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GENERALIZED SQUARE KNOTS AND HOMOTOPY
4-SPHERES

Jeffrey Meier & Alexander Zupan

Abstract

The purpose of this paper is to study geometrically simply-
connected homotopy 4-spheres by analyzing n-component links
in S

3 with a Dehn surgery realizing #n(S1 ⇥ S
2). We call such

links nR-links. Our main result is that a homotopy 4-sphere that
can be built without 1-handles and with only two 2-handles is
di↵eomorphic to the standard 4-sphere in the special case that
one of the 2-handles is attached along a knot of the form Qp,q =
Tp,q#T�p,q, which we call a generalized square knot. This theorem
subsumes prior results of Akbulut and Gompf.

Along the way, we use thin position techniques from Heegaard
theory to give a characterization of 2R-links in which one compo-
nent is a fibered knot, showing that the second component can be
converted via trivial handle additions and handleslides to a deriv-

ative link contained in the fiber surface. We invoke a theorem of
Casson and Gordon and the Equivariant Loop Theorem to classify
handlebody-extensions for the closed monodromy of a generalized
square knot Qp,q. As a consequence, we produce large families, for
all even n, of nR-links that are potential counterexamples to the
Generalized Property R Conjecture. We also obtain related clas-
sification statements for fibered, homotopy-ribbon disks bounded
by generalized square knots.

1. Introduction

The Smooth 4-Dimensional Poincaré Conjecture (S4PC) asserts that
if X is a homotopy 4-sphere, a closed, smooth 4-manifold homotopy
equivalent to the standard 4-sphere S

4, then X is di↵eomorphic to S
4.

The topological version of the S4PC was established by Freedman
[Fre82], and the S4PC is the final unsettled case of the Generalized
Poincaré Conjecture. In 1987, David Gabai resolved the famous Prop-
erty R Conjecture [Gab87], showing that the unknot is the only knot
in S

3 that admits a Dehn surgery yielding S
1 ⇥ S

2. This result can be
viewed as initial progress toward a positive resolution of the S4PC, since
it follows that a homotopy 4-sphere built with no 1-handles and a single

Received June 12, 2019.

69



70 J. MEIER & A. ZUPAN

2-handle must be di↵eomorphic to S
4. In this paper, we extend this

classification to a broader family of handle decompositions. We refer to
the knot Qp,q = Tp,q#T�p,q as a generalized square knot.

Theorem 1.1. Suppose that X is a homotopy 4-sphere that can be

built with no 1-handles and two 2-handles such that the attaching sphere

of one of the 2-handles is a generalized square knot Qp,q. Then X is

di↵eomorphic to S
4
.

At first glance, this class may appear somewhat restricted; however,
it includes a number of historically important examples of homotopy
4-spheres. The first such example was the Akbulut-Kirby sphere ⌃0,
which was introduced by Cappell and Shaneson in 1976 [CS76], stud-
ied in detail by Akbulut and Kirby in 1985 [AK85], and shown to be
standard by Gompf in 1991 [Gom91a]. Subsequently, Gompf drew
handlebody diagrams for an infinite family {⌃m} of Cappell-Shaneson
homotopy spheres in 1991 [Gom91b]. This family remained one of
the most prominent classes of potential counterexamples to the S4PC
(see [FGMW10]) until Akbulut showed that each ⌃m is standard in his
celebrated 2010 paper [Akb10]. Another infinite family H(n, k) gener-
alizing ⌃0 was introduced and standardized by Gompf [Gom91a] (cf.
Figure 14 of [GST10]). Each of these examples satisfies the hypotheses
of Theorem 1.1, so the present approach subsumes the proofs that these
manifolds are standard. Moreover, the methods here are qualitatively
di↵erent from the other approaches; whereas past results involved tech-
niques to simplify specific handle decompositions, our work is a more
flexible characterization of a substantially larger collection of homotopy
4-spheres.

A 4-manifold that can be built without 1-handles is called geomet-

rically simply-connected. If X is a geometrically simply-connected 4-
manifold that can be built with a single 0-handle, n 2-handles, n 3-
handles, and a single 4-handle, then �(X) = 2 and X is a homotopy
4-sphere. Since the attaching map of the 3-handles is unique up to
isotopy [LP72], the manifold X is completely characterized by the at-
taching spheres of the 2-handles, an n-component link L in S

3 with a
Dehn surgery to the manifold #n(S1 ⇥ S

2), which we denote by Yn.
(The framings and linking numbers for L are determined by this Dehn
surgery and must all be zero.) We call an n-component link L with
the property that 0-surgery on L yields Yn an R-link (or an nR-link

when we wish to emphasize the number of components). Conversely,
every R-link L determines a handle decomposition of a 4-manifold we
denote XL, and the above arguments imply that XL is a geometrically
simply-connected homotopy 4-sphere.

In this vein, Gabai’s result establishes that the unknot is the only
1R-link. This simple structure quickly disappears for n > 1, since han-
dleslides of L preserve the result of Dehn surgery. The Generalized
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Property R Conjecture (GPRC) asserts that, modulo handleslides, the
only R-link is the unlink.

Generalized Property R Conjecture. Every R-link is handle-
slide-equivalent to an unlink.

If U is an unlink, then the induced handle decomposition of XU con-
tains canceling 2-handle/3-handle pairs, implying that XU can be built
with only a 0-handle and 4-handle, so XU is di↵eomorphic to the stan-
dard S

4. The same is true for any link L handleslide-equivalent to
U , and thus, the GRPC implies the S4PC for geometrically simply-
connected 4-manifolds. In this case, we say that L has Property R.
There are other, weaker versions of the GPRC, which also have the
same implication. We denote the split union of two links L1 and L2 by
L1 t L2.

Stable Generalized Property R Conjecture. For every R-link
L, there is a 0-framed unlink U such that LtU is handleslide-equivalent
to an unlink.

A Hopf pair is a Hopf link where one component is 0-framed, while
the other is decorated with a dot and encodes a 4-dimensional 1-handle
in the standard way. (See [GS99] for details regarding handlebody
calculus for 4-manifolds.)

Weak Generalized Property R Conjecture. For every R-link
L, there is a 0-framed unlink U and a split collection of Hopf pairs V

such that L t U t V is handleslide-equivalent to an unlink and a split
collection of Hopf pairs.

As above, if L satisfies the weak/stable GPRC, we say that L has
Weak/Stable Property R. If L has Stable Property R, then the handle
decomposition of XL can be converted to the standard handle decompo-
sition of S4 after adding some canceling 2-handle/3-handle pairs (cor-
responding to the unlink U). If L has Weak Property R, the handle
decomposition of XL can be made standard after adding both canceling
1-handle/2-handle pairs and canceling 2-handle/3-handle pairs. It fol-
lows from Cerf Theory that the Weak GPRC is equivalent to the S4PC
for geometrically simply-connected 4-manifolds.

Following [GST10], we say that a given knot K in S
3 has (weak/

stable) Property nR if for every nR-link L having K as a constituent
knot, L has (Weak/Stable) Property nR. Using this language, we can
give a slightly stronger restatement of Theorem 1.1.

Theorem 1.2. Every generalized square knot Qp,q has Weak Property

2R; moreover, any 2R-link containing Qp,q can be simplified after adding

at most two Hopf pairs.
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As mentioned above, this proves the S4PC for a class of geometrically
simply-connected homotopy 4-spheres, including those standardized by
Gompf in 1991 [Gom91a] and Akbulut in 2010 [Akb10]. Notably,
our approach di↵ers dramatically from previous work; in particular, no
(explicit) use of a fishtail neighborhood is made here. See Subsection 8.4
for details.

Corollary 1.3. The Cappell-Shaneson homotopy 4-spheres ⌃m and

the Gompf homotopy 4-spheres H(n, k) are standard.

The main theorem is also interesting from the perspective of the
GPRC and the Stable GPRC, since the consensus appears to be that
neither of these two conjectures is likely to be true. In [GST10], Gompf,
Scharlemann, and Thompson produced a family {Ln} of potential coun-
terexamples to the GPRC (building on work of Akbulut and Kirby
[AK85] and Gompf [Gom91a]), in which each Ln is a 2-component
R-link with a square knot component. If Ln has Property R, then the
trivial group presentation

Pn = hx, y |xyx = yxy, x
n = y

n+1i
satisfies the Andrews-Curtis Conjecture [AC65], which is widely be-
lieved not to be the case when n � 3. See [GST10] for further details
about the Andrews-Curtis Conjecture.

The family {Ln} of 2R-links, which have the property that one com-
ponent is the square knot Q3,2, was further studied and characterized by
Scharlemann in [Sch16]. We expand on Scharlemann’s characterization
to produce, for each generalized square knot Qp,q, an infinite family of
R-links having (p � 1)(q � 1) components, most of which appear to be
potential counterexamples to the GPRC. These are the first potential
counterexamples having more than two components.

Proposition 1.4. Fix a generalized square knot Qp,q. For n = (p�
1)(q � 1) and for any c/d 2 Q with c even, there is an nR-link L

p,q
c/d

contained in a fiber for Qp,q.

In Section 9, we revisit a program by which to disprove the GPRC and
Stable GPRC using the theory of 4-manifold trisections introduced by
Gay and Kirby [GK16]. We show how to associate a natural trisection
to the homotopy 4-sphere XL corresponding to an R-link L, and we
describe explicit trisection diagrams for these trisections in the case
of the 4-manifolds XLp,q

c/d
associated to the R-links of Proposition 1.4.

An R-link L satisfies the Stable GPRC precisely when these natural
trisections have a certain stable property.

The relevant characteristics of a generalized square knot are that
they are ribbon, fibered, and have periodic monodromy. In the course
of proving Theorem 1.1, we also prove the next theorem, which may be
of independent interest. By the closed monodromy of a fibered knot K
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in S
3, we mean the monodromy of the associated closed surface-bundle

obtained as 0-surgery on K.

Theorem 1.5. If L = Q [ J is a 2R-link and Q is nontrivial and

fibered, then there is an unlink U such that Q [ J t U is handleslide-

equivalent to Q [ L
+
, such that

1) L
+

is n-component link with n = g(Q),
2) L

+
is contained in a fiber F of Q, and

3) the closed monodromy of Q extends over the handlebody deter-

mined by L
+
.

The proof of Theorem 1.5 revolves around the theory of Heegaard
splittings of 3-manifolds and thin position arguments initiated by
Scharlemann and Thompson [ST94]. This theorem could potentially
be used to prove that all fibered, homotopy-ribbon knots have Weak
Property 2R.

The link L
+ in Theorem 1.5 has a special name; we call it a Casson-

Gordon derivative, in reference to the seminal work of Casson and Gor-
don characterizing the monodromies for fibered, homotopy-ribbon knots
[CG83]: A fibered knot K is homotopy-ribbon in a homotopy 4-ball
if and only if the closed monodromy of K extends across a handle-
body. Moreover, such an extension encodes a fibered, homotopy-ribbon
disk-knot bounded by K. (By a disk-knot we mean a properly embed-
ded disk D in homotopy 4-ball B.) Thus, the following classification
of fibered, homotopy-ribbon disk-knots bounded by generalized square
knots is closely related to Theorem 1.1.

Theorem 1.6. There is a family {(Bc/d, Rc/d)} of fibered, homotopy-

ribbon disk-knots for (S3
, Qp,q), indexed by c/d 2 Q with c even, such

that

1) (B0, R0) is the product ribbon disk (B3
, T

�
p,q)⇥ I;

2) The members of {(Bc/d, Rc/d)} are pairwise non-di↵eomorphic

rel-@;

3) For any fibered, homotopy-ribbon disk-knot (B,R) for (S3
, Qp,q),

we have (B,R) 2 {(Bc/d, Rc/d)}; and
4) The members of {(Bc/d, Rc/d)} have di↵eomorphic exterior.

Finally, we return to the notion of extending a mapping class across a
handlebody. Long showed that there exists a fibered knot whose closed
(pseudo-Anosov) monodromy admits extensions over two distinct han-
dlebodies [Lon90]. In general, for a knot with pseudo-Anosov mon-
odromy, only finitely many extensions are possible [CL85]. We give the
following analogue of Long’s result for generalized square knots. By the
theorem of Casson and Gordon, each CG-derivative Lp,q

c/d gives rise to an

extension �p,qc/d of the closed monodromy b'p,q of the generalized square

knot Qp,q.



74 J. MEIER & A. ZUPAN

Theorem 1.7. Every handlebody-extension of b'p,q
is isotopic to �

p,q
c/d,

for some c/d 2 Q with c even, and each �
p,q
c/d represents an extension of

b'p,q
over a distinct handlebody for each choice of c/d 2 Q with c even.

The common element of many of these theorems is the rational num-
ber c/d: For a fixed p and q, the exterior Bc/d \ ⌫(Rc/d) is given by the
handlebody-bundle H ⇥�c/d

S
1, and the link Lc/d bounds a cut system

for H in this extension.

Organization. In Section 2, we state general preliminary material and
give detailed discussions of disk-knots, R-links, and fibered, homotopy-
ribbon knots in the context of the theorem of Casson and Gordon. In
Section 3, we turn our attention to the theory of Heegaard splittings of
3-manifolds and apply thin position arguments to prove Theorem 1.5.
In Section 4, we give a detailed account of generalized square knots,
including a careful analysis of the fibrations of their exteriors and of
their 0-surgeries. In Section 5, we give a detailed analysis of the sim-
plest Casson-Gordon derivative for a generalized square knot and show
that this link has Property R. In Section 6, we describe a pair of au-
tomorphisms of the Seifert fibered space obtained as zero-surgery on a
generalized square knot that are given by twisting along vertical tori.
These automorphisms are the key ingredient in the final part of the proof
of our main results. In Section 7, we give proofs of Theorems 1.1 and 1.2
by considering certain handle decompositions of the Casson-Gordon ho-
motopy 4-spheres corresponding to extensions of the closed monodromy
of generalized square knots that are well adapted to the automorphisms
referenced above. In Section 8, we turn our attention to a final anal-
ysis of monodromy extensions and disk-knots and prove Theorems 1.6
and 1.7. In Section 9, we give trisections for Casson-Gordon homotopy
4-spheres and discuss connections between the theory of trisections, the
GPRC, and the Slice-Ribbon Conjecture arising from considerations of
R-links and fibered, homotopy-ribbon knots.

Acknowledgements. The authors would like to thank the following
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Mark Brittenham, Christopher Davis, Bob Gompf, Cameron Gordon,
Kyle Larson, Tye Lidman, Tom Mark, Maggie Miller, Marty Scharle-
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The first author was supported by NSF grants DMS-1400543 and
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2. Preliminaries

We begin with some standard declarations. All manifolds are smooth
and orientable unless specified. If Y ⇢ X, we let ⌫(Y ) denote an open
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regular neighborhood of Y in X, and for ease of notation, we let X \
Y = X � ⌫(Y ). The term n-dimensional genus g handlebody refers
to the compact orientable n-manifold constructed by attaching g n-
dimensional 1-handles to an n-dimensional 0-handle. We use the word
handlebody to mean a 3-dimensional handlebody; otherwise, we will
specify dimension. Let L be a framed link in S

3, with components L1

and L2 (and possibly others). A handleslide of L1 over L2 is the process
by which L is replaced with L

0 = (L�L1)[L
0
1, where L

0
1 is the framed

knot obtained by connecting L1 to L2 with a band. (See Section 5
of [GS99] for complete details.) If a link L

0 can be obtained from L

by a finite sequence of handleslides, we say L and L
0 are handleslide-

equivalent. If U and U
0 are unlinks and L t U is handleslide-equivalent

to L
0 t U

0, we say L and L
0 are stably equivalent. Note that two stably

equivalent R-links L and L
0 give rise to di↵eomorphic 4-manifolds XL

and XL0 . A curve contained in a surface ⌃ is a free homotopy class of
a simple loop that does not bound a disk in ⌃ and is not parallel to a
component of @⌃.

2.1. Slice knots and links. Throughout this section, let B be a homo-
topy 4-ball; i.e., B is a smooth, contractible 4-manifold with @B ⇠= S

3.
By [Fre82], B is homeomorphic to B

4, the standard smooth 4-ball; it is
unknown in general whether B and B

4 are di↵eomorphic. A collection
D of smooth, properly embedded disks in B is called a disk-link, or a
disk-knot if D is a single disk. A disk-link is called homotopy-ribbon

if the natural inclusion map (S3
, @D) ,! (B,D) induces a surjection

⇡1(S3 \ @D) ⇣ ⇡1(B \D). A disk-link D in B
4 is called ribbon if D can

be isotoped to have no local maxima with respect to the radial height
function on B

4.
A link L ⇢ S

3 is called slice in B (resp., homotopy-ribbon in B)
if (S3

, L) = @(B,D) for a disk-link (resp., homotopy-ribbon disk-link)
D in some homotopy 4-ball B. If L is slice in B

4 (resp., homotopy-
ribbon in B

4), we simply call L slice (resp., homotopy-ribbon). Finally,
if L bounds a ribbon disk-link in B

4, we say that L is ribbon. These
collections of links are related as follows:

{ribbon links} ⇢ {homotopy-ribbon links} ⇢ {slice links}.

Moreover, it is unknown whether any of the above set inclusions are
set equalities. The notion of homotopy-ribbon links was introduced
in [CG83], while the notions of slice knots and ribbon knots date back
to Fox [Fox62a, Fox62b], who posited the famous Slice-Ribbon Con-
jecture, which asserts that every slice knot is ribbon.

For a link L ⇢ S
3, we will set the convention that YL denotes the

3-manifold obtained by zero-framed Dehn surgery on each component
of L. In addition, define the exterior of L to be EL = S

3 \L. Similarly,
if D is a disk link in B, we define the exterior of D to be ED = B \ D.
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Lemma 2.1. If L is the boundary of a disk link D ⇢ B, then

@ED = YL.

Proof. The boundary of the exterior ED admits the following decom-
position:

@ED = EL [ (@⌫(D) \ Int(B)).

The second factor is di↵eomorphic to c disjoint copies of S1 ⇥ D
2.

Thus, @ED is the result of some Dehn surgery on L. Note thatH1(EL) =
H1(ED) = Zc, and the map on H1 induced by the inclusion EL ,! E(D)
is an isomorphism. Note, however, that this inclusion factors as EL ,!
@ED ,! ED, and thus H1(@ED) = Zc as well. It follows that the
framing of the Dehn surgery on L yielding @ED is the 0-framing, so
that @ED = YL. q.e.d.

Recall that an n-component link L in S
3 is an R-link if zero-framed

surgery on L gives Yn = #n(S1 ⇥ S
2).

Proposition 2.2. Every R-link is homotopy-ribbon in a homotopy

4-ball.

Proof. Suppose L ⇢ S
3 is an R-link, and let B be the 4-manifold

obtained by attaching zero-framed 2-handles to the components of L and
capping o↵ the resulting surgery manifold, which is Yn by hypothesis,
with n 3-handles and a 4-handle (i.e. B is XL without its 0-handle).
Let D denote the cores of the 2-handles. Then @(B,D) = (S3

, L), so it
remains to show that B is a homotopy 4-ball and that D is a homotopy-
ribbon disk knot.

The first claim follows from the fact that B is built from S
3 without

1-handles, so it is simply-connected and �(B) = 1. This implies, by
theorems of Whitehead and Hurewicz, that B is homotopic to a point
(Corollary 4.33 of [Hat02]).

To verify the second claim, observe that YL is obtained by Dehn filling
EL, and thus the inclusion EL ,! YL induces a surjection ⇡1(EL) ⇣
⇡1(YL). In addition, YL = #n(S1 ⇥ S

2) = @(ED), where ED is a 4-
dimensional handlebody of genus n, since it is composed of n 3-handles
and a 4-handle. Hence, ⇡1(YL) = ⇡1(ED), the free group on n letters,
and the inclusion YL ,! ED induces an isomorphism of fundamental
groups. It follows that ⇡1(EL) surjects onto ⇡1(ED), and L is homotopy-
ribbon in B. q.e.d.

Note that the proof shows something even stronger: Every n-compo-
nent R-link L is the boundary of a homotopy-ribbon disk-knot whose
complement has free fundamental group of rank n.
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2.2. Fibered, homotopy-ribbon knots. Let X be a compact man-
ifold, and let � : X ! X be a di↵eomorphism. The mapping torus is
the identification space

X ⇥� S
1 = (X ⇥ I)/ ⇠,

where I = [0, 1] and ⇠ is the equivalence relation (x, 1) ⇠ (�(x), 0)
for all x 2 X. Note that in the case that @X 6= ;, the boundary of a
mapping torus is a mapping torus:

@(X ⇥� S
1) ⇠= @X ⇥�|@X S

1
.

The map � is called themonodromy, and, for each ✓ 2 S
1 = {e2⇡i✓ 2 C},

the submanifold X ⇥� {✓} = (X ⇥ {✓})/ ⇠ ⇢ (X ⇥ I)/ ⇠ is called a
fiber. Recall that a knot K ⇢ S

3 is called fibered if the knot exterior is
the mapping torus

EK
⇠= F ⇥' S

1
,

with '|@F = id.
Suppose thatK is a fibered knot, with 0-framed filling on EK denoted

YK , as above. Then YK =
�
F ⇥' S

1
�
[ (D2 ⇥ S

1), where @F ⇥' {✓} =
@D

2 ⇥ {✓} for all ✓ 2 S
1, and thus this gluing has the e↵ect of capping

o↵ each fiber with a disk. Moreover, using '|@F = id, we can (uniquely)
extend ' as the identity over this disk to a di↵eomorphism b' : bF ! bF ,
where bF is the closed surface F [ D

2. It follows that YK is a closed
surface bundle bF ⇥b' S

1. We call b' the closed monodromy of K.

We say that a di↵eomorphism b' of a closed surface bF admits an ex-

tension if there is a handlebody H with @H = bF and a di↵eomorphism
� : H ! H such that b' = �| bF . Note that we are restricting our at-
tention exclusively to the case where the monodromy extends over a
handlebody, as opposed to the more general cases where it might ex-
tend over a compression body or a more general type of 3-manifold. An
elegant characterization of fibered, homotopy-ribbon knots was given
by Casson and Gordon.

Theorem 2.3 ([CG83]). A fibered knot K in S
3
is homotopy-ribbon

in a homotopy 4-ball if and only if the closed monodromy for K admits

an extension.

The characterization also relates an extension of the monodromy of
a homotopy-ribbon knot to the topology of a homotopy-ribbon disk
exterior via the following corollary.

Corollary 2.4 ([CG83]). Suppose K is a fibered knot in S
3
with

monodromy '. If K is homotopy-ribbon in some homotopy 4-ball B,

then there is an extension � of b' and a disk R� in a homotopy 4-ball

B� such that

B� \R�
⇠= H ⇥� S

1
.
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The next lemma and discussion following it outlines a connection be-
tween the Casson-Gordon Theorem and the notion of R-links introduced
above. The lemma is well-known, but we o↵er a proof that is motivated
by the techniques used later in this paper.

Lemma 2.5. Suppose that bF is a genus g surface bounding a handle-

body H, and let � : H ! H be a di↵eomorphism. Then H ⇥� S
1
has a

handle decomposition with a 0-handle, g+1 1-handles, and g 2-handles.

Proof. We will show that H ⇥� S
1 can be constructed by gluing g

4-dimensional 2-handles to ( bF⇥�| bF S
1)⇥I followed by attaching (g+1) 3-

handles and a 4-handle. Inverting this decomposition gives the desired
result. Let L be a collection of g pairwise disjoint curves in bF that
bound a collection D of disks in H. Then bF can be capped o↵ with
g 3-dimensional 2-handles along L and one 3-dimensional 3-handle to
obtain H, and thus a collar bF⇥I can be capped o↵ with g 4-dimensional
2-handles along L and one 4-dimensional 3-handle to obtain H ⇥ I.
Consider a collar neighborhood of H ⇥� {0} = H ⇥� {1} ⇢ H ⇥� S

1,
whose complement is H ⇥� [✏, 1 � ✏] ⇠= H ⇥ I. Since H ⇥ I is a 4-
dimensional genus g handlebody, it can be built with g 3-handles and a
4-handle. Thus, H ⇥� S

1 can be obtained by attaching g 2-handles to
( bF ⇥�| bF S

1)⇥ I along L followed by attaching (g + 1) 3-handles and a
4-handle. q.e.d.

Let F be a genus g Seifert surface for a knot K ⇢ S
3. A g-component

link L = L1 [ · · · [ Lg contained in F is called a derivative for K if the
classes [Li] are independent in H1(F ) and if `k(Li, Lj) = 0 for all i, j,
where `k(Li, Li) is calculated with a pusho↵ of Li in F . In light of the
previous lemma, suppose that K is a fibered knot with Seifert surface
F and monodromy '. Let L ⇢ F be a derivative for K, and let H be
the (abstract) handlebody determined by L. We call L a CG-derivative

(short for Casson-Gordon derivative) if the closed monodromy b' admits
an extension toH. CG-derivatives are central to this paper, as indicated
by Theorem 1.5 and the next proposition.

Proposition 2.6. Suppose K is a fibered knot with CG-derivative L.

Then both L and K [ L are R-links.

Proof. As above, let F be a genus g fiber for K, let H be the han-
dlebody determined by L, let ' be the monodromy of K, and let �
be an extension of b' to H. We construct a compact 4-manifold B� by
the following process: First, attach a 0-framed 2-handle to S

3⇥ I along
K ⇥ {1}. The resulting 4-manifold has two boundary components, one
di↵eomorphic to S

3 and the other di↵eomorphic to YK , the result of
0-surgery on K. Since YK = bF ⇥b' S

1, we can cap o↵ this boundary
component with H⇥�S

1 to get a compact 4-manifold we call B�, where
@B�

⇠= S
3. By Lemma 2.5, B� has a handle decomposition relative to
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its boundary with g + 1 2-handles and g + 1 3-handles, and thus the
attaching link for the 2-handles, namely K [ L, is an R-link in S

3.
To see that L is also an R-link by itself, we note that F \ L is a

connected planar surface with 2g+1 boundary components, one of which
corresponds to K. As such, there is a sequence of handleslides of K over
the components of L that takes K to K

0, where K
0 bounds a disk in

F \L. Thus, after handleslides, the 2-handle that attaches to K
0 in the

handle decomposition of B� cancels a 3-handle, and so B� can be built
with g 2-handles and g 3-handles, where L is the R-link that serves at
the attaching link for the 2-handles. q.e.d.

We call the manifold B� a Casson-Gordon homotopy 4-ball, or CG-

ball, for short. Since @B� = S
3, we can cap o↵ B� with a standard B

4

to obtain a homotopy four-sphere X�, which we call a Casson-Gordon

homotopy 4-sphere, or CG-sphere, for short.
Let R� denote the core of the 2-handle that is attached along K in

the handle decomposition of B� described above. We have seen (cf.
Corollary 2.4) that R� is a fibered, homotopy-ribbon disk for K in B�.
We call R� a Casson-Gordon disk, or CG-disk for short. We refer to
(B�, R�) as a CG-pair.

Finally, Casson and Gordon also provided a useful criterion to decide
whether a given derivative is a CG-derivative, using only the action b'⇤
of the closed monodromy b' on ⇡1( bF ). For any derivative L for K in F ,
let N denote the normal subgroup of ⇡1( bF ) generated by the homotopy
classes of the components of L. Observe that if L is a CG-derivative,
then b'⇤(N) = N , since there is an extension � of b' and thus b' preserves
the kernel of the map ⇡1( bF ) ⇣ ⇡1(H) induced by inclusion, which is
equal to N . Casson and Gordon strengthened this connection with the
following converse.

Proposition 2.7 ([CG83]). Let L ⇢ F , where F is a Seifert surface

for a fibered knot K with closed monodromy b', such that F \ L is a

connected planar surface, and let N be the normal subgroup of ⇡1( bF )
generated by the homotopy classes of the components of L. If b'⇤(N) =
N , then L is a CG-derivative.

3. Stable equivalence classes of 2R-links

In this section, we prove Theorem 1.5, which asserts that if L = Q[J

is a 2R-link and Q is fibered, then L is stably equivalent to the link
Q [ L

+, where L
+ is a CG-derivative for Q. The machinery used in

the proof of this theorem includes a decomposition called a Heegaard
double (cf. [GST10]), along with ideas from thin position of Heegaard
splittings. The notation of this section is basically self-contained; we will
use letters and symbols here that denote unrelated objects elsewhere.
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Let S be a closed surface with one or two components; in the two-
component case, suppose neither component is a 2-sphere. Consider the
product S⇥I, letting S

+ = S⇥{1} and S
� = S⇥{0}. Let �+ be a pair

of disks contained in S
+, let �� be a pair of disks in S

�, and let � be
the four disks �+ [��. We require that if S is disconnected, then �±

contains one disk in each component of S±. Attach 1-handles H± to S
±

along �±. We let ⌃± denote the resulting two boundary components of
(S ⇥ I) [H

� [H
+, noting that ⌃+ and ⌃� are connected, even if S is

disconnected. Finally, suppose h : ⌃+ ! ⌃� is a di↵eomorphism. Then
we can build a 3-manifold Y by gluing ⌃+ to ⌃� via h, and we call such a
decomposition (Y ;S,�, h) a Heegaard double, observing that S, �, and
h uniquely determine Y . We let c± denote the boundary of the co-core
D

± of the 1-handle H
±, so that c± bounds a compressing disk for ⌃±.

Note that c
± is non-separating if and only if S is connected, and thus

either both c
+ and c

� are separating or both are non-separating in ⌃±.
In addition, requiring that S does not have a 2-sphere component in the
disconnected case guarantees that c

± is an essential curve in ⌃±. See
Figure 1.

Remark 3.1. The definition of a Heegaard double can be generalized
to allow H

± to represent multiple 1-handles, but all Heegaard doubles

in the present article will be of the type described above, where each of

H
±

contains a single 1-handle.

The observant reader will note that this definition is not the same
as that of [GST10]; however, we can obtain their version from ours by
cutting S⇥I open along S⇥{1/2}. This yields two compression bodies,
C

+ and C
�, where @�C+ and @�C� are identified via the identity map

and h : @+C+ ! @+C
� is the other gluing map. If (Y ;S,�, h) is a

Heegaard double, we let Y ⇤ = C
� [hC

+, so that Y ⇤ = Y \ (S⇥ {1/2}).
Note that the decomposition Y

⇤ = C
� [h C

+ is a Heegaard splitting.
This Heegaard splitting is called reducible if there is an essential curve
c 2 @+C

+ such that c bounds a disk in C
+ and h(c) bounds a disk

in C
�.

Figure 1. A schematic of a Heegaard double
(Y ;S,�, h), where Y is split into two compression
bodies C± with ⌃± = @+C

± and @�C� = @�C
+ = S.
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The next lemma also appears as Proposition 4.2 in [GST10].

Lemma 3.2. Suppose (Y ;S,�, h) is a Heegaard double such that

h(c+) is isotopic to c
�

in ⌃�
.

1) If c
±

is non-separating in ⌃±
, then Y ⇠= (S1 ⇥ S

2)#Y
0
, where Y

0

is a fibered 3-manifold with fiber S.

2) If c
±

is separating in ⌃±
, then either Y ⇠= Y

0#Y
00
or Y ⇠= (S1 ⇥

S
2)#Y

0
, where Y

0
and Y

00
are fibered 3-manifolds with fibers given

by the two components of S.

Proof. The assumption h(c+) = c
� implies that the Heegaard split-

ting Y
⇤ = C

�[hC
+ is reducible. If c� is non-separating, this Heegaard

splitting can be expressed as the connected sum of a genus one splitting
of S1⇥S

2 and the splitting given by compressing C
± along D

± and glu-
ing the resulting pieces together along the compressed positive boundary
surfaces. But C± compressed along D

± is the trivial compression body
@�C

± ⇥ I, and thus Y ⇤ = (S1 ⇥ S
2)#((@�C+ ⇥ I) [ (@�C� ⇥ I)). To

recover Y from Y
⇤, we glue the two boundary components of @�C±⇥I,

yielding the desired result.
For the second statement, suppose that h(c+) = c

� is separating, so
that the disks D+ and D

� glue together to bound a reducing sphere P ⇤

for the Heegaard splitting Y
⇤ = C

� [h C
+. Cutting Y

⇤ open along P
⇤

and capping o↵ the resulting 2-sphere boundary components with 3-balls
has the same e↵ect as compressing C

+ along D
+ to get (C+)0 t (C+)00

and C
� along D

� to get (C�)0t(C�)00, where (C±)0t(C±)00 = @�C
±⇥

I ⇠= S ⇥ I. In this case, S has two components, S
0 and S

00. Then
Y

⇤ = (S0 ⇥ I)#P ⇤(S00 ⇥ I), and to recover Y from Y
⇤ we glue the

boundary components of Y ⇤. There are two possibilities here: In the
first case, boundary components of S0 ⇥ I are identified and boundary
components of S

00 ⇥ I are identified, in which case Y = Y
0#Y

00. In
the second case, S0 ⇥ {1} is glued to S

00 ⇥ {0} and S
00 ⇥ {1} is glued

to S
0 ⇥ {0}. Here the reducing sphere P

⇤ for Y
⇤ is a non-separating

sphere for Y , and cutting Y open along P
⇤ and capping o↵ with 3-

balls yields a fibered manifold with fiber S
0 (equivalently, S00). Thus,

Y ⇠= (S1 ⇥ S
2)#Y

0, completing the proof. q.e.d.

As an example of the type of splitting arising in Lemma 3.2, let
S = S

2, let�± ⇢ S
± be parallel copies of two disks in S, and let h be the

identity map on the torus, giving rise to a Heegaard double (Y ;S,�, h).
By (1) of Lemma 3.2, Y ⇠= (S1 ⇥ S

2)#Y
0, where Y

0 fibers over the 2-
sphere. It follows that Y 0 = S

1⇥S
2, and so Y ⇠= Y2 = #2(S1⇥S

2). We
call this the standard Heegaard double of the manifold Y2; it will feature
prominently in arguments below.

We say that the Heegaard splitting Y ⇤ = C
�[hC

+ is weakly reducible

if there exist essential curves c 2 @+C
+ bounding a compressing disk

for C
+ and c

0 2 @+C
� bounding a compressing disk for C

� with the
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property that h(c) and c
0 are isotopic to disjoint curves in ⌃�. The next

lemma is a classical result from the theory of Heegaard splittings.

Lemma 3.3 ([ST09]). If (Y ;S,�, h) is a Heegaard double and S ⇥
{1/2} is compressible in Y , then the Heegaard splitting Y

⇤ = C
� [hC

+

is weakly reducible.

We will use Lemma 3.3 in our analysis of Heegaard doubles on the
manifold Y2; note that every incompressible surface in Y2 is a 2-sphere;
thus, if (Y2;S,�, h) is a Heegaard double of Y2 and g(S) > 0, then the
Heegaard splitting Y

⇤
2 = C

� [h C
+ is weakly reducible. In the next

lemmas, we analyze what weak reducibility tells us about the curves
c
±, since compressing disks for C� and C

+ are not necessarily unique.
The first lemma is Lemma 4.6 from [GST10].

Lemma 3.4 ([GST10]). Suppose a curve c ⇢ @+C
±

bounds a com-

pressing disk for C
±
. If c

±
is separating, then c is isotopic to c

±
in

@+C
±
. If c

±
is non-separating, then either c is isotopic to c

±
in @+C

±
,

or c is separating and cuts o↵ a genus one subsurface of @+C
±
contain-

ing c
±
.

The next lemma shows how weak reducibility can be leveraged in the
present setting of Heegaard doubles.

Lemma 3.5. Let (Y ;S,�, h) be a Heegaard double, and suppose the

Heegaard splitting Y
⇤ = C

� [h C
+
is weakly reducible. Then one of the

following holds:

1) Y is a fibered 3-manifold with fiber S,

2) Y = Y
0#Y

00
, where Y

0
is S

1 ⇥ S
2
or a lens space and Y

00
is a

fibered 3-manifold with fiber a component of S,

3) Y = Y
0#Y

00
, where Y

0
and Y

00
are fibered 3-manifolds with fibers

given by the two components of S, or

4) h(c+) and c
�

are non-isotopic and can be isotoped to be disjoint

in ⌃�
.

Proof. Suppose that c, c
0 are curves bounding compressing disks in

C
+ and C

�, respectively, and h(c) \ c
0 = ;. There are several cases to

consider. First, suppose that c± is separating in @+C±. By Lemma 3.4,
it follows that c is isotopic to c

+ in ⌃+ and c
0 is isotopic to c

� in ⌃�.
If h(c) is isotopic to c

0 in ⌃�, then by Lemma 3.2, conclusion (2) or (3)
holds. Otherwise, conclusion (4) holds.

On the other hand, suppose that c± is non-separating in ⌃±. For the
first sub-case, suppose that c is isotopic to c

+ in ⌃+ and c
0 is isotopic to

c
� in ⌃�. If h(c) is also isotopic to c

0, then by Lemma 3.2, conclusion
(2) is true. Otherwise, conclusion (4) holds. For the second sub-case,
suppose without loss of generality that c is not isotopic to c

+ in ⌃+,
so that by Lemma 3.4, c cuts o↵ a genus one subsurface T ⇢ ⌃+ con-
taining c

+. Isotope c
� in ⌃� so that it intersects @h(T ) minimally. If
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c
� ⇢ h(T ), then @h(T ) = h(c) bounds a disk in C

�. In this case, the
Heegaard splitting Y

⇤ = C
�[hC

+ is reducible, and the reducing sphere
given by c and h(c) cuts o↵ a genus one summand from the Heegaard
splitting of Y ⇤, and thus Y ⇤ = Y

0#(S⇥I) as in the proof of Lemma 3.2,
where Y

0 is either S3, S1 ⇥ S
2, or a lens space. It follows that Y is one

of the 3-manifolds described in (1) or (2).
For the final sub-case, suppose that c� is not contained entirely within

the subsurface h(T ). If c0 is isotopic to c
� in ⌃�, then the assumption

h(c) \ c
0 = ; implies h(T ) \ c

� = ;, and conclusion (4) is satisfied.
Otherwise, by Lemma 3.4, c0 cuts of a genus one subsurface T

0 ⇢ ⌃�

containing c
�. Isotope c

� and T
0 in ⌃� so that they meet @h(T ) min-

imally. Since c
� is not contained h(T ), the assumption h(c) \ c

0 = ;
implies h(T ) \ T

0 = ;. Thus, after isotopy, h(c+) \ c
� = ;, and conclu-

sion (4) holds once again. q.e.d.

Lemma 3.5 has an important consequence, which we record as the
following lemma.

Lemma 3.6. Every Heegaard double of Y2 is either the standard

Heegaard double, or h(c+) and c
�

are non-isotopic and can be isotoped

to be disjoint in ⌃�

Proof. Let (Y2;S,�, h) be a Heegaard double. If S is a 2-sphere,
then ⌃± is a torus and the only possible gluing map h yielding Y2 is
the identity map, so this is the standard Heegaard double. Otherwise,
g(S) > 0 (in either the connected or disconnected case). By Lemma 3.3,
the Heegaard splitting Y

⇤
2 = C

� [h C
+ is weakly reducible, and by

Lemma 3.5, it must be true that conclusion (4) is satisfied. q.e.d.

We now undertake a deeper analysis of what can happen in the case
that h(c+) and c

� are non-isotopic and can be isotoped to be disjoint
in ⌃�. In this case, we can simplify the Heegaard double in a process
called untelescoping. In order to define untelescoping, we require several
new definitions.

Suppose Y is a compact 3-manifold, and let Y
0 be the result of at-

taching a 1-handle H along a pair of disks � ⇢ @Y . We call the newly
constructed boundary surface of Y 0 the surface induced by the 1-handle

attachment. On the other hand, let c0 be an essential curve in a bound-
ary component S of Y , and let Y 00 be the result of attaching a 2-handle
H

0 along c
0. We call the newly constructed boundary surface S

00 the
surface induced by the 2-handle attachment. Note S

00 has one compo-
nent if c is non-separating and two components if c is separating. In
either case, H 0 \ S

00 is two embedded disks, which we call scars.
Attaching 1-handles and 2-handles are dual processes, which we make

rigorous in the following standard lemma. The proof is left to the
reader.
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Lemma 3.7. Let S be a surface containing an essential curve c, let

Y be the result of attaching a 2-handle to S ⇥ I along c ⇢ S ⇥ {0},
and let S

0
be the surface induced by the 2-handle attachment containing

scars �. Let Y
0
be the 3-manifold obtained by attaching a 1-handle to

S
0 ⇥ I along the pair of disks � ⇥ {1} ⇢ S

0 ⇥ {1}. Then there is a

di↵eomorphism f : Y ! Y
0
such that f |@Y is the identity map. In this

case, the surface in @Y
0
induced by the 1-handle attachment is S ⇥ {1}

and the boundary of a co-core of the 1-handle is the curve c.

In light of Lemma 3.7, we give the process of reinterpreting a 2-
handle attachment as a 1-handle attachment a name: Pushing a 2-

handle through the product S ⇥ I.
A Heegaard double (Y ;S,�, h) decomposes Y as the union of S ⇥ I,

H
�, and H

+, where the general structure is set up to suggest attaching
H

± as a 1-handle to S
± along �±, followed by gluing the resulting sur-

faces via the homeomorphism h. Under the assumption h(c+)\ c
� = ;,

we can rearrange the order of these gluings to get a new Heegaard
double, said to be related to the original by untelescoping. (More gen-
erally, untelescoping usually refers to the exchanging of a 1-handle and
a 2-handle; see [Kob03, ST94].) We describe this process in the next
proposition. It may aid the reader’s intuition to examine the schematic
of the case in which S1 is connected, shown in Figure 2, before (or after)
reading the proof of Proposition 3.8. Recall that each of the handlebod-
ies H± contains a single 1-handle, as pointed out in Remark 3.1.

Proposition 3.8. Suppose that (Y ;S1,�1, h1) is a Heegaard double

such that h1(c
+
1 ) and c

�
1 are non-isotopic and can be isotoped to be

disjoint in ⌃�
1 . Then there is another Heegaard double (Y ;S2,�2, h2)

such that �(S2) > �(S1).
In addition, if the resulting surface S2 is connected, then

(a) S1 is connected,

(b) ⌃+
2 = S

+
1 = (⌃+

1 \ c+1 ) [�
+
1 , and

(c) h2|⌃+
2 \�+

1
= h1|⌃+

1 \c+1
.

Proof. First, isotope c
�
1 in ⌃�

1 so that the resulting curve, call it c�2 ,
satisfies h1(c

+
1 ) \ c

�
2 = ;. Instead of attaching the 1-handle H

+
1 to �+

1
and gluing the resulting boundary ⌃+

1 to ⌃�
1 using h1, we attach H

+
1

to ⌃�
1 as a 2-handle, denoted H⇤, along the curve h1(c

+
1 ) in ⌃�

1 . Let
�0

1 be the scars of the 2-handle attachment. Since ⌃+
1 \ c+1 = S

+
1 \�+

1 ,
this induces a new gluing map h⇤ taking S

+
1 to the closed surface ⌃⇤ =

(⌃�
1 \ h(c+1 )) [�0

1, where h⇤(�
+
1 ) = �

0
1 and h⇤|S+

1 \�+
1
= h1|⌃+

1 \c+1
.

There are two cases to consider. Suppose first that S1 is connected,
so that c±1 is non-separating in ⌃±

1 . Recall that c�1 is isotopic to c
�
2 in

⌃�
1 , where h1(c

+
1 ) \ c

�
2 = ;. This isotopy induces an isotopy from the

co-core D
�
1 of H�

1 bounded by c
�
1 to a disk D

�
2 bounded by c

�
2 , such
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Figure 2. A sequence of schematics describing the pro-
cess of untelescoping a Heegaard double in the case that
S1 is connected.

that compressing (S1 ⇥ I) [ H
�
1 along D

�
2 yields a 3-manifold S⇤ ⇥ I

di↵eomorphic to S1⇥I, and such that S+
⇤ = S⇤⇥{1} coincides with S

+
1 .

Let ��
2 be the pair of disks in S

�
⇤ = S⇤ ⇥ {0} such that attaching a

1-handle H
�
2 to S⇤ ⇥ I along ��

2 yields the same submanifold of Y as
attaching H

�
1 to S1 ⇥ I along ��

1 . Here the disk D
�
2 is the co-core

of H�
2 .

Next, observe that the attaching curve h1(c
+
1 ) for H⇤ is contained in

⌃�
1 \ c

�
2 = S

�
⇤ \ ��

2 . Thus, H⇤ is attached to a curve in S
�
⇤ , and by

Lemma 3.7 we can push the 2-handle H⇤ through the product S⇤ ⇥ I.
In other words, H⇤[ (S⇤⇥ I) can be replaced with (S2⇥ I)[H

+
2 , where

S
�
2 = S2 ⇥ {0} is the surface

S
�
2 = ⌃�

1 \ (h1(c+1 ) [ c
�
2 ) [ (�0

1 [��
2 ).

In addition, H+
2 is a 1-handle attached to S

+
2 = S2 ⇥ {1} along the

disks �+
2 = �0

1 ⇥ {1}. Note that the boundary component of (S2 ⇥
I)[H

+
2 induced by the 1-handle attachment is the surface S+

1 , and the
other boundary component is S�

2 . Let ⌃
�
2 denote the surface induced by

attaching H
�
2 to S

�
2 along ��

2 ; that is, ⌃
�
2 = (⌃�

1 \h1(c+1 ))[�0
1, which

is the surface ⌃⇤ defined at the beginning of the proof. Let ⌃+
2 = S

+
1 ,

and let h2 = h
0
1, so h2 takes ⌃+

2 to ⌃�
2 . It follows that (Y ;S2,�2, h2) is

a Heegaard double, and since S�
2 is obtained by attaching a 2-handle to

S
�
⇤ , we have �(S2) > �(S⇤) = �(S1). Note that in this case, conditions

(a), (b), and (c) above are satisfied (whether S2 is connected or not). If
S2 is disconnected, the assumption that h1(c

+
1 ) and c

�
1 are non-isotopic

guarantees that S2 does not have a 2-sphere component.
In the second, more complicated case, suppose that S1 is not con-

nected, so that c
±
1 is separating in ⌃±

1 . As above, we isotope c
�
1 onto

c
�
2 disjoint from h1(c

+
1 ), inducing isotopies of disk D

�
1 to disk D

�
2 , let

S
�
⇤ be obtained by compressing ⌃�

1 along D
�
2 , and let H�

2 be the corre-
sponding 1-handle such that attaching H

�
2 to disks ��

2 in S
�
⇤ yields ⌃�

1 .
Then the 2-handle H⇤ is attached to h1(c

+
1 ) ⇢ ⌃

�
1 \ c�2 = S

�
⇤ \��

2 .
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Let S0
⇤ and S

00
⇤ denote the components of S⇤, with (S0

⇤)
±
, (S00

⇤ )
± ⇢ S

±
⇤ ,

chosen so that h1(c
+
1 ) ⇢ (S0

⇤)
�. As above, we push H⇤ through the

product S
0
⇤ ⇥ I. By Lemma 3.7, we can replace H⇤ [ (S0

⇤ ⇥ I) with
(S2 ⇥ I) [H

+
2 , where S2 is given by

S2 = ⌃1 \ (h1(c+1 ) [ c
�
2 ) [ (�0

1 [��
2 ),

the disks �+
2 are given by �+

2 = �0
1 ⇥ {1} ⇢ S2 ⇥ {1}, and H

+
2 is a

1-handle attached to S2 ⇥ {1} along �+
2 . The boundary component of

(S2⇥ I)[H
+
2 induced by the 1-handle attachment is the surface (S0

⇤)
+,

and the other boundary components are S
�
2 = (S0

⇤)
� \ h1(c

+
1 ) [ �0

1.
Since h1(c

+
1 ) is not isotopic to c

�
1 in ⌃�

1 and separates ⌃�
1 , it follows

that h1(c
+
1 ) is separating in (S0

⇤)
�, cutting (S0

⇤)
� into two components of

positive genus. This implies that S2 is disconnected, with components
S
0
2 and S

00
2 . Since each surface (S⇤)� and (S00

⇤ )
� contains one attaching

disk in ��
2 for H

�
2 , we have that either (S0

2)
� or (S00

2 )
� contains an

attaching disk in ��
2 , and so we choose S

0
2 so that (S0

2)
� contains this

disk.
Note that by construction S

+
1 = S

+
⇤ , and thus S

+
1 is disconnected

with components (S0
⇤)

+ and (S00
⇤ )

+. In this case, the gluing map h⇤
described at the beginning of the proof takes the disconnected surface
S
+
1 = (S0

⇤)
+[ (S00

⇤ )
+ to (⌃�

1 \h1(c+1 ))[�0
1, and we may separate h⇤ into

two maps h0⇤ and h
00
⇤ on (S0

⇤)
+ and (S00

⇤ )
+. Observe that the image of h⇤,

the two components of (⌃�
1 \h1(c

+
1 ))[�0

1, are obtained by attaching H
�
2

to (S00
⇤ )

�[(S0
2)

�[(S00
2 )

� along ��
2 , where the disks of �

�
2 are contained

in (S00
⇤ )

� and (S0
2)

�. Hence, the image of h⇤ consists of (S00
2 )

� and ⌃�
2 ,

where ⌃�
2 is induced by attaching H

�
2 to (S00

⇤ )
� [ (S0

2)
�. It follows that

g(⌃�
2 ) = g(S00

⇤ ) + g(S0
2) > g(S00

⇤ ), forcing h
0
⇤ to map (S0

⇤)
+ onto ⌃�

2 and
h
00
⇤ to map (S00

⇤ )
+ to (S00

2 )
�. Since the result of attaching S

00
⇤ ⇥I to S2⇥I

by gluing (S00
⇤ )

+ to (S00
2 )

� is homeomorphic to S2 ⇥ I, we have a new
decomposition of Y obtained by attachingH�

2 to S2⇥{0}, attachingH+
1

to S2⇥{1}, and gluing the resulting boundary components ⌃+
2 = (S+

⇤ )
0

and ⌃�
2 . This can be represented by a Heegaard double (Y ;S2,�2, h2),

and by construction, �(S2) > �(S1). To complete the proof, we note
that in this case, S2 is never connected, and so the additional hypotheses
are not satisfied. q.e.d.

As stated above, we call the process of reducing the Heegaard double
(Y ;S1,�1, h1) to (Y ;S2,�2, h2) untelescoping. Note that the situation
for Heegaard doubles is somewhat di↵erent than for classical Heegaard
splittings, since untelescoping a Heegaard double produces another Hee-
gaard double. Returning to the manifold Y2 = #2(S1 ⇥ S

2), we have
the following lemma.
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Lemma 3.9. Any Heegaard double (Y2;S1,�1, h1) of Y2 can be re-

peatedly untelescoped until it becomes isotopic to the standard Heegaard

double of Y2. In addition, the curves c
±
1 are non-separating in ⌃±

1 .

Proof. If (Y2;S1,�1, h1) is not the standard Heegaard double, then
by Lemma 3.6, it can be untelescoped, increasing �(S1). After finitely
many untelescoping operations, Lemma 3.6 implies that the result
(Y2;Sn,�n, hn) is the standard Heegaard double. In the standard Hee-
gaard double, Sn is connected, and thus by repeated applications of
Lemma 3.8, the surface S1 is connected as well. We conclude c

±
1 is

non-separating in ⌃±
1 . q.e.d.

Now we turn to the specific case of a 2R-link L = Q [ J , where Q is
fibered. Recall the notation and language set up in Section 1. We let F
denote a fiber of Q in S

3, YQ the result of 0-surgery on Q with closed

fiber bF and closed monodromy b'. Recall also that two links L and L
0

are stably equivalent if there are unlinks U and U
0 such that L t U is

handleslide-equivalent to L
0 t U

0.

Lemma 3.10. Suppose L = Q[J is a 2R-link, where Q is non-trivial

and fibered knot with fiber F . In YQ, the framed knot J can be isotoped

to lie in a closed fiber bF with the surface framing, and J ⇢ bF naturally

induces a Heegaard double (Y2;S,�, h), where

1) ⌃+
and ⌃�

are copies of bF ;

2) S is the result of gluing disks �⇤
to the boundary components of

bF \ J ;
3) � = �+[��

, where �+ = �⇤⇥{1} ⇢ S
+
and �� = �⇤⇥{0} ⇢

S
�
; and

4) h : ⌃+ ! ⌃�
is the closed monodromy b'.

Proof. Since J is disjoint from Q, we may view J as a knot in YQ,
which we will also denote J in an abuse of notation. By Corollary 4.3
of [ST09], the knot J is isotopic in YQ into a closed fiber bF for YQ,

where the surface slope of J in bF is the 0-framing. We now describe the
process dubbed the surgery principle in Lemma 4.1 of [GST10].

Let bF and bF ⇤ denote two copies of the closed fiber in YQ such that

YQ is the union of bF ⇥ I and bF ⇤ ⇥ I, where bF ⇤ ⇥ {0} is identified with
bF ⇥ {1} using the di↵eomorphism b' : bF ⇤⇥ {1} ! bF ⇥ {0}, and bF ⇥ {1}
is identified with bF ⇤ ⇥ {0} using the identity. Let ⌃� = bF ⇥ {0}, and
let ⌃+ = bF ⇤ ⇥ {1}.

Suppose now that J has been isotoped into bF ⇥ {1}, and let J
⇤ be

a copy of J in bF ⇤ ⇥ {0}, which is identified with J in YQ. We obtain

Y2, the result of 0-surgery on J , by attaching a 2-handle H to bF ⇥ {1}
along a copy of J and another 2-handle H

⇤ to J
⇤ ⇢ bF ⇤ ⇥ {0}. Then,

letting S and S
⇤ be the surfaces induced by the 2-handle attachments,



88 J. MEIER & A. ZUPAN

with scars �0 and �⇤, respectively, we glue S to S
⇤ with the identity

map and glue bF ⇤ ⇥ {1} to bF ⇥ {0} with b'. Pushing the 2-handle H

across the product bF ⇥ I and pushing H
⇤ across the product bF ⇤ ⇥ I

yields the desired Heegaard double, (Y2;S,�, h), where h = b' and �
consists of �0 ⇥ {0} and �⇤ ⇥ {1}. q.e.d.

We remark that the surfaces ⌃+ and ⌃� of the induced Heegaard
double may be viewed as parallel copies of the fiber bF in YQ, in which

the compressing curves c
+ and c

� are parallel copies of J ⇢ bF . The
natural next step is to untelescope this induced double, and with careful
bookkeeping, we can prove the main theorem from this section.

Theorem 1.5. Suppose L = Q [ J is a 2R-link, where Q is non-

trivial and fibered. Then L is stably equivalent to Q [ L
+
, where L

+
is

a CG-derivative of Q.

Proof. Let (Y2;S1,�1, h1) be the Heegaard double described in
Lemma 3.10. We will use the same notation as in that lemma, so that
(Y2;S1,�1, h1) is induced by isotoping J to lie in a closed fiber bF of
YQ. In addition, c+1 and c

�
1 are parallel copies of J contained in the

surfaces ⌃+
1 and ⌃�

1 , which can be viewed as parallel copies of the fiber
bF in YQ. By Lemma 3.9, this Heegaard double can be untelescoped un-
til it becomes the standard Heegaard double of Y2. Each surface Sn is
connected, which means that each untelescoping operation reduces the
genus of the surface S1 by one and this process requires a total of g� 1
untelescoping operations, where g = g( bF ). Note that (Y2;S1,�1, h1) is
not standard since g � 2. We will let (Y2;Sn,�n, hn) be the result of
untelescoping (Y2;S1,�1, h1) a total of n � 1 times, for 1  n  g, so
that (Y2;Sg,�g, hg) is the standard Heegaard double of Y2.

Consider the surfaces ⌃+
1 and ⌃�

1 , which (as noted above) may be

considered to be parallel copies of bF in YQ = bF ⇥ [0, 1]/ ⇠, where

(x, 1) ⇠ (h1(x), 0) for h1 : ⌃+ ! ⌃�. Let ⇡ : bF ⇥ I ! ⌃+
1 be the

projection map induced by the product structure. The map ⇡ is a
mechanism we use to keep track of a fixed copy, ⌃+

1 , of
bF , as opposed

to working with two copies, ⌃� and ⌃+, in parallel. For the remainder
of the proof, we will interpret b' as a map from ⌃+

1 to itself, so that
h1 : ⌃

+
1 ! ⌃�

1 satisfies ⇡ � h1 = b'.
By Proposition 3.8, ⌃+

2 = ⌃+
1 \ c+1 [�+

1 , and thus c+2 may be chosen
so that c

+
2 ⇢ ⌃+

1 \ c
+
1 . By induction, we have ⌃+

n = ⌃+
1 \ (c+1 [ · · · [

c
+
n�1) [ (�+

1 [ · · · [ �+
n�1), so that c

+
n may be chosen so that c

+
n ⇢

⌃+
1 \ (c+1 [ · · · [ c

+
n�1). For a set of choices c

+
1 , . . . , c

+
g , we let L

+ be

the g-component link given by L
+ = c

+
1 [ · · · [ c

+
g , noting that L

+ is

a g-component link cutting the fiber surface ⌃+
1 into a planar surface.

Give L
+ the surface framing.
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Claim 1. For some choice of the curves c+1 , . . . , c
+
g , the link L

+ is a
Casson-Gordon derivative for Q.

We remark that the claim is, in fact, true for all choices of c+i ; how-
ever, we need only this weaker statement for the proof of the theorem.

Proof of Claim 1. Since c+1 , . . . , c
+
n are pairwise disjoint in ⌃+

1 , repeated
applications of Proposition 3.8 yield that hn(c+n ) = h1(c+n ). Following
the proof of Proposition 3.8, there exist disks �0

n contained in @H
+
n

such that ⌃�
n+1 = ⌃�

n \ h1(c+n ) [ �0
n = ⌃�

1 \ (h1(c
+
1 ) [ · · · [ h1(c+n )) [

(�0
1 [ · · · [ �0

n). Observe that c
�
n+1 is necessarily contained in ⌃�

n+1;
we will assume that c

�
n+1 has been chosen to be a curve disjoint from

h1(c
+
1 ), . . . , h1(c

+
n ) and isotopic to c

�
n in ⌃�

n .
In order to prove the claim, we establish the following statement: For

every n such that 1  n  g, the two sets of pairwise disjoint curves

L
+
n = {c+1 , . . . , c

+
n } and L

�
n = {⇡(c�n ), b'(c+1 ), . . . , b'(c

+
n�1)}

define the same compression body as curves in ⌃+
1 .

We induct on n. The case n = 1 follows from the fact that ⇡(c�1 ) = c
+
1 .

Suppose n = 2. By the proof of Proposition 3.8, c�2 is isotopic to c
�
1

and disjoint from h1(c
+
1 ) in ⌃�

1 , and we obtain ⌃�
2 by cutting along

h1(c
+
1 ) and capping o↵ with disks �0

1. There is a curve c
0
1 ⇢ ⌃�

1 such
that the disjoint pair (c�2 , h1(c

+
1 )) is isotopic to the disjoint pair (c�1 , c

0
1)

in ⌃�
1 . Since c

0
1 \ c

�
1 = ;, there is a annulus A

0
1 ⇢ S1 ⇥ I such that

@(S1 ⇥ I) = c
0
1 [ ⇡(c01); thus, we can let c+2 = ⇡(c01). Since (c�2 , h1(c

+
1 ))

is isotopic to (c�1 , c
0
1) in ⌃�

1 , we have (⇡(c�2 ),⇡(h1(c
+
1 ))) is isotopic to

(⇡(c�1 ),⇡(c
0
1)) in ⌃

+
1 . The former pair is L�

2 = (⇡(c�2 ), b'(c
+
1 )), while the

latter is L
+
2 = (c+1 , c

+
2 ). Since L

�
2 is isotopic to L

+
2 in ⌃+

1 , they define
the same compression body.

Now suppose by way of induction that L
+
n and L

�
n define the same

compression body. This implies that the curves in L
�
n can be changed

into the curves in L
+
n by a sequence of isotopies and handleslides in ⌃+

1 .
As above, the curve c

�
n+1 is isotopic to c

�
n and disjoint from hn(c+n ) =

h1(c+n ) in ⌃
�
n , where ⌃

�
n = ⌃�

1 \ (h1(c+1 ) [ · · · [ h1(c
+
n�1)) [ (�0

1 [ · · · [
�0

n�1). It follows that c
�
n+1 is isotopic to c

�
n in ⌃1 modulo handleslides

over the curves of {h1(c+1 ), . . . , h1(c
+
n�1)}. Since c

�
n+1\h1(c+n ) = ;, there

is a curve c
0
n ⇢ ⌃�

1 \ (h1(c
+
1 ) [ · · · [ h1(c

+
n�1)) such that the disjoint

pair (c�n+1, h1(c
+
n )) is isotopic to the disjoint pair (c�n , c

0
n) in ⌃+

1 , mod-
ulo handleslides over the curves of {h1(c+1 ), . . . , h1(c

+
n�1)}. By applying

the projection ⇡, we have that the pair (⇡(c�n+1), b'(c+n )) is isotopic to
the pair (⇡(c�n ),⇡(c

0
n)) in ⌃+

1 , modulo handleslides over the curves of
{b'(c+1 ), . . . , b'(c

+
n�1)}.



90 J. MEIER & A. ZUPAN

Now, observe that

(⇡(c�n ) [ ⇡(c0n)) [ (b'(c+1 ) [ . . . [ b'(c+n�1)) = L
�
n [ ⇡(c0n).

There exists a curve c+n+1 ⇢ ⌃
+
1 \L+

n such that the sequence of isotopies
and handleslides taking L

�
n to L

+
n give rise to a sequence of isotopies and

handleslides taking L
�
n [ ⇡(c0n) to L

+
n [ c

+
n+1. Note that S±

n ⇢ ⌃±
n \L±

n ,
and thus isotopies and handleslides over the curves in L

�
n describe an

isotopy from h1(c+n ) to c
+
n+1 in the product Sn ⇥ I, verifying that the

curve c
+
n+1 obtained via this process is isotopic in S

+
n = ⌃+

n+1 to a
co-core of H

+
n+1. We conclude that L

+
n+1 and L

�
n+1 define the same

compression body, and by induction this holds for all n.
To complete the proof of the claim, we note that (Y2;Sg,�g, hg) is

the standard Heegaard double, which implies that hg(c+g ) = h1(c+g ) is

isotopic to c
�
g in ⌃�

g ; equivalently, h1(c
+
g ) is isotopic to c

�
g in ⌃�

1 modulo

handleslides over h1(c
+
1 ), . . . , h1(c

+
g�1). It follows that the curves b'(L+

g )
define the same handlebody as L�

g , which defines the same handlebody
as L

+
g by the above argument. We conclude that b' extends over the

handlebody determined by L
+ = L

+
g .

Claim 2. L = Q [ J is stably equivalent to Q [ L
+.

Proof of Claim 2. Let U denote a split, (g � 1)-component 0-framed
unlink in E(L). We can isotope U in E(L) so that U ⇢ F and U bounds
a collection of g�1 disjoint disks in F . By a sequence of handleslides, one
for each component of U , we may change U to a (g�1)-component link
in which each component is a parallel copy of J in F . Since U ⇢ E(L),
we may view U as a link in Y2, with each component of U surface-framed
and isotopic to c

+
1 in ⌃+

1 , as c
+
1 is parallel to J in YQ. In other words,

each component of U is a parallel push-o↵ in ⌃+
1 of the boundary c

+
1

of the co-core D
+
1 of the 1-handle H

+
1 . As we untelescope g � 1 times,

we isotope the 1-handle H
+
1 , and for each iteration, we leave behind a

component of U as one of the pairwise disjoint curves c+2 , . . . , c
+
g .

It follows that U is isotopic to the link c
+
2 [ · · · [ c

+
g in Y2, which

implies that U is isotopic to c
+
2 [ · · · [ c

+
g modulo handleslides over J

in YQ, and thus J [ U is handleslide equivalent to L
+ in YQ. Finally,

it follows that Q [ J [ U is handleslide equivalent to Q [ L
+ in S

3,
completing the proof of the theorem. q.e.d.

4. Curves on the fiber of a generalized square knot

In the previous section, we showed in Theorem 1.5 that in order
to understand the possible stable equivalence classes of a 2R-link L =
Q[J withQ fibered, it su�ces to understand Casson-Gordon derivatives
for Q. In this section, we build on the approach and techniques of
Scharlemann [Sch16] to develop the background we will need for the
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classification of Casson-Gordon derivatives for generalized square knots,
which we give at the end of the section.

We begin by describing detailed pictures of the monodromies of torus
knots and the closed monodromies of generalized square knots. Next,
we show how this closed monodromy generates the group of deck trans-
formations for a branched covering of the capped o↵ fiber surface of a
generalized square knot over a 2-sphere. By lifting distinct curves from
the 2-sphere to the fiber surface, we give a list of CG-derivatives for each
generalized square knot, and by invoking the Equivariant Loop Theo-
rem, we show that this list is complete. As a consequence, we construct
many R-links that are potential counterexamples to the Stable Gener-
alized Property R Conjecture, as in Proposition 1.4, which we prove in
this section.

4.1. Fibering generalized square knots. Recall that the generalized
square knot Qp,q is defined to be Qp,q = Tp,q#T�p,q, where Tp,q denotes
the (p, q)-torus knot with 0 < q < p. For the rest of this section, in
order to ease notation we fix the parameters p and q, letting K

± =
T±p,q and Q = Qp,q = K

+#K
�. Let F

± denote fixed minimal genus
Seifert surfaces for K±, and let F = F

+
\F

� denote the corresponding
Seifert surface for Q, where \ denotes the natural boundary-connected
summation of Seifert surfaces yielding a Seifert surface for Q. It is well-
known that g(F±) = 1

2(p�1)(q�1), so g(F ) = (p�1)(q�1). As before,
we use EK± and EQ to represent the exteriors ofK± andQ, respectively,
and we let YQ denote the result of 0-framed Dehn surgery on Q, with
bF the closed fiber in YQ. In addition, we let '± denote the monodromy
for EK± , ' the monodromy for EQ, and b' the monodromy for YQ.

In this subsection, we give an explicit description of the surface bundle
structures on EK± , EQ, and YQ. To begin, we construct the Seifert
surface F

+ for the torus knot K
+ = Tp,q, where K

+ is contained in a
Heegaard torus T cutting S

3 into solid tori V and V
0. Let D1, . . . , Dp be

disjoint meridian disks for V , and let D
0
1, . . . , D

0
q be disjoint meridian

disks for V
0, so that {Di} and {D0

j} meet in pq points {xi,j}, with
xi,j = Di \D

0
j . Replace each point of intersection xi,j with a band Bi,j

containing a negative quarter twist, so that the union F
+ = {Di} [

{D0
j} [ {Bi,j} is a Seifert surface for K+. See Figure 3.
The monodromy '+ corresponding to the fibration of EK+ is well-

understood: It can be visualized as a simultaneous cork-screwing of the
disks {Di} and {D0

j} within the solid tori V and V
0. Specifically, '+

cyclically permutes both sets of disks, as well as the bands. Thus, '+

has order pq, and we may assume that the disks are labeled so that
'
+(Di) = Di+1, '+(Dj) = Dj+1, and '+(Bi,j) = Bi+1,j+1, with indices
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Figure 3. A local picture of the Heegaard torus T near
where the boundaries of the disks Di and D

0
j intersect,

where the intersection point xi,j has been replaced with
the band Bi,j .

i and j considered modulo p and q, respectively. See the left graphic
of Figure 4, where we have represented the core of V by the z-axis and
the core of V 0 by the unit circle in the plane {z = 0} in our illustration
of the case of (p, q) = (4, 3).

In order to better understand the action of '+ on F
+, we build an

alternative picture as in [Sch16]. Let �+ be a graph embedded in F
+,

where �+ has a vertex vi in the center of each disk Di and a vertex v
0
j

in the center of each disk D
0
j , for a total of p+ q vertices. In addition,

�+ has pq edges, labeled ei,j , connecting vi to v
0
j and passing through

the core of the band Bi,j . As such, we may suppose without loss of
generality that '+(�+) = �+, where '+(vi) = vi+1, '+(v0j) = v

0
j+1, and

'
+(ei,j) = ei+1,j+1, with indices considered modulo p and q as above.

See the left panel of Figure 4 for the case of (p, q) = (4, 3).
Knowing '

+(�+), we now consider the action of '+ on F
+ \ �+.

Cutting F
+ along �+ yields an annulus A+, where one boundary com-

ponent of A+ is the knot K
+ and the other boundary component is a

2pq-gon coming from �+. Each edge ei,j of �+ gives rise to two edges
e
±
i,j in @A

+, labeled as in the center panel of Figure 4. Moving clockwise

around @A+, we see that edges alternate between + and �, the edge e+i,j
is adjacent to e

�
i,j+1, and the edge e

�
i,j is adjacent to e

+
i+1,j . Moreover,

the monodromy '+ preserves the orientation of the edges, and thus '+

acts on the 2pq-gon by a 2⇡/pq clockwise rotation. As in [Sch16], we
assume that '+ also induces a 2⇡/pq rotation of the knot K

+. With
this setup, we see a departure from the usual convention that '+|@EK+

is the identity, since the knot itself is rotated along with the fiber sur-
face. We make this choice because is it compatible with the Seifert
fibered structure on EK+ in that '+ preserves fibers (see Lemma 4.2).
Furthermore, this assumption does not alter our eventual description of
the closed monodromy b' for YQ.
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Figure 4. (Left) The surface fiber F+ for the torus knot
K

+, shown with spine graph �+. (Center) The annulus
A

+ obtained by cutting open F
+ along �+. (Right) The

(punctured) annulus A whose edge identifications yield
the surface fiber F for Q. Shown in orange is the arc ⌘1,1
on F

+ and the curve V1,1 on F .

Since the mapping class group of A+ is Z and we understand '+|@A+ ,
the map '

+ is completely determined up to some number k of Dehn
twists about the core of the annulus A

+. Consider the co-core arc ⌘i,j
of a band Bi,j . The arc ⌘i,j meets �+ once, crossing the edge ei,j , so
that ⌘i,j \ A

+ consists of two disjoint arcs, connecting K to e
+
i,j and

K to e
�
i,j . The number of twists k in '

+ is equal to zero if and only

if ⌘i,j \ '
+(⌘i,j) = ;, and we see that since '+(Bi,j) = Bi+1,j+1, the

map '
+ moves ⌘i,j completely o↵ of itself. We conclude that k = 0,

and the monodromy '+ is isotopic to a 2⇡/pq clockwise rotation of the
annulus A+.

The last piece of information we need in order to completely under-
stand '+ is the identification of (+)-edges and (�)-edges in @A+ that
recovers the Seifert surface F

+. If we label the sides of the 2pq-gon
component of @A+ in clockwise order from 0 to 2pq� 1, where the edge
e
+
1,1 has label zero, we see that (+)-edges have even labels and (�)-edges

have odd labels. In addition, every edge e
+
1,j is labeled 2ap for some in-

teger a, and every edge e
+
i,1 is labeled 2bq for some integer q. Since the

edge e
�
1,1 is adjacent to both e

+
2,1 and e

+
1,q, its label l is equal to 2ap+ 1

and 2bq � 1. Equivalently, we have that ap + 1 = bq, and thus the
(+)-edge labeled 0 is identified to the (�)-edge labeled 2ap + 1, where
ap ⌘ �1 (mod q). More generally, every (+)-edge labeled l is identified
to the (�)-edge labeled l + 2ap+ 1 (mod 2pq), completing the picture.

Remark 4.1. Upon first glance, the reader might notice that the
picture described here is di↵erent than the picture described in [GST10]
and [Sch16], where (p, q) = (3, 2). However, these two descriptions can
be seen to be identical after the following observation: In the case that
q = 2, we have that p ⌘ 1 (mod 2), and thus the (+)-edge labeled l is
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identified with the (�)-edge labeled l + 2p + 1 in the 4p-gon boundary
component of A+. In addition, the (+)-edge labeled l + 2p is identified
with the (�)-edge l + 4p + 1 ⌘ l + 1 (mod 4p). Thus, the consecutive
pair of (±)-edges labeled l � 1 and l are glued to the consecutive pair
of (±)-edges labeled l + 2p and l + 2p + 1, and our description may
be simplified. In this case, the 4p-gon boundary component may be
viewed as a 2p-gon in which opposite edges are identified. Moreover,
the monodromy remains a 2⇡/pq = ⇡/p clockwise rotation, and we see
that the descriptions here and in [Sch16] are identical. The distinction
stems from the fact that when q = 2, the vertices v0j 2 �+ have valence
two, and the co-cores ⌘i,1 and ⌘i,2 of the bands Bi,1 and Bi,2 are isotopic
in F

+.

We may now proceed to understand the monodromy ofQ = K
+#K

�.
The monodromy of K� = T�p,q can be described by reflecting the annu-
lus A+ through its boundary component coming fromK

+ to get another
annulus A

�, corresponding to a Seifert surface F
� for K

� containing
an analogous graph ��. As such, this monodromy can be represented
by a clockwise rotation of A�, and it follows that the once-punctured
surface fiber F for Q comes from gluing A

� to A
+ along a portion of

K
± to obtain a punctured annulus A with the given edge identifications,

mimicking a similar step in [Sch16]. The result is displayed in the right
panel of Figure 4. The knot Q interferes with the periodicity of the
monodromy – rotation of A moves the puncture – so the rotation of A
must be followed by an isotopy taking Q back to its starting position.
Once this is done, we have recovered the monodromy ' corresponding
to the surface bundle EQ; see Figure 5.

Figure 5. The local model of the monodromy ' of Q
near the puncture of A, featuring the necessary action
of dragging the puncture back to its initial position after
the 1/pq clockwise rotation.

4.2. The Seifert fibered structure of YQ. Consider YQ, the result
of 0-surgery on Q in S

3. Using our work above, YQ is a fibered 3-
manifold with periodic monodromy b' of order pq and (closed) surface
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fiber bF . Moreover, bF can be obtained by performing the above edge
identifications on the annulus bA = A

+ [ A
�, which has two 2pq-gon

boundary components, in which case b' is represented by an honest
(clockwise) 2⇡/pq rotation of bA. (Alternatively, bA is obtained by filling
in the puncture of A, which corresponds to the 0-framed Dehn surgery.)

Lemma 4.2. The manifold YQ is Seifert fibered with base space a

2-sphere S with four exceptional fibers of orders p, q, p, and q.

Proof. Let ⇤1 denote the core of the annulus bA. Since b' maps ⇤1
to itself, preserving orientation, it follows that there is a torus W1 =
⇤1⇥b'S

1 ⇢ YQ. Cutting YQ open along W1 yields the 3-manifolds, call

them Y
+ and Y

�, fibering over bF \ ⇤1 = F
+ [ F

�. As the restriction
of b' to F

± is '±, we have that Y ± is homeomorphic to EK± . It follows
that YQ can be obtained by gluing EK+ to EK� along their respective
boundary tori.

It is well-known that each of EK+ and EK� is Seifert fibered over
a disk with two exceptional fibers of orders p and q. Moreover, the
monodromies '± act on the Seifert fibers, which are the orbits of points
in F

±. Since these monodromies agree on @F±, it follows that EK+ is
glued to EK� along Seifert fibers, and therefore YQ has a Seifert fibered
structured over the glued base spaces; namely, over a 2-sphere with four
exceptional fibers of orders p, q, p, and q. q.e.d.

Henceforth, we will let S(p, q, p, q) denote the base space of YQ, some-
times abbreviating this with just S. A surface in a Seifert fibered space
is called vertical if it is a union of fibers or horizontal if it is transverse
to every fiber it meets. It is well-known that every essential surface in a
Seifert fibered space is either vertical or horizontal, and closed vertical
surfaces are tori [Hata]. Let ⇢ : YQ ! S(p, q, p, q) be the natural pro-
jection map that associates each fiber in YQ to its corresponding point

in S(p, q, p, q), and let ⇢ : bF ! S(p, q, p, q) be the restriction of ⇢ to bF .

Lemma 4.3. The map ⇢ : bF ! S is a branched covering of order

pq, where S is identified with a 2-sphere with four cone points of order

p, q, p, and q. The corresponding group of deck transformations is given

by G = hb'i, so ⇢ � b' = ⇢.

Proof. Since bF is not a vertical torus, it must be a horizontal surface
in YQ, from which it follows that the restriction of ⇢ to b⇢ is a branched

covering map (see [Sco83]). The exceptional fibers meet bF in the ver-
tices of the two graphs �±, viewed as graphs embedded in bF cutting bF
into bA. The regular fibers meet bF away from the vertices, where each
of these points is contained in fiber that meets bF in pq distinct points,
so the degree of the cover is pq. The exceptional fibers are precisely
the orbits of the vertices of �± under the action of b'; and each of these
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orbits meets bF either p or q times. Since b' preserves fibers, we have
that ⇢ � b' = ⇢. Finally, as each power of b' is a deck transformation and
hb'i contains pq distinct deck transformations, it follows that this is the
entire group G. q.e.d.

We refer to S = S(p, q, p, q) as the pillowcase, since S can be viewed
as the union of two squares along their edges. The left panel of Figure 6
depicts a fundamental domain R of the branched covering map ⇢. The
center and right panels illustrate the gluings of R induced by hb'i to
form S. In our figures, the cone points are drawn at the corners of S.
We set the convention that the top corners of the square are the cone
points of order p and the bottom corners have order q, as in Figure 6.
Recall from the proof that ⇢�1 of a cone point of order p (resp., of order
q) has a total of q preimages (resp., a total of p preimages) in bF .

Figure 6. The quotient of bA by the action of the mon-
odromy b'. Shown is the case (p, q) = (4, 3). (Left) The
annulus bA representing the surface fiber bF , shown with a
fundamental domain S for the action of the monodromy
b' shaded. (Middle) The domain S, which can be realized
by cutting open the pillowcase. (Right) The pillowcase
S = S

2(p, q, p, q). Shown also are the slopes �0 and �1
on S, together with their lifts to bF .

The next step in this process is to understand the lifting of curves
from the pillowcase to bF . To begin, let �1 = ⇢(⇤1), where ⇤1 is the
core of the annulus bA described in the proof of Lemma 4.2. Next, note
that there is a reflection % of YQ through the torus W1 that swaps EK+

and EK� , in the process transposing the surfaces F
+ and F

� and the
graphs �+ and ��. The reflection % maps Seifert fibers to Seifert fibers;
hence it acts on the quotient S as well (as a reflection through the curve
�1). Let �0 be the curve preserved by this reflection, shown at right in
Figure 6.
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Now, we characterize other essential curves in the pillowcase. Let
S
⇤ be the 4-punctured sphere obtained from S by removing its cone

points. Every curve � 2 S
⇤ can be isotoped so that it meets the two

unit squares of the pillowcase in parallel arcs with slopes in the extended
rational numbers Q1 = Q[ {1}, where 1 represents the fraction 1/0.
We call the rational number associated to � the slope of �. We let �a/b
denote the unique curve in S

⇤ with slope a/b, setting the convention that
b � 0. Note that this definition agrees with our previous descriptions
for �1 and �0. Since the fractions ±1/1, 1/0, and 0/1 occur frequently,
we will use ±1 in place of ±1/1, 0 in place of 0/1, and 1 in place of
1/0.

Note that ⇤1 = ⇢
�1(�1), and let L0 = ⇢

�1(�0). Recall that ⇤1 is
a single curve that separates bF into the two surfaces F±. On the other
hand, in the example shown in Figure 6, L0 consists of a total of pq = 12
curves in bF . We prove this more generally in the next lemma. We also
show that the lift ⇤1 = ⇢

�1(�1) is a single curve, just like ⇤1.

Lemma 4.4. The lift ⇤1 is connected, while the lift L0 has of a total

of pq connected components. Moreover, bF \ L0 is the disjoint union of

q copies of the sphere with p boundary components and p copies of the

sphere with q boundary components.

Proof. The map ⇢ : bF ! S is a cyclic branched covering of order pq

and corresponds to a representation � : ⇡1(S⇤) ⇣ Zpq. For a curve
� ⇢ S

⇤, the cardinality of ⇢�1(�) is determined by �([�]) 2 Zpq =
ht | tpqi. For example, if � is a boundary component of S⇤ corresponding
to a cone point of order p (resp., q), then |⇢�1(�)| is q (resp., p), since
�([�]) is tap for some a = 1, . . . , q�1 (resp., tbq for some b = 1, . . . , p�1).
If � separates S into regions that contain one cone point of order p and
one of order q (as in the case of �1), then �([�]) = t

ap+bq, which is
a generator. It follows that |⇤1| = |⇢�1(�1)| = 1. If � separates the
cone points of order p from those of order q (as in the case of �0), then
�([�]) = 1, since the boundary components of S⇤ necessarily map to
pairs of inverses in Zpq. In this case, |L0| = |⇢�1(�0)| = pq.

For the second part of the proof, recall that ⌘+i,j denotes the co-core

of the band Bi,j in the surface F+, and let ⌘�i,j denote the corresponding

co-core in F
�. The reflection % of YQ through W1 sends ⌘±i,j to ⌘

⌥
i,j , and

thus the curve ⌘+i,j [⌘
�
i,j is preserved by % and satisfies ⇢(⌘+i,j [⌘

�
i,j) = �0.

There are pq curves of this form in bF , and these curves are permuted
by b'; thus the lift L0 = ⇢

�1(�0) is the union of these pq curves.
For the final part of the proof, let ⌘± =

S
⌘
±
i,j . Note F

+ \ ⌘+ is p+ q

disks, where p of these disks each have q boundary arcs in ⌘
+, and q

of these disks each have p boundary arcs in ⌘+. Since % preserves L0,
we have that each component of bF \ L0 is the union of a component of
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F
+ \ ⌘+ and its image under %, which is a component of F� \ ⌘�. Each

of the p disks with q boundary arcs in ⌘+ is glued to one of p disks in
F

� \ ⌘� with q boundary arcs in ⌘� to form a sphere with q boundary
components. Likewise, each of the q disks with p boundary arcs in ⌘+

is glued to one of q disks in F
� \⌘� with p boundary arcs in ⌘� to form

a sphere with p boundary components. The statement of the lemma
follows. q.e.d.

4.3. Lifting curves and Dehn twists from the pillowcase. Let
F

⇤ denote bF with the vertices of �± removed, so that ⇢ : F ⇤ ! S
⇤ is

a regular covering map of degree pq, by Lemma 4.3, and the group of
deck transformations is the cyclic group G = Zpq generated by b'. (In

an abuse of notation, we denote the restrictions of b' and ⇢ from bF
to F

⇤ simply by b' and ⇢, respectively.) Recall that curves in S
⇤ are

parameterized by the extended rational numbers Q1. For two curves
c, c

0 in a surface, the geometric intersection ◆(c, c0) is defined to be the
minimum of |c \ c

0| up to homotopy. The next lemma is standard.

Lemma 4.5. For any two curves �a/b,�c/d 2 S
⇤
, their intersection

number is

◆(�a/b,�c/d) = 2 · |ad� bc|.

Let ⌧a/b : S ! S denote a left-handed Dehn twist along �a/b. More
precisely, let ⌫a/b = �a/b⇥[0, 1], parameterized by  2 R/Z and t 2 [0, 1],
and define ⌧a/b to be the identity outside of this annulus. On this
annulus, we define

⌧a/b( , t) = ( � t, t).

The action of ⌧±a/b on curves in S is as follows; this lemma is also stan-

dard.

Lemma 4.6. For any a/b, c/d 2 Q1, any n 2 Z, and � = |ad� bc|,
we have

⌧
n
a/b(�c/d) = �e/f ,

where e = c + 2an�, f = d + 2bn� if a is odd, and e = c � 2an�,

f = d� 2bn� if a is even.

We have chosen to define ⌧a/b as a left-handed Dehn twist so that
it preserves the sign of the slope of �c/d when c is odd. For example,
⌧
n
1(�0) = �2n/1 and ⌧n1 (�0) = �2n/(2n+1). On the other hand, ⌧n0 (�1) =
��1/2n.

In the next lemma, we show that applying sequences of the twists
⌧1 and ⌧0 and their inverses to the curves �0, �1, and �1 generates all
curves �a/b in S

⇤.

Lemma 4.7. Let a/b 2 Q1. If a is even (resp., odd), then there is

a product of the Dehn twists ⌧
±1
1 and ⌧0 taking �a/b to �0 (resp., �1

or �1).



GENERALIZED SQUARE KNOTS AND HOMOTOPY 4-SPHERES 99

Proof. To begin, we compute

⌧
±1
1 (�a/b) = �(a±2b)/b

⌧
±1
0 (�a/b) = �a/(b⌥2a)

Recall that we assume that b � 0; if the above formula results in a/b

with b < 0, we replace a and b with �a and �b. If b = 0, then a/b = 1
and we are done. If a/b = ±1, then since ⌧1(��1) = �1, we are done.
Thus, suppose that b > 0 and |a| 6= b. We will induct on the ordered
pair (b, |a|) with the dictionary ordering. Thus, suppose that there is a
series of Dehn twists taking �a0/b0 to one of �0, �1, or �1 for all a0/b0

such that (b0, |a0|) < (b, |a|).
First, suppose that |a| > b. If a > b, then 2a > 2b > 0 and thus

a > 2b� a > �a. It follows that |a� 2b| < a, and we have ⌧�1
1 (�a/b) =

�a�2b/b, so the claim holds by induction. If a < �b, then 2a < �2b < 0
and thus a < �2b � a < �a, so that |a + 2b| < |a|. In this case,
⌧1(�a/b) = �(a+2b)/b and the claim holds by induction. On the other
hand, suppose that |a| < b. If 0 < a < b, then �b < b� 2a < b, so that
the claim holds for ⌧0(�a/b) by induction in this case too. Otherwise,
�b < a < 0, so that �b < b + 2a < b, and we apply the inductive
hypothesis to ⌧�1

0 (�a/b).
We conclude that there exists a sequence of Dehn twists taking �a/b

to one of �0, �1, or �1. Finally, observe that each twist preserves the
parity of the numerator. Thus, if a is even, these twists take �a/b to �0.
Otherwise, a is odd and the result of the twists is �1 or �1. q.e.d.

Now, we define homeomorphisms e⌧0, e⌧1 : bF ! bF , which lift the Dehn
twists ⌧0 and ⌧1. Recalling that L0 contains pq curves, let e⌧0 be the
product of a single left-handed Dehn twist performed on each of these
curves. (The order is not important since these Dehn twists commute.)
The homeomorphism e⌧1 is slightly more complicated. Recalling that
bF \ ⇤1 = F

+ [ F
�, define e⌧1 to be the identity on F

�, the inverse
monodromy map ('+)�1 on F

+, and a 1/pq left-handed Dehn twist in
an annular neighborhood of ⇤1. In coordinates, we parameterize the
neighborhood ⇤1 ⇥ I as {( , t) | 2 R/Z, t 2 [0, 1]}, where @F� =
⇤1 ⇥ {0} and @F+ = ⇤1 ⇥ {1}. On ⇤1 ⇥ I, the twist is defined as

e⌧1( , t) =

✓
 � t

pq
, t

◆
.

Observe that e⌧1 is well-defined, it restricts to the identity map on @F�

and restricts to a 1/pq counterclockwise rotation on @F+; hence it is a
homeomorphism of bF . We prove the claimed lifting properties with the
next lemma.

Lemma 4.8. The homeomorphism e⌧0 is a lift of ⌧0, and the homeo-

morphism e⌧1 is a lift of ⌧1.
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Proof. First, we prove that ⇢ � e⌧0 = ⌧0 � ⇢. Outside of a regular
neighborhood of L0, the multi-twist e⌧0 is the identity map, and the same
is true for ⌧0 outside a regular neighborhood of �0. The restriction of ⇢
to each component of L0 is a homeomorphism to �0, which extends to a
homeomorphism of an annular neighborhood of each component of L0.
It follows that ⇢ � e⌧0 = ⌧0 � ⇢ in each of these annular neighborhoods,
and thus it holds for the entire surface bF .

For the second claim, we show that ⇢ � e⌧1 = ⌧1 � ⇢, proceeding as
in the first case. Outside of a regular neighborhood of ⇤1, the map
e⌧1 is either the identity or the map ('+)�1, which is the restriction
of (b')�1 to F

+. Since ⇢ � b' = ⇢, it follows that ⇢ � e⌧1 = ⇢ away
from ⇤1. Similarly, ⌧1 is the identity away from �1, thus ⇢ � e⌧1 =
⌧1 � ⇢ away from ⇤1. The restriction ⇢|⌫(⇤1) : ⌫(⇤1) ! ⌫(�1) is an
interval thickening of the canonical pq-to-one covering of S1 to S

1. In
coordinates, we have

⇢|⌫(⇤1)( , t) = (pq , t).

Thus,

⇢|⌫(⇤1) � e⌧1( , t) = ⇢|⌫(⇤1)

✓
 � t

pq
, t

◆
= (pq � t, t),

while

⌧1 � ⇢|⌫(⇤1)( , t) = ⌧1(pq , t) = (pq � t, t).

It follows that ⇢ � e⌧1 = ⌧1 � ⇢ on all of bF , as desired. q.e.d.

Combining the previous two lemmas, we can show that given any lift
⇢
�1(�a/b), there is a homeomorphism of bF that takes this lift to one of
⇢
�1(�0), ⇢�1(�1), or ⇢�1(�1), depending on the parity of a.

Lemma 4.9. Given any a/b 2 Q1, there is a homeomorphism

ef : bF ! bF such that ef(⇢�1(�a/b)) is either ⇢
�1(�0) if a is even, or

one of ⇢
�1(�1) or ⇢�1(�1) if a is odd.

Proof. Let a/b 2 Q1. By Lemma 4.7, there exists a homeomorphism
f : S ! S, obtained as the product of Dehn twists ⌧±1

1 and ⌧±1
0 , such

that f(�a/b) is either �0 if a is even, or one of �1 or �1 if a is odd. By

Lemma 4.8, the homeomorphism f lifts to a homeomorphism ef : bF ! bF .
Thus, ef maps the lift ⇢�1(�a/b) to one of the three lifts ⇢

�1(�0), ⇢�1(�1),
or ⇢�1(�1), as desired. q.e.d.

It follows easily that ⇢�1(�a/b) contains either one or pq distinct
curves, depending on the parity of the numerator a.

Proposition 4.10. 1) If a/b 2 Q1 and a is odd, then ⇢
�1(�a/b)

is a single separating curve in bF .
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2) If c/d 2 Q1 with c even, then ⇢
�1(�c/d) consists of pq pair-

wise disjoint curves that are permuted by b' and are pairwise non-

homotopic in F
⇤
.

a) If q � 3, these curves remain pairwise non-homotopic in bF .

b) If q = 2, then ⇢
�1(�c/d) contains two curves in each of p dis-

tinct homotopy classes of curves in bF , and b'p
swaps a pair of

homotopic curves with opposite orientations.

Proof. Suppose a/b 2 Q1 with a odd. By Lemma 4.9, there is a
homeomorphism ef of bF taking ⇢�1(�a/b) to ⇤1 or ⇤1, each of which is
connected by Lemma 4.4, so ⇢�1(�a/b) is connected, as desired.

Suppose c/d 2 Q with c even. By Lemma 4.9, there is a homeomor-
phism ef of bF taking ⇢�1(�c/d) to L0. Thus, it su�ces to prove part
(2) for L0. By Lemma 4.4, we have that L0 is a separating collection
of pq curves in bF , and bF \ L0 consists of p spheres with q boundary
components and q spheres with p boundary components. It follows that
curves of L0 are non-homotopic in bF if and only if q > 2. Otherwise,
q = 2 and bF \ L0 contains p annuli; hence the curves of L0 are paral-
lel in pairs. The restriction of ⇢ is a degree two branched cover from
each annulus to the disk component of S \ �0 containing the two cone
points of order 2; the subgroup hb'pi of hb'i has order two. Thus, b'p is
an involution of each annulus, swapping the boundary components with
reversed orientations. q.e.d.

Moving forward, we distinguish these two cases by letting a/b 2 Q1
represent an arbitrary fraction with odd numerator and c/d 2 Q1 rep-
resent an arbitrary fraction with even numerator. In addition, we let
⇤a/b = ⇢

�1(a/b) when a is odd, and we let Lc/d = ⇢
�1(�c/d) for c even.

In the next lemma, we show that all sets of curves preserved setwise by
b' must be one of the lifts characterized in this section. This lemma will
be especially important in our classification of Casson-Gordon deriva-
tives in Subsection 4.4. We note that it may be the case that two
curves in F

⇤ are homotopic in bF but not homotopic in F
⇤. (Recall

that F
⇤ = bF \ ⇢�1(cone points).) This occurs, for instance, whenever

q = 2; as we saw in Lemma 4.4, in this case bF \ L0 contains p annular
components.

Lemma 4.11. Let ⇤ be a collection of pairwise disjoint and non-

homotopic curves in F
⇤
. Then, b'(⇤) = ⇤ if and only if ⇤ = ⇢

�1(�a/b)
for some a/b 2 Q1.

Proof. Recall that the restriction ⇢ : F ⇤ ! S
⇤ is a cyclic covering

map with group of deck transformations generated by b', and assume
b'(⇤) = ⇤. Since ⇤ is an embedded 1-manifold, ⇢(⇤) is as well. If any
component of ⇢(⇤) is inessential or if two components are parallel, then



102 J. MEIER & A. ZUPAN

the same is true of components of �. Therefore, ⇢(⇤) is an essential
simple closed curve in S

⇤; i.e., ⇢(⇤) = �a/b for some a/b 2 Q1.
To finish this direction of the proof, we must show that ⇢�1(⇢(⇤)) =

⇤, which reduces to showing that ⇢�1(⇢(⇤)) ⇢ ⇤. Let x 2 ⇢
�1(⇢(⇤))

and let y = ⇢(x), so y = ⇢(z) for z 2 ⇤. Since b' generates the cyclic
group of deck transformations for the covering ⇢, we have ⇢�1(y) =
{b'k(x) | 0  k  pq}. It follows that b'k(x) = z 2 ⇤ for some k, but
since b'(⇤) = ⇤, we have that x 2 ⇤, as desired.

The converse direction is immediate from Lemma 4.3. q.e.d.

Remark 4.12. When q = 2, the branched double cover ⇢q :S(p, p,p, p)

! S(p, 2, p, 2) is an involution, as shown in Figure 7, and ⇢p : bF !
S(p, p, p, p) has a pillowcase as its base space. Curves in S(p, p, p, p)
avoiding the cone points are parametrized in the natural way. If c is
even, the (⇢q)�1(�c/d) is two copies of the curve �c/2d ⇢ S(p, p, p, p). If
a is odd, then (⇢q)�1(�a/b) = �a/2b. See Figure 7.

In the case of (p, q) = (3, 2), the authors of [GST10] and [Sch16]
work with the pillowcase S(3, 3, 3, 3), and so the slopes in these ref-
erences are of the form c/2d compare to our c/d. In addition, our
slopes have switched signs. For example, lifts of curves in S(3, 3, 3, 3) of
slopes 1/3, 2/5, 3/7 as defined in [GST10] and [Sch16] correspond to
L�2/3,L�4/5,L�6/7 considered as lifts of curves in S(3, 2, 3, 2). (When

q = 2, the curves of Lc/d occur as p pairs of parallel curves on bF ; in this
case, we follow [GST10] and only consider one curve from each pair, as
in the right frame of Figure 7.)

Figure 7. Lifting curves from the pillowcase to the hex-
ulus. Shown at right are the curves ⇤1 (red), L0 (or-
ange), and L2/3 (light blue, dark blue, and violet).

4.4. Classifying the CG-derivatives of Qp,q. Given any generalized
square knot Qp,q and any c/d 2 Q with c even, we have shown how to

construct a multi-curve Lc/d lying in the closed fiber bF for Qp,q. We are
now in a position to prove Proposition 1.4.
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Lemma 4.13. Every (p�1)(q�1) component sublink L of Lc/d that

cuts bF into a connected planar surface is isotopic to a CG-derivative

for Qp,q in S
3
.

Proof. Let N ⇢ ⇡1( bF ) be the subgroup normally generated by the
homotopy classes of curves in L, noting that N is also normally gener-
ated by all of the curves in Lc/d. Since b' permutes curves in Lc/d, it
follows that b'⇤(N) = N . Therefore, Proposition 2.7 implies that L is a
CG-derivative for Qp,q. q.e.d.

Setting L
p,q
c/d = L ⇢ Lc/d, this establishes Proposition 1.4. Next, we

prove that every CG-derivative for a generalized square knot is equiva-
lent to one of those described in Lemma 4.13. In order to understand
all CG-derivatives of Qp,q up to handleslide-equivalence, we invoke the
Equivariant Loop Theorem (as stated in [YM84]). We also state the
Equivariant Sphere Theorem (as stated in [Dun85]), to be used later
to prove Proposition 8.3.

Equivariant Loop and Sphere Theorems ([MY79], [MY80],
[MSY82]). Let G be a finite group acting smoothly on a compact three-

dimensional manifold Y such that Y is closed or @Y = F and g(F ) = F

for all g 2 G.

Loop Theorem: Let  = ker(◆⇤), where ◆ : F ! Y is inclusion.

Then there is a collection D = {Di}ki=1 of properly embedded disks

in Y with the following properties:

1)  is generated as a normal subgroup of ⇡1(F ) by {[@Di]}ki=1.

2) For any g 2 G and 1  i, j  k, either g(Dj) \ Di = ; or

g(Dj) = Di.

Sphere Theorem: Let S ⇢ Y be a two-sphere that does bound a

three-ball. Then there exists such an S such that g(S) = S or

g(S) \ S = ; for all g 2 G.

We remark that, although the original proofs of the Equivariant Loop
Theorem by Meeks and Yau and the Equivariant Sphere Theorem by
Meeks, Simon, and Yau both used analytic techniques, purely topo-
logical proofs have since been given by Dunwoody [Dun85] and Ed-
monds [Edm86].

Proposition 4.14. Suppose that L
+ ⇢ S

3
is a Casson-Gordon de-

rivative for Qp,q. Then there exists c/d with c even such that Qp,q [L
+

is stably handleslide-equivalent to Qp,q [ Lc/d.

Proof. By the definition of a Casson-Gordon derivative, there exists a
handlebody H such that L+ such that the closed monodromy b' : bF ! bF
extends to a homeomorphism � : H ! H, and such that L

+ bounds a
cut system for H. Since b'pq is the identity, �pq must also be isotopic
to the identity. Since no lesser power of b' is the identity, neither is a



104 J. MEIER & A. ZUPAN

lesser power of �. It follows that � generates an action of Zpq on H.
By the Equivariant Loop Theorem, there is a finite collection of disks
D = {Di} that are properly embedded in H and have the property that
the subgroup of ⇡1( bF ) generated by the curves L = @D is equal to the
kernel of the map ◆⇤ induced by the inclusion ◆ : bF ! H. Moreover, for
any 1  k  pq, we have that either �k(Dj) \ ([iDi) = ; or �k(Dj) 2
{Di}.

Note that since �pq is the identity, after deleting parallel disks, the
disks in D can be expressed as {D1,�(D1), . . . ,�m�1(D1)} for some in-
teger m, where �m(D1) = D1 and �k(D1) 6= D1 for k < m. In the event
that �m(D1) and D1 have opposite orientations (which will occur when
q = 2), we replace each diskD in D with the ends of an equivariant collar
neighborhood D⇥I of D in H; that is, D is replaced with D

� = D⇥{0}
and D

+ = D ⇥ {1}. In this case, D = {D1,�(D1), . . . ,�2m�1(D1)}
has the property that �2m(D1) = D1 (preserving orientation), and
�
k(D1) 6= D1 setwise for any k < 2m. Once this is done, we have

that � cyclically permutes the disks of D.
Note that curves in L = @D are of the form @(�k(D1)) = b'k(@D1).

We claim that L ⇢ bF does not meet any of the lifts of the cone points
of S: Observe that L is invariant under b'. If L passes through the lift
x of a cone point of order p (resp. q), then b'q (resp. b'p) induces a
1/p (resp. 1/q) rotation in a neighborhood of x. However, this implies
that either L has a transverse self-intersection (in the case p or q � 3)
or that b'k maps a curve in L to itself with opposite orientation (in the
case q = 2), which has been ruled out by our choice of the disks D. We
conclude that L does not meet a lift of a cone point, so that L ⇢ F

⇤

as in Lemma 4.11, which asserts that L = Lc/d = ⇢
�1(�c/d) for some

c/d 2 Q1. Since the kernel of ◆⇤ is not cyclic, L contains more than one
curve, and by Proposition 4.10, we have that c is even and |L| = pq.

Finally, let L ⇢ Lc/d be any collection of curves cutting bF into a
connected planar surface. Since both L

+ and L are cut systems for
the same handlebody, they are handleslide-equivalent in bF . Viewing bF
as a subspace of YQp,q , we have that L

+ is handleslide-equivalent to L

in YQp,q , so that Qp,q [ L
+ is handleslide-equivalent to Qp,q [ L in S

3.
Adding in the rest of the curves in Lc/d may be achieved by stable
equivalence; hence Qp,q [ L is stably equivalent to Qp,q [ Lc/d. q.e.d.

5. The link Qp,q [ L0 has Property R

In this section, we give a detailed analysis of the link L0 lying in the
fiber F for Q = Qp,q in S

3. First, we prove that Q [ Lc/d is stably
equivalent to Q [ V , where V is any one component of Lc/d. We then
show directly that Q [ L0 has Property R by showing that Q [ V is
handleslide trivial when V ⇢ L0.
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Lemma 5.1. For any c/d with c even and for any component V of

Lc/d, the link Q [Lc/d is handleslide-equivalent to Q [ V tU , where U

is a split unlink.

Proof. Since b' permutes the curves in Lc/d, it follows that every
component of Lc/d is isotopic to V in the 3-manifold YQ. Thus, in
YQ, the link Lc/d is isotopic to a collection of curves parallel to V .
Handleslides in YQ convert this collection to V t U , where U is a split
unlink. In S

3, this implies that Q [ Lc/d is handleslide-equivalent to
Q [ V t U , as desired. q.e.d.

The Farey graph has vertices corresponding to the extended rational
numbers Q1, where two rational numbers p/q and r/s are connected by
an edge whenever |ps� qr| = 1. A Farey triangle is a triple of rational
numbers, each connected by an edge. The Farey graph can also be
associated to the 1-skeleton of the curve complex of the torus, as well as
the arc complex of the torus with one boundary component. For further
background information on the Farey graph, see [Hatb].

Now, we turn our attention to understanding the knot types of the
components of L0 in S

3. To this end, fix a band Bi,j connecting merid-
ional disks Di of V and D

0
j of V

0, as in Subsection 4.1. We may suppose
Bi,j is transverse to the Heegaard torus T containing K

+, so that the
co-core ⌘+ = ⌘

+
i,j of Bi,j is contained in T . As in [Sch16], we obtain

the curve Vi,j ⇢ L0 in bF by gluing ⌘+ ⇢ F
+ to its image ⌘� ⇢ F

�

under the reflection of bF across ⇤1 that interchanges F+ and F
�. (See

Figure 4 for an example.) This construction, however, does little to
help us determine the knot type of Vi,j in S

3. For this purpose, we fol-
low [Sch16]: We may homotope ⌘+ in F

+ (via a homotopy that does
not fix @⌘+) until its boundary points coincide, yielding a knot. Since
the two points @⌘+ cut K+ = @F

+ into two arcs, there are two choices
for this homotopy; we will let J+

1 and J
+
2 denote the resulting knots. In

addition, we let J�
1 and J

�
2 denote the corresponding mirror images in

F
� obtained from ⌘

�.
Since components of L0 are constructed by gluing a given co-core to

its mirror image, we can mirror the homotopy of ⌘+ in F
�, so that

Vi,j = J
+
1 #J

�
1 or Vi,j = J

+
2 #J

�
2 . In YQ these two knots are isotopic

into bF and are related by a single handleslide over Q, which may be
viewed as a homotopy across the disk D ⇢ bF .

Lemma 5.2. 1) Let J
+
1 and J

+
2 be defined as above. As knots in

S
3
, the curves J

+
1 and J

+
2 are the torus knots Tr1,s1 and Tr2,s2,

such that

a) 0 < si < ri,

b) |ps1 � qr1| = |ps2 � qr2| = |r1s2 � s1r2| = 1,
c) 0 < r1, r2 < p, and
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d) 0 < s1, s2 < q.

2) After slides over Q in S
3
, each component Vi,j of L0 is either

Qr1,s1 or Qr2,s2.

3) After slides over Q in S
3
, there is a genus two Heegaard surface

⌃ for S
3
and a component V = Qr1,s1 of L0 such that Q[V ⇢ ⌃,

and there is a reducing curve � for ⌃ cutting Q and V into their

respective summands.

Proof. First, observe that we may crush each band Bi,j to its co-core
⌘
+
i,j , so that F

+ may be viewed as the union of the disks D1, . . . , Dp

and D
0
1, . . . , D

0
q, where disks meet along the co-cores ⌘+i,j . This implies

that K
+ [ ⌘+ is an embedded graph in the Heegaard torus T

+. The
endpoints of ⌘+ cut the knot K+ = Tp,q into arcs !1 and !2 in T , where
J
+
i = ⌘

+ [!i, from which it follows that J+
i is a torus knot Tri,si . Note

further that a parallel pusho↵ of K+ in T meets J
+
i in a single point.

Moreover, J+
1 and J

+
2 may be constructed by taking the disjoint arcs

!1 and !2 and connecting them with copies of ⌘+ that meet in a single
point, as shown in Figure 8, so that |J+

1 \ J
+
2 | = 1. We conclude that

the curves K+
, J

+
1 , J

+
2 form a Farey triangle in the curve graph of T+.

Figure 8. A local picture of the Heegaard torus T
+

containing K
+, J

+
1 , and J

+
2 near a band of a Seifert

surface for K+ whose co-core is ⌘+.

Recall thatD0
j is the meridian disk for V 0 containing ⌘+, and a pusho↵

of K
+ meets D

0
j transversely in p points of positive sign. A slight

pusho↵ of ⌘+ is disjoint from D
0
j , and assuming each arc !i meets D

0
j

transversely in at most p points of positive sign, we have that ri  p

for i = 1, 2, forcing 0 < ri < p since the curves meet pairwise once.
A similar argument using Di instead of D0

j shows that 0 < si < q. The
second statement of the lemma follows from the fact that Vi,j is the
connected sum J

+
1 #J

�
1 or J+

2 #J
�
2 .

To see that the final statement is true, we first homotope the arc ⌘+

along K
+ in T

+ so that its boundary points are close, we let K�[⌘� ⇢



GENERALIZED SQUARE KNOTS AND HOMOTOPY 4-SPHERES 107

T
� be the corresponding mirror images, and we take the connected sum

of T+ and T
� along disks that contain the boundary points of ⌘±. The

resulting link is Q[V , contained in the Heegaard surface T+#T
� with

a reducing curve � as desired. q.e.d.

As mentioned above, the Farey graph corresponds to the arc com-
plex of T

+, a torus with one boundary component, and every triple
(↵0,↵1,↵2) of pairwise disjoint non-homotopic arcs in T

+ corresponds
to a triangle in the Farey graph. The process of replacing a pair of curves
in a triple, say (↵0,↵1), with a di↵erent pair from the same triple, say
(↵1,↵2), is called an arc-slide. Any two edges in the Farey graph can
be connected by a path of Farey triangles, and thus any two pairs of
disjoint arcs in T

+ can be related by a sequence of arc-slides. We use
these ideas in the proof of the next proposition.

Proposition 5.3. There is a component V ⇢ L0 such that the link

Q [ V has Property R.

Proof. By Lemma 5.2, there exists a component V of L0 and a
genus two Heegaard surface with reducing curve �, where � cuts ⌃ into
T
+ [ T

�, Q into ↵+
0 [↵

�
0 , and V into ↵+

1 [↵
�
1 , such that ↵�

i is the mirror
image of ↵+

i over �. Since ↵+
0 and ↵+

1 are disjoint, non-homotopic arcs
in T

+, they determine an edge in the Farey graph. Any handleslide of Q
over V along an arc contained in � can be realized as a pair of mirrored
arc slides in T

+ and T
�, and vice versa.

Again using Lemma 5.2, we have that the arcs ↵±
0 and ↵±

1 are iden-
tified with the fractions p/q and r1/s1, respectively. By the remark
preceding the proposition, there is a sequence of (mirrored) arc slides
taking (↵±

0 ,↵
±
1 ) to the pair (�±0 ,�

±
1 ) corresponding to the fractions

0/1 and 1/0 respectively. This implies there is a sequence of han-
dleslides taking Q [ V to Q0,1 [ Q1,0 ⇢ ⌃, which is the 2-component
unlink. q.e.d.

6. Twisting on vertical tori in YQ

The purpose of this section is to define two useful di↵eomorphisms,
T0 and T1, of the 3-manifold YQ, each of which is described as a twist
on a vertical torus. Recall that in Lemma 4.8, we showed that the Dehn
twists ⌧0 and ⌧1 of S lift to homeomorphisms e⌧0 and e⌧1 of bF . The main
result in this section is that the twist T0 preserves fibers of YQ, and the

restriction of T0 to bF is e⌧0. The same is not quite true for T1, but we
show that T1 is isotopic to a di↵eomorphism T 0

1 that preserves fibers of
YQ and acts on bF as e⌧1. It follows that the links T0(Lc/d) and T1(Lc/d)
are isotopic in YQ to the links e⌧0(Lc/d) and e⌧1(Lc/d), respectively, which
will allow us to extend T0 and T1 over the 4-manifolds determined by
these links.
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By Lemma 4.2, we have that YQ is Seifert fibered over the base space
S = S(p, q, p, q). We previously defined W1 to be the vertical torus
that projects to the curve �1 ⇢ S. Define W0 to be the vertical torus
in YQ that projects to the curve �0 ⇢ S.

6.1. Twisting the torus W0. Recall that the multi-curve L0 is con-
tained in bF as a collection of pq curves that are cyclically permuted by
the monodromy b'. The torus W0, which is vertical with respect the
to Seifert fibration of YQ, intersects bF in the pq curves of L0. We pa-
rameterize W0 with a meridian and longitude. Let `0 ⇢ W0 be a curve
parallel to components of L0, and let µ0 be a regular Seifert fiber in W0.
Parameterize W0 as (✓, ) 2 R2

/Z2, where µ0 = {(✓, 0) : ✓ 2 R/Z} and
`0 = {(0, ) :  2 R/Z}.

We define a automorphism T0 of YQ that is given as a Dehn twist
along the torus W0. Let N0 = W0 ⇥ [0, 1] be a regular neighborhood of
W0, parameterized by (✓, , t), and identify W0 with W0 ⇥ {0}. Define
T0 to be the identity on YQ \N0. On N0, define

T0(✓, , t) = (✓, � t, t),

noting that T0|W0⇥{0,1} = Id, and thus T0 : YQ ! YQ is a di↵eomor-
phism. A di↵eomorphism T : YQ ! YQ is said to be surface-fiber-

preserving if it maps surface-fibers to surface-fibers.

Lemma 6.1. The torus twist T0 is surface-fiber-preserving, and

T0| bF = e⌧0.

Proof. First, we note that T0( bF ) = bF , since T0 fixes the ✓ parameter of
N0 and is the identity away fromN0. The intersection of bF\N0 is pq dis-
joint annuli of the form {(✓0, , t) :  2 R/Z, t 2 [0, 1]}, and the restric-
tion of T0 to each annulus is a Dehn twist about a component of L0. Note
that the regular fiber µ0 meets bF coherently in each point of intersection;
thus all of these Dehn twists are coherently oriented. Thus, following
the proof of Lemma 4.8, we have that T0| bF = ⌧̃0, as desired. q.e.d.

6.2. Twisting the torus W1. In this subsection, we examine the
more complicated case of a twist on W1. Here the twist does not pre-
serve bF but is isotopic to a di↵eomorphism that does; hence, we take
care to keep track of this isotopy.

Recall that W1\ bF is the curve ⇤1, and ⇤1 cuts bF into F
±. More-

over, the torus W1 cuts YQ into EK+ and EK� . In Subsection 4.2, we
defined the orientation-reversing reflection % of YQ through the torus
W1 taking EK+ to EK� . Using %, we see that the natural meridian
and longitude of EK± are identified in YQ, and thus the torus W1 has a
natural longitude `1 and meridian µ1. The longitude `1 can be viewed
as the identified boundary curves of F± in bF , and thus `1 = ⇤1. Pa-
rameterize W1 as (✓, ) 2 R2

/Z2, where µ1 = {(✓, 0) : ✓ 2 R/Z} and
`1 = {(0, ) :  2 R/Z}.
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As in the previous subsection, we define a automorphism T1 of YQ
that is given as a Dehn twist along the torus W1. Let N1 = W1 ⇥
[0, 1] be a regular neighborhood of W1, parameterized by (✓, , t), and
identify W1 with W1⇥ {0}. Define T1 to be the identity on YQ \N1.
On N1, define

T1(✓, , t) = (✓ + t, , t),

noting that T1|W1⇥{0,1} = Id, and thus T1 : YQ ! YQ is a di↵eomor-
phism.

Lemma 6.2. The torus twist T1 is isotopic to a surface-fiber-pre-

serving di↵eomorphism T 0
1 : YQ ! YQ such that T 0

1| bF = e⌧1.

Proof. Recall from Lemma 4.2 that YQ = EK� [ N1 [ EK+ . We
define isotopies on each of these components and glue them together to
construct the desired isotopy. Let H� : EK� ⇥ I ! EK� be the trivial
isotopyH

�(x, s) = x. LetH+ : EK+⇥I ! EK+ be the isotopy obtained
by flowing once around the bundle structure in the negative direction.
On @EK+ = W1 ⇥ {1}, this isotopy flows points along regular fibers of
the Seifert fibered structure. In H1(W1), regular fibers are expressed
as pq[µ1] + [⇤1], since the boundary slope of the essential annulus in
E(K+) has slope pq/1. Since the isotopy H

+ traverses 1/pqth of each
regular fiber, the restriction of H+ to the boundary W1 ⇥ {1} of EK+ ,
parameterized as (✓, , 1), is the isotopy (✓, , 1, s) 7! (✓�s, �s/pq, 1).

Define an isotopy H1 : N1⇥I ! N1 by H1(✓, , t, s) = (✓�st, �
st/pq, t). Then the restriction of H1 to W1 ⇥ {0} sends (✓, , 0, s) to
(✓, , 0), which agrees with H

�, and the restriction of H1 to W1⇥{1}
sends (✓, , 1, s) to (✓�s, �s/pq, 1), which agrees with H

+. It follows
that we can paste the isotopies H± and H1 together to get an isotopy
H : YQ ⇥ I ! YQ, where H(x, 0) = x by construction.

Define T 0
1 : YQ ! YQ by T 0

1(x) = H(T1(x), 1). Then T 0
1 is isotopic

to T1 via the isotopy H(T (x), s). We are left to verify that T 0
1 is the

desired di↵eomorphism. The restriction T 0
1|EK� is the identity, and

the restriction T 0
1|EK+ is the surface-fiber-preserving di↵eomorphism

that maps each fiber to its image under ('+)�1. Consider T 0
1|N1 . We

compute

T 0
1(✓, , t) = H(T1(✓, , t), 1) = H(✓ + t, , t, 1) = (✓, � t/pq, t).

Since the ✓-coordinate is preserved, it follows that T 0
1 is surface-fiber-

preserving on N1, and thus T 0
1 is surface-fiber-preserving on the en-

tirety of YQ. Finally, note that we have already shown that T 0
1| bF agrees

with e⌧1 outside of N1. If we consider bF to be the fiber that meets N1
in those points such that ✓ = 0, we have that

T 0
1| bF\N1

(0, , t) = (0, � t/pq, t) = e⌧1( , t).

From the definition of e⌧1, we conclude that T 0
1| bF = e⌧1, as desired.

q.e.d.
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In the left panel of Figure 9, we illustrate a collection of arcs ⌘ con-
tained in bF \ N1. In the middle panel, we see the image T1(⌘), and
the in right panel, the image T 0

1(⌘) of the arcs under the isotopy H.

Figure 9. Left: a collection of arcs ⌘ in bF\N1. Middle:
T1(⌘). Right: T 0

1(⌘). Each cube represents N1 after
the identification of the top side with the bottom side
and the right side with the left side.

Suppose that W is a torus in a 3-manifold Y and T : Y ! Y is a
torus twist along W in the direction of a curve µ on W . If W bounds
a solid torus V such that µ bounds a meridional disk D in V , then the
twisting can be interpolated to the identity across the solid torus V , and
thus T is isotopic to the identity. This property is a higher-dimensional
analogue of the fact that a Dehn twist about an inessential curve in a
surface is also trivial.

Note that ⇤1 can be isotoped in bF to avoid the puncture of F cor-
responding to Q, so that the result is a curve in the punctured surface
F preserved set-wise by the (non-closed) monodromy '. (See the right
side of Figure 4.) This isotopy of ⇤1 lifts to an isotopy pushing W1
into EQ. The two choices for this isotopy correspond the two distinct
swallow-follow tori in EQ, which become isotopic after Dehn filling EQ

to get YQ, and the choices of `1 and µ1 correspond with the natural
parameterizations of either torus in S

3. Similarly, we can regard e⌧1 as
an automorphism of F , as opposed to bF .

Lemma 6.3. The links Q [ Lc/d and Q [ L(c±2nd)/d are isotopic for

any n 2 N. Moreover, the isotopy is the (±n)-fold meridional Dehn

twist about a swallow-follow solid torus for Q in S
3
.

Proof. Recalling the notation from the previous proof, we may decom-
pose YQ into EK�[N1[EK+ , so that W1 is isotopic to W1⇥{0}, and
in particular, W1 can be made disjoint from the surgery dual knot Q⇤

to Q in YQ. We push Q
⇤ into a parallel copy of W1⇥{0} just outside of

N1 and contained in EK� . It follows that the torus twist T1 : YQ ! YQ

and ensuing isotopy are supported away from a neighborhood of Q⇤. As
such, T1 and T 0

1 can be regarded as (isotopic) di↵eomorphisms of either
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EQ or of S3. Viewing Q [ Lc/d as a link in S
3, this implies

T 0
1(Q [ Lc/d) = Q [ e⌧1(Lc/d) = Q [ L(c�2d)/d,

and so T1(Q[Lc/d) is isotopic to Q[L(c�2d)/d. (Here, we regard e⌧1 as
an automorphism of F .) Since W1 is a swallow-follow torus, it bounds
a solid torus V1 ⇢ S

3 such that µ1 bounds a disk in V1, as discussed
above. Thus, T1, regarded as a di↵eomorphism of S3, is isotopic to the
identity. By repeated iterations of T1 or its inverse, we can conclude
that Q [ Lc/d is isotopic to Q [ L(c±2d)/d. q.e.d.

7. Standardizing the Casson-Gordon spheres

In this section, we prove the main theorems, Theorems 1.1 and 1.2,
which assert that any two component R-link of the form Qp,q [ J has
Weak Property R. As above, fix Q = Qp,q. As in the proof of Propo-
sition 2.6, let Bc/d denote the Casson-Gordon ball obtained by adding
4-dimensional 2-handles to S

3⇥ I along Q[Lc/d, followed by 3-handles
and a 4-handle. Let Xc/d denote the Casson-Gordon sphere, obtained
by capping o↵ Bc/d with a standard B

4. We define Zc/d ⇢ Bc/d to be
the compact 4-manifold obtained by attaching 2-handles to YQ⇥I along
Lc/d, followed by 3-handles and a 4-handle. Let XQ be the compact 4-
manifold obtained by attaching a 2-handle to B

4 along the 0-framed
knot Q ⇢ S

3, which we refer to as the trace of Q.

Lemma 7.1. The Casson-Gordon sphere Xc/d decomposes as

XQ [YQ Zc/d.

Proof. Observe that Bc/d can be obtained by attaching a 2-handle
to S

3 ⇥ I along Q and then capping o↵ the resulting YQ boundary
component with Zc/d. Thus, we can construct Xc/d by attaching a 2-
handle to B

4 along Q followed by capping o↵ the resulting YQ boundary
component with Zc/d. In other words, Xc/d = XQ [YQ Zc/d. q.e.d.

Above, XQ is obtained by attaching a 0-framed 2-handle to B
4 along

Q. Dually, we obtain a relative handle decomposition of XQ by starting
with its boundary YQ, attaching a 2-handle to YQ along the surgery

dual Q⇤, and capping o↵ the resulting S
3 with a 4-ball. Let bF 0 be a

slight pusho↵ of bF in YQ in the positive direction. The surgery dual Q⇤

decomposes as the union of two arcs, e [ f , where f is a component of
a regular Seifert fiber cut along bF 0, and e is an arc connecting @f in
a parallel copy of ⇤1 ⇢ bF 0. Observe that if @f = {x0, x1}, we have
that b'(x0) = x1, and e is the trace of the isotopy dragging x1 back
to x0 in the description of the monodromy for EQ shown in Figure 5.

See Figure 10 for a depiction of Q⇤. The description of Q⇤ with e ⇢ bF 0

instead of bF is important below, where we consider Q⇤ and a component
V ⇢ L0 to be disjoint components of a link.
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Figure 10. The curve Q
⇤ ⇢ YQ.

By Proposition 4.14, the CG-ball B0 is the standard 4-ball; hence,
XQ can alternatively be obtained by attaching a 2-handle to Q

⇤ ⇢ YQ,
attaching two zero-framed 2-handles to Q [ V ⇢ S

3, where V is any
component of L0, followed by two 3-handles and a 4-handle. In total,
XQ is determined by the attaching link L

⇤ ⇢ YQ for its three 2-handles,

consisting ofQ⇤, a 0-framed meridian µ
⇤ ofQ⇤, and a curve V ⇢ L0 ⇢ bF .

The framing on V is the surface-framing induced by bF .
Recall that T0 : YQ ! YQ denotes the torus twist along W0 discussed

in Subsection 6.2.

Lemma 7.2. The framed link T0(L⇤) is handleslide-equivalent to the

framed link L
⇤
in YQ.

Proof. First, recall that T0 acts on individual fibers as e⌧0 by Lemma
6.1, and thus T0 fixes every component of L0, including V . Similarly, µ⇤

is isotopic into a ball disjoint from W0, so that T0(µ⇤) = µ
⇤. Using the

notation for components of L0 from Subsection 4.1, let V
0
1,1, V

0
1,2 ⇢ bF 0

be pusho↵s of the corresponding curves in L0. Then Q
⇤ meets W0 in

precisely two points, the points e \ V
0
1,1 and e \ V

0
1,2. It follows that

T0(f) = f and T0(e) = e
0, where e

0 is an arc in bF 0 obtained by a Dehn
twist of the arc e about the curves V 0

1,1 and V
0
1,2, so that T0(Q⇤) = e

0[f .
In the manifold YQ, the curve V ⇢ L

⇤ is isotopic to V1,1. If this
isotopy meets T0(Q⇤), it can be achieved by isotopy and handleslides
over the meridian µ

⇤. Thus, after isotopy and handleslides, V can be
converted to V1,1. Let Q

0 be the result of a handleslide of T0(Q⇤) over
V1,1 that undoes the Dehn twist about V1,1, although it changes the
framing of T0(Q⇤) by ±1 (see Figure 11). Similarly, V1,1 is isotopic to
V1,2 in YQ, and thus after isotopy and handeslides over µ⇤, V1,1 can be
converted to V1,2. Let Q

00 be the result of a similar handleslide of Q0

over V1,2 that undoes the other Dehn twist, so that Q00 is isotopic to Q
⇤,

where the framings di↵er by ±2. Finally, a slide of Q00 over its meridian
µ
⇤ preserves the isotopy type of Q00 but changes the framing by ±2,
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converting the framed component Q00 to Q
⇤. We conclude that T0(L⇤)

is handleslide-equivalent to L
⇤ in YQ. q.e.d.

Figure 11. An illustration of the twist e⌧0 of Q⇤ about
V

0 producing T0(Q⇤), followed by the slide of T0(Q⇤) over
V producing Q

0, with framings considered throughout.

Note that Lemma 7.2 will allow us to extend the automorphism T0
across the trace of Q. The last remaining piece of the puzzle in the
proof of the main theorem is the following proposition.

Proposition 7.3. The torus twist T0 extends to a di↵eomorphism

T0 : Xc/d ! Xc/(d�2c).

Moreover, the two handle decompositions given by T0(Q [ Lc/d) and

Q [ Lc/(d�2c) of Xc/(d�2c) become handleslide-equivalent after adding

two Hopf pairs to each link.

Proof. By Lemma 7.1, we have thatXc/d = XQ[YQZc/d andXc/(d�2c)

= XQ [YQ Zc/(d�2c). By Lemma 7.2, we have that L
⇤ and T0(L⇤) are

handleslide equivalent, which implies that T0 can be extended to a dif-
feomorphism from XQ to XQ. Similarly, Lemma 6.1 asserts that T0
acts on bF as e⌧0, and thus T0(Lc/d) = Lc/(d�2c) by Lemmas 4.7 and 4.8.
It follows that T0 extends to a di↵eomorphism from Zc/d to Zc/(d�2c).
By gluing these di↵eomorphisms together, we get a di↵eomorphism T0

from Xc/d to Xc/(d�2c), as desired.
For the second claim, we again use Lemma 7.1 to view XQ ⇢ Xc/d.

First, the dual knot Q
⇤ ⇢ YQ determines a relative handle decomposi-

tion of XQ with no 3-handles and a single 4-handle. Consider the split
union L

0 = Q
⇤tU , where U is a two-component unlink. We consider U

to be the attaching circles of the 2-handles of two canceling 2-handle/3-
handle pairs. By Proposition 5.3, L

0 is handleslide-equivalent to L
⇤.

Since U is contained in a ball, it follows that T0(L0) = T0(Q⇤) t U is
handleslide-equivalent to T0(L⇤), which is handleslide-equivalent to L

⇤
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by Lemma 7.2. Finally, as noted above, L⇤ is handleslide equivalent
to L

0.
In total, T0(L0) is handleslide-equivalent to L0. Noting that T0(Lc/d)=

T0(Lc/d) = Lc/(d�2c), we can invert the relative handle decompositions
of XQ, changing Q

⇤ to Q, and the desired statement follows, since the
two canceling 2-handle/3-handle pairs described by U invert to become
two canceling 1-handle/2-handle pairs – i.e., two Hopf pairs. q.e.d.

We note that Theorem 1.1 follows from the combination of the first
statement of Proposition 7.3 with the previous results in the paper, but
we need the second statement to prove the stronger Theorem 1.2.

Proof of Theorem 1.2. Suppose Q = Qp,q is a generalized square knot,
and suppose that L = Q [ J is a 2R-link. By Theorem 1.5, L is stably
equivalent to Q [ L

+, where L
+ is a Casson-Gordon derivative for Q.

Next, we invoke Proposition 4.14, which asserts that Q [ L
+ is stably

equivalent to Q [ Lc/d, where c is even. By Lemma 4.7, there is a

sequence of Dehn twists ⌧±1
1 and ⌧±1

0 of S taking �c/d to �0, implying

that there is a sequence of homeomorphisms e⌧±1
1 and e⌧±1

0 taking Lc/d to
L0 by Lemma 4.8. By Lemma 6.3, the links Q[Lc/d and Q[ e⌧1(Lc/d)
are isotopic. By Proposition 7.3, we have that the disjoint union of
Q [ Lc/d and two Hopf pairs is handleslide-equivalent to an unlink and
two Hopf pairs if and only if the same statement is true for Q[e⌧0(Lc/d).
Finally, by Proposition 5.3, we have that Q[L0 is handleslide-equivalent
to an unlink, and thus the disjoint union Q [ L0 and two Hopf pairs is
handleslide-equivalent to an unlink and two Hopf pairs. We conclude
that the same property holds for every link Q [ Lc/d, completing the
proof. q.e.d.

Remark 7.4. One can define torus twists on YQ corresponding to
a vertical torus lifting any essential curve in S

⇤. It is possible that a
detailed analysis of these twists could yield extra information about the
relationships between the links Q [ Lc/d. In fact, we know this is true
in some cases: A key insight from [GST10] and [Sch16] is that the
vertical tori W±1 sitting above the slopes �±1 lie in fishtail neighbor-

hoods inside the Casson-Gordon 4-sphere in the case of (p, q) = (3, 2).
Such neighborhoods have played a central role in the standardization of
homotopy 4-spheres. (See the last paragraph of [GST10].)

Our techniques, combined with those of [GST10], can be used to
show that in the case of q = 2, the tori W±1 lie in fishtail neighborhoods
for all odd p � 3. In the present development, this is equivalent to
showing that the meridian µ±, as a curve in S

3, has a surface-framing
coming from W±1 of ±1. In light of this, we can conclude not only that
Qp,2 has Weak Property 2R, but also that only one Hopf pair is required
to trivialize any 2R-link L = Qp,2 [ J .
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8. Classifying handlebody-extensions and fibered,
homotopy-ribbon disks

In this section, we show that handlebody-extensions of the closed
monodromy b' can be understood as deck transformations of branched
coverings, and we prove Theorem 1.7. We also enhance our develop-
ment of the CG-balls Bc/d – in the vein of Corollary 2.4 – to take into
consideration the fibered, homotopy ribbon disks they contain, and we
prove Theorem 1.6.

8.1. Tangles and handlebody extensions. Here we discuss yet an-
other perspective on the handlebody extensions of generalized square
knots. Consider the curve �c/d ⇢ S, where c is an even integer. By
Proposition 4.10, �c/d separates the cone points of order p from those
of order q. Thus, there exists an arc !p (resp. !q) connecting the cone
points of order p (resp. q) in S \�c/d. If we consider S as the boundary
of a 3-ball B3, then we can perturb the interiors of the arcs !p and
!q into B

3 to obtain a rational tangle T [c/d] whose boundary is the
orbifold S. Since the strands of T [c/d] connect cone points of matching
order, we can naturally regard the tangle as a 3-dimensional orbifold.
Let Hc/d denote the handlebody with boundary bF determined by the
curves in Lc/d, so that Lc/d bounds a collection of compressing disks
for Hc/d.

Lemma 8.1. The branched covering ⇢ : bF ! S extends to a branched

covering

Rc/d : Hc/d ! T [c/d].

Proof. The tangle T [c/d] is homeomorphic toD2(p, q)⇥I. Combining
Lemmas 4.4 and 4.9, we see that the branched cover of D2(p, q) is a
surface ⌃0 of genus (p � 1)(q � 1)/2 with one boundary component.
Taking Rc/d to be the product of this covering with I, we have Rc/d

maps ⌃0 ⇥ I to D
2(p, q) ⇥ I, where ⌃0 ⇥ I is a handlebody of genus

(p� 1)(q � 1). The curve �c/d bounds a disk in the exterior of the arcs
of T [c/d], and this disk lifts to pq disks in Hc/d, which are bounded by
the lifts Lc/d of �c/d. q.e.d.

Let K[c/d] denote the rational link obtained as the numerator closure
of the rational tangle T [c/d]. Equivalently, K[c/d] is obtained by glu-
ing T [0] to T [c/d] along S via an orientation-reversing homeomorphism
identifying the curves �0 on either boundary component. This link has
two components since c is even. Each componentKi ofK[c/d] = K1[K2

admits a 1-bridge splitting, hence is an unknot. Let ⌃p,q(K[c/d]) denote
the pq-fold cover of S3 branched along K[c/d], where the component K1

has branching index p and the component K2 has branching index q.
One way to construct this cover is to first take the p-fold cover of S3
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branched along K1, and let eK2 denote the lift of K2. Since K1 is un-
knotted, the result is a new link in S

3. Finish by taking the q-fold cover
of this S

3, branched along the link eK2. Alternatively, we could first
branch along K2, then over the lift of K1. For example, if c/d = 2n/1
for some n 2 N, then

⌃p,q(K[2n/1]) ⇠= ⌃p(Tn,q) ⇠= ⌃q(Tn,p) ⇠= ⌃(p, q, n),

where ⌃m(K) denotes the m-fold cover of S3 branched over the knot K,
and ⌃(p, q, n) denotes the Brieskorn sphere described by Milnor [Mil75].

Now, we have by definition that K[c/d] = T [c/d] [S T [0]. By tak-
ing the union of the branched covering maps, we have ⌃p,q(K[c/d]) =
Hc/d [ bF H0. Henceforth, we let

Mc/d = ⌃p,q(K[c/d]) = Hc/d [ bF H0.

In addition, since b' permutes the disks bounded by Lc/d, we know that
b' extends to a homeomorphism �c/d : Hc/d ! Hc/d.

Lemma 8.2. The automorphism �c/d : Mc/d ! Mc/d defined by

�c/d = �c/d [b' �0 generates the group of deck transformations for the

branched covering Mc/d ! S
3
with branch locus K[c/d].

Proof. First, recall that b' generates the group of deck transformations
for the branched covering ⇢ : bF ! S, and thus �c/d generates the group
of deck transformations for the branched covering Rc/d : Hc/d ! T [c/d].
The homeomorphism �c/d : Mc/d ! Mc/d is defined by taking �c/d on
the components of Hc/d [ bF H0 to be �c/d [b' �0. Then �c/d is an au-
tomorphism of Mc/d of order pq that is compatible with the branched
covering; hence, �c/d generates the group of deck transformations as
desired. q.e.d.

Lemma 8.3. The 3-manifold Mc/d is reducible if and only if c/d = 0.
Moreover, the 3-manifold Hc0/d0 [ bF Hc00/d00 is reducible if and only if

c
0
/d

0 = c
00
/d

00
.

Proof. First, note thatM0 = H0[ bFH0 is obtained by gluing two iden-

tical genus (p�1)(q�1) handlebodies; thus M0 = #(p�1)(q�1)(S1⇥S
2),

a reducible 3-manifold. In the reverse direction, let c/d 6= 0 and suppose
by way of contradiction that Mc/d contains an essential 2-sphere S. Let
S0 denote the image of S in S

3 under the branched covering map. By
Lemma 8.2, the finite group G generated by �c/d acts on Mc/d. Invoking
the Equivariant Sphere Theorem (Theorem 4.4), we have that g(S) = S

or g(S) = ; for every g 2 G.
If g(S) \ S = ;, then S is disjoint from the branch locus, so that its

image S0 is disjoint from K[c/d]. Since c/d 6= 0, the link K[c/d] is prime
and non-split. It follows that S0 bounds a three-ball B in S

3 \ Kc/d.
However, B lifts to a three-ball in Mc/d bounded by S, a contradiction.
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If g(S) = S, then S intersects the branch locus in a collection of
points. Since G acts cyclically, the induced map on the sphere is a
cyclic branched covering, so it must have singular set consisting of two
points, by the Riemann-Hurwitz Formula [Oor16]. It follows that image
S0 is a sphere intersecting K[c/d] in a pair of points. Since K[c/d] is
prime and non-split, S0 must bound a three-ball B0 intersecting K[c/d]
in a single, unknotted arc. But then B

0 lifts to a three-ball bounded by
S upstairs, a contradiction. Thus, we conclude that Mc/d contains no
essential two-spheres, as desired.

For the second statement, note that by Lemma 4.9 there exists a map
ef : bF ! bF such that ef(�c0/d0) = �0. Since ef is a product of the lifts e⌧±1

1
and e⌧±1

0 , there exists c/d 2 Q1 with c even such that ef(�c00/d00) = �c/d.

Thus, we can extend ef to a di↵eomorphism bf : Hc0/d0 [Hc00/d00 ! Mc/d.
By the first part of the lemma, we have thatMc/d is reducible if and only

if c/d = 0, which is true if and only if Lc0/d0 = ef�1(L0) = ef�1(Lc/d) =
Lc00/d00 , or equivalently, c

0
/d

0 = c
00
/d

00. q.e.d.

8.2. The classification of handlebody extensions. Recall that Zc/d

is defined in Section 7 as the compact 4-manifold constructed by adding
2-handles to YQ along Lc/d, followed by 3-handles and a 4-handle. In
fact, we can make a stronger assertion following Corollary 2.4 and
Proposition 2.6.

Lemma 8.4. The 4-manifold Zc/d is di↵eomorphic to Hc/d⇥�c/d
S
1
.

Proof. By Proposition 2.6, a CG-derivative L may be viewed as a
relative handle decomposition for the corresponding bundle H ⇥� S

1.
Thus, Zc/d and Hc/d ⇥�c/d

S
1 have identical relative handle decomposi-

tions and as such are di↵eomorphic. q.e.d.

Our next proposition shows that, while on one hand the CG-exten-
sions Lc/d and Lc0/d0 give rise to di↵eomorphic handlebody bundles,
these bundles are distinct rel-@ for c/d 6= c

0
/d

0. In other words, these
CG-derivatives represent distinct extensions of the closed monodromy b'.
We say that a di↵eomorphism  c/d : Zc/d ! Z0 is handlebody-fiber-

preserving if it sends handlebody-fibers to handlebody-fibers.

Proposition 8.5.

1) For any c/d 2 Q1 with c even, there is a handlebody-fiber-pre-

serving di↵eomorphism

 c/d : Zc/d ! Z0.

2) If there is a di↵eomorphism from Zc/d to Zc0/d0 that restricts to

the identity on YQ, then c/d = c
0
/d

0
.

Proof. By Lemma 4.9, there is a homeomorphism ef : bF ! bF , ob-
tained as a product of e⌧±1

1 and b⌧±1
0 , that covers a homeomorphism
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f : S ! S that preserves cone points and satisfies f(�c/d) = �0. It fol-
lows from Lemmas 6.1 and 6.2 that there is a di↵eomorphism  c/d : YQ!
YQ obtained as a product of the surface-fiber-preserving maps (T 0

1)±1

and T ±1
0 that satisfies  c/d| bF = ef . By further extending  c/d across

the cut system for Lc/d, we get a di↵eomorphism  c/d : Zc/d ! Z0 such
that the image of each copy of the handlebody Hc/d is a corresponding
copy of the handlebody H0, and we conclude that  c/d is handlebody-
fiber-preserving.

Next, suppose that  : Zc/d ! Zc0/d0 is a di↵eomorphism such that

 |YQ = idYQ . Let bZ be the closed 4-manifold obtained by gluing Zc/d

to Zc0/d0 via the identity map on their common boundary YQ. Since
the handlebody fibers of Zc/d and Zc0/d0 have identical boundaries in

YQ ⇢ bZ, it follows that bZ fibers over S
1, with fibers di↵eomorphic to

the closed three-manifold

M = Hc/d [ bF Hc0/d0 .

Let D(Zc0/d0) be the double of Zc0/d0 . Then we may extend the map

 to a di↵eomorphism b : bZ ! D(Zc0/d0), by letting b |Zc/d
=  and

b |Zc0/d0 = Id. Since D(Zc0,d0) fibers over S
1, with fibers the double

Yg = #g(S1 ⇥ S
2) of Hc0/d0 (where g = (p� 1)(q � 1)), the same is true

for bZ. Note that Zc/d is the complement of a properly embedded disk

in a homotopy 4-ball, so that Z ⇠= H1(Zc0,d0) ⇠= H1(D(Zc0,d0)) ⇠= H1( bZ);

and thus bZ has a unique infinite cyclic cover.
Since bZ fibers over both M and Yg, the infinite cyclic cover of bZ must

be di↵eomorphic to both M ⇥ R and Yg ⇥ R. It follows that M and
Yg are homotopy equivalent. By the Sphere Theorem [Pap57], M is
reducible, and thus Proposition 8.3 implies c/d = c

0
/d

0. q.e.d.

We can now prove Theorem 1.7.

Proof of Theorem 1.7. Suppose � : H ! H is a handlebody extension
of b', and let L+ be a collection of curves bounding disks in H that cut
H into a 3-ball. By Proposition 4.14, there exists some c/d 2 Q1 with
c even such that after adding some additional curves bounding disks
to L

+, the collection L
+ is handleslide-equivalent in bF to Lc/d. Thus,

H = Hc/d and � is isotopic to �c/d. If there exists some c0/d0 2 Q1 such
that Lc/d and Lc0/d0 determine the same handlebody, then Hc/d [Hc0/d0

is a reducible 3-manifold and c/d = c
0
/d

0 by Lemma 8.3. q.e.d.

8.3. The classification of fibered, homotopy-ribbon disks. Re-
call from Section 7 that the Casson-Gordon ball Bc/d is constructed by
attaching a 0-framed 2-handle to S

3 ⇥ I along Q, followed by gluing in
the handlebody bundle Zc/d along the resulting YQ boundary compo-
nent. Let Rc/d ⇢ Bc/d be the core of the 2-handle attached along Q, so
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that Rc/d is a disk-knot in Bc/d, which is di↵eomorphic to the standard
B

4 by Theorem 1.1. By the discussion in Subsection 2.2, the disk Rc/d

is homotopy-ribbon and fibered since Bc/d \Rc/d = Zc/d.

Given any knot K, there is a well known ribbon disk RK for K#K

given as
(B4

, RK) = (S3
,K)� ⇥ I.

We refer to RK as the product ribbon disk for K#K. The following
lemma identifies the product ribbon disk for a generalized square knot
among the collection {(Bc/d, Rc/d)} (cf. Section 6 of [LM15]).

Lemma 8.6. The CG-pair (B0, R0) is the product ribbon disk

(B4
, RTp,q).

Proof. Let F+ be the genus (p� 1)(q� 1)/2 Seifert surface for K+ =
Tp,q discussed in Section 4, and let A be the union of the co-cores ⌘+i,j
of the bands Bi,j on F

+, as in Subsection 4.1. Puncture the triple
(S3

, F
+
,K

+) at a point in K
+ to get (B3

, (F+)�, (K+)�), and isotope
@A near K

+ in (F+)� so that @A is contained in the puncture; i.e.,
@A \ (K+)� = ;. Note that

(B3
, (F+)�, (K+)�)⇥ I = (B4

, H,RK+),

where H = (F+)� ⇥ I is a handlebody of genus (p� 1)(q � 1) with

@H = ((F+)� ⇥ {0}) [ (@((F+)�)⇥ I) [ ((F+)� ⇥ {1}).
Furthermore, A ⇥ I is a disk system for H. Let L = @(A ⇥ I) be the
corresponding cut system of @H. By construction, L coincides exactly
with the curves L0 (see Figure 4). Since K

+ is fibered, RK+ is fibered
as well (via the product fibering) with fiber H = H0. It follows that
RK+ = R0, as desired. q.e.d.

Recall that a Casson–Gordon sphere is obtained from a Casson–
Gordon ball Bc/d by capping o↵ with B

4. In what follows, we not
only cap o↵ Bc/d with B0

⇠= B
4, but we also cap o↵ Rc/d with R0 ⇢ B0.

Consider the pair

(Xc/d,Kc/d) = (B0, R0) [(S3,Q) (Bc/d, Rc/d),

which consists of the Casson-Gordon homotopy 4-sphere Xc/d and an
embedded 2-sphere Kc/d therein. This union respects the fibration of the
components, so it follows that Kc/d is fibered inXc/d. The fiber is a copy

of H0 glued to a copy of Hc/d along F , which is viewed as bF with a disk

removed. Compare this with the 4-manifold bZ from Proposition 8.5, in
which these handlebodies are glued along bF to obtain the closed fiber
Mc/d (In fact, bZ is obtained from surgery on Xc/d along the 2-knot
Kc/d.) In this context, the fiber of Kc/d is M�

c/d, a punctured version of
Mc/d, and monodromy is ��

c/d.
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Proposition 8.7. If there is a di↵eomorphism from (Bc/d, Rc/d) to

(Bc0/d0 , Rc0/d0) that restricts to the identity on the common boundary

(S3
, Q), then c/d = c

0
/d

0
.

Proof. Suppose there is such a di↵eomorphism. Then the 2-knot

(Bc/d, Rc/d) [(S3,Q) (Bc0/d0 , Rc0/d0)

is fibered with fiber M
� = (Hc/d [ Hc0/d0)

�, and in addition it is dif-
feomorphic to the fibered 2-knot obtained by doubling (Bc0/d0 , Rc0/d0).
This double necessarily has fiber (#g(S1 ⇥ S

2))�. As in the proof of
Proposition 8.5, we can pass to the (unique) infinite cyclic cover of
the 2-knot exterior to conclude that M� must be homotopy-equivalent
to Y

�
g . Again, by Proposition 8.3, this implies c/d = c

0
/d

0. q.e.d.

On the other hand, if we are allowed to consider di↵eomorphisms
that act non-trivially on the boundary, many of these CG-pairs become
di↵eomorphic.

Proposition 8.8. For any n 2 N, the CG-pairs (Bc/d, Rc/d) and

(B(c±2nd)/d, R(c±2nd)/d) are di↵eomorphic.

Proof. By definition, Bc/d is built by attaching 0-framed 2-handles
to Q[Lc/d, before capping o↵ with a 4-dimensional 1-handlebody, and
Rc/d ⇢ Bc/d is the core of the 2-handle attached alongQ. By Lemma 6.3,
the links Q [ Lc/d and Q [ L(c±2nd)/d are isotopic in S

3. It follows
that Bc/d is di↵eomorphic to B(c±2nd)/d, and that this di↵eomorphism
equates the cores of the two 2-handles attached along the two copies
of Q. q.e.d.

Proof of Theorem 1.6. Part (1) is Lemma 8.6. Part (2) is Proposi-
tion 8.7. Part (3) follows from Proposition 4.14. Part (4) is Propo-
sition 8.5(1). q.e.d.

Remark 8.9. The second part of the proof of Proposition 8.8 implies
(in particular) that all pairs of the form (B±2n/1, R±2n/1) are di↵eomor-
phic. Because this isotopy is given by the torus twist T1 taking Q[Lc/d

to Q [ L(c±2nd)/d (as in Lemma 6.3), we find that (X±2n/1,K±2n/1) is
the n-twist spin of the torus knot Tp,q. The authors are not aware of a
classification of the fibered 2-knots Kc/d in the case that c/d 6= ±2n/1.

8.4. Classical examples and results. In this subsection, we prove
Corollary 1.3, which recovers classical results of Akbulut and Gompf.
Recall the homotopy 4-spheres ⌃m and H(n, k) discussed in the intro-
duction; Gompf showed ⌃0 and the H(n, k) are standard [Gom91a],
while Akbulut showed ⌃m is standard for m > 0 [Akb10].

Proof of Corollary 1.3. To apply Theorem 1.1 to these families of exam-
ples, we must show that each admits a handle decomposition with no
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1-handles and two 2-handles such that one 2-handle is attached along
a generalized square knot. Such a handle decomposition for H(n, k)
is given in Figure 14 of [GST10]. By their discussion in Section 8,
page 2334, one of the components of the attaching link L(n, k) for the
two 2-handles is the generalized square knot Qn+1,n. This proves the
corollary in the case of H(n, k).

Gompf gives a handle decomposition for ⌃m in Figure 8 of [Gom91b],
and he describes on pages 130–131 how to eliminate the two 1-handles
present, as well as one of the 2-handles. The instructions are to remove
the two dotted circles, but add full-twists (one of each sign) to all of the
strands passing through them. Afterwards, the 2-handle given by xy

can be cancelled with a 3-handle, so the resulting diagram will have two
2-handles, given by xz and ↵. We claim that xz is the square knot, Q3,2.

To see this, we discard everything from Gompf’s Figure 8 except
for xz and the two dotted circles. We remove these dotted circles and
add a positive full-twist to the strands passing through the top one
and a negative full-twist to the strands passing through the bottom
one. See Figure 12. That the resulting knot is Q3,2 can be verified by
simplifying the right frame of Figure 12. This proves the corollary in
the case of ⌃m. q.e.d.

Figure 12. (Left) A sublink from Figure 8 of
[Gom91b]. (Right) The knot Q3,2 = T3,2#T�3,2 in dis-
guise.

We remark that the ⌃m are a sub-family of a larger class of homotopy
4-spheres described by Cappell and Shaneson [CS76]. Many of these
Cappell-Shaneson spheres (beyond the ⌃m) are known to be standard
by work Gompf [Gom10] and Kim and Yamada [KY17], though handle
diagrams have not been given in these cases. General Cappell-Shaneson
spheres are not known to be geometrically simply-connected.
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9. Trisecting the Casson-Gordon homotopy four-spheres

In this section, we describe a natural trisection of the Casson-Gordon
homotopy 4-sphere X� corresponding to a handlebody extension � of
the closed monodromy of a fibered, homotopy-ribbon knot K ⇢ S

3. We
also describe the connections between the R-links arising as Casson-
Gordon derivatives, trisections, and the GPRC and Stable GPRC using
the authors’ framework from [MZ17].

A Heegaard splitting of a closed 3-manifold Y is a decomposition
Y = H [H

0, where H and H
0 are handlebodies that intersect in their

common boundary ⌃, called a Heegaard surface. One dimension higher,
a trisection T of a closed, smooth 4-manifold X is a decomposition X =
X1 [X2 [X3, where Xi is a 4-dimensional handlebody, Hij = Xi \Xj

is a (3-dimensional) handlebody, and ⌃ = X1 \ X2 \ X3 is a closed
surface. If Xi has genus equal to ki and ⌃ has genus g, we say that T is
a (g; k1, k2, k3)-trisection. A trisection T is uniquely determined by the
union H12 [H23 [H31, called the spine of T [GK16].

Given a fibered, homotopy-ribbon knot K ⇢ S
3 and a handlebody

extension � of the closed monodromy of K, there is a natural trisection
of the CG-sphere X�, as described in the next proposition.

Proposition 9.1. Suppose that K is a fibered, homotopy-ribbon knot

in S
3
, with genus g fiber F , monodromy ', and extension � of the closed

monodromy b'. Then the CG-sphere X� admits a (2g; 0, g, g)-trisection.

Proof. There is a well-known construction of a Heegaard surface for
S
3 coming from the open book decomposition induced by the fibration

of EK : Let F+ and F� be two copies of the fiber F in S
3, so that

F+ \ F� = K, and let ⌃ = F+ [ F�. Then each component of S3 \⌃ is
di↵eomorphic to the product F ⇥ I collapsed along K ⇥ I; thus, ⌃ cuts
S
3 into two genus 2g handlebodies, which we will call H↵ and H� .

Let R� be the CG-disk in B� bounded by K, and let bF± be a copy

of F± capped o↵ in B� with the disk R�, so that bF+ \ bF� = R�. Note

that bF± is not properly embedded: bF±\@B� = F± and bF±\ Int(B�) =
Int(R�). By assumption, B� \ R� = H ⇥� S

1, and as such there is a

pair of handlebodies H± in B� with @H± = bF± and H+ \ H� = R�.
Let H� = H+ [H�, so that H� is the boundary connected sum of H+

and H�, a genus 2g handlebody.
We claim that H↵ [H� [H� is the spine of a (2g; 0, g, g)-trisection

of X�. First, we note that H↵ \H� \H� = ⌃, so the triple intersection
is as desired. To complete the proof, it su�ces to show that X \ (H↵ [
H�[H�) has three components, two of which are genus g 4-dimensional
1-handlebodies and one of which is a 4-ball. Note that X� \ (H↵ [H�)
consists of a 4-ball B4 and B�. In addition, B� cut open along H�

is di↵eomorphic to B� \ R� = H ⇥� S
1 cut open along two fibers,
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say H ⇥� {0} and H ⇥� {1/2}. Each of the two resulting components
is di↵eomorphic to H ⇥ I, a genus g 4-dimensional 1-handlebody, as
desired. q.e.d.

Note that the above construction depends only on the extension �

of the closed monodromy of the initial knot K; the choices of F± are
unique up to isotopy. Therefore, we will let T� represent the trisection
resulting from Proposition 9.1, without ambiguity.

Every trisection T can be encoded by a trisection diagram, which we
will define shortly. A cut system in a genus g surface ⌃ is a collection
of g pairwise disjoint homotopy classes of curves that cut ⌃ into a con-
nected planar surface. A cut system ↵ determines a handlebody H↵

by adding 3-dimensional 2-handles to ⌃ along ↵ and capping o↵ the
resulting 2-sphere boundary component with a 3-ball (as in the proof of
Lemma 2.5). A trisection diagram for a trisection T is a triple (↵,�, �)
of cut systems in ⌃ such that H↵ [H� [H� is a spine for T . As such,
each pair of curves defines a Heegaard diagram for one of the 3-manifold
@Xi.

As an example, there are three genus one trisections of S4, a (1;1, 0, 0)-
trisection denoted S1, a (1;0, 1, 0)-trisection denoted S2, and a (1; 0, 0, 1)-
trisection denoted S3. Diagrams for S1, S2, and S3 are depicted in
Figure 13.

Figure 13. The three unbalanced, genus 1 trisection di-
agrams S1, S2, and S3 for S4, which are used to perform
stabilizations of trisection diagrams.

To find a trisection diagram for T� and to see the connection between
R-links and trisections via Heegaard surfaces, we appeal to machinery
developed in [MZ17], setting up the next lemma with several more
definitions. Let L be an n-component R-link in S

3. A Heegaard surface
⌃ ⇢ S

3 is called admissible if S3 = H[⌃H
0 and L is isotopic to a subset

of a core of H, so that H \ L is a compression body. Let HL denote
the handlebody resulting from 0-framed surgery on L in H. A genus g
Heegaard diagram (↵,�) for Yk = #k(S1 ⇥ S

2) is said to be standard if
↵ and � have k curves in common, and the remaining curves consist of
g � k mutually disjoint pairs of curves that intersect each other once.

The next lemma, proved as Lemma 4 in [MZ17], connects R-links to
trisections via admissible surfaces:
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Lemma 9.2. Let L be an n-component R-link with admissible genus

g surface ⌃. Then there is a (g; 0, g�n, n)-trisection, denoted T (L,⌃),
of XL with spine H

0 [H [HL. Moreover, there is a trisection diagram

(↵,�, �) for T (L,⌃) such that

1) H↵ = H
0
, H� = H, and H� = HL;

2) L is a sublink of �, where � is viewed as a link framed by ⌃ in

S
3 = H↵ [H�; and

3) (�, �) is a standard diagram for Yg�n, where � \ � = � � L.

As an application of Lemma 9.2, suppose that K is a fibered, homo-
topy-ribbon knot with genus g fiber F , extension �, and CG-derivative L.
As in the proof of Proposition 9.1, there is a natural Heegaard surface
obtained by viewing the fibration of K as an open book decomposition
of S

3, a fibration ⇡ : S3 � K ! S
1 so that for each ✓ 2 S

1, ⇡�1(✓)
is the interior of a Seifert surface F✓ for K. This Heegaard surface is
⌃ = F0[F1/2, which cuts S3 into two genus 2g handlebodies H and H

0,
both viewed as a copy of F ⇥ I with @F ⇥ I crushed to @F ⇥ {pt}, such
that F1/2 ⇢ H is glued to F1/2 ⇢ H

0 via the identity map and F1 ⇢ H
0

is glued to F0 ⇢ H with the monodromy '. Note that these gluings
respect the boundary crushing since '|K = id.

Given an arc a ⇢ F , let a✓ be the corresponding arc in F✓. Then
every arc a ⇢ F gives rise to a product disk D(a) ⇢ H with boundary
a0 [ a1/2 and D

0(a) ⇢ H
0 with boundary a1/2 [ a1 = a1/2 [ '(a)0.

Lemma 9.3. With K, L, F , �, and ⌃ as above, the surface ⌃ is an

admissible surface for L.

Proof. We have established that S
3 = H [ H

0, so remains to check
that L is isotopic to a core of H. It su�ces to find a collection of
dualizing disks for L in H; that is, pairwise disjoint compressing disks
{D1, . . . , Dg} such that |Di \Lj | = �ij . Let {a1, . . . , an} be a collection
of arcs in F such that |ai\Lj | = �ij . Then the disks {D(a1), . . . , D(an)}
dualize L ⇢ F0, and we conclude that ⌃ is an admissible surface for L.

q.e.d.

It follows immediately from Lemma 9.2 that XL = X� has a
(2g; 0, g, g)-trisection, and it should come as no surprise that these pa-
rameters are the same ones guaranteed by Proposition 9.1. Indeed,
we will see that T (L,⌃) and T� are two ways of constructing identical
trisections.

Let L be a g-component derivative of a knot K contained in a Seifert
surface F for K. A collection of dualizing arcs for L in F is defined to
be a set {a1, b1, . . . , ag, bg} of 2g pairwise disjoint and non-isotopic arcs
such that |ai \ Lj | = �ij and bi \ L = ;.

Lemma 9.4. Let K, L, F , �, and ⌃ be defined as above, and let

{a1, b1, . . . , ag, bg} be a collection of dualizing arcs for L in F . Then
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there is a trisection diagram (↵,�, �) for T (L,⌃) given by

↵ = {@D0(a1), @D
0(b1), . . . , @D

0(ag), @D
0(bg)}

� = {@D(a1), @D(b1), . . . , @D(ag), @D(bg)}
� = {L1, . . . , Lg, @D(b1), . . . , @D(bg)}.

Moreover, T (L,⌃) = T�.

Proof. First, we observe that ↵ is a cut system for H 0 and � is a cut
system for H. By definition, the third handlebody HL in the spine of
T (L,⌃) is obtained by doing 0-framed Dehn surgery on L in H, and
thus a set of cut disks for HL consists of the g disks bounded by L and g

disks una↵ected by the Dehn surgery on H; that is, {D(b1), . . . , D(bg)}.
We conclude that � bounds a cut system for HL, and (↵,�, �) is a
trisection diagram for T (⌃, L).

For the second claim, let G↵, G� , and G� denote the handlebodies in
the spine of T� constructed in Proposition 9.1. By construction, we may
suppose that H↵ = G↵ and H� = G� . In addition, G� is defined by a
cut system bounded by curves L0 ⇢ F0 and L1/2 ⇢ F1/2. Let �0 ⇢ ⌃
denote this cut system. We claim that � and �

0 determine the same
handlebody. Note that � and �0 contain the g curves in L0 in common,
and the remaining g curves @D(b1), . . . , @D(bg) in � are disjoint from
the remaining g curves L1/2 in �

0. It follows that @D(b1), . . . , @D(bg)
bound disks in �

0 and thus � and �
0 determine the same handlebody.

We conclude that T (⌃, L) = T�. q.e.d.

Next, we connect R-links to the GPRC and Stable GPRC using the
theorems of [MZ17]. Trisections T of X and T 0 of X 0 can be glued
together to get a trisection T #T 0 of X#X

0 in the obvious way; the
connected sum of diagrams for T and T 0 is a diagram for T #T 0. A tri-
section T of S4 is called standard if T can be expressed as the con-
nected sum of copies of S1, S2, and S3. Whereas Waldhausen’s Theo-
rem [Wal68] implies that every Heegaard splitting of S3 is standard (i.e.
can be expressed as connected sums of standard genus one splittings),
the question of whether all trisections of S4 are standard remains open
[MSZ16].

It was proved in [GK16] that every trisection T of S4 becomes stan-
dard after taking the connected sum of T with a standard trisection
of S4. A related notion, defined in [MZ17], is the idea of being {i}-
standard or {i, j}-standard: A trisection T is said to be {i}-standard if
the connected sum of T with some number of copies of Si is standard;
similarly, T is {i, j}-standard if the connected sum with copies of Si

and Sj is standard. Note that if T is {i}-standard or {i, j}-standard
for some i, j, the definition implies that T must be a trisection of S4.
With this terminology in mind, the uniqueness result of Gay and Kirby
implies that every trisection of S4 is {1, 2, 3}-standard.
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The following is Theorem 3 from [MZ17].

Theorem 9.5. Suppose L is an R-link and ⌃ is an admissible surface

for L.

1) If L has Property R, then T (L,⌃) is {2}-standard.
2) The link L has Stable Property R if and only if T (L,⌃) is {2, 3}-

standard.

Note that the link L has Weak Property R if and only if T (L,⌃) is
{1, 2, 3}-standard; i.e., if and only if XL

⇠= S
4, by the uniqueness result

of [GK16]. As a corollary to this theorem, we have the following.

Corollary 9.6. Let K be a fibered, homotopy-ribbon knot with ex-

tension �. The following are equivalent.

1) The trisection T� is {2, 3}-standard.
2) Every CG-derivative corresponding to � has Stable Property R.

3) Some CG-derivative corresponding to � has Stable Property R.

Proof. Suppose first that the trisection T� is {2, 3}-standard and L is
a CG-derivative for K corresponding to �. By Lemma 9.3, the associ-
ated surface ⌃ is admissible, and by Lemma 9.4, we have T (L,⌃) = T�.
It follows from Theorem 9.5 that L has Stable Property R.

Note that if � : H ! H and L is any collection of curves in F bound-
ing disks in H, then L is a CG-derivative for K by definition, so the
collection of CG-derivatives corresponding to � is nonempty (in fact,
infinite). Thus, (2) implies (3).

Finally, suppose that there exists a CG-derivative L corresponding
to � that has Stable Property R. We again invoke Lemmas 9.3 and 9.4
to conclude that L has associated admissible surface ⌃ such that T� =
T (L,⌃), and Theorem 9.5 completes the proof. q.e.d.

We conclude this section by pointing out a connection between tri-
sections and the Slice-Ribbon Conjecture. First, we recall a proposition
of Abe and Tange (Lemma 5.1 of [AT13]). For convenience, we present
a novel proof here; we acknowledge Christopher Davis, with whom we
discovered this simple fact.

Proposition 9.7. Suppose L is an R-link. If L has Stable Property

R, then L is a ribbon link.

Proof. By hypothesis, LtU is handleslide-equivalent to U
0, where U

is an unlink of r components and U
0 is an unlink of r + n components.

Since U
0 is a ribbon link, our claim will follow if we can show that the

result L00 of a handleslide on a ribbon link L
0 is a ribbon link. Suppose

L
00 is obtained from L

0 via a slide of component J 0 of L0 over component
J of L0, producing the new component J 00 of L00. So, L00 = (L0 \J 0)[J

00.
Let R0 be a collection of ribbon disks for L0, and let RJ and RJ 0 denote
the disks corresponding to J and J

0. Let RJ 00 denote the result of
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taking a push-o↵ of RJ and banding it to RJ 0 along the framed arc
corresponding to the handleslide. It follows that R00 = (R0 \RJ 0) [RJ 00

is a collection of ribbon disks for L
00, as desired. The proof of the

proposition by inducting on the number of handleslides necessary to
convert L t U to U

0. q.e.d.

It is not known if an R-link with Weak Property R is necessarily
ribbon. Theorem 9.5, Corollary 9.6, and Proposition 9.7 combine to
give the following trisection-theoretic su�cient conditions for a knot or
link to be ribbon.

Corollary 9.8. 1) Let K be a fibered, homotopy-ribbon knot with

extension �. Then K is ribbon if T� is {2, 3}-standard.
2) Let L be an R-link and ⌃ an admissible surface for L. Then L is

ribbon if T (L,⌃) is {2, 3}-standard.

Proof. Part (1) follows from Proposition 9.7 and Corollary 9.6. Part
(2) follows from Proposition 9.7 and part (2) of Theorem 9.5. q.e.d.
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