed in Theorem 1.5 that in order
to understand the possible stable equivalence classes of a 2R-link L =
QUJ with @ fibered, it suffices to understand Casson-Gordon derivatives
for . In this section, we build on the approach and techniques of
Scharlemann [Sch16] to develop the background we will need for the
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classification of Casson-Gordon derivatives for generalized square knots,
which we give at the end of the section.

We begin by describing detailed pictures of the monodromies of torus
knots and the closed monodromies of generalized square knots. Next,
we show how this closed monodromy generates the group of deck trans-
formations for a branched covering of the capped off fiber surface of a
generalized square knot over a 2-sphere. By lifting distinct curves from
the 2-sphere to the fiber surface, we give a list of CG-derivatives for each
generalized square knot, and by invoking the Equivariant Loop Theo-
rem, we show that this list is complete. As a consequence, we construct
many R-links that are potential counterexamples to the Stable Gener-
alized Property R Conjecture, as in Proposition 1.4, which we prove in
this section.

4.1. Fibering generalized square knots. Recall that the generalized
square knot @, 4 is defined to be Qp q = T}, ¢#1—p 4, Where T}, ; denotes
the (p, q)-torus knot with 0 < ¢ < p. For the rest of this section, in
order to ease notation we fix the parameters p and ¢, letting K+ =
Tipg and Q = Qpq = KT#K~. Let F* denote fixed minimal genus
Seifert surfaces for K*, and let ' = F+t4F~ denote the corresponding
Seifert surface for @), where § denotes the natural boundary-connected
summation of Seifert surfaces yielding a Seifert surface for Q. It is well-
known that g(F%) = $(p—1)(¢—1), so g(F) = (p—1)(g—1). As before,
we use E+ and Eg to represent the exteriors of K + and Q, respectively,
and we let Y denote the result of O-framed Dehn surgery on @), with
F the closed fiber in Yy. In addition, we let & denote the monodromy
for Ex+, ¢ the monodromy for Eg, and @ the monodromy for Y.

In this subsection, we give an explicit description of the surface bundle
structures on Ey+, Eg, and Yg. To begin, we construct the Seifert
surface F'™ for the torus knot K™ = T, ,, where K is contained in a
Heegaard torus 7T cutting S2 into solid tori V and V’. Let Dy, ... , Dp be
disjoint meridian disks for V', and let Df,..., D; be disjoint meridian
disks for V', so that {D;} and {D}} meet in pg points {z;;}, with
zi; = D;N D;». Replace each point of intersection x; ; with a band B; ;
containing a negative quarter twist, so that the union F* = {D;} U
{D}} U{Bi,} is a Seifert surface for K. See Figure 3.

The monodromy ¢ corresponding to the fibration of Ep+ is well-
understood: It can be visualized as a simultaneous cork-screwing of the
disks {D;} and {D}} within the solid tori V and V'. Specifically, ¢
cyclically permutes both sets of disks, as well as the bands. Thus, ¢+
has order pg, and we may assume that the disks are labeled so that
o1t (D) = Dit1, ¢ (Dj) = Djy1, and ¢ (B; ;) = Biy1,j+1, with indices
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oD,

K+

oD

Figure 3. A local picture of the Heegaard torus T near
where the boundaries of the disks D; and D;» intersect,
where the intersection point x; ; has been replaced with
the band B; ;.

i and j considered modulo p and g, respectively. See the left graphic
of Figure 4, where we have represented the core of V' by the z-axis and
the core of V' by the unit circle in the plane {z = 0} in our illustration
of the case of (p,q) = (4,3).

In order to better understand the action of ¢ on F*, we build an
alternative picture as in [Sch16]. Let I'" be a graph embedded in F'T,
where 't has a vertex v; in the center of each disk D; and a vertex v;-
in the center of each disk D;-, for a total of p + g vertices. In addition,
I'* has pg edges, labeled e; ;, connecting v; to v} and passing through
the core of the band B;;. As such, we may suppose without loss of
generality that ¢ (T'") = T'", where o™ (v;) = vit1, 9™ (v]) = v}, and
ot (eij) = €it1,j+1, with indices considered modulo p and ¢ as above.
See the left panel of Figure 4 for the case of (p,q) = (4, 3).

Knowing o+ (I't), we now consider the action of ¢ on FT \ I't.
Cutting F'* along I't yields an annulus A", where one boundary com-
ponent of AT is the knot K and the other boundary component is a
2pg-gon coming from I'". Each edge e; ; of I'" gives rise to two edges
eic- in 9A™, labeled as in the center panel of Figure 4. Moving clockwise

J
around OA™, we see that edges alternate between + and —, the edge e;-fj

i1 ;EHJ‘ Moreover,
the monodromy ¢ preserves the orientation of the edges, and thus @™
acts on the 2pg-gon by a 27 /pq clockwise rotation. As in [Sch16], we
assume that o1 also induces a 27 /pq rotation of the knot K*. With
this setup, we see a departure from the usual convention that 90+‘6EK N
is the identity, since the knot itself is rotated along with the fiber sur-
face. We make this choice because is it compatible with the Seifert
fibered structure on Eg+ in that ¢ preserves fibers (see Lemma 4.2).
Furthermore, this assumption does not alter our eventual description of
the closed monodromy ¢ for Yg.

is adjacent to e and the edge e;; is adjacent to e
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Figure 4. (Left) The surface fiber F'* for the torus knot
K™, shown with spine graph I'". (Center) The annulus
AT obtained by cutting open F't along I'*. (Right) The
(punctured) annulus A whose edge identifications yield
the surface fiber F' for (). Shown in orange is the arc 11
on F'* and the curve V4 ; on F.

Since the mapping class group of AT is Z and we understand o™ |54+,
the map ¢* is completely determined up to some number k of Dehn
twists about the core of the annulus AT. Consider the co-core arc 7; ;
of a band B; ;. The arc n;; meets 't once, crossing the edge €ij, SO
that n; ; N AT consists of two disjoint arcs, connecting K to e;.fj and
K toe; ;. The number of twists k in ¢ is equal to zero if and only
if URAR SD+(77i,j) = (), and we see that since (p+(Bi7j) = Bi+1,j+1’ the
map @' moves n; ; completely off of itself. We conclude that k = 0,
and the monodromy ¢ is isotopic to a 27 /pq clockwise rotation of the
annulus AT,

The last piece of information we need in order to completely under-
stand T is the identification of (+)-edges and (—)-edges in JA™ that
recovers the Seifert surface F'*. If we label the sides of the 2pg-gon
component of AT in clockwise order from 0 to 2pq — 1, where the edge
eil has label zero, we see that (+)-edges have even labels and (—)-edges

have odd labels. In addition, every edge ei ;18 labeled 2ap for some in-
teger a, and every edge e;fl is labeled 2bq for some integer ¢. Since the

edge e is adjacent to both 6;1 and ef’q, its label [ is equal to 2ap + 1
and 2bqg — 1. Equivalently, we have that ap + 1 = bq, and thus the
(+)-edge labeled 0 is identified to the (—)-edge labeled 2ap + 1, where
ap = —1 (mod ¢q). More generally, every (+)-edge labeled [ is identified
to the (—)-edge labeled | + 2ap + 1 (mod 2pq), completing the picture.

Remark 4.1. Upon first glance, the reader might notice that the
picture described here is different than the picture described in [GST10]
and [Sch16], where (p,q) = (3,2). However, these two descriptions can
be seen to be identical after the following observation: In the case that
q = 2, we have that p =1 (mod 2), and thus the (+)-edge labeled [ is
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identified with the (—)-edge labeled [ + 2p + 1 in the 4p-gon boundary
component of AT. In addition, the (+)-edge labeled [ + 2p is identified
with the (—)-edge [ +4p+ 1 =1+ 1 (mod 4p). Thus, the consecutive
pair of (£)-edges labeled [ — 1 and [ are glued to the consecutive pair
of (£)-edges labeled | + 2p and [ + 2p + 1, and our description may
be simplified. In this case, the 4p-gon boundary component may be
viewed as a 2p-gon in which opposite edges are identified. Moreover,
the monodromy remains a 27 /pg = 7 /p clockwise rotation, and we see
that the descriptions here and in [Sch16] are identical. The distinction
stems from the fact that when ¢ = 2, the vertices v;» € I'" have valence
two, and the co-cores 7; 1 and 7; » of the bands B; 1 and B; 2 are isotopic
in F*.

We may now proceed to understand the monodromy of Q = KT#K .
The monodromy of K~ = T_, , can be described by reflecting the annu-
lus A* through its boundary component coming from K to get another
annulus A~, corresponding to a Seifert surface F'~ for K~ containing
an analogous graph I'”. As such, this monodromy can be represented
by a clockwise rotation of A™, and it follows that the once-punctured
surface fiber F' for Q comes from gluing A~ to AT along a portion of
K* to obtain a punctured annulus A with the given edge identifications,
mimicking a similar step in [Sch16]. The result is displayed in the right
panel of Figure 4. The knot @ interferes with the periodicity of the
monodromy — rotation of A moves the puncture — so the rotation of A
must be followed by an isotopy taking () back to its starting position.
Once this is done, we have recovered the monodromy ¢ corresponding
to the surface bundle Eg; see Figure 5.

Figure 5. The local model of the monodromy ¢ of @
near the puncture of A, featuring the necessary action
of dragging the puncture back to its initial position after
the 1/pq clockwise rotation.

4.2. The Seifert fibered structure of Yg. Consider Yy, the result
of O-surgery on @ in S3. Using our work above, Yo is a fibered 3-
manifold with periodic monodromy @ of order pg and (closed) surface
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fiber F. Moreover, F can be obtained by performing the above edge
identifications on the annulus A = A+ U A~, which has two 2pg-gon
boundary components, in which case @ is represented by an honest
(clockwise) 27 /pq rotation of A. (Alternatively, A is obtained by filling
in the puncture of A, which corresponds to the O-framed Dehn surgery.)

Lemma 4.2. The manifold Yq is Seifert fibered with base space a
2-sphere S with four exceptional fibers of orders p, q, p, and q.

Proof. Let Ay, denote the core of the annulus A. Since © maps Ay
to itself, preserving orientation, it follows that there is a torus W,
Ao ><¢S e Y. Cutting Yy open along W, yields the 3-manifolds, call
them Y+ and Y, fibering over '\ Ao = F* U F~. As the restriction
of @ to F'* is ¢*, we have that Y+ is homeomorphic to E=. It follows
that Yy can be obtained by gluing Ex+ to Ex- along their respective
boundary tori.

It is well-known that each of Ex+ and Ep - is Seifert fibered over
a disk with two exceptional fibers of orders p and gq. Moreover, the
monodromies ¢t act on the Seifert fibers, which are the orbits of points
in F'*. Since these monodromies agree on JF7, it follows that Fp+ is
glued to Ex— along Seifert fibers, and therefore Yg has a Seifert fibered
structured over the glued base spaces; namely, over a 2-sphere with four
exceptional fibers of orders p, ¢, p, and gq. q.e.d.

Henceforth, we will let S(p, ¢, p, ¢) denote the base space of Yy, some-
times abbreviating this with just S. A surface in a Seifert fibered space
is called wertical if it is a union of fibers or horizontal if it is transverse
to every fiber it meets. It is well-known that every essential surface in a
Seifert fibered space is either vertical or horizontal, and closed vertical
surfaces are tori [Hata]. Let p: Yo — S(p,¢,p,q) be the natural pro-
jection map that associates each fiber in Yy to its corresponding pomt

in S(p,q,p,q), and let p: F— S(p,q,p,q) be the restriction of p to F.

Lemma 4.3. The map p: F — S is a branched covering of order
pq, where S is identified with a 2-sphere with four come points of order
D, q,p, and q. The corresponding group of deck transformations is given

by G =(p), so pop=p.

Proof. Since F is not a vertical torus, it must be a horizontal surface
in Yp, from which it follows that the restriction of p to p is a branched
covering map (see [Sco83]). The exceptional fibers meet F in the ver-
tices of the two graphs I'F, Vlewed as graphs embedded in F cutting F
into A. The regular fibers meet F away from the vertices, where each
of these points is contained in fiber that meets Fin pq distinct points,
so the degree of the cover is pg. The exceptional fibers are precisely
the orbits of the vertices of I't under the action of @; and each of these
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orbits meets F either p or g times. Since  preserves fibers, we have
that po@ = p. Finally, as each power of ¢ is a deck transformation and
(p) contains pq distinct deck transformations, it follows that this is the
entire group G. q.e.d.

We refer to S = S(p,q,p,q) as the pillowcase, since S can be viewed
as the union of two squares along their edges. The left panel of Figure 6
depicts a fundamental domain R of the branched covering map p. The
center and right panels illustrate the gluings of R induced by (@) to
form S. In our figures, the cone points are drawn at the corners of S.
We set the convention that the top corners of the square are the cone
points of order p and the bottom corners have order ¢, as in Figure 6.
Recall from the proof that p~! of a cone point of order p (resp., of order
q) has a total of ¢ preimages (resp., a total of p preimages) in F.

Figure 6. The quotient of A by the action of the mon-
odromy @. Shown is the case (p,q) = (4,3). (Left) The
annulus A representing the surface fiber ﬁ, shown with a
fundamental domain S for the action of the monodromy
@ shaded. (Middle) The domain S, which can be realized
by cutting open the pillowcase. (Right) The pillowcase
S = S2%(p,q,p,q). Shown also are the slopes \g and Ay
on S, together with their lifts to F.

The next step in this process is to understand the lifting of curves
from the pillowcase to F. To begin, let Aso = p(Asg), Where As is the
core of the annulus A described in the proof of Lemma 4.2. Next, note
that there is a reflection o of Yy through the torus W, that swaps E+
and FEx—, in the process transposing the surfaces '™ and F'~ and the
graphs I't and I'". The reflection p maps Seifert fibers to Seifert fibers;
hence it acts on the quotient S as well (as a reflection through the curve
Aoo)- Let Ag be the curve preserved by this reflection, shown at right in
Figure 6.
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Now, we characterize other essential curves in the pillowcase. Let
S* be the 4-punctured sphere obtained from S by removing its cone
points. Every curve A € S* can be isotoped so that it meets the two
unit squares of the pillowcase in parallel arcs with slopes in the extended
rational numbers Qo = QU {00}, where oo represents the fraction 1/0.
We call the rational number associated to A the slope of A\. We let A,y
denote the unique curve in S* with slope a/b, setting the convention that
b > 0. Note that this definition agrees with our previous descriptions
for Ao and Ag. Since the fractions £1/1, 1/0, and 0/1 occur frequently,
we will use 1 in place of £1/1, 0 in place of 0/1, and oo in place of
1/0.

Note that Ao = p~H(Aso), and let Lo = p~1()\g). Recall that Ay is
a single curve that separates F into the two surfaces F=. On the other
hand, in the example shown in Figure 6, £y consists of a total of pg = 12
curves in F. We prove this more generally in the next lemma. We also
show that the lift A7 = p~1()\1) is a single curve, just like An.

Lemma 4.4. The lift A1 is connected, while the lift Lo has of a total
of pq connected components. Moreover, F \ Lo is the disjoint union of
q copies of the sphere with p boundary components and p copies of the
sphere with q boundary components.

Proof. The map p: F—Sisa cyclic branched covering of order pq
and corresponds to a representation o: m(S*) — Zp,. For a curve
A C S*, the cardinality of p~'(\) is determined by o([\]) € Z,, =
(t|tP9). For example, if A is a boundary component of S* corresponding
to a cone point of order p (resp., q), then |[p~1()\)| is ¢ (resp., p), since
o([N]) is t% for some a = 1,...,q—1 (resp., t* for some b = 1,...,p—1).
If A separates S into regions that contain one cone point of order p and
one of order ¢ (as in the case of A1), then o([\]) = t®*+% which is
a generator. It follows that |A;| = |p~1(\1)| = 1. If )\ separates the
cone points of order p from those of order ¢ (as in the case of Ag), then
o([A]) = 1, since the boundary components of S* necessarily map to
pairs of inverses in Z,,. In this case, |Lo| = [p71(A\o)| = pq.

For the second part of the proof, recall that n;r] denotes the co-core
of the band B; ; in the surface F*, and let n; ; denote the corresponding
co-core in F'~. The reflection o of Y through W, sends nli] to 77;57 and
thus the curve n;f ;Un; ; is preserved by o and satisfies p(n;fj Un; ;) = Ao

There are pq curves of this form in F , and these curves are permuted
by @; thus the lift Lo = p~1()\g) is the union of these pq curves.

For the final part of the proof, let n* = | nfj Note FT\nT isp+gq
disks, where p of these disks each have ¢ boundary arcs in ™, and ¢
of these disks each have p boundary arcs in n*. Since p preserves Lo,
we have that each component of F \ Lo is the union of a component of
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F*\n" and its image under p, which is a component of F~\ ™. Each
of the p disks with ¢ boundary arcs in " is glued to one of p disks in
F~\ n~ with ¢ boundary arcs in n~ to form a sphere with ¢ boundary
components. Likewise, each of the ¢ disks with p boundary arcs in n™
is glued to one of ¢ disks in F'~ \ n~ with p boundary arcs in ~ to form
a sphere with p boundary components. The statement of the lemma
follows. q.e.d.

4.3. Lifting curves and Dehn twists from the pillowcase. Let
F* denote F with the vertices of I't removed, so that p: F* — S§* is
a regular covering map of degree pq, by Lemma 4.3, and the group of
deck transformations is the cyclic group G = Z,, generated by @. (In
an abuse of notation, we denote the restrictions of @ and p from F
to F* simply by @ and p, respectively.) Recall that curves in S* are
parameterized by the extended rational numbers Q.. For two curves
¢, in a surface, the geometric intersection «(c, ') is defined to be the
minimum of |¢N | up to homotopy. The next lemma is standard.

Lemma 4.5. For any two curves Ay, A\cjqa € S*, their intersection
number s
L()‘a/bv Ac/d) =2 lad — bc|.

Let 7451 S — S denote a left-handed Dehn twist along A, . More
precisely, let v/, = Aq/, %[0, 1], parameterized by ¢ € R/Z and t € [0, 1],
and define 7,/, to be the identity outside of this annulus. On this
annulus, we define

Ta/b(wv t) = (w -1, t)'
The action of Tj;b on curves in S is as follows; this lemma is also stan-
dard.

Lemma 4.6. For any a/b,c/d € Q, any n € Z, and A = |ad — be],
we have
Tan(Aesa) = A/
where e = ¢+ 2anA, f = d 4+ 2bnA if a is odd, and e = ¢ — 2anA,
f=d—2bnA if a is even.

We have chosen to define 7./, as a left-handed Dehn twist so that
it preserves the sign of the slope of A./; when c is odd. For example,
Too(A0) = Agp/1 and 71 (o) = Agp/(2n+1)- On the other hand, 7§ (As) =
A1/2n-

In the next lemma, we show that applying sequences of the twists
Too and 7p and their inverses to the curves A\g, Aso, and A\; generates all
curves Aq s in S™.

Lemma 4.7. Let a/b € Q. If a is even (resp., odd), then there is
a product of the Dehn twists TX' and 79 taking Aasb 10 Ao (resp., Aoo
or ).
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Proof. To begin, we compute
735 Na) = Aasan) /b
70 (Nasp) = Aaj(b20)

Recall that we assume that b > 0; if the above formula results in a/b
with b < 0, we replace a and b with —a and —b. If b = 0, then a/b = co
and we are done. If a/b = £1, then since 7o(A_1) = A1, we are done.
Thus, suppose that b > 0 and |a| # b. We will induct on the ordered
pair (b, |a|]) with the dictionary ordering. Thus, suppose that there is a
series of Dehn twists taking A,/ to one of Ao, Axo, or Ay for all a'/b
such that (V/,]a’]) < (b,]al).

First, suppose that |a|] > b. If @ > b, then 2a > 2b > 0 and thus
a>2b—a > —a. It follows that |a — 2b| < a, and we have 7'(\, /) =
Aa—2p/b> SO the claim holds by induction. If a < —b, then 2a < -2 <0
and thus a < —2b —a < —a, so that |a + 2b| < |a|. In this case,
Too()\a/b) = Aa+2v)/» and the claim holds by induction. On the other
hand, suppose that |a| < b. If 0 < a < b, then —b < b — 2a < b, so that
the claim holds for 79()\,/3) by induction in this case too. Otherwise,
—b < a < 0, so that —b < b+ 2a < b, and we apply the inductive
hypothesis to T()_l()\a/b).

We conclude that there exists a sequence of Dehn twists taking A,
to one of Ay, Ao, or A1. Finally, observe that each twist preserves the
parity of the numerator. Thus, if a is even, these twists take A,/ to Ao.
Otherwise, a is odd and the result of the twists is Ay, or Aj. q.e.d.

Now, we define homeomorphisms 7y, Too : F—>F , which lift the Dehn
twists 79 and 7. Recalling that Ly contains pg curves, let 7y be the
product of a single left-handed Dehn twist performed on each of these
curves. (The order is not important since these Dehn twists commute.)
The homeomorphism 7, is slightly more complicated. Recalling that
F \ A = FT U F~, define 7o to be the identity on F~, the inverse
monodromy map (o)~ on F*, and a 1/pq left-handed Dehn twist in
an annular neighborhood of A. In coordinates, we parameterize the
neighborhood Ax x I as {(¢,t)|v € R/Z,t € [0,1]}, where OF~ =
Aso x {0} and OF T = Ao x {1}. On A X I, the twist is defined as

Tt 1) = (w _ }fq,t) .

Observe that 7o, is well-defined, it restricts to the identity map on 9F~
and restricts to a 1/pg counterclockwise rotation on FT; hence it is a
homeomorphism of F. We prove the claimed lifting properties with the
next lemma.

Lemma 4.8. The homeomorphism 7o is a lift of 79, and the homeo-
morphism Too 8 a lift of Teo.
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Proof. First, we prove that p o7y = 79 0 p. Outside of a regular
neighborhood of Ly, the multi-twist 7y is the identity map, and the same
is true for 7y outside a regular neighborhood of Ag. The restriction of p
to each component of Ly is a homeomorphism to Ay, which extends to a
homeomorphism of an annular neighborhood of each component of L.
It follows that p o 79 = 79 o p in each of these annular neighborhoods,
and thus it holds for the entire surface F.

For the second claim, we show that p o Too = 7o © p, proceeding as
in the first case. Outside of a regular neighborhood of A,, the map
Too is either the identity or the map (¢T)~!, which is the restriction
of ()7 to F*. Since po $ = p, it follows that p o 7oe = p away
from Ay. Similarly, 7, is the identity away from A, thus po 7 =
Too © p away from Ao.. The restriction pl,a): ¥(Ax) = V(Aso) is an
interval thickening of the canonical pg-to-one covering of S! to S'. In
coordinates, we have

Pluree) (s t) = (paip, t).

Thus,
~ t
Pl @ Fol:0) = Pty (4= ) = o = .0,
while
Too © Plu(ree) (¥: 1) = Too (P, ) = (pgyp — . 1).
It follows that p o Too = 7o, © p on all of ﬁ, as desired. q.e.d.

Combining the previous two lemmas, we can show that given any lift
p 1\, /b), there is a homeomorphism of I’ that takes this lift to one of
p (M), p~1 (A1), or p71(As), depending on the parity of a.

Lemma 4.9. Given any a/b € Q, there is a homeomorphism
f: F — F such that f(,o_l()\a/b)) is either p~1(\o) if a is even, or
one of p~1(\1) or p~1(\so) if a is odd.

Proof. Let a/b € Qu. By Lemma 4.7, there exists a homeomorphism

f: S — S, obtained as the product of Dehn twists 75! and Tétl, such
that f(\,/p) is either Ao if a is even, or one of A\; or Ay if @ is odd. By

Lemma 4.8, the homeomorphism f lifts to a homeomorphism f: F > F.
Thus, f maps the lift pfl(/\a/b) to one of the three lifts p=*(A\g), p~1(\1),
or p~1(Aso), as desired. q.e.d.

It follows easily that p_l()\a/b) contains either one or pq distinct
curves, depending on the parity of the numerator a.

Proposition 4.10. 1) Ifa/b € Qu and a is odd, then p_l()\a/b)

s a single separating curve in F.
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2) If ¢/d € Qu with ¢ even, then p_l()\c/d) consists of pq pair-
wise disjoint curves that are permuted by @ and are pairwise non-
homotopic in F™*.

a) If ¢ > 3, these curves remain pairwise non-homotopic in F.
b) If ¢ = 2, then p_l()\c/d) contains two curves in each of p dis-

tinct homotopy classes of curves in ﬁ, and QP swaps a pair of
homotopic curves with opposite orientations.

Proof. Suppose a/b € Qs with a odd. By Lemma 4.9, there is a
homeomorphism f of F taking p~1 (), /) 10 Ao or Ay, each of which is
connected by Lemma 4.4, so p~1(), /b) is connected, as desired.

Suppose c/ d € Q with ¢ even. By Lemma 4.9, there is a homeomor-
phism f of F taking p 1()\C/d) to Lo. Thus, it suffices to prove part
(2) for £o. By Lemma 4.4, we have that Ly is a separating collection
of pq curves in F and F \ Ly consists of p spheres with ¢ boundary
components and ¢ spheres with p boundary components. It follows that
curves of Ly are non-homotopic in F if and only if ¢ > 2. Otherwise,
q = 2 and F \ Loy contains p annuli; hence the curves of Ly are paral-
lel in pairs. The restriction of p is a degree two branched cover from
each annulus to the disk component of S\ A\g containing the two cone
points of order 2; the subgroup (@) of (¢) has order two. Thus, ¢P is
an involution of each annulus, swapping the boundary components with
reversed orientations. q.e.d.

Moving forward, we distinguish these two cases by letting a/b € Q
represent an arbitrary fraction with odd numerator and ¢/d € Qx rep-
resent an arbitrary fraction with even numerator. In addition, we let
Aoy = p~1(a/b) when a is odd, and we let Lejg = pfl()\c/d) for ¢ even.

In the next lemma, we show that all sets of curves preserved setwise by
@ must be one of the lifts characterized in this section. This lemma will
be especially important in our classification of Casson-Gordon deriva-
tives in Subsection 4.4. We note that it may be the case that two
curves in F™* are homotopic in F' but not homotopic in F*. (Recall
that F* = F\ p~!(cone points).) This occurs, for instance, whenever
q = 2; as we saw in Lemma 4.4, in this case F \ Lo contains p annular
components.

Lemma 4.11. Let A be a collection of pairwise disjoint and non-
homotopic curves in F*. Then, (A) = A if and only if A = pfl(/\a/b)
for some a/b € Qu.

Proof. Recall that the restriction p: F* — S* is a cyclic covering
map with group of deck transformations generated by @, and assume
®(A) = A. Since A is an embedded 1-manifold, p(A) is as well. If any
component of p(A) is inessential or if two components are parallel, then
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the same is true of components of A. Therefore, p(A) is an essential
simple closed curve in 5% i.e., p(A) = Ay, for some a/b € Quo.

To finish this direction of the proof, we must show that p~!(p(A)) =
A, which reduces to showing that p~1(p(A)) C A. Let x € p~1(p(A))
and let y = p(x), so y = p(z) for z € A. Since @ generates the cyclic
group of deck transformations for the covering p, we have p~l(y) =
{@F(x)|0 < k < pq}. Tt follows that P¥(x) = z € A for some k, but
since P(A) = A, we have that x € A, as desired.

The converse direction is immediate from Lemma 4.3. q.e.d.

Remark 4.12. When ¢ = 2, the branched double cover p,: S(p, p,p, p)
— S(p,2,p,2) is an involution, as shown in Figure 7, and pp: F -
S(p,p,p,p) has a pillowcase as its base space. Curves in S(p,p,p,p)
avoiding the cone points are parametrized in the natural way. If ¢ is
even, the (pq)_l()\c/d) is two copies of the curve A./oq C S(p,p,p,p). If
a is odd, then (pq)_l()\a/b) = Ag/2v- See Figure 7.

In the case of (p,q) = (3,2), the authors of [GST10] and [Sch16]
work with the pillowcase S(3,3,3,3), and so the slopes in these ref-
erences are of the form ¢/2d compare to our ¢/d. In addition, our
slopes have switched signs. For example, lifts of curves in S(3, 3,3, 3) of
slopes 1/3,2/5,3/7 as defined in [GST10] and [Sch16] correspond to
L_5/3,L_4/5,L_g/7 considered as lifts of curves in S(3,2,3,2). (When

q = 2, the curves of L4 occur as p pairs of parallel curves on F\; in this

case, we follow [GST10] and only consider one curve from each pair, as
in the right frame of Figure 7.)

Figure 7. Lifting curves from the pillowcase to the hex-
ulus. Shown at right are the curves Ay (red), Lo (or-
ange), and Ly/3 (light blue, dark blue, and violet).

4.4. Classifying the CG-derivatives of ), ;. Given any generalized
square knot @4 and any c¢/d € Q with ¢ even, we have shown how to
construct a multi-curve L. /4 lying in the closed fiber F for Qpq- We are
now in a position to prove Proposition 1.4.
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Lemma 4.13. Every (p—1)(q—1) component sublink L of L4 that

cuts F into a connected planar surface is isotopic to a CG-derivative
for Qpq in S3.

Proof. Let N C m (ﬁ ) be the subgroup normally generated by the
homotopy classes of curves in L, noting that N is also normally gener-
ated by all of the curves in £L./4. Since » permutes curves in L /q, it
follows that @.«(N) = N. Therefore, Proposition 2.7 implies that L is a
CG-derivative for @) 4. q.e.d.

Setting Lﬁ}qd = L C L./q, this establishes Proposition 1.4. Next, we
prove that every CG-derivative for a generalized square knot is equiva-
lent to one of those described in Lemma 4.13. In order to understand
all CG-derivatives of @), 4 up to handleslide-equivalence, we invoke the
Equivariant Loop Theorem (as stated in [YM&84]). We also state the
Equivariant Sphere Theorem (as stated in [Dun85]), to be used later
to prove Proposition 8.3.

Equivariant Loop and Sphere Theorems ([MY79], [MY80],
[MSY82]). Let G be a finite group acting smoothly on a compact three-
dimensional manifold Y such that'Y is closed or 0Y = F and g(F) = F
forallg € G.

Loop Theorem: Let k = ker(), where v: F — Y is inclusion.
Then there is a collection D = {Di}le of properly embedded disks
in Y with the following properties:

1) k is generated as a normal subgroup of w1 (F) by {[0D;]}%_,.
2) For any g € G and 1 < i,j < k, either g(D;) N D; = 0 or

Sphere Theorem: Let S C Y be a two-sphere that does bound a
three-ball. Then there exists such an S such that g(S) = S or
g(SYNS =0 forall g e @G.

We remark that, although the original proofs of the Equivariant Loop
Theorem by Meeks and Yau and the Equivariant Sphere Theorem by
Meeks, Simon, and Yau both used analytic techniques, purely topo-
logical proofs have since been given by Dunwoody [Dun85] and Ed-
monds [Edm86|.

Proposition 4.14. Suppose that LT C S3 is a Casson-Gordon de-
rivative for Qp 4. Then there exists ¢/d with ¢ even such that QpqUJ LT
is stably handleslide-equivalent to QpqU L. /q-

Proof. By the definition of a Casson-Gordon derivative, there exists a
handlebody H such that L™ such that the closed monodromy @: F—F
extends to a homeomorphism ¢: H — H, and such that L* bounds a
cut system for H. Since @P? is the identity, ¢P? must also be isotopic
to the identity. Since no lesser power of ¢ is the identity, neither is a
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lesser power of ¢. It follows that ¢ generates an action of Z,, on H.
By the Equivariant Loop Theorem, there is a finite collection of disks
D = {D;} that are properly embedded in H and have the property that
the subgroup of m; (ﬁ ) generated by the curves £ = 9D is equal to the
kernel of the map ¢, induced by the inclusion ¢: F— H. Moreover, for
any 1 < k < pq, we have that either ¢*(D;) N (U;D;) = 0 or ¢*(D;) €
{D;}.

Note that since ¢P? is the identity, after deleting parallel disks, the
disks in D can be expressed as {D1,¢(D1),...,¢™ 1(Dy)} for some in-
teger m, where ¢™(D;) = D; and ¢*(D1) # D; for k < m. In the event
that ¢ (D) and D; have opposite orientations (which will occur when
q = 2), we replace each disk D in D with the ends of an equivariant collar
neighborhood D x I of D in H; that is, D is replaced with D~ = D x {0}
and D¥ = D x {1}. In this case, D = {D1,¢(D1),...,¢*" 1(D1)}
has the property that ¢?™(D;) = D; (preserving orientation), and
#¥(Dy1) # Dy setwise for any k& < 2m. Once this is done, we have
that ¢ cyclically permutes the disks of D.

Note that curves in £ = 9D are of the form 9(¢*(D1)) = @*(0D1).
We claim that £ C F does not meet any of the lifts of the cone points
of S: Observe that L is invariant under ¢. If £ passes through the lift
x of a cone point of order p (resp. ¢), then @7 (resp. @P) induces a
1/p (resp. 1/q) rotation in a neighborhood of z. However, this implies
that either £ has a transverse self-intersection (in the case p or ¢ > 3)
or that @* maps a curve in £ to itself with opposite orientation (in the
case ¢ = 2), which has been ruled out by our choice of the disks D. We
conclude that £ does not meet a lift of a cone point, so that £ C F*
as in Lemma 4.11, which asserts that £ = L, /q = p_l()\c/d) for some
¢/d € Q. Since the kernel of ¢, is not cyclic, £ contains more than one
curve, and by Proposition 4.10, we have that ¢ is even and |£| = pq.

Finally, let L C L./3 be any collection of curves cutting F into a
connected planar surface. Since both L™ and L are cut systems for
the same handlebody, they are handleslide-equivalent in F. Viewing F
as a subspace of Y, we have that L™ is handleslide-equivalent to L
in Y, ,, so that Qpq U L is handleslide-equivalent to Qpq U L in S°.
Adding in the rest of the curves in L£./; may be achieved by stable
equivalence; hence @p 4 U L is stably equivalent to Qpq U Lc/q.  q.e.d.

5. The link @, ,U Ly has Property R

In this section, we give a detailed analysis of the link Lg lying in the
fiber F for Q = Q,, in S®. First, we prove that Q U L./q is stably
equivalent to Q) UV, where V' is any one component of £./;. We then
show directly that QQ U £y has Property R by showing that Q UV is
handleslide trivial when V' C L.
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Lemma 5.1. For any c¢/d with ¢ even and for any component V' of
Le/q, the link QU L./q is handleslide-equivalent to Q UV UU, where U

s a split unlink.

Proof. Since @ permutes the curves in L4, it follows that every
component of L./; is isotopic to V' in the 3-manifold Y. Thus, in
Yq, the link £./4 is isotopic to a collection of curves parallel to V.
Handleslides in Yg convert this collection to V LU, where U is a split
unlink. In S3, this implies that Q U L./q is handleslide-equivalent to
QUV UU, as desired. q.e.d.

The Farey graph has vertices corresponding to the extended rational
numbers Q°°, where two rational numbers p/q and r/s are connected by
an edge whenever |ps — qr| = 1. A Farey triangle is a triple of rational
numbers, each connected by an edge. The Farey graph can also be
associated to the 1-skeleton of the curve complex of the torus, as well as
the arc complex of the torus with one boundary component. For further
background information on the Farey graph, see [Hatb].

Now, we turn our attention to understanding the knot types of the
components of Ly in S3. To this end, fix a band B; ; connecting merid-
ional disks D; of V' and Dj of V’, as in Subsection 4.1. We may suppose
B; ; is transverse to the Heegaard torus T’ containing KT, so that the
co-core nt = nifj of B;j is contained in 7. As in [Sch16], we obtain
the curve Vj; C Loy in F by gluing n* ¢ F7 to its image n~ C F~
under the reflection of F' across A that interchanges F' and F~. (See
Figure 4 for an example.) This construction, however, does little to
help us determine the knot type of V; ; in S3. For this purpose, we fol-
low [Sch16]: We may homotope ™ in F'™ (via a homotopy that does
not fix ") until its boundary points coincide, yielding a knot. Since
the two points On™ cut K = OF™T into two arcs, there are two choices
for this homotopy; we will let Jfr and J2+ denote the resulting knots. In
addition, we let J;” and J; denote the corresponding mirror images in
F~ obtained from 7.

Since components of Ly are constructed by gluing a given co-core to
its mirror image, we can mirror the homotopy of n™ in F~, so that
Vij = Ji#J; or Vi; = Jy #J5. In Yy these two knots are isotopic
into I and are related by a single handleslAide over (), which may be
viewed as a homotopy across the disk D C F.

Lemma 5.2. 1) Let J;" and J; be defined as above. As knots in
S3, the curves J1+ and J2+ are the torus knots Ty, s, and Ty, s,,
such that
a) 0<s; <y,

b) |ps1 —qri| = |ps2 — qr2| = |r1s2 — sire| = 1,
c) 0<ry,re <p, and
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d) 0< s1,82 <gq.

2) After slides over Q in S3, each component Vij of Lo is either
Qn,sl or QTQ,SQ-

3) After slides over Q in S3, there is a genus two Heegaard surface
Y for S3 and a component V = Q,, s, of Lo such that QUV C X,
and there is a reducing curve & for % cutting Q and V into their
respective summands.

Proof. First, observe that we may crush each band B; ; to its co-core
n:j, so that F™ may be viewed as the union of the disks Dy,...,D,
and Dj,... ,D(’Z, where disks meet along the co-cores n;r] This implies
that K™ Un™ is an embedded graph in the Heegaard torus 7. The
endpoints of n* cut the knot K+ = T, ; into arcs w; and ws in T', where
J;r = 1T Uw;, from which it follows that JZ-+ is a torus knot T}, 5,. Note
further that a parallel pushoff of Kt in T meets Ji‘" in a single point.
Moreover, Jfr and J2+ may be constructed by taking the disjoint arcs
wy and wy and connecting them with copies of n* that meet in a single
point, as shown in Figure 8, so that |J;” N J;7| = 1. We conclude that
the curves KT, Jl+ , J2+ form a Farey triangle in the curve graph of 7.

w1
T
ws ' > — \
T

> 1 W2

Kt

w1

Figure 8. A local picture of the Heegaard torus T+
containing KT, Jfr , and J2+ near a band of a Seifert
surface for K whose co-core is .

Recall that D; is the meridian disk for V' containing n, and a pushoff
of KT meets D; transversely in p points of positive sign. A slight
pushoff of 7, is disjoint from D’, and assuming each arc w; meets D,
transversely in at most p points of positive sign, we have that r; < p
for ¢ = 1,2, forcing 0 < 7r; < p since the curves meet pairwise once.
A similar argument using D; instead of D;- shows that 0 < s; < q. The
second statement of the lemma follows from the fact that V;; is the
connected sum Jf#Jf or J;#J;.

To see that the final statement is true, we first homotope the arc n™
along KT in T so that its boundary points are close, we let K~ Un~ C
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T~ be the corresponding mirror images, and we take the connected sum
of T and T~ along disks that contain the boundary points of *. The
resulting link is Q UV, contained in the Heegaard surface TT#7T~ with
a reducing curve J as desired. q.e.d.

As mentioned above, the Farey graph corresponds to the arc com-
plex of T, a torus with one boundary component, and every triple
(g, a1, a9) of pairwise disjoint non-homotopic arcs in T+ corresponds
to a triangle in the Farey graph. The process of replacing a pair of curves
in a triple, say (ap, 1), with a different pair from the same triple, say
(a1, ), is called an arc-slide. Any two edges in the Farey graph can
be connected by a path of Farey triangles, and thus any two pairs of
disjoint arcs in TF can be related by a sequence of arc-slides. We use
these ideas in the proof of the next proposition.

Proposition 5.3. There is a component V. C Ly such that the link
QUYV has Property R.

Proof. By Lemma 5.2, there exists a component V of Ly and a
genus two Heegaard surface with reducing curve 9, where & cuts X into
THUT~, Qinto ongoza, and V into anaf, such that «; is the mirror
image of a;r over §. Since ozar and af are disjoint, non-homotopic arcs
in T, they determine an edge in the Farey graph. Any handleslide of @
over V along an arc contained in § can be realized as a pair of mirrored
arc slides in T and T'~, and vice versa.

Again using Lemma 5.2, we have that the arcs oz(jf and af are iden-
tified with the fractions p/q and ri/sq, respectively. By the remark
preceding the proposition, there is a sequence of (mirrored) arc slides
taking (ai,af) to the pair (85, 8;) corresponding to the fractions
0/1 and 1/0 respectively. This implies there is a sequence of han-
dleslides taking Q UV to Qo1 U Q10 C X, which is the 2-component
unlink. q.e.d.

6. Twisting on vertical tori in Y

The purpose of this section is to define two useful diffeomorphisms,
To and T, of the 3-manifold Yy, each of which is described as a twist
on a vertical torus. Recall that in Lemma 4.8, we showed that the Dehn
twists 79 and 74 of S lift to homeomorphisms 7y and 7o, of F'. The main
result in this section is that the twist 7o preserves fibers of Yy, and the

restriction of 7j to Fis To. The same is not quite true for 7o, but we
show that 75, is isotopic to a diffeomorphism 72, that preserves fibers of
Y and acts on F as 7. It follows that the links To(Lesa) and Too(Leya)
are isotopic in Y to the links 7o(L,/q) and oo (Lc/q), respectively, which
will allow us to extend 7y and 75 over the 4-manifolds determined by
these links.
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By Lemma 4.2, we have that Y( is Seifert fibered over the base space
S = S(p,q,p,q). We previously defined W, to be the vertical torus
that projects to the curve Ao, C S. Define Wy to be the vertical torus
in Yg that projects to the curve Ao C S.

6.1. Twisting the torus Wj. Recall that the multi-curve Lg is con-
tained in F as a collection of pq curves that are cyclically permuted by
the monodromy @. The torus Wy, which is vertical with respect the
to Seifert fibration of Y, intersects F in the pq curves of Ly. We pa-
rameterize Wy with a meridian and longitude. Let ¢y C Wy be a curve
parallel to components of Lg, and let pg be a regular Seifert fiber in Wj.
Parameterize Wy as (0,1) € R?/Z?, where puo = {(6,0) : 6 € R/Z} and
fo={(0,0) : ¥ € R/Z}.

We define a automorphism 7y of Yy that is given as a Dehn twist
along the torus Wy. Let Ny = Wy x [0, 1] be a regular neighborhood of
Wo, parameterized by (6,1,t), and identify Wy with Wy x {0}. Define
To to be the identity on Yy \ Ng. On Ny, define

76(07¢>t) = (071/} - tat)a
noting that Tolw,x0,13 = Id, and thus To: Yo — Yg is a diffeomor-
phism. A diffeomorphism 7: Yy — Yg is said to be surface-fiber-
preserving if it maps surface-fibers to surface-fibers.

Lemma 6.1. The torus twist Tg is surface-fiber-preserving, and
Tolz = To-

Proof. First, we note that %(ﬁ ) = F , since 7T fixes the 6§ parameter of
Ny and is the identity away from Ng. The intersection of F NNy is pq dis-
joint annuli of the form {(6p,,t) : p € R/Z,t € [0,1]}, and the restric-
tion of 7 to each annulus is a Dehn twist about a component of Ly. Note
that the regular fiber pg meets F coherently in each point of intersection;
thus all of these Dehn twists are coherently oriented. Thus, following
the proof of Lemma 4.8, we have that To|z = 7o, as desired. q.e.d.

6.2. Twisting the torus W. In this subsection, we examine the
more complicated case of a twist on W,. Here the twist does not pre-
serve I but is isotopic to a diffeomorphism that does; hence, we take
care to keep track of this isotopy. R

Recall that Wa N F is the curve Ao, and Ao cuts F into F=. More-
over, the torus W, cuts Yg into Ex+ and Ej-. In Subsection 4.2, we
defined the orientation-reversing reflection g of Yy through the torus
Wy taking Ep+ to Er-. Using o, we see that the natural meridian
and longitude of Ey+ are identified in Y, and thus the torus W has a
natural longitude £oc and meridian fioo. The longitude £ can be viewed
as the identified boundary curves of F* in F, and thus £, = A. Pa-
rameterize W as (6,1) € R?/Z?, where u = {(0,0) : 6 € R/Z} and
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As in the previous subsection, we define a automorphism 7, of Yy
that is given as a Dehn twist along the torus Wy,. Let Noo = W X
[0, 1] be a regular neighborhood of W, parameterized by (6,,t), and
identify Woo with Woo x {0}. Define 75, to be the identity on Yg \ Nuo.
On N, define

TOO(07 /(/}’ t) = (9 + t? /llz)7 t)’
noting that Toolw.. 0,13 = Id, and thus 7o.: Yo — Yq is a diffeomor-
phism.

Lemma 6.2. The torus twist Too is isotopic to a surface-fiber-pre-
serving diffeomorphism T2, : Yo — Y such that T, |s = Teo.

Proof. Recall from Lemma 4.2 that Yo = Fx- U Ny U E+. We
define isotopies on each of these components and glue them together to
construct the desired isotopy. Let H™: Ex— X I — Ex - be the trivial
isotopy H ™ (z,8) = x. Let H: Egy+ xI — Ej+ be the isotopy obtained
by flowing once around the bundle structure in the negative direction.
On 0F g+ = Wy x {1}, this isotopy flows points along regular fibers of
the Seifert fibered structure. In H;(Wy), regular fibers are expressed
as pqliteo] + [Aoo], since the boundary slope of the essential annulus in
E(K™) has slope pg/1. Since the isotopy H* traverses 1/pg'" of each
regular fiber, the restriction of H* to the boundary Wy, x {1} of Fg+,
parameterized as (0,1, 1), is the isotopy (6,, 1, ) — (0—s,1—s/pg, 1).

Define an isotopy Heo: Noo X I — Noo by Hoo (0,7, t,8) = (0 — st,1p—
st/pq,t). Then the restriction of Hy to Wiy x {0} sends (0,,0,s) to
(0,1,0), which agrees with H~, and the restriction of Hy, to W, x {1}
sends (0,1, 1, s) to (0 — s, —s/pq, 1), which agrees with HT. Tt follows
that we can paste the isotopies H* and H,, together to get an isotopy
H:Ygy x I — Yy, where H(z,0) = x by construction.

Define 7, : Yo — Yo by T () = H(Ts(z),1). Then T, is isotopic
to Too via the isotopy H(T (z),s). We are left to verify that 72 is the
desired diffeomorphism. The restriction 77| B, 1s the identity, and
the restriction 77| B, 1s the surface-fiber-preserving diffeomorphism
that maps each fiber to its image under (¢)~!. Consider T2 |n... We
compute

Since the f-coordinate is preserved, it follows that 72 is surface-fiber-
preserving on Noo, and thus 77 is surface-fiber-preserving on the en-
tirety of Y. Finally, note that we have already shown that 77 |5 agrees

with 7o, outside of No,. If we consider F to be the fiber that meets Noo
in those points such that § = 0, we have that
Toolpan, (0,9, 8) = (0,9 — t/pq,t) = Too (1, 1).

From the definition of 7o, we conclude that 77| 7 = Too, s desired.
q.e.d.
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In the left panel of Figure 9, we illustrate a collection of arcs 1 con-
tained in F' N No. In the middle panel, we see the image Too(n), and
the in right panel, the image 72 (n) of the arcs under the isotopy H.

W

0. /

oo oo

\

Figure 9. Left: a collection of arcs 7 in F NNs. Middle:
Too(n). Right: T (n). Each cube represents No, after
the identification of the top side with the bottom side
and the right side with the left side.

Suppose that W is a torus in a 3-manifold Y and 7: Y — Y is a
torus twist along W in the direction of a curve y on W. If W bounds
a solid torus V such that p bounds a meridional disk D in V, then the
twisting can be interpolated to the identity across the solid torus V', and
thus 7T is isotopic to the identity. This property is a higher-dimensional
analogue of the fact that a Dehn twist about an inessential curve in a
surface is also trivial. R

Note that Ay, can be isotoped in F' to avoid the puncture of F' cor-
responding to @), so that the result is a curve in the punctured surface
F preserved set-wise by the (non-closed) monodromy ¢. (See the right
side of Figure 4.) This isotopy of A lifts to an isotopy pushing W,
into Eg. The two choices for this isotopy correspond the two distinct
swallow-follow tori in Fg, which become isotopic after Dehn filling Eg
to get Yg, and the choices of /4, and pi correspond with the natural
parameterizations of either torus in S3. Similarly, we can regard 7, as
an automorphism of F', as opposed to F.

Lemma 6.3. The links QU L./q and QU L(.42,q)/4 are isotopic for
any n € N. Moreover, the isotopy is the (£n)-fold meridional Dehn
twist about a swallow-follow solid torus for Q in S3.

Proof. Recalling the notation from the previous proof, we may decom-
pose Yg into Ex— UNo UE -+, so that W is isotopic to Wa, x {0}, and
in particular, W, can be made disjoint from the surgery dual knot Q*
to Q in Y. We push Q* into a parallel copy of W, x {0} just outside of
No and contained in Ex—. It follows that the torus twist 7o : Yo — Yg
and ensuing isotopy are supported away from a neighborhood of @*. As
such, T and 77, can be regarded as (isotopic) diffeomorphisms of either
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Eg or of S3. Viewing Q U L./q as a link in 53, this implies

Too(QU Leq) = QUToo(Lesa) = QU Lc—24) /as
and 50 Too (QU L, /q) is isotopic to QU L(c_2q)/q- (Here, we regard T, as
an automorphism of F.) Since W, is a swallow-follow torus, it bounds
a solid torus Vs C S2 such that oo bounds a disk in Vo, as discussed
above. Thus, T4, regarded as a diffeomorphism of S3, is isotopic to the
identity. By repeated iterations of T, or its inverse, we can conclude
that Q U L./4 is isotopic to Q U L.+24)/4- q.e.d.

7. Standardizing the Casson-Gordon spheres

In this section, we prove the main theorems, Theorems 1.1 and 1.2,
which assert that any two component R-link of the form @, , U J has
Weak Property R. As above, fix Q = @p4. As in the proof of Propo-
sition 2.6, let B, /4 denote the Casson-Gordon ball obtained by adding
4-dimensional 2-handles to 53 x I along QU L, /4, followed by 3-handles
and a 4-handle. Let X/4 denote the Casson-Gordon sphere, obtained
by capping off B./; with a standard B*. We define Zeja C Bejq to be
the compact 4-manifold obtained by attaching 2-handles to Yg x I along
L/q, followed by 3-handles and a 4-handle. Let X¢ be the compact 4-
manifold obtained by attaching a 2-handle to B* along the O-framed
knot @ C S3, which we refer to as the trace of Q.

Lemma 7.1. The Casson-Gordon sphere X.,; decomposes as
XQ UYQ Zc /d-

Proof. Observe that B, q can be obtained by attaching a 2-handle
to S3 x I along @ and then capping off the resulting Yo boundary
component with Z.,q. Thus, we can construct X,,; by attaching a 2-
handle to B4 along Q followed by capping off the resulting Yo boundary
component with Z./q. In other words, X./q = Xq Uy, Z./q4- q.e.d.

Above, X is obtained by attaching a 0-framed 2-handle to B* along
Q. Dually, we obtain a relative handle decomposition of Xg by starting
with its boundary Yg, attaching a 2-handle to Yy along the surgery
dual Q*, and capping off the resulting S® with a 4-ball. Let F’ be a
slight pushoff of Fin Yo in the positive direction. The surgery dual Q*
decomposes as the union of two arcs, e U f, where f is a component of
a regular Seifert fiber cut along F , and e is an arc connecting Jf in
a parallel copy of Ay, C F’. Observe that if Of = {xo,z1}, we have
that @(xg) = x1, and e is the trace of the isotopy dragging x; back
to g in the description of the monodromy for Eg shown in Figure 5.
See Figure 10 for a depiction of Q*. The description of Q* with e C F
instead of F' is important below, where we consider Q* and a component
V C Ly to be disjoint components of a link.
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Figure 10. The curve @Q* C Yg.

By Proposition 4.14, the CG-ball By is the standard 4-ball; hence,
X can alternatively be obtained by attaching a 2-handle to Q* C Yp,
attaching two zero-framed 2-handles to Q UV C S3, where V is any
component of Ly, followed by two 3-handles and a 4-handle. In total,
X is determined by the attaching link L* C Y{ for its three 2-handles,
consisting of Q*, a 0-framed meridian p* of Q*, and a curve V-.C Ly C F.
The framing on V is the surface-framing induced by F'.

Recall that 7o: Y — Y denotes the torus twist along Wy discussed
in Subsection 6.2.

Lemma 7.2. The framed link To(L*) is handleslide-equivalent to the
framed link L* in Yg.

Proof. First, recall that 7y acts on individual fibers as 7y by Lemma
6.1, and thus 7y fixes every component of Lg, including V. Similarly, u*
is isotopic into a ball disjoint from Wy, so that To(u*) = p*. Using the
notation for components of Ly from Subsection 4.1, let V{;, V], C F'
be pushoffs of the corresponding curves in Lo. Then Q* meets Wy in
precisely two points, the points e N V{; and e N V{,. Tt follows that

To(f) = f and To(e) = ¢/, where ¢ is an arc in I’ obtained by a Dehn
twist of the arc e about the curves V{ | and V{5, so that 7o(Q*) = €'U f.

In the manifold Yy, the curve V' C L* is isotopic to Vi ;. If this
isotopy meets To(Q*), it can be achieved by isotopy and handleslides
over the meridian p*. Thus, after isotopy and handleslides, V' can be
converted to Vi 1. Let @' be the result of a handleslide of 7(Q*) over
Vi1 that undoes the Dehn twist about Vj 1, although it changes the
framing of 7o(Q*) by %1 (see Figure 11). Similarly, V; 1 is isotopic to
V1,2 in Yg, and thus after isotopy and handeslides over p*, V1 1 can be
converted to Vi 2. Let Q" be the result of a similar handleslide of Q'
over Vj o that undoes the other Dehn twist, so that Q" is isotopic to Q*,
where the framings differ by +2. Finally, a slide of Q" over its meridian
u* preserves the isotopy type of Q” but changes the framing by =42,
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converting the framed component Q" to Q*. We conclude that To(L*)
is handleslide-equivalent to L* in Yj. q.e.d.

Figure 11. An illustration of the twist 7y of @* about
V' producing To(Q*), followed by the slide of To(Q*) over
V producing @', with framings considered throughout.

Note that Lemma 7.2 will allow us to extend the automorphism 7y
across the trace of ). The last remaining piece of the puzzle in the
proof of the main theorem is the following proposition.

Proposition 7.3. The torus twist Ty extends to a diffeomorphism
To: Xeyg = Xeja—20)-

Moreover, the two handle decompositions given by To(Q U Ec/d) and
QU Leja—2e) of Xeja—2c) become handleslide-equivalent after adding
two Hopf pairs to each link.

Proof. By Lemma 7.1, we have that X,y = XqUy, Z./q and X/ (q—2c)
= X Uyy Ze/(d—2¢)- By Lemma 7.2, we have that L* and To(L*) are
handleslide equivalent, which implies that 7y can be extended to a dif-
feomorphism from Xg to Xg. Similarly, Lemma 6.1 asserts that 7o
acts on F as 7, and thus To(Lesa) = Lej(a—2c) by Lemmas 4.7 and 4.8.
It follows that 7o extends to a diffeomorphism from Z./; to Zc/3-2¢)-
By gluing these diffeomorphisms together, we get a diffeomorphism %y
from X q to X./(a—2c), as desired.

For the second claim, we again use Lemma 7.1 to view Xq C X, /4.
First, the dual knot Q* C Yy determines a relative handle decomposi-
tion of X¢g with no 3-handles and a single 4-handle. Consider the split
union L' = Q* LU, where U is a two-component unlink. We consider U
to be the attaching circles of the 2-handles of two canceling 2-handle/3-
handle pairs. By Proposition 5.3, L’ is handleslide-equivalent to L*.
Since U is contained in a ball, it follows that To(L') = To(Q*) U U is
handleslide-equivalent to T(L*), which is handleslide-equivalent to L*
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by Lemma 7.2. Finally, as noted above, L* is handleslide equivalent
to L.

In total, To(L') is handleslide-equivalent to L. Noting that To(L,/q) =
To(Le/a) = Lejd—2c), We can invert the relative handle decompositions
of X, changing Q* to (), and the desired statement follows, since the
two canceling 2-handle/3-handle pairs described by U invert to become
two canceling 1-handle/2-handle pairs — i.e., two Hopf pairs. q.e.d.

We note that Theorem 1.1 follows from the combination of the first
statement of Proposition 7.3 with the previous results in the paper, but
we need the second statement to prove the stronger Theorem 1.2.

Proof of Theorem 1.2. Suppose @ = @) 4 is a generalized square knot,
and suppose that L = Q U J is a 2R-link. By Theorem 1.5, L is stably
equivalent to Q U L*, where L' is a Casson-Gordon derivative for Q.
Next, we invoke Proposition 4.14, which asserts that Q U L™ is stably
equivalent to @ U L./4, where ¢ is even. By Lemma 4.7, there is a

sequence of Dehn twists 75! and 7'351 of S taking A./q to Ao, implying

that there is a sequence of homeomorphisms 7£! and ?Sﬂ taking L./4 to
Ly by Lemma 4.8. By Lemma 6.3, the links QU L./q and Q U T (L/q)
are isotopic. By Proposition 7.3, we have that the disjoint union of
QU L./q and two Hopf pairs is handleslide-equivalent to an unlink and
two Hopf pairs if and only if the same statement is true for QU7o(L./q)-
Finally, by Proposition 5.3, we have that QUL is handleslide-equivalent
to an unlink, and thus the disjoint union @) U £y and two Hopf pairs is
handleslide-equivalent to an unlink and two Hopf pairs. We conclude
that the same property holds for every link Q U £L./4, completing the
proof. q.e.d.

Remark 7.4. One can define torus twists on Yy corresponding to
a vertical torus lifting any essential curve in S*. It is possible that a
detailed analysis of these twists could yield extra information about the
relationships between the links Q U L. /4. In fact, we know this is true
in some cases: A key insight from [GST10] and [Sch16] is that the
vertical tori W4 sitting above the slopes Aiy lie in fishtail neighbor-
hoods inside the Casson-Gordon 4-sphere in the case of (p,q) = (3,2).
Such neighborhoods have played a central role in the standardization of
homotopy 4-spheres. (See the last paragraph of [GST10].)

Our techniques, combined with those of [GST10], can be used to
show that in the case of ¢ = 2, the tori W lie in fishtail neighborhoods
for all odd p > 3. In the present development, this is equivalent to
showing that the meridian p4, as a curve in S®, has a surface-framing
coming from W4, of £1. In light of this, we can conclude not only that
Qp,2 has Weak Property 2R, but also that only one Hopf pair is required
to trivialize any 2R-link L = Q,2 U J.
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8. Classifying handlebody-extensions and fibered,
homotopy-ribbon disks

In this section, we show that handlebody-extensions of the closed
monodromy @ can be understood as deck transformations of branched
coverings, and we prove Theorem 1.7. We also enhance our develop-
ment of the CG-balls B./; — in the vein of Corollary 2.4 - to take into
consideration the fibered, homotopy ribbon disks they contain, and we
prove Theorem 1.6.

8.1. Tangles and handlebody extensions. Here we discuss yet an-
other perspective on the handlebody extensions of generalized square
knots. Consider the curve A,y C S, where ¢ is an even integer. By
Proposition 4.10, A./q separates the cone points of order p from those
of order ¢q. Thus, there exists an arc w, (resp. wy) connecting the cone
points of order p (resp. q) in S\ A;/q. If we consider S as the boundary
of a 3-ball B3, then we can perturb the interiors of the arcs wp and
wg into B3 to obtain a rational tangle T'[c/d] whose boundary is the
orbifold S. Since the strands of T'[c/d] connect cone points of matching
order, we can naturally regard the tangle as a 3-dimensional orbifold.
Let H./; denote the handlebody with boundary F' determined by the
curves in L4, so that £.,4 bounds a collection of compressing disks
for H./q.

Lemma 8.1. The branched covering p: F — S extends to a branched
covering

Rc/d: Hc/d — T[C/d]

Proof. The tangle T [¢/d] is homeomorphic to D?(p, ¢) x I. Combining
Lemmas 4.4 and 4.9, we see that the branched cover of D?(p,q) is a
surface ¥’ of genus (p — 1)(¢ — 1)/2 with one boundary component.
Taking R./q to be the product of this covering with I, we have R./q
maps ¥/ x I to D?(p,q) x I, where ¥’ x I is a handlebody of genus
(p —1)(g —1). The curve A./4 bounds a disk in the exterior of the arcs
of T[c/d], and this disk lifts to pq disks in H_ /4, which are bounded by
the lifts L£./q of Ac/q- q.e.d.

Let K[c/d] denote the rational link obtained as the numerator closure
of the rational tangle 7[c/d|. Equivalently, K[c/d] is obtained by glu-
ing 7[0] to T[c/d] along S via an orientation-reversing homeomorphism
identifying the curves Ag on either boundary component. This link has
two components since ¢ is even. Each component K; of K[c/d] = K1UK>
admits a 1-bridge splitting, hence is an unknot. Let ¥, ,(K[c/d]) denote
the pg-fold cover of S branched along K|[c/d], where the component K
has branching index p and the component K> has branching index q.
One way to construct this cover is to first take the p-fold cover of S3



116 J. MEIER & A. ZUPAN

branched along K7, and let I~(2 denote the lift of Ky. Since K is un-
knotted, the result is a new link in S 3.~Finish by taking the g-fold cover
of this S3, branched along the link K,. Alternatively, we could first
branch along Kb, then over the lift of K;. For example, if ¢/d = 2n/1
for some n € N, then

Ypq(K[2n/1]) 2 5,(Th,q) = Xg(Thp) = X(p, g, n),

where ¥,,(K) denotes the m-fold cover of S® branched over the knot K,
and X(p, ¢, n) denotes the Brieskorn sphere described by Milnor [Mil75].

Now, we have by definition that K[c/d] = T[c/d] Us T[0]. By tak-
ing the union of the branched covering maps, we have ¥, ;(K[c/d]) =
H./qUp Ho. Henceforth, we let

Mc/d = Zpﬂ(K[C/d]) = Hc/d Uﬁ Hy.

In addition, since ¢ permutes the disks bounded by L. /4, we know that
¢ extends to a homeomorphism ¢./q: He/q — He/qg-

Lemma 8.2. The automorphism ®./q: M.jq — M/q defined by
P.jq = Pcja Up o generates the group of deck transformations for the
branched covering M4 — S* with branch locus K|c/d).

Proof. First, recall that ¢ generates the group of deck transformations
for the branched covering p: F— S , and thus ¢./q generates the group
of deck transformations for the branched covering R./q: H./q — Tc/d].
The homeomorphism ®/4: M.y — M, /q is defined by taking ®./4 on
the components of H./; Uz Ho to be ¢./q Uz ¢o. Then /4 is an au-
tomorphism of M, 4 of order pg that is compatible with the branched
covering; hence, ®./4 generates the group of deck transformations as
desired. q.e.d.

Lemma 8.3. The 3-manifold M, ,q is reducible if and only if ¢/d = 0.
Moreover, the 3-manifold He g Up Herygr is reducible if and only if
Cl/dl — C”/d//.

Proof. First, note that My = HoUz Hy is obtained by gluing two iden-
tical genus (p—1)(g — 1) handlebodies; thus My = #P~D@=1 (51 x §2),
a reducible 3-manifold. In the reverse direction, let ¢/d # 0 and suppose
by way of contradiction that M, 4 contains an essential 2-sphere S. Let
So denote the image of S in S? under the branched covering map. By
Lemma 8.2, the finite group G generated by /4 acts on M, /4. Invoking
the Equivariant Sphere Theorem (Theorem 4.4), we have that g(S) = S
or g(S) =0 for every g € G.

If g(S)NS = (), then S is disjoint from the branch locus, so that its
image Sy is disjoint from K{[c/d]. Since ¢/d # 0, the link K{c/d] is prime
and non-split. It follows that Sy bounds a three-ball B in S3 \ K, /d-
However, B lifts to a three-ball in M,/q bounded by S, a contradiction.
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If g(S) = S, then S intersects the branch locus in a collection of
points. Since G acts cyclically, the induced map on the sphere is a
cyclic branched covering, so it must have singular set consisting of two
points, by the Riemann-Hurwitz Formula [Oor16]. It follows that image
So is a sphere intersecting K[c/d] in a pair of points. Since K[c/d] is
prime and non-split, Sp must bound a three-ball B’ intersecting K[c/d]
in a single, unknotted arc. But then B’ lifts to a three-ball bounded by
S upstairs, a contradiction. Thus, we conclude that M./, contains no
essential two-spheres, as desired.

__ For the second statement, note that by Lemma 4.9 there exists a map
f: F — F such that f(Aerjar) = Ao- Since f is a product of the lifts 7El
and 7~'0ﬂ, there exists c/d € Qu with ¢ even such that f(Aer/a7) = Aeja-
Thus, we can extend fto a diffeomorphism ]?: Heyg U Hen g — Mg
By the first part of the lemma, we have that M, 4 is reducible if and only
if ¢/d = 0, which is true if and only if Loy = f~1(Lo) = f~H(Leya) =
Len g, or equivalently, ¢’ /d' = c"/d". q.e.d.

8.2. The classification of handlebody extensions. Recall that Z, 4
is defined in Section 7 as the compact 4-manifold constructed by adding
2-handles to Y along L./4, followed by 3-handles and a 4-handle. In
fact, we can make a stronger assertion following Corollary 2.4 and
Proposition 2.6.

Lemma 8.4. The 4-manifold Z.,; is diffeomorphic to H./q X $e/q St

Proof. By Proposition 2.6, a CG-derivative L may be viewed as a
relative handle decomposition for the corresponding bundle H xg S*.
Thus, Z./q and H./q X4, /d S1 have identical relative handle decomposi-
tions and as such are diffeomorphic. q.e.d.

Our next proposition shows that, while on one hand the CG-exten-
sions L./q and Ly g give rise to diffeomorphic handlebody bundles,
these bundles are distinct rel-0 for ¢/d # ¢//d’. In other words, these
CG-derivatives represent distinct extensions of the closed monodromy .
We say that a diffeomorphism V. q: Z./q — Zo is handlebody-fiber-
preserving if it sends handlebody-fibers to handlebody-fibers.

Proposition 8.5.
1) For any c¢/d € Qo with ¢ even, there is a handlebody-fiber-pre-
serving diffeomorphism
\I/C/d: Zc/d — 7.
2) If there is a diffeomorphism from Z.;q to Zo,q that restricts to
the identity on Yg, then c¢/d =c'/d'.

Proof. By Lemma 4.9, there is a homeomorphism f: F > F , ob-
tained as a product of 7£! and ?3[1, that covers a homeomorphism
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f: S — S that preserves cone points and satisfies f(\./q) = Ao. It fol-
lows from Lemmas 6.1 and 6.2 that there is a diffeomorphism ¢, 4: Y —
Yy obtained as a product of the surface-fiber-preserving maps (72)*!
and 76i1 that satisfies 1./4|p = f. By further extending v/ across
the cut system for £, /4, we get a diffeomorphism V. /q4: Z./q — Zp such
that the image of each copy of the handlebody H, /4 is a corresponding
copy of the handlebody Hy, and we conclude that ¥, /; is handlebody-
fiber-preserving.

Next, suppose that V: Z./,; — Z.qy is a diffeomorphism such that

Uy, = idy,. Let Z be the closed 4-manifold obtained by gluing Z,/4
to Zy g via the identity map on their common boundary Yg. Since
the handlebody fibers of Z./; and Z., have identical boundaries in
Yo C Z , it follows that Z fibers over S 1 with fibers diffeomorphic to
the closed three-manifold

M = Hc/d Ugp Hc’/d’-
Let D(Z.,q) be the double of Z,,y. Then we may extend the map
¥ to a diffeomorphism V: Z — D(Zy,¢), by letting ‘I/]Zc/d = V¥ and
\T/]ZC,/d, = Id. Since D(Zy 4) fibers over S1, with fibers the double
Yy = #9(S' x §%) of Hy g (where g = (p—1)(¢ — 1)), the same is true
for Z. Note that Z./; is the complement of a properly embedded disk

~

in a homotopy 4-ball, so that Z = Hy(Zy ) = Hi(D(Ze ) = H1(Z);
and thus Z has a unique infinite cyclic cover.

Since Z fibers over both M and Y, the infinite cyclic cover of 7 must
be diffeomorphic to both M x R and Y, x R. It follows that M and
Y, are homotopy equivalent. By the Sphere Theorem [Pap57|, M is
reducible, and thus Proposition 8.3 implies ¢/d = ¢/ /d'. q.e.d.

We can now prove Theorem 1.7.

Proof of Theorem 1.7. Suppose ¢: H — H is a handlebody extension
of ¢, and let L™ be a collection of curves bounding disks in H that cut
H into a 3-ball. By Proposition 4.14, there exists some ¢/d € Q with
c even such that after adding some additional curves bounding disks
to LT, the collection L™ is handleslide-equivalent in F to L.q. Thus,
H = H./q and ¢ is isotopic to ¢./q. If there exists some ¢’/d’ € Qo such
that L.,y and L. /¢ determine the same handlebody, then H./gU Hq /g
is a reducible 3-manifold and ¢/d = ¢//d’ by Lemma 8.3. q.e.d.

8.3. The classification of fibered, homotopy-ribbon disks. Re-
call from Section 7 that the Casson-Gordon ball B, 4 is constructed by
attaching a O-framed 2-handle to S x I along @, followed by gluing in
the handlebody bundle Z.,4 along the resulting Y boundary compo-
nent. Let R./y C B./q be the core of the 2-handle attached along @, so
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that R./4 is a disk-knot in B, /4, which is diffeomorphic to the standard
B* by Theorem 1.1. By the discussion in Subsection 2.2, the disk R, /d
is homotopy-ribbon and fibered since B4 \ R, 1d = Ze/d-

Given any knot K, there is a well known ribbon disk Ry for K#K
given as

(B, Rg) = (S3,K)° x I.

We refer to Ry as the product ribbon disk for K#K. The following
lemma identifies the product ribbon disk for a generalized square knot
among the collection {(B./4, Rc/q)} (cf. Section 6 of [LM15]).

Lemma 8.6. The CG-pair (Bo,Ry) is the product ribbon disk
(B, Ry,,).

Proof. Let F* be the genus (p—1)(g—1)/2 Seifert surface for K+ =
T, discussed in Section 4, and let A be the union of the co-cores 772+]
of the bands B;; on F7, as in Subsection 4.1. Puncture the triple
(S3,F*,K*) at a point in K to get (B3, (F1)°, (K1)°), and isotope
OA near KT in (F1)° so that OA is contained in the puncture; i.e.,
OAN (K1)° = 0. Note that

(B, (F*)°,(K")°) x I = (B", H, Rg+),
where H = (F*)° x I is a handlebody of genus (p — 1)(¢ — 1) with
OH = ((F)? x {0}) U (A((F)°) x ) U ((F)° x {1}).

Furthermore, A x I is a disk system for H. Let L = 9(A x I) be the
corresponding cut system of 0H. By construction, L coincides exactly
with the curves Ly (see Figure 4). Since K7 is fibered, R+ is fibered
as well (via the product fibering) with fiber H = Hy. It follows that
Ry+ = Ry, as desired. q.e.d.

Recall that a Casson—Gordon sphere is obtained from a Casson—
Gordon ball B4 by capping off with B*. 1In what follows, we not
only cap off B, /q with By = B*, but we also cap off R./q with Ry C By.
Consider the pair

(Xesas Keya) = (Bo, Ro) Ugss @) (Bejas Reya)s

which consists of the Casson-Gordon homotopy 4-sphere X./q and an
embedded 2-sphere K4 therein. This union respects the fibration of the
components, so it follows that K./, is fibered in X, /4. The fiber is a copy
of Hy glued to a copy of H, 4 along F', which is viewed as F with a disk
removed. Compare this with the 4-manifold Z from Proposition 8.5, in
which these handlebodies are glued along F to obtain the closed fiber
Mg (In fact, Z is obtained from surgery on X,/ along the 2-knot
Kesq-) In this context, the fiber of K. /4 is Mco/d, a punctured version of
M, ,q, and monodromy is @Z’/d.



120 J. MEIER & A. ZUPAN

Proposition 8.7. If there is a diffeomorphism from (B./q, Rc/q) to
(Berjars Reryqr) that restricts to the identity on the common boundary
(S3,Q), then c/d =c'/d'.

Proof. Suppose there is such a diffeomorphism. Then the 2-knot

(Beyds Beja) Yiss @) (Beryars Reyar)
is fibered with fiber M°® = (H./qU He /@), and in addition it is dif-
feomorphic to the fibered 2-knot obtained by doubling (B /4, Rer/ar)-
This double necessarily has fiber (#9(S* x §2))°. As in the proof of
Proposition 8.5, we can pass to the (unique) infinite cyclic cover of
the 2-knot exterior to conclude that M° must be homotopy-equivalent
to Y;”. Again, by Proposition 8.3, this implies ¢/d = ¢’/d'. q.e.d.

On the other hand, if we are allowed to consider diffeomorphisms
that act non-trivially on the boundary, many of these CG-pairs become
diffeomorphic.

Proposition 8.8. For any n € N, the CG-pairs (B4, Rc/q) and
(B(cx2ndy/d> Biexand)/a) are diffeomorphic.

Proof. By definition, B4 is built by attaching 0-framed 2-handles
to QU L4, before capping off with a 4-dimensional 1-handlebody, and
R.jq C Bcjq is the core of the 2-handle attached along Q. By Lemma 6.3,
the links Q U L./q and Q U L(c19p4)/4 are isotopic in S3. It follows
that B,/ is diffeomorphic to B(ctand)/q, and that this diffeomorphism
equates the cores of the two 2-handles attached along the two copies
of Q. q.e.d.

Proof of Theorem 1.6. Part (1) is Lemma 8.6. Part (2) is Proposi-
tion 8.7. Part (3) follows from Proposition 4.14. Part (4) is Propo-
sition 8.5(1). q.e.d.

Remark 8.9. The second part of the proof of Proposition 8.8 implies
(in particular) that all pairs of the form (B.o,/1, Ri2,/1) are diffeomor-
phic. Because this isotopy is given by the torus twist 7o, taking QUL /g
to Q U L(c+2nd)/4 (as in Lemma 6.3), we find that (Xio,/1,K10n/1) is
the n-twist spin of the torus knot 7T}, ;. The authors are not aware of a
classification of the fibered 2-knots K./ in the case that c/d # +2n/1.

8.4. Classical examples and results. In this subsection, we prove
Corollary 1.3, which recovers classical results of Akbulut and Gompf.
Recall the homotopy 4-spheres ¥, and H(n, k) discussed in the intro-
duction; Gompf showed 3¢ and the H(n,k) are standard [Gom91lal],
while Akbulut showed 3, is standard for m > 0 [Akb10].

Proof of Corollary 1.5. To apply Theorem 1.1 to these families of exam-
ples, we must show that each admits a handle decomposition with no
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1-handles and two 2-handles such that one 2-handle is attached along
a generalized square knot. Such a handle decomposition for H(n, k)
is given in Figure 14 of [GST10]. By their discussion in Section 8,
page 2334, one of the components of the attaching link L(n, k) for the
two 2-handles is the generalized square knot ),,41,,. This proves the
corollary in the case of H(n, k).

Gompf gives a handle decomposition for 3, in Figure 8 of [Gom91Db],
and he describes on pages 130-131 how to eliminate the two 1-handles
present, as well as one of the 2-handles. The instructions are to remove
the two dotted circles, but add full-twists (one of each sign) to all of the
strands passing through them. Afterwards, the 2-handle given by xzy
can be cancelled with a 3-handle, so the resulting diagram will have two
2-handles, given by zz and . We claim that zz is the square knot, Q3 2.

To see this, we discard everything from Gompf’s Figure 8 except
for xz and the two dotted circles. We remove these dotted circles and
add a positive full-twist to the strands passing through the top one
and a negative full-twist to the strands passing through the bottom
one. See Figure 12. That the resulting knot is ()32 can be verified by
simplifying the right frame of Figure 12. This proves the corollary in
the case of 3. q.e.d.

e

=

Figure 12. (Left) A sublink from Figure 8 of
[Gom91b] (nght) The knot Qg,g = T372#T7372 in dis-

guise.

We remark that the 3, are a sub-family of a larger class of homotopy
4-spheres described by Cappell and Shaneson [CS76]. Many of these
Cappell-Shaneson spheres (beyond the ¥,,,) are known to be standard
by work Gompf [Gom10] and Kim and Yamada [K'Y17], though handle
diagrams have not been given in these cases. General Cappell-Shaneson
spheres are not known to be geometrically simply-connected.
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9. Trisecting the Casson-Gordon homotopy four-spheres

In this section, we describe a natural trisection of the Casson-Gordon
homotopy 4-sphere X corresponding to a handlebody extension ¢ of
the closed monodromy of a fibered, homotopy-ribbon knot K C S3. We
also describe the connections between the R-links arising as Casson-
Gordon derivatives, trisections, and the GPRC and Stable GPRC using
the authors’ framework from [MZ17].

A Heegaard splitting of a closed 3-manifold Y is a decomposition
Y = HU H', where H and H' are handlebodies that intersect in their
common boundary 3, called a Heegaard surface. One dimension higher,
a trisection T of a closed, smooth 4-manifold X is a decomposition X =
X1 U X5 U X3, where X is a 4-dimensional handlebody, H;; = X; N X;
is a (3-dimensional) handlebody, and ¥ = X; N X2 N X3 is a closed
surface. If X; has genus equal to k; and ¥ has genus g, we say that T is
a (g; k1, k2, k3)-trisection. A trisection 7 is uniquely determined by the
union Hio U Hag U Hsy, called the spine of T [GK16].

Given a fibered, homotopy-ribbon knot K C S? and a handlebody
extension ¢ of the closed monodromy of K, there is a natural trisection
of the CG-sphere Xy, as described in the next proposition.

Proposition 9.1. Suppose that K is a fibered, homotopy-ribbon knot
in 83, with genus g fiber F, monodromy ¢, and extension ¢ of the closed
monodromy @. Then the CG-sphere X4 admits a (2g;0, g, g)-trisection.

Proof. There is a well-known construction of a Heegaard surface for
53 coming from the open book decomposition induced by the fibration
of Ex: Let Fy and F_ be two copies of the fiber F in S3, so that
F,NF_ =K, and let ¥ = F, UF_. Then each component of S\ ¥ is
diffeomorphic to the product F' x I collapsed along K x I; thus, 3 cuts
S3 into two genus 2g handlebodies, which we will call H, and H, 3-

Let Ry be the CG-disk in By bounded by K, and let ﬁi be a copy
of Fy capped off in By with the disk Ry, so that ﬁJr NE_ = Ry. Note
that ﬁi is not properly embedded: ﬁi NOBy = Fy and ﬁi NInt(By) =
Int(Ry). By assumption, By \ Ry = H X, S', and as such there is a
pair of handlebodies Hy in By with 0H1 = F\i and Hy N H_ = Ry.
Let H, = H_ U H_, so that H, is the boundary connected sum of H_
and H_, a genus 2¢g handlebody.

We claim that H, U Hg U H is the spine of a (2g;0, g, g)-trisection
of X4. First, we note that H, N HgN H, = 3, so the triple intersection
is as desired. To complete the proof, it suffices to show that X \ (H, U
HzUH.,) has three components, two of which are genus g 4-dimensional
1-handlebodies and one of which is a 4-ball. Note that X4\ (Ho U Hpg)
consists of a 4-ball B* and By. In addition, By cut open along H,
is diffeomorphic to By \ Ry = H x4 S cut open along two fibers,
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say H x4 {0} and H x4 {1/2}. Each of the two resulting components
is diffeomorphic to H x I, a genus g 4-dimensional 1-handlebody, as
desired. q.e.d.

Note that the above construction depends only on the extension ¢
of the closed monodromy of the initial knot K; the choices of Fi are
unique up to isotopy. Therefore, we will let Ty represent the trisection
resulting from Proposition 9.1, without ambiguity.

Every trisection 7 can be encoded by a trisection diagram, which we
will define shortly. A cut system in a genus g surface X is a collection
of g pairwise disjoint homotopy classes of curves that cut ¥ into a con-
nected planar surface. A cut system « determines a handlebody H,,
by adding 3-dimensional 2-handles to ¥ along « and capping off the
resulting 2-sphere boundary component with a 3-ball (as in the proof of
Lemma 2.5). A trisection diagram for a trisection T is a triple («, 3,7)
of cut systems in ¥ such that H, U Hg U H, is a spine for 7. As such,
each pair of curves defines a Heegaard diagram for one of the 3-manifold
0X;.

As an example, there are three genus one trisections of $%, a (1;1,0,0)-
trisection denoted Sy, a (1;0, 1, 0)-trisection denoted Sa, and a (1;0,0, 1)-
trisection denoted S3. Diagrams for Si, Sz, and S3 are depicted in
Figure 13.

NN

Figure 13. The three unbalanced, genus 1 trisection di-
agrams S;, Sz, and Sz for S, which are used to perform
stabilizations of trisection diagrams.

To find a trisection diagram for 7, and to see the connection between
R-links and trisections via Heegaard surfaces, we appeal to machinery
developed in [MZ17], setting up the next lemma with several more
definitions. Let L be an n-component R-link in S3. A Heegaard surface
¥ C S3 is called admissible if S® = HUs; H' and L is isotopic to a subset
of a core of H, so that H \ L is a compression body. Let Hj denote
the handlebody resulting from 0-framed surgery on L in H. A genus g
Heegaard diagram (o, 3) for Y}, = #%(S' x S?) is said to be standard if
« and B have k curves in common, and the remaining curves consist of
g — k mutually disjoint pairs of curves that intersect each other once.

The next lemma, proved as Lemma 4 in [MZ17], connects R-links to
trisections via admissible surfaces:
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Lemma 9.2. Let L be an n-component R-link with admissible genus
g surface ¥.. Then there is a (g;0, g — n, n)-trisection, denoted T (L,¥),
of X1, with spine H' U H U Hy,. Moreover, there is a trisection diagram
(a, B,7y) for T(L,X) such that

1) Hy=H', Hs=H, and H, = Hy;

2) L is a sublink of vy, where v is viewed as a link framed by 3 in

S3 = H,UHg; and
3) (B,7) is a standard diagram for Yy_,,, where f N~y =~ — L.

As an application of Lemma 9.2, suppose that K is a fibered, homo-
topy-ribbon knot with genus g fiber F', extension ¢, and CG-derivative L.
As in the proof of Proposition 9.1, there is a natural Heegaard surface
obtained by viewing the fibration of K as an open book decomposition
of §3, a fibration 7: S3 — K — S! so that for each § € S, 7=1(9)
is the interior of a Seifert surface Fy for K. This Heegaard surface is
Y = FyUFY 3, which cuts S3 into two genus 2¢ handlebodies H and H’,
both viewed as a copy of F' x I with OF x I crushed to OF x {pt}, such
that Fy o C H is glued to Fy/p C H' via the identity map and Fy C H’
is glued to Fy C H with the monodromy ¢. Note that these gluings
respect the boundary crushing since ¢|x = id.

Given an arc a C F, let ag be the corresponding arc in Fy. Then
every arc a C F' gives rise to a product disk D(a) C H with boundary
ap U a9 and D'(a) C H' with boundary a;/, U a1 = ay/2 U p(a)o.

Lemma 9.3. With K, L, F, ¢, and ¥ as above, the surface X is an
admissible surface for L.

Proof. We have established that S® = H U H’, so remains to check
that L is isotopic to a core of H. It suffices to find a collection of
dualizing disks for L in H; that is, pairwise disjoint compressing disks
{D1,...,Dy} such that |D; N L;| = ;5. Let {a1,...,an} be a collection
of arcs in F' such that |a;NL;| = 6;;. Then the disks {D(a1),...,D(an)}
dualize L C Fjy, and we conclude that X is an admissible surface for L.

q.e.d.

It follows immediately from Lemma 9.2 that X; = X, has a
(29;0, g, g)-trisection, and it should come as no surprise that these pa-
rameters are the same ones guaranteed by Proposition 9.1. Indeed,
we will see that 7 (L, %) and Ty are two ways of constructing identical
trisections.

Let L be a g-component derivative of a knot K contained in a Seifert
surface F' for K. A collection of dualizing arcs for L in F' is defined to
be a set {a1,b1,...,a4,by} of 2¢g pairwise disjoint and non-isotopic arcs
such that |CLi N L]| = 52’]’ and b; N L = 0.

Lemma 9.4. Let K, L, F, ¢, and X be defined as above, and let
{a1,b1,...,aq4,b4} be a collection of dualizing arcs for L in F. Then
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there is a trisection diagram («, 3,7) for T(L,X) given by
a={0D'(ay),0D'(b1),...,0D'(ag),0D'(by)}
5= {0D(a1),dD(by), .., dD(ay), OD(b,)}
v=A{L1,...,Ly,0D(b1),...,0D(by)}.
Moreover, T(L,%) = T.

Proof. First, we observe that « is a cut system for H' and f is a cut
system for H. By definition, the third handlebody Hj, in the spine of
T(L,%) is obtained by doing O-framed Dehn surgery on L in H, and
thus a set of cut disks for Hy, consists of the g disks bounded by L and g
disks unaffected by the Dehn surgery on H; that is, {D(b1),...,D(by)}.
We conclude that v bounds a cut system for Hp, and («,/3,7) is a
trisection diagram for 7 (3, L).

For the second claim, let G, G, and G, denote the handlebodies in
the spine of 74 constructed in Proposition 9.1. By construction, we may
suppose that H, = G, and Hg = Gg. In addition, G, is defined by a
cut system bounded by curves Lo C Fy and Ly/; C Fyjp. Let v X
denote this cut system. We claim that v and +' determine the same
handlebody. Note that v and 4/ contain the g curves in Ly in common,
and the remaining g curves dD(b1),...,0D(by) in ~y are disjoint from
the remaining g curves Ly in o/, It follows that dD(b1),...,0D(by)
bound disks in 4/ and thus « and 4’ determine the same handlebody.
We conclude that 7(3, L) = 7. q.e.d.

Next, we connect R-links to the GPRC and Stable GPRC using the
theorems of [MZ17]. Trisections 7 of X and 7’ of X’ can be glued
together to get a trisection T#7’ of X#X' in the obvious way; the
connected sum of diagrams for 7 and 7" is a diagram for T#7". A tri-
section T of S% is called standard if T can be expressed as the con-
nected sum of copies of S1, S, and S3. Whereas Waldhausen’s Theo-
rem [Wal68] implies that every Heegaard splitting of S? is standard (i.e.
can be expressed as connected sums of standard genus one splittings),
the question of whether all trisections of S* are standard remains open
[MSZ16].

It was proved in [GK16] that every trisection 7 of S* becomes stan-
dard after taking the connected sum of 7 with a standard trisection
of S%. A related notion, defined in [MZ17], is the idea of being {i}-
standard or {i, j}-standard: A trisection 7T is said to be {i}-standard if
the connected sum of 7 with some number of copies of S; is standard;
similarly, 7 is {4, j}-standard if the connected sum with copies of S;
and S; is standard. Note that if 7 is {i}-standard or {3, j}-standard
for some i, j, the definition implies that 7 must be a trisection of S*.
With this terminology in mind, the uniqueness result of Gay and Kirby
implies that every trisection of S* is {1, 2, 3}-standard.
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The following is Theorem 3 from [MZ17].

Theorem 9.5. Suppose L is an R-link and X is an admissible surface
for L.
1) If L has Property R, then T(L,X) is {2}-standard.
2) The link L has Stable Property R if and only if T(L,%) is {2,3}-
standard.

Note that the link L has Weak Property R if and only if 7(L,Y) is
{1,2, 3}-standard; i.e., if and only if X; = S* by the uniqueness result
of [GK16]. As a corollary to this theorem, we have the following.

Corollary 9.6. Let K be a fibered, homotopy-ribbon knot with ex-
tension ¢. The following are equivalent.

1) The trisection Ty is {2, 3}-standard.
2) Every CG-derivative corresponding to ¢ has Stable Property R.
3) Some CG-derivative corresponding to ¢ has Stable Property R.

Proof. Suppose first that the trisection 7y is {2, 3}-standard and L is
a CG-derivative for K corresponding to ¢. By Lemma 9.3, the associ-
ated surface ¥ is admissible, and by Lemma 9.4, we have T (L, ) = 7.
It follows from Theorem 9.5 that L has Stable Property R.

Note that if ¢: H — H and L is any collection of curves in F' bound-
ing disks in H, then L is a CG-derivative for K by definition, so the
collection of CG-derivatives corresponding to ¢ is nonempty (in fact,
infinite). Thus, (2) implies (3).

Finally, suppose that there exists a CG-derivative L corresponding
to ¢ that has Stable Property R. We again invoke Lemmas 9.3 and 9.4
to conclude that L has associated admissible surface X such that Ty =
T(L,Y), and Theorem 9.5 completes the proof. q.e.d.

We conclude this section by pointing out a connection between tri-
sections and the Slice-Ribbon Conjecture. First, we recall a proposition
of Abe and Tange (Lemma 5.1 of [AT13]). For convenience, we present
a novel proof here; we acknowledge Christopher Davis, with whom we
discovered this simple fact.

Proposition 9.7. Suppose L is an R-link. If L has Stable Property
R, then L is a ribbon link.

Proof. By hypothesis, L U is handleslide-equivalent to U’, where U
is an unlink of r components and U’ is an unlink of r + n components.
Since U’ is a ribbon link, our claim will follow if we can show that the
result L” of a handleslide on a ribbon link L’ is a ribbon link. Suppose
L" is obtained from L’ via a slide of component J’ of L’ over component
J of I, producing the new component J” of L”. So, L" = (L’\ J")UJ".
Let R’ be a collection of ribbon disks for L', and let R; and R denote
the disks corresponding to J and J'. Let Rj» denote the result of
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taking a push-off of R; and banding it to Ry along the framed arc
corresponding to the handleslide. It follows that R” = (R'\ Ry/) U R»
is a collection of ribbon disks for L”, as desired. The proof of the
proposition by inducting on the number of handleslides necessary to
convert L LU to U’. q.e.d.

It is not known if an R-link with Weak Property R is necessarily
ribbon. Theorem 9.5, Corollary 9.6, and Proposition 9.7 combine to
give the following trisection-theoretic sufficient conditions for a knot or
link to be ribbon.

Corollary 9.8. 1) Let K be a fibered, homotopy-ribbon knot with
extension ¢. Then K is ribbon if Ty is {2,3}-standard.

2) Let L be an R-link and ¥ an admissible surface for L. Then L is
ribbon if T(L,X) is {2,3}-standard.

Proof. Part (1) follows from Proposition 9.7 and Corollary 9.6. Part
(2) follows from Proposition 9.7 and part (2) of Theorem 9.5.  g.e.d.
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