374

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

Preventing Coherence State Side Channel
Leaks Using TimeCache

Divya Ojha™ and Sandhya Dwarkadas ", Fellow, IEEE

Abstract—Cache side channel attacks in the presence of shared memory have been used to extract cryptographic keys and enclave
data, and are used by Spectre variants for leaking speculatively loaded data. Timing side channels exist in shared caches due to the
difference in response latency of cached and uncached data. In prior work, we presented TimeCache, a cache design that prevents

side channel exploits from reuse of shared memory. In this work, we extend TimeCache to also defend against attacks that exploit
coherence states. TimeCache allows all running applications to use the entire cache, avoiding the need for partitioning in order to
effect timing isolation. A per-process caching context prevents cache hits on data filled by another process. A novel bit-serial
timestamp-parallel comparison logic allows low-overhead update of stale caching contexts. The defense is suited to all caches levels,
and defends against an attacker running on any core. We evaluate TimeCache using the gem5 simulator to show that it is capable of
preventing both reuse attacks and an attack based on coherence state leak. The average performance overhead for SPEC2006 is

1.13%, and for PARSEC and SPLASH is 0.46%.

Index Terms—Cache memories, support for security, security and privacy protection

1 INTRODUCTION

HE modern processor cache hierarchy has been shown to

be vulnerable to various side channel attacks. Side chan-
nel attacks exist due to shared hardware, and get stronger
in the presence of shared libraries or software. These attacks
can be used to extract cryptographic keys and data across
even secure enclaves. Several attacks and defense techni-
ques have been explored in the literature [19].

Several known attacks accomplish data leak by observing
the caching behavior of shared memory [7], [9], [14], [18],
[41], [44]. Shared memory or shared libraries help signifi-
cantly reduce memory footprint and are employed to
reduce overall system cost. Reuse attacks are a category of
side channel attacks on shared memory where an attacker
primes an expectation of a slow access by flushing the
shared memory location from the cache prior to timing an
access to shared memory, but experiences a fast memory
operation due to a victim’s access [41]. This form of attack is
precise and hence a handy tool for crafting more sophisti-
cated attacks on out-of-order processors [4], [14], [33]. Pre-
venting reuse attacks can allow the system providers to
deploy deduplication and boost performance by up to
40% [30]. Similarly, the coherence state of cached lines from
shared memory regions can also leak information due to

o The authors are with the Department of Computer Science, University of
Rochester, Rochester, NY 14627 USA. E-mail: {dojha, sandhya}@cs.
rochester.edu.

Manuscript received 15 February 2022; revised 6 July 2022; accepted 5 Sep-
tember 2022. Date of publication 29 September 2022; date of current version
13 January 2023.

This work was supported in part by NSF under Grants CNS-1618497 and
CNS-1900803, and in part by the University of Rochester.

(Corresponding author: Divya Ojha.)

Recommended for acceptance by S. Sethumadhavan and S. Devadas Guest Editors.
Digital Object Identifier no. 10.1109/TC.2022.3209922

timing differences in accessing data in Shared or Exclusive
state [39]. This work extends TimeCache, our prior defense
against reuse attacks [20], to also prevent side channel
attacks resulting from coherence state leak.

Other existing solutions to mitigate reuse attacks either
resort to cache partitioning [5], [13], [22], [35], [36] or rely on
a constant time implementation [16], [26], [27]. Cache parti-
tioning effectively reduces cache capacity available to each
process. Some of the cache partitioning defense techniques
might also be suited only to the last level cache [17], [38], or
might need predefined security domains [13]. The constant
time implementations incur a high performance penalty, as
every access is padded with additional accesses, increasing
the run-time significantly.

TimeCache prevents reuse attacks by creating a “per-pro-
cess view” of cache line arrival, while allowing entire cache
utilization. It incurs a miss on a resident cache line for a first
access by any process, which breaks the very construct of the
attack. The attacker expects to learn other process’s access
pattern by incurring a hit due to the other process. The addi-
tional miss occurs only when the data is evicted and
reloaded, and hence the performance of steady-state in-
cache sharing is unaffected. TimeCache can also prevent
coherence state leaks by enforcing memory access latency
(or the highest-cost access latency) for the first access, rather
than allowing a lower access latency for data sourced at (or
brought in by) another core. As a consequence of this
defense, system providers can continue to utilize memory
deduplication techniques and reduce overall memory foot-
print [1], [12] without compromosing security.

The per-process caching context is stored as per-cache-
line access bits. In order to maintain the caching context
across context switches, the defense uses per-cache-line last-
filled timestamps and a novel bit-serial timestamp compara-
tor. The process’s access bits are saved to memory at the

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

OJHA AND DWARKADAS: PREVENTING COHERENCE STATE SIDE CHANNEL LEAKS USING TIMECACHE 375

attacker flushes/evicts @

orflushes! @ attacker fills
a shared region the cache sets

T n T EmmmT™,
SETA Victim bri SETA '
L chared memory | —
\ PFT======< victim accesses
SETB to the cache SETB _ | memory
@ L c—) / corresponding
SETC [| — to Set B
U SETC | [o

attacker accesses

attacker reaccess
shared memory re: @ all the regions

Fig. 1. Reuse (left) and contention (right) attacks.

time of a context switch along with the current time. The
saved access bits are restored when the process resumes
execution. The bit-serial timestamp comparator helps iden-
tify cache lines that were filled while the process was not
executing, thereby resetting the access bits in the restored
caching context.

We implement and evaluate TimeCache on gem5, and
demonstrate its effectiveness in preventing reuse attacks
using microbenchmarks and an RSA attack, as well as on
attacks depending on coherence state leak. Performance
evaluation shows that for SPEC2006 benchmarks, the aver-
age overhead is 1.13%, and for PARSEC and Splash2 bench-
marks, the average overhead is 0.46%.

The following are the key contributions in this paper:

e DPreventing side channel attack on shared software,
resulting from reuse or coherence state leak, while
allowing complete cache access to all the processes.

e Disallowing a cache hit on an existing cache line for
the first access by a process.

e Creating a per-process view of cache line fill to iden-
tify first access and proposing a per-process caching
context across context switches to prevent reuse-
based attacks.

e Developing a novel bit-serial comparator for updat-
ing the per-cache-line caching context in constant
time.

e Providing a simulation-based evaluation of the poten-
tial overheads associated with the defense and demon-
strating that the defense is effective against attacks.

2 BACKGROUND

2.1 Cache Side Channels

Memory access patterns revealed due to differences in cache
access latency form cache side channels. Attacks exploiting
cache side channels were exposed as early as in 1992 [10],
and many more such attacks have evolved ever since.

There are two broad categories of cache side channel
attacks, based on the presence or absence of shared software
(whether instructions or data) between the attacker and the
victim. Fig. 1 [20] depicts both kinds of attacks. Reuse-based
attacks (depicted on the left) require the presence of shared
memory, are more precise, and can infer a cache line accessed
by the victim. The attacker expects a faster memory operation
if the victim brings the shared line into the cache as a result of
its memory operation. Some of the known reuse-based attacks
are “flush+reload”, “evict+reload” and “flush+flush” [7], [8],

[41]. Contention-based attacks (deEicted on the right) do not
Authorized licensed use limited to: UNIVERSITY OF ROCHES

R. Downloaded on September 24,2023 at 20:47:49 UTC from IEE

rely on shared software, and can learn a cache set accessed by
the victim using a “Prime+Probe” [21] style of attack. The
attacker brings data into all the cache sets or the cache sets of
interest and reads the data again after a victim’s execution. A
slow access on any previously accessed data reveals that the
same cache set was accessed by the victim during its execu-
tion phase.

2.2 Shared Software Attacks

Shared libraries constitute commonly used routines that can
be mapped into the process space of different applications.
They allow the same physical memory to be used by differ-
ent processes, effectively reducing the overall system mem-
ory footprint. Shared memory improves the memory
hierarchy efficiency but is vulnerable to leaking memory
access patterns across processes [41]. The content of the
shared library itself is not hidden from the attacker or the
victim, but the access pattern to the shared library might
reveal application specific data.

Side channels in shared caches become more precise in
the presence of shared software. Until recently, these attacks
were considered to be consequential only for crypto-
graphic computation. However, there have been attacks
inferring key strokes from another process [34] and leak-
ing passwords across virtual machines on an Amazon
EC2 cloud server [44]. More recent attacks on out-of-
order processors demonstrate that these side channels
can be useful gadgets for building sophisticated attacks
like Spectre [14], [15], [29].

2.3 Coherence State Leak

Shared memory between distrusting entities running on
separate cores can also be exploited in order to leak access
information due to the ability to detect differences in the
coherence states of the data. Coherence ensures that data
cached in separate local caches is made consistent across the
entire system: modifications made on one processor must
be propagated to all copies of the data and writes to the
same location by different processors must be serialized.
The difference in access latency of some shared data in
exclusive(E) versus shared(S) state in a remote cache allows
the attacker to infer if a cache line is being accessed by the
victim. The attacker runs on multiple separate cores, cach-
ing data on one core and timing accesses to the same shared
data from another. The data is accessible with E latency if
the victim running on a third core does not access the same
data, and is accessible with S latency otherwise [39], reveal-
ing the victim’s access pattern to the attacker.

2.4 Prior Solutions

Strict performance requirements from caching are important
design considerations for the systems providing a defense
against side channel attacks, as a slow defense might render
the cache ineffective. The defense against reuse attacks either
resort to cache partitioning [5], [13], [36] or obfuscate time
using constant time algorithms [16], [26], [27], both of which
add significant overheads. Partitioning hurts performance
both due to replicating the shared data, and due to reduced
effective cache available for execution. DAWG is a parti-

tioned cache that also defends against coherence state
Xplore. Restrictions apply.

376

leaks [13]. Some defense techniques mitigate contention-
based attacks (e.g., randomizing caches [23], [24], [37],
SHARP [38], RPCache [36]) and are ineffective against reuse
attacks. Some others might only defend the last level cache
or might require prior knowledge of trust levels to group
applciations into a few security domains [13], [36].

A hardware description language can be used to detect
side channels in hardware through formal analysis [42]. It
however requires identifying and associating different secu-
rity labels with the hardware components at design time.
Checkmate is another tool to detect the presence of side chan-
nels in a hardware design using relational model finding [32].

2.5 Threat Model

The threat model under consideration for this line of
defense includes attacks that rely on the availability of
shared memory between the attacker and the victim, i.e.,
both reuse-based attacks and attacks resulting from coher-
ence state leak. We do not include contention-based attacks
in the threat model.

The attacker and the victim in a reuse attack can run on
the same or different cores. The attacks can be at any level
of cache and the attacker can run simultaneously or inter-
leaved with the victim. The system design does not rely on
prior knowledge of separate security domains.

Access to shared memory leaks information when the
accesses pattern is dependent on application-specific data.
The attack is carried out in three steps; the attacker evicts
the shared data either using a clflush instruction or by
causing conflict misses; allows the victim to execute; times a
subsequent operation (read or flush) on the evicted data.
The latency of the memory operation reveals if the data
exists in the cache hierarchy, potentially due to victim’s
accesses. The defense against flush+flush is discussed in
our prior work [20]. In this paper, we focus on information
leak due to reload of shared data in a shared cache or via a
coherence hierarchy.

The attacks under consideration in this threat model
have been shown capable of extracting RSA keys from the
GnuPG shared library [41]. Recently they have also been
used as building blocks for launching more sophisticated
attacks like Spectre and its variants. Reuse attacks are low-
noise, high bandwidth channels, and are therefore used for
forming other attacks.

3 TIMECACHE

TimeCache prevents reuse-based attacks and attacks result-
ing from coherence state leak for shared memory by imple-
menting per-process cache line visibility. Access to the same
cache line results in a hit or a miss for different processes
depending on their caching context, which allows us to retain
the benefits of having a shared cache and yet prevents the
attacks. The caching context of a process is the footprint of
the accessed cache lines, accesses to which do not reveal
any information to the attacker.

3.1 First Access

A first access by a process to a resident cache line is defined
as the first instance of access since the cache line was
brought in by some other process. There can be as many first

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

accesses to a resident cache line as the number of processes
accessing that cache line. The importance of first accesses lies
in the formation of the attack. The attacker times its first
access to data after evicting it from the cache, with a hit
access latency implying that the data was accessed by the
victim. TimeCache uses this key observation and enforces
misses on first access to provide timing isolation. Future
accesses by the same process will hit in the cache. Timing
isolation is achieved without cache partitioning, retaining
the ability to share the entire cache and avoiding the pitfalls
of potentially multiple copies of the shared data in the parti-
tioned approach. Once a cache line is evicted and brought
back, all the processes accessing it will again experience first
access misses.

An access by a process to a conventional cache may incur
four kinds of misses: cold, capacity, conflict, or coherence,
which may be due to its own prior accesses or due to
accesses by other processes. Conversely, a process’s cache
accesses may experience a hit on data brought into the cache
by itself or another process. This latter type of hit due to
data brought into the cache by another process that forms a
timing side channel, and is the target for elimination in
TimeCache. TimeCache thus incurs a fifth kind of miss
known as the first access miss.

Incurring a miss on first access requires identifying if a
data request from a process is its first access to the existing
cache line. To achieve this differentiation in the hardware,
we add a per-execution-context security-bit (s-bit) to each
cache line. The s-bit represents if the cache line has been
accessed by the execution context. There are as many s-bits
for a cache line as the number of execution contexts. The s-
bit remains reset for a cache line unless the execution con-
text has accessed a cache line and is reset when a line is
evicted. This representation of accessed cache lines in the
form of s-bits forms the caching context for a process.

A cache line fill is accompanied by setting the s-bit for
only the execution context whose access results in the cache
fill. The s-bits of all the other execution contexts remain reset
until there is a request from those contexts to the cache line
(see Fig. 3b).

3.2 TimeCache Accesses

Fig. 2 [20] shows the TimeCache hardware overview as mod-
ifications to a conventional cache. The example representa-
tion has a core with two hyperthreads and a cache with 8
cache lines. The additional hardware timestamp comparator
under the design has the following components:

e An s-bit with each cache line, for every execution
context. In the example here with 8 cache lines, the
number of s-bits per cache line is 2, shown as 2 8-bit
arrays 11 s-bits and T2 s-bits.

e A per cache line timestamp register Tc, to hold the
time at which the cache line was filled.

e A transpose gate and bitline peripheral logic to per-
form bit-serial comparison.

e A shift register Ts, to hold the timestamp at which
the context was preempted.

Fig. 3 [20] represents the actions at process creation, mem-

ory access, and preemption. The Ts and s-bits of a newly cre-
ated process are initialized to 0. A conventional cache access

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

OJHA AND DWARKADAS: PREVENTING COHERENCE STATE SIDE CHANNEL LEAKS USING TIMECACHE 377

A\ A\
Ti[| | T2

[]]
Processor dore
J Rq

Rsp‘ \V/ |

TimeStamp
Comparator

s Cache

Comparator SRAM Array|

T1 s-bits
T2 s-bits

021
ToL
2oL
€01
7oL
el
991
191

p1eS asodsuel]

Fig. 2. TimeCache hardware, depicted for a cache with 8 lines accessed
by a core with 2 hardware contexts.

Bit line peripheral

proceeds by comparing the stored tags in a cache set with the
tag-bits of the requested address. A resulting match on a
valid cache line results in a cache-hit, otherwise a miss is
incurred and the request is sent down to the next level in the
memory hierarchy. TimeCache checks the s-bit of a cache line
in addition to the above, and an access results in a cache-hit
only when the s-bit is set, in which case the data is sent to the
requesting processor.

A reset s-bit indicates that the cache line has not been
accessed before, and that the access is a first access. A miss is
incurred to delay the response to the processor, and the
request is sent down the memory hierarchy. Upon receiving
a response to this request, the received data is not filled if
the data already present in the cache is still valid. The s-bit
for this execution context is set at this instant to allow future
access to go through as a cache hit. A cache access results in
a cache hit only if the the corresponding s-bit is set. The s-
bits are modified as follows:

Restored from memory on a resuming context.

Reset by the comparator at context switch if Tc is
greater than Ts.

Reset when the cache line is evicted.

Set on a cache line fill, for the requesting hardware
context.

e Seton a first access to an existing cache line.

It is possible that the s-bit for some requested data is reset
in the higher-level cache (closer to the processor) and set in
a lower-level cache. This can occur if a previously accessed
data is replaced from a higher-level cache due to conflict
misses, and is retained in the lower-level cache. In this case,
the request is serviced with the lower-level cache access
latency.

3.3 Handling Context Switches

The caching context represented by the set of s-bits is specific
to the process running on the hardware execution context,
and must be managed carefully when a different process gets
the context. The s-bits of one process should not affect the
accesses of another process, and the potentially stale caching
context of a process should be updated when restored.

(a) Schedule Process
{ Process Create | paset s-bits Ts=0

MEM

Cache Fill

Save s-bits, Ts
Restore Next s-bits,Ts
Reset s-bit for Tc>Ts

Context Switch

Fig. 3. Maintaining timing isolation: per-process flowchart.

TimeCache uses a combination of hardware and the soft-
ware to save, restore, and update the caching context at the
time of a context switch. Software saves the entire caching
footprint of the process being preempted, along with the
time of the context switch (Ts). It then transfers the similarly
stored caching context of the process resuming execution
into the corresponding s-bits for that execution context.

TimeCache hardware ensures that the potentially stale
restored caching context is updated to reflect the current state
of the cache. It is possible that some of the cache lines that
were accessed when a process was last run are either evicted
or reloaded when the process was scheduled out. Thus, the s-
bits for those lines are not representative of the caching con-
text anymore, and must be reset for security. Such cache lines
are identified when the process resumes execution based on a
comparison between the time at which the cache lines are
filled (Tc) and the time when the process was scheduled out
(Ts). The comparison is triggered only at a context switch,
and after restoring the process specific s-bits and Ts. Ts is the
instant before which the s-bits were up-to date. The Tc of cache
lines reloaded since the process was scheduled out will be
greater than the restored Ts of the process.

Comparing the Tc of individual cache lines with Ts, and
performing this comparison for all the cache lines at context
switch can add significantly large overhead for bigger (e.g.,
last-level) caches. To solve this problem, the comparisons
are performed in parallel with a bit-serial comparator, as
explained in the following subsection.

Saving and restoring the caching footprint allows TimeC-
ache to enjoy fast data access across context switches as long
as the data is not evicted from the cache. Thus, our design
leverages access locality across context switches while at the
same time provides timing isolation. We use the operating
system to do the bookkeeping and provide isolation across
process boundaries. However, any trusted computing base

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

378

— - — - —DR__J
— - - - -sA 9
[I @
- -y
_ Cell -3A g
|| 1T i
— - — - —DRrs—Er
— - - - “SA o
NN g
— - — — — DR
- -SA

DR DR DR DR
Bit line Peripheral

Fig. 4. Transpose SRAM array for timestamps.

can be used to perform the bookkeeping, to provide side
channel isolation across execution boundaries. For instance,
when executing in enclaves with an untrusted operating
system, the caching context save and restore can be per-
formed at enclave entry and exit using the enclave libraries.

3.4 Timestamp Comparator: Bit-Serial, Timestamp-
Parallel Comparison of Timestamps

A regular access to the timestamp comparator for checking
an s-bit or for updating Tc, is bit-parallel, i.e all the bits
related to a cache line may be accessed at a time. However,
accessing the comparator in this manner for s-bit update at
the time of a context switch will require time proportional
to the number of cache lines. This overhead can be reduced
by accessing (Tc) and the s-bits in a transposed manner to be
able to perform bit-serial timestamp-parallel comparisons,
similar to neural cache [6]. Thus, the comparison takes time
linear in the number of s-bits and timestamp bits per cache
line rather than linear in the number of cache lines.

3.4.1 Transpose Interface

The SRAM array is constructed using 8-T bit cells [6] and
with two sets of sense amps and drivers to allow transposed
access to the stored data. Fig. 4 [20] shows the comparator
array with additional sense amps and drivers at the
‘transpose interface’. The transpose gate is used for regular
cache operations like updating a cache line timestamp on a
cache line fill, resetting the s-bits on eviction, setting an s-bit
on first access, or for reading an s-bit at the time of cache
access. The bit-line peripheral interface on the other hand is
used for s-bit saves and restores, and for performing parallel
comparisons of all the timestamps simultaneously at a con-
text switch. Timestamp rollover is discussed in Section 5.3.

3.4.2 Bit-Serial Comparison Logic

The greater of two unsigned integers can be determined by
comparing their bits starting from the MSB (most significant
bit): the comparison continues until non-identical bits are
found at a bit position: the greater of the two numbers has
the first non-identical bit position set. The logic for the com-
parison at each bit position starting from MSB can be sum-
marized as follows:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

Comparator SRAM Array

b ~b
5/
al | [] la

S
~Q Q

reset

<200

Fig. 5. Bit-line peripheral for comparison.

e if both the numbers have the same bit value for a bit
position, increment the bit position and continue the
comparison.

o if the bits at the bit position are different, the number
with a set bit is determined to be the greater of the
two numbers, and the comparison can be terminated.

For instance, the greater of ‘1100" and ‘0101” is ‘1100

because the non-identical bit position is closest to the MSB.

The parallel comparison of the timestamps begins by load-

ing the Ts into the shift register. The iterative comparison of
bits is carried out by reading Tc from the SRAM array using
the bit-line peripheral interface, and shifting in the bits from
Ts into the bit-line peripheral logic. Starting from the MSB,

o If Tc[il = 0, Ts[i] = 1; comparison stops, s-bit does not

reset.

e If Tc[i] =1, Tsl[il = 0; the bit-line peripheral latches ‘1",

this output is used to reset the s-bit.

o If Tc[i] = Ts[il; continue comparison.

Fig. 5 [20] shows the logic at the bit-line peripheral to per-
form the comparison and to reset the s-bit. The comparison
can be done using 2 S-R latches, a 3-input and gate and a 2-
input and gate. The Ts bits are ‘a’ and Tc bits are repre-
sented as ‘b’ in the figure.

As multiple timestamps get compared, the comparison of
two timestamps can stop once a Tc is determined to be
smaller than Ts. The output of the right and is set when Tc
is less than Ts, and latched in the rig}}t S-R latch. Further
comparisons are stopped by sending) from the right S-R
latch to the left and gate.

The left S-R latch registers the output of the left and
gate if Tc > Ts. At the end of all the comparisons, the
latched signal form the left S-R latch is used to reset the s-
bit for the corresponding line. This is done by activating
the wordline for the s-bits, and the bit-line drivers for
which the S-R latch is set.

4 TIMECACHE: MITIGATING COHERENCE
BASED ATTACKS

TimeCache can be used to mitigate attacks based on coher-
ence state leaks, as these attacks are very similar to reuse-
based attacks by construction. The attack requires the
presence of shared memory between the attacker and the
victim, like reuse-based attacks. The attacker and the victim,

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

OJHA AND DWARKADAS: PREVENTING COHERENCE STATE SIDE CHANNEL LEAKS USING TIMECACHE 379

TABLE 1
Evaluation Setup

Real Processor

Core i7-7700, 3304.125

L1D, L11, L2, LLC cache 32K, 32K, 256K, 8192K
gemb Simulator

Core TimingSimpleCPU, 2GHz

L1D, L1, LLC cache 32K, 32K, 2048K

however, run on separate cores, and the coherence protocol
maintains data consistency for shared data across cores.

The attack is based on the difference in cache access
latency for data available in shared versus exclusive state.
The difference in E and S access latency may exist because
the coherence directory may hold a copy of the shared data,
and service requests for the data in S state. A request to
exclusive data must, however, be serviced by the core hold-
ing the data since it may have been modified.

In a two-pronged attack, an attacker may continuously evict
and time its accesses from some core C1, while putting the data
in exclusive state by accessing it from another core C2 [39]. Since
the access that it times after eviction is the first access from that
execution context, the attack depends on timing a first access.
The attacker expects to incur an E access latency if the victim
running on yet another core C3 does not access the same data,
and S access latency otherwise. This is similar to the attacker in
areuse-based attack expecting a cache access latency for opera-
tion on data accessed by the victim.

In TimeCache, the first access by any core to a cache line
results in a miss, thereby eliminating an S access latency. The
attacker thread timing accesses on core C1 does not experi-
ence LLC access latency, as the s-bit for the S cache line in
LLC is not set for C1, even if it is set for C2 and/or C3. The
request from C1 is sent down the memory hierarchy instead,
and the response is sent to the processor after incurring the
latency associated with a miss. Removing the S access
latency is sufficient to prevent the specific attack where the
attacker expects S access latency due to victim’s access. We

further extend TimeCache to prevent E access latency, as a
fast access due to another core can still result in an attack. We
disallow the cache holding exclusive data from servicing data
requests, unless the available data is dirty. The design allows
data movement for modified shared data from one cache to
another while eliminating the timing side channel.

5 PERFORMANCE EVALUATION

We implemented TimeCache in the gemb5 cycle-accurate sim-
ulator [3] using L1I and L1D caches of 32KB each and an L2
(LLC) cache of 2MB. We added a timestamp and a per-hard-
ware-context s-bit to each cache line, which are manipulated
as described in Section 3. The process context for a request
packet in the cache is determined by the CR3 register within
the simulator. Changes in the CR3 register are used to trigger
the timestamp comparisons and the s-bit saves and restores.

Table 1 [20] specifies the real and simulation system
parameters used for the evaluation.

The following subsections present an analysis and evalu-
ation of the security and the performance overheads of our
timestamp-based defense on the gem5 simulator.

5.1 First Access and Exclusive Response Delays

We evaluate the performance overhead of our first-access
delay mechanism due to context switches on a single core
by simulating benchmarks from SPEC2006 for 1 billion
instructions in gem5 using full system simulation mode. We
run two instances of each SPEC2006 benchmark on a single
core with and without TimeCache. Fig. 6 [20] presents the
normalized execution time (execution time using TimeC-
ache/execution time without TimeCache) of each bench-
mark. When running two instances of the same benchmark,
the number of first accesses is impacted by sharing bench-
mark-specific code and shared libraries in the shared caches
while context switching across these processes. For instance,
while running two instances of h264, the memory shared
between the processes includes benchmark-specific code
and the libc routines for file operations like fopen, Iseek,
memset, and free. In addition to the above, kernel-space

1.2
1.1+
1.0
0.9 4
0.8 1
0.7 A
0.6 1
0.5 1
0.4 1
0.3 4
0.2 4

Normalized Execution Time

Fig. 6. Single-core SPEC2006 performance normalized execution time due to TimeCache’s delayed first accesses (execution time with TimeCache/
execution time without); The average overhead is 1.13% for two instance of same or different benchmarks on a single core.
Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

380
> B L1Dfa MPKI W L1Ifa MPKI M LLC fa_MPKI
o
0.1
_5
¥0.1
So
©0.0
2 s
§0.0
,_.0':5 L= S A UM T Vo 2 s v =
2 EERE_ EEZECEEZREEEEEEEEZE .
£ ERSSEXKEPEIJELEESTIipifas
ENE BN ERNINEXREPEIELEL LB
2 ><><,.c < o g 5 beotE.;._.gn.EEE
> NI ~ Q‘ I ~ ﬁ = 2 = N g S 2]
“‘ S D g E 8 &g
Fig. 7. Delayed access MPKI at each cache level for single-core

experiments.

memory is shared across processes and accesses to kernel
subroutines, system calls, and kernel data structures may
incur first access misses when executing in privileged mode
within a process context. We also run a combination of dif-
ferent benchmarks on a single core, where the shared access
is limited to shared libraries and kernel space memory. The
geometric mean of overheads across all workloads is 1.13%.

Fig. 7 [20] shows first access misses per thousand instruc-
tions. The last-level cache is expected to have a greater num-
ber of first access misses compared to the L1 cache, as it is
larger and retains more shared content. The larger first access
MPKI for wrf and perlbench is due to their larger shared
instruction memory footprint: they have a higher first access
MPKI in the last-level cache when running two instances of
the same benchmark (i.e., wrf with wrf and perlbench with
perlbench). However, when wrf and perlbench are run

0.08
0.06
L2
T 0.04
14
[9]
2
S 0.02
[a)]
-
- 0.00
SO™8 ;i oo
e e
S33EEEEIT888888L2CEEZS
NN;SSQEEEES;;; (] I _l
XX OSSOSO OSEEETg50== 3 3

(a) The ratio of misses to total number of accesses at L1D

Fig. 8. 2-core, 2-thread PARSEC and SPLASH benchmark.

1.00
0.75
<
o
= 0.50
%]
%]
3
o 0.25
<
@
L‘f 0.00 R —
X o RE ©) &)
© § o LA O [
TS & ES 7
\(b' @) 0\ Q\'b'
‘0\'& N S

(a) Number of first access misses per thousand instructions

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

together, their effective first access misses are lower because of
cache contention. Similarly, Ibm and leslie3d also have lower
effective first access misses due to capacity evictions when
sharing the cache with namd and gobmk.

We also evaluate the overhead due to the defense against
coherence state attacks when running pthread-based PAR-
SEC and SPLASH benchmarks run on multiple cores. We
use the simulator’s system emulation mode in these evalua-
tions, where the clone syscall is emulated to instantiate a
new thread on another core. We use 2 threads/cores in our
evaluation. Fig. 8a shows the L1D miss ratio in the baseline
cache. Fig. 8b shows the corresponding ratio of responses
received from a remote cache with cache line in E state.
These responses are prevented in the defense and add an
average overhead of 0.23%. The ratio of delayed responses
for most benchmarks is low, with the exception being
lu_ncb with a ratio of 2.2%. Fig. 9a shows the first access
misses per thousand instructions, which are a result of
cache lines in S state: the first access MPKI is a maximum of
0.75. The cumulative slowdown from delaying the first
accesses and the exclusive state responses results in an overall
slowdown of 0.46%, as shown in Fig. 9b.

The exact overheads and the change in the number of
misses per thousand instructions (MPKI) for the last-level
cache is presented in Table 2. The increase in execution time
is proportional to the increase in MPKI, which changes both
due to additional first accesses and due to the change in cach-
ing behavior from incurring first access misses. The increase
in MPKI is small, which explains the low overhead.

0.005
0.004
L
T
& o003
@
@ 0.002
@
2 0.001
3 _ll
2 0000 Hemm —m -
i SOTHg i i i i i i 190,
AT 888UV LCcCCCEESEagEaan
TR EEEEiEEEREEETES
XXEBEESSS222saasz =2
(b) Ratio of accesses receiving response from E state
1.05
(0]
E
'_
— 100
Rel
5
5
- I I I
w
O
(0]
N
g 0.90
= > e O & & » N
s FFL IS TS
T R » S
T T $

(b) Normalized execution time of the defense with respect
to the baseline.

Fig. 9. First access miss and overall slowdown; PARSEC and SPLASH benchmark.
Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

OJHA AND DWARKADAS: PREVENTING COHERENCE STATE SIDE CHANNEL LEAKS USING TIMECACHE 381

TABLE 2
SPEC2006, PARSEC, and SPLASH Execution Time Overhead,
2MB LLC MPKI
Workload Overhead MPKILLC MPKILLC
Baseline TimeCache
2Xspecrand 0.9908 0.0035 0.0238
2XIbm 1.0039 14.0349 14.138
2Xleslie3d 1.0751 20.6163 24.3556
2Xgobmk 0.9961 3.2832 3.3361
2Xlibquantum 1.0001 5.8532 5.8831
2Xwrf 1.0135 4.7286 4.8964
2Xcalculix 1.0548 0.2099 0.2672
2Xsjeng 0.999 16.7773 16.8382
2Xperlbench 1.0134 1.021 1.1582
2Xastar 1.0107 0.5654 0.6144
2Xh264ref 1.014 0.555 0.5953
2Xmilc 1.0026 16.4722 16.5295
2Xsphinx3 0.9982 0.2648 0.3118
2Xnamd 1.0108 0.1623 0.2181
2Xgromacs 0.9992 0.292 0.3703
leslie+gobmk 0.9996 22.3133 22.3669
namd-+Ibm 1.0579 6.3764 7.1136
milc+zeusmp 1.0024 12.5757 12.6121
Ibm+wrf 1.0007 9.7181 9.7898
h264+sjeng 1.0108 9.0769 9.1915
perl+wrf 1.0143 1.3984 1.4626
cactus+leslie 1.0034 21.2749 21.3736
gobmk-+astar 0.9994 1.1053 1.1469
zeusmp 1.0035 5.6352 5.5924
+gromacs
average 1.0113 7.2630 7.5077
x264 1.0255 0.7461 0.8656
raytrace 0.9974 0.0559 0.0565
blackscholes 1.0013 0.0461 0.0506
fluidanimate 1.0009 0.1312 0.1587
swaptions 0.9979 0.005 0.0053
lu_ncb 1.0246 2.2274 2.7026
fft 0.9957 3.1995 3.1992
lu_cb 1.0006 0.9077 0.9169
average 1.0046 0.9149 0.9944

5.2 LLC Size Sensitivity Analysis

To analyze the sensitivity of our design to cache size, we eval-
uate the performance overhead with different LLC sizes for
the single benchmark/single core tests (Fig. 10 [20]). Since the
bigger caches are expected to have lower eviction rates for the
same workload, there are effectively fewer first accesses,
resulting in a smaller additional delay. Hence, we see the per-
formance overhead in bigger caches to be smaller. Our analy-
sis with 2MB, 4MB, and 8MB LLC sizes shows an average
performance overhead of 1.13%, 0.4%, and 0.1%, respectively.
With the increasing size of the last-level cache, the baseline
MPKI reduces as the cache can retain a larger fraction of the
working set memory [11], resulting in fewer first access misses
after a context switch. These numbers indicate that the
defense scales well with larger caches.

5.3 Space Overhead, Timestamp Rollover,

and Scaling
The increase in area due to the additional hardware is primarily
due to the separate SRAM array of timestamps and s-bits, and

the comparison logic. This separate SRAM array uses 8-T rather
Authorized licensed use limited to:

1.025
1.000
0.975
0.950
0.925

Normalized Overhead

0.900

2mb

4mb 8mb

LLC size

Fig. 10. Sensitivity analysis of the overhead relative to increasing last-
level cache size.

then 6-T cells and also includes an additional set of sense-amps
and bit-line drivers. The other components required are the
timestamp comparison logic at each bit-line peripheral, consist-
ing of 2 latches, 2 and gates, and a shift register to hold Ts.

In our evaluation, we use 32-bit Tc timestamps to keep
the area overhead low. The number of bits used for the
timestamp counter has an impact on the frequency of time-
stamp rollover and is a parameter that can be tuned by the
chip maker. A timestamp rollover can result in an addi-
tional miss after 2%? cycles depending on the Ts of the pro-
cess. We illustrate the correctness of operation using 2
decimal digits of precision for Tc, resulting in a rollover
every 100 cycles for the purpose of illustration.

1) Processes that preempt before and resume after rollover:
The rollover is detected by comparing Ts and time at
resumption (e.g., 98 and 105). Since there can be
newer unaccessed cache lines with rolled over
(smaller) Tc (e.g., 1(03)), we reset all s-bits when roll-
over is detected after a process resumes.

2) Processes that are running during a rollover: No action is
needed while the process is running as the s-bits are
up-to-date.

3) Assuming no rollover between Tsand time at resumption
(e.g., 102 and 105): When the process resumes, since
there can be older cache lines with bigger Tc (e.g.,
78), unnecessary resets may occur, but correctness of
operation is maintained.

Thus, cache line timestamp rollover can result in addi-

tional misses but retains correctness of the defense.

An s-bit is required per hardware context that shares the
cache for each cache line. The total number of s-bits can be
significant for the LLC in server-class processors. Coherence
directories have a similar scalability concern with a large
number of cores, as they store availability information for
each core. In order to keep the number of s-bits low, design
principles used for coherence directories could be applied,
for example, limited pointers [2] or a level of indirection as
in SPACE [45]. For example, the limited pointer [2] directory
design work demonstrated empirically that applications
typically share data across a few processors. Since pointers
require log(n) bits (for n hardware contexts), keeping track
of a limited number of sharers would reduce area overhead
to O(log(n)) as opposed to n bits per cache line.

5.4 S-Bits Save and Restore Overhead
When a process is resumed, the s-bits and the Ts that
were saved for the process at the time of preemption

NIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

382

must be restored. The overhead due to copying the s-bits
is low for small cache sizes. The entire s-bit array for an
L1 cache of size 64KB can be copied in 2 64-byte cache-
line-size memory accesses. The overhead scales with the
size of the cache. The copy can take 256 cache-line-size
transfers for a last-level cache of size 8MB. The s-bits can
be read and written in parallel via the ‘regular’ bit-line
interface when a save or restore is required at a context
switch. The save and restore is done to and from a ker-
nel memory region reserved for the s-bits, to which the
process context points.

On an Intel i7-7700 processor operating at 3.6Ghz, the
time to copy s-bits for an 8MB size cache without caching is
2.4p s. This is of comparable magnitude to a null context
switch or system call. A typical process time slice varies
from 1 ms to several ms, so the 2.4 us overhead is at most
0.24% of the process run-time. An extra layer of buffering in
hardware could allow the copy to be performed in parallel
with the execution of the next process.

The save and restore of s-bits can also be done using a
DMA transfer. We calculate the latency of transferring a
buffer size equivalent to the one required for our simulation
system. The time taken to save and restore a caching context
on a Xeon processor using a single DMA channel is 1.08 us.
We add this delay to each context switch in our simulation
system to account for the overhead due to the s-bit book
keeping.

6 SECURITY ANALYSIS

We evaluate TimeCache against reuse-based attacks and
against the attacks depending on coherence state of the
shared memory.

6.1 Microbenchmark Evaluation

A reuse attack in TimeCache is prevented by delaying the
first access. The attack sequence when carried out on TimeC-
ache is as follows:

The attacker evicts a shared location.
It waits for the victim’s execution, potentially cach-
ing the data evicted by the attacker.

e The attacker accessed the priorly evicted data,
expecting to experience a hit in the cache, but since it
is the attacker’s first access, the s-bit is not set, the
access results in a miss even when the data resides
the cache.

To ensure the correctness of operation, we create microbe-
nchmark attacks with parent and child processes as the
attacker and the victim. The processes access shared memory
mapped region with 256 cache lines. The attacker or the
parent process continuously times its accesses to the
shared cache lines and flushes them. The child process
performs continuous read operation on the shared lines.
The attack is run on the gem5 simulator, and the access
times are recorded in the user space application using
rdtsc across the access. A hit (~14 cycles) in the parent
process due to the child’s accesses indicates a successful
attack. The attack is prevented by our defense simula-
tion, i.e.,, the parent process accesses do not result in
cache hit due to the victim.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

if parent
read shrd_mem; // cache hit
flush shrd_mem;
sched_yield();

else
read shrd_mem;

6.2 Attacking RSA

We implement the flush+reload reuse attack on GnuPG
shared library for RSA encyption, as discussed in the origi-
nal paper [41]. The attacker and victim are independent pro-
grams running on the same machine, hence share the
caches. The attack is tested both on real machine and the
simulator.

We install a non-stripped GnuPG library on a real
machine and locate the offsets for Square, Multiply, and
Reduce functions used by the encryption. The shared
library implements encryption using the chain of functions
as Square-Reduce-Multiply-Reduce for processing ‘1’ and
Square-Reduce for processing a ‘0" bit. This is a typical
example where the access to shared library is dependent on
process specific secret data, i.e., the encryption routines are
accessed based on process specific key bits.

The original attack proceeds by determining the timing
threshold for a hit on the system. The attacker process
flushes the cache and then accesses an address from the
Square, Multiply, and Reduce functions in a loop. An inde-
pendent victim process performs encryption simulta-
neously. Depending on whether the attacker experiences a
hit or a miss on accesses to the encryption subroutines, it
learns whether a ‘1’ or a ‘0’ is being proccesssed for the vic-
tim’s encryption. This essentially allows the attacker to learn
the key bits over some repetitions. We simplify the attack
simulation and assume a hit in the attacker process due o
victim’s encryption to be a successful attack.

We calculate the cache access latency on both the real
machine (~40 cycles for LLC) and the simulator (~14
cycles for shared L1), and use their respective calculated
access latencies as the threshold for a cache hit. On the
real machine, the attacker and victim run on separate
cores and share the LLC, whereas The attack on the sim-
ulator is run on a single core, i.e the attacker and the vic-
tim share the L1 cache. The attacker and the victim are
independent user space processes, with access to a
shared memory region. The attacker process repeatedly
times its access to a flushed memory region, and is able
to incur hits due to the accesses from a simultaneously
running victim. The attack goes through both on the real
machine and on the gemb simulator in full-system simu-
lation mode.

Our defense simulation prevents accesses with cache hit
latency (~14 cycles) in the attacker process, by identifying
its timed accessed as its first access. It allows a cache access
latency only on data that has been accessed earlier with a
memory access latency. The attacker perceives a miss (~185
cycles) for its first access and cannot infer if the data is
cached by the victim or not.

6.3 Security Evaluation of Coherence Attack

We implement the original exploit explained in the paper
describing the side channel attack from coherence state

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

OJHA AND DWARKADAS: PREVENTING COHERENCE STATE SIDE CHANNEL LEAKS USING TIMECACHE 383

leak [39]. The attacker threads share memory and run on
cores C1 and C2. One of the threads repeatedly times its
accesses to the shared memory and flushes the accessed
data, while the other accesses the shared memory and keeps
it exclusive in the local cache. We evaluate the attack on the
gemb simulator using a snoopy bus coherence protocol. To
simulate E access latency, we allow the cache with exclusive
data to respond to data requests. Thus the attacker thread
on C1 receives the requested shared data with E access
latency. Since a response from another cache on the same
level takes lesser number of cycles in a snoopy protocol, the
E access latency is our implementation is lesser (20 cycles)
than the LLC response latency (40 cycles) for data in S state.

Accesses from the victim thread to the same shared
memory running on C3 changes the exclusive state of the
data in the local cache of C2 to shared state. Further timed
accesses from C1 experience S access latency, as the request
is serviced from the LLC. Our defense works against the
attack by disallowing S access latency on previously unac-
cessed data (refer Section 4), the attacker experiences mem-
ory access latency (~185 cycles) instead.

6.4 S-Bits do not Introduce Additional Side
Channels

The additional hardware comprising of the SRAM compara-

tor array and the execution context specific s-bits do not cre-

ate additional side channels for the following reasons:

e The operations of a process executing on a hardware
context is affected only by the s-bits associated with
that hardware context, and not by the s-bits for any
other context.

e The execution context’s s-bits are saved and restored
during a context switch so that a process does not
see s-bits from another process that might have used
the same hardware execution context.

e The s-bits are managed only by a trusted computing
base at the time of the context switch.

o The s-bit save and restore is a constant time opera-
tion, thus leaks no information about bits being set
or reset.

7 RELATED WORK

The existing defense techniques to prevent side channel
attacks on shared memory either from reuse or coherence
state leak, resort to cache partitioning or obfuscate time, and
incur significant overhead.

7.1 Cache Partitioning

Side channels in shared cache can be prevented by partition-
ing the cache, or disallowing sharing. However, partitioning
impacts performance by reducing the cache available for exe-
cution, and generally use security domains. Dynamic parti-
tioning can resize the partitions as required and can achieve
lower overheads compared to static partitions. SecDCP [35]
implements a dynamic cache partitioning between two
groups of confidential and public applications. It provides
coarse grain protection and works with a prior knowledge of
security domains. Another dynamic cache partitioning tech-

nique utilizes page coloring to allocate F{})a%{es to a secure
Authorized licensed use limited to: UNIVERSITY OF ROC

ESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xp

domain [31], [43], but can incur significant copy costs for
recoloring. DAWG uses security domains and partitions
cache ways between a maximum of 16 security domains at a
time, incurring 4-12% slowdown [13]. PLCache locks a cache
line for a process, thus can be seen as a line wise partitioning.
It results in a 12% performance degradation.

7.2 Last Level Cache Defense
7.2.1 Intel CAT-Based Partitioning

Intel’s cache allocation technology (CAT) allows way wise
partitioning of the last level cache. Both Catalyst [17] and
Apparition [5] use Intel CAT to partition cache between dis-
trusting users for cache side channel defense. However, the
performance of such systems depends on its ability to mini-
mize reassignment of partitions to other applications, keeping
the cache flushes to a minimum. For instance, Apparition [5]
assigns a Class of Service (CLOS) to each requesting applica-
tion and flushes the entire partition across context switches,
resulting in very high overhead for certain applications. Cata-
lyst uses pinned pages and the solution is suited to cloud ser-
vice providers. Both these techniques are dependent on
hardware support available only at the LLC and hence cannot
defend against attacks at other cache levels.

722 FTM

First Time Miss (FTM) [25] uses directory presence bits to
prevent reuse of data in LLC, over data brought in by other
cores. The defense only works for a cache that is shared by
the attacker and the victim running on seperate cores, and
is managed using the coherence directory. Not all use cases
support distinct cores for attacker and victim, as identifying
the attacker is necessary for separating its execution envi-
ronment, nor is it necessary to have coherence directory bits.

The threat model in Timecache is stronger and hence
provides a flexible and scalable defense. The defense does
not depend on identifying or isolating the attacker pro-
cesses. TimeCache protects against attacks at all levels of
cache, including the higher-level caches. Recognizing a
first-time miss in the presence of directories, and in the
absence of hyperthread or context switches is straightfor-
ward. Doing so in a shared higher-level cache, in the pres-
ence of context switches is enabled by the use of time to
recognize first-accesses, and by our novel bit-serial, time-
stamp parallel comparator. TimeCache can also mitigate
cross-process Spectre variants, by eliminating the reuse side
channel used by Spectre.

7.3 Obfuscating Time & Constant Time Algorithm
The ability to time accesses from user space without any
privilege can also be seen as the vulnerability that enables
the attacker to launch timing side channel attacks. Remov-
ing this ability has been suggested as a defense mechanism
in the past. Some techniques suggest making timing instruc-
tions privileged, or returning approximate time to defeat the
attack. Both these techniques can be rendered ineffective as
a defense, by using alternate timing primitives for recover-
ing clock with a fine resolution [28].

As timing side channel reveal process specific secrets
when the access to the shared memory is dependent on

those process specific secrets, accessin§ the shared region
ore. Restrictions apply.

384

with non secret data can add noise enough to prevent the
attack. This technique is used in constant time implementa-
tions of algorithms [16], [26], [27], to defend against timing
side channels. Since the transformed program adds many
more accesses to the memory, the associated overhead is
impractical for defending accesses to large shared libraries.

7.4 Prior Defense Against Attacks Due to
Coherence State Leak

DAWG replicates shared memory in partitions, and requests to
the same line from different domain IDs are filled by the mem-
ory controller, there by not allowing coherence state leak across
security domains [13]. Another suggested defense is to make
the LLC the owner or responder rather than the cache with E or
M, which requires sending all the updates to LLC [40]. TimeC-
ache does not require this additional update to the LLC.

8 CONCLUSION

We implement and evaluate a defense against side channel
attacks resulting from reuse or coherence state leak of
shared memory. TimeCache provides entire cache access to
all executing applications. The design does not constrain
system configuration or use, i.e., it works against an attacker
running simultaneously with the victim or preemptively,
either cross-core or on the same core.

TimeCache defends against reuse attacks on shared data
by maintaining per-process caching contexts. TimeCache
creates, saves, and restores caching contexts to retain the
speed of operation over shared memory across context
switches. A novel bit-serial timestamp comparator is used to
update the stale caching context upon a context switch by
comparing against per-cache-line last-fill timestamps. We
evaluate the security of the defense against microbenchmark
attacks using the classic flush+reload attack and using an
exploit that uses coherence state leak in the gem5 simulator.
The performance overhead is evaluated using standard
benchmarks from SPEC2006, PARSEC, and SPLASH. The
average slowdown on SPEC2006 is 1.13%, most of which is
from delayed first accesses, with caching context book-keep-
ing adding 0.024%. Multicore simulation of PARSEC and
SPLASH shows an average overhead of 0.46%. Our defense
retains the benefits of shared memory like memory pressure
reduction, and allows safe deduplication.

ACKNOWLEDGMENTS

We also thank Sreepathi Pai for his feedback during the ini-
tial discussions of the ideas in this work.

REFERENCES

[1] Kernel samepage merging (memory deduplication), 2017. [Online].
Available: https:/ /kernelnewbies.org/Linux_2 6 _32#Kernel Samepage
_Merging .28memory_deduplication.29

[2] A. Agarwal, R. Simoni, J]. Hennessy, and M. Horowitz, “An evalu-
ation of directory schemes for cache coherence,” in Proc. Int.
Symp. Comput. Archit., 1988, pp. 280-289.

[3] N. Binkert et al., “The GEMS5 simulator,” SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011.

[4] C. Canella et al., “Fallout: Leaking data on meltdown-resistant
cpus,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019,
pp. 769-784.

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 2, FEBRUARY 2023

X. Dong, Z. Shen, J. Criswell, A. L. Cox, and S. Dwarkadas,
“Shielding software from privileged side-channel attacks,” in
Proc. 27th USENIX Secur. Symp., 2018, pp. 1441-1458.

C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of
deep neural networks,” in Proc. ACM/IEEE 45th Annu. Int. Symp.
Comput. Archit., 2018, pp. 383-396.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush:
A fast and stealthy cache attack,” in Proc. Int. Conf. Detection Intru-
sions Malware Vulnerability Assessment, 2016, pp. 279-299.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in Proc. 24th
USENIX Secur. Symp., 2015, pp. 897-912.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache games-Bringing
access-based cache attacks on AES to practice,” in Proc. IEEE
Symp. Secur. Privacy, 2011, pp. 490-505.

W.-M. Hu, “Lattice scheduling and covert channels,” in Proc. IEEE
Comput. Soc. Symp. Res. Secur. Privacy, 1992, pp. 52-61.

A. Jaleel, “Memory characterization of workloads using instru-
mentation-driven simulation,” 2010. [Online]. Available: http://
www.glue.umd.edu/ajaleel /workload

K. Jin and E. L. Miller, “The effectiveness of deduplication on vir-
tual machine disk images,” in Proc. Israeli Exp. Syst. Conf., 2009,
pp- 1-12.

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative
execution processors,” in Proc. IEEE[ACM 51st Annu. Int. Symp.
Microarchit., 2018, pp. 974-987.

P. Kocher et al., “Spectre attacks: Exploiting speculative exe-
cution,” Commun. ACM, vol. 63, no. 7, pp. 93-101, 2018.

E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! Speculation attacks using the return stack buffer,”
in Proc. 12th USENIX Workshop Offensive Technol., 2018, Art. no. 3.

C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi,
“GhostRider: A hardware-software system for memory trace
oblivious computation,” ACM SIGPLAN Notices, vol. 50, no. 4,
pp- 87-101, 2015.

F. Liu et al., “CATalyst: Defeating last-level cache side channel
attacks in cloud computing,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2016, pp. 406-418.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2015, pp. 605-622.

M. Mushtaq, M. A. Mukhtar, V. Lapotre, M. K. Bhatti, and
G. Gogniat, “Winter is here! A decade of cache-based side-channel
attacks, detection & mitigation for RSA,” Inf. Syst., vol. 92, 2020,
Art. no. 101524.

D. Ojha and S. Dwarkadas, “TimeCache: Using time to eliminate
cache side channels when sharing software,” in Proc. ACM/IEEE
48th Annu. Int. Symp. Comput. Archit., 2021, pp. 375-387.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: The case of AES,” in Proc. Cryptographers’ Track RSA
Conf., 2006, pp. 1-20.

D. Page, “Partitioned cache architecture as a éide-channel defence
mechanism,” 2005. [Online]. Available: http:/ /citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.460.9926&rep=repl&type=pdf

M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” in Proc. IEEE/ACM 51st
Annu. Int. Symp. Microarchit., 2018, pp. 775-787.

M. K. Qureshi, “New attacks and defense for encrypted-address
cache,” in Proc. ACM/IEEE 46th Int. Symp. Comput. Archit., 2019,
pp- 360-371.

K. Ramkrishnan, S. McCamant, P. C. Yew, and A. Zhai, “First time
miss: Low overhead mitigation for shared memory cache side
channels,” in Proc. 49th Int. Conf. Parallel Process., 2020, pp. 1-11.
A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-
channels through obfuscated execution,” in Proc. 24th USENIX
Secur. Symp., 2015, pp. 431-446.

A. Rane, C. Lin, and M. Tiwari, “Secure, precise, and fast floating-
point operations on x86 processors,” in Proc. 25th USENIX Secur.
Symp., 2016, pp. 71-86.

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic
timers and where to find them: High-resolution microarchitec-
tural attacks in JavaScript,” in Proc. Int. Conf. Financial Cryptogra-
phy Data Secur., 2017, pp. 247-267.

M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“NetSpectre: Read arbitrary memory over network,” in Proc. Eur.
Symp. Res. Comput. Secur., 2019, pp. 279-299.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

OJHA AND DWARKADAS: PREVENTING COHERENCE STATE SIDE CHANNEL LEAKS USING TIMECACHE

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

P. Sharma and P. Kulkarni, “Singleton: System-wide page dedu-
plication in virtual environments,” in Proc. 21st Int. Symp. High-
Perform. Parallel Distrib. Comput., 2012, pp. 15-26.

J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,” in
Proc. IEEE/IFIP 41st Int. Conf. Dependable Syst. Netw. Workshops,
2011, pp. 194-199.

C. Trippel, D. Lustig, and M. Martonosi, “CheckMate: Automated
synthesis of hardware exploits and security litmus tests,” in Proc.
IEEE/ACM 51st Annu. Int. Symp. Microarchit., 2018, pp. 947-960.

S. van Schaik et al., “RIDL: Rogue in-flight data load,” in Proc.
IEEE Symp. Secur. Privacy, 2019, pp. 88-105.

D. Wang et al., “Unveiling your keystrokes: A cache-based side-
channel attack on graphics libraries,” in Proc. 26th Annu. Netw.
Distrib. Syst. Secur. Symp., 2019.

Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: Secure dynamic cache partitioning for efficient timing
channel protection,” in Proc. 53rd Annu. Des. Autom. Conf., 2016,
Art. no. 74.

Z. Wang and R. B. Lee, “New cache designs for thwarting soft-
ware cache-based side channel attacks,” ACM SIGARCH Comput.
Archit. News, vol. 35, no. 2, pp. 494-505, 2007.

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “SCATTERCACHE: Thwarting cache attacks via
cache set randomization,” in Proc. 28th USENIX Secur. Symp.,
2019, pp. 675-692.

M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierar-
chy-aware cache replacement policy (SHARP): Defending against
cache-based side channel attacks,” in Proc. ACM/IEEE 44th Annu.
Int. Symp. Comput. Archit., 2017, pp. 347-360.

F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence
protocol states vulnerable to information leakage?,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit., 2018, pp. 168-179.

F. Yao, M. Doroslovacki, and G. Venkataramani, “Covert timing
channels exploiting cache coherence hardware: Characterization
and defense,” Int.]. Parallel Program., vol. 47, no. 4, pp. 595-620,
2019.

Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in Proc. 23rd USENIX
Secur. Symp., 2014, pp. 719-732.

[42]

[43]

[44]

[45]

385

D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware
design language for timing-sensitive information-flow security,”
ACM SIGPLAN Notices, vol. 50, no. 4, pp. 503-516, 2015.

X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proc. 4th ACM
Eur. Conf. Comput. Syst., 2009, pp. 89-102.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in PaaS clouds,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2014, pp. 990-1003.

H. Zhao, A. Shriraman, and S. Dwarkadas, “SPACE: Sharing pat-
tern-based directory coherence for multicore scalability,” in Proc.
Int. Symp. Parallel Architectures Compilation Techn., 2010, pp. 135-146.

Divya Ojha received the bachelor's degree in
electronics and communication. She is currently
working toward the PhD degree in computer sci-
ence with the University of Rochester, working
with Dr. Sandhya Dwarkadas.

Sandhya Dwarkadas (Fellow, |IEEE) is currently
the Walter N. Munster professor and the chair of
computer science with University of Virginia, Char-
lottesville, VA, USA. Until July, she was the Albert
Arendt Hopeman professor of engineering and a
professor of computer science with the University
of Rochester, Rochester, NY, USA. Her research
has contributed to the field of shared memory and
re-configurable computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on September 24,2023 at 20:47:49 UTC from IEEE Xplore. Restrictions apply.

