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Exact coherent structures in fully developed
two-dimensional turbulence
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This paper reports several new classes of unstable recurrent solutions of the
two-dimensional Euler equation on a square domain with periodic boundary conditions.
These solutions are in many ways analogous to recurrent solutions of the Navier–Stokes
equation which are often referred to as exact coherent structures. In particular, we find
that recurrent solutions of the Euler equation are dynamically relevant: they faithfully
reproduce large-scale flows in simulations of turbulence at very high Reynolds numbers.
On the other hand, these solutions have a number of properties which distinguish them
from their Navier–Stokes counterparts. First of all, recurrent solutions of the Euler
equation come in infinite-dimensional continuous families. Second, solutions of different
types are connected, e.g. an equilibrium can be smoothly continued to a travelling wave or
a time-periodic state. Third, and most important, they are only weakly unstable and, as a
result, fully developed turbulence mimics some of these solutions remarkably frequently
and over unexpectedly long temporal intervals.
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1. Introduction

The important role of coherent structures in fluid turbulence has been both widely accepted
and hotly debated for several decades. However, many open questions still remain. A quote
from the seminal paper on this topic by Hussain (1986) sets the stage for the present study:
‘The interaction between coherent structures and incoherent turbulence is the most critical
and least understood aspect of turbulent shear flows. This coupling appears to be rather
different from the classical notion of cascade; even considering the large and fine scales,
they are not decoupled as widely presumed. The coupling can be intricate and of different
kinds. . . ’. Indeed, this pretty much sums up the state of knowledge to the present day.
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Wewill follow Hussain in distinguishing coherent structures as those of size comparable
to the transverse length scale of the shear flow as opposed to coherent substructures
whose characteristic size corresponds to the Taylor microscale. These scales are only
clearly distinguished at high Reynolds numbers (Re) where coherent structures can be
considered inviscid. Rather interestingly, the greatest progress in understanding coherent
structures to date has been made in the context of weakly turbulent flows where this
scale separation disappears. Advanced numerical methods such as Newton–Krylov solvers
(Viswanath 2007) enabled computation of unstable, recurrent (e.g. steady, time-periodic
or relative-periodic) solutions of the governing equations in a variety of canonical shear
flows. Many of such numerical solutions were found to have spatiotemporal structure
similar to that of familiar coherent structures such as streamwise vortices and velocity
streaks and hairpin vortices near a wall (Waleffe 1998, 2001; Gibson, Halcrow &
Cvitanović 2008; Itano & Generalis 2009; Shekar & Graham 2018); consequently, they
have been termed exact coherent structures (ECSs). Recent numerical and experimental
studies demonstrated that ECSs do not merely resemble turbulent flows, they also organize
and guide the dynamics of weak turbulence in both two (Suri et al. 2018, 2020) and three
spatial dimensions (Krygier, Pughe-Sanford & Grigoriev 2021; Crowley et al. 2022).
Exact coherent structures have already generated significant insight into weakly

turbulent flows (Kawahara, Uhlmann & Van Veen 2012; Graham & Floryan 2021). Most
notably, ECSs are found to capture self-sustaining processes that maintain wall-bounded
turbulence (Waleffe 1997; Hall & Smith 1991). Exact coherent structures also elucidate
the transition from laminar flow to turbulence explaining both the ‘bypass’ mechanism in
linearly stable flows (Khapko et al. 2016) and the formation of chaotic sets underpinning
sustained turbulence (Kreilos & Eckhardt 2012). Despite these successes, due to the
lack of scale separation in weakly turbulent flows, it remains unclear how much of this
understanding carries over to fully developed turbulence.
Extending the ECS framework to higher Re proved challenging due to both conceptual

and technical challenges. As Re increases, the range of scales accessible to turbulence
becomes larger, and the number of distinct ECSs grows very quickly. Furthermore, each
ECS becomes more unstable; and, to complicate things even further, it becomes even more
expensive to find ECSs through direct numerical simulations (DNS) which effectively
become intractable at high Re due to the high spatial and temporal resolution requirements.
A key conceptual challenge is related to the limit Re → ∞. The Euler equation is a
singular limit of the Navier–Stokes equation, which makes it difficult to establish a
relation between dynamically relevant recurrent solutions of the two equations beyond
some relatively loose, although important, constraints (Batchelor 1956; Okamoto 1994;
Gallet & Young 2013).
One of the most notable successes in continuing recurrent solutions to higher Re

is the computation of attached eddies (Eckhardt & Zammert 2018; Doohan, Willis
& Hwang 2019; Yang, Willis & Hwang 2019; Azimi & Schneider 2020) and their
bulk analogues (Deguchi 2015; Eckhardt & Zammert 2018) in a variety of canonical
three-dimensional (3-D) shear flows. In wall units, these solutions become independent
of Re, just like the wall-bounded fully developed turbulent flows. It is important to note
that these solutions represent coherent substructures. To the best of our knowledge, no
examples of ECS have been found in high-Re 3-D turbulent flows at the scale comparable
to either the system size (e.g. distance between the boundaries) or the scale of the forcing;
such ECSs correspond to recurrent solutions of the Euler equation. It should be pointed
out, however, that, some – not necessarily dynamically relevant – steady and time-periodic
solutions representing large-scale flows at fairly high Re have been computed through
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continuation in two spatial dimensions (Kim & Okamoto 2010, 2015; Kim, Miyaji &
Okamoto 2017) and three spatial dimensions (Wang, Gibson &Waleffe 2007). In principle,
recurrent large-scale flows could also be computed with the help of large eddy simulations
(Rawat et al. 2015; Hwang, Willis & Cossu 2016), although such flows do not represent
formal solutions of either the Navier–Stokes or Euler equation.
The objective of this paper is therefore to introduce such large-scale recurrent solutions

of the incompressible Euler equation in two spatial dimensions, where fully resolved
DNS of turbulent flow can be performed for relatively high Re. There is a rich history
of computing solutions of the Euler equation using various analytical tools. Even leaving
singular solutions involving point vortices aside, quite a few examples of absolute and
relative equilibria have been found. They include isolated circular and elliptic vortices
(Lamb 1924), translating pairs of counter-rotating vortices (Pierrehumbert 1980; Saffman
& Tanveer 1982), rotating arrays of two or more vortices (Dritschel 1985; Carton, Flierl
& Polvani 1989; Crowdy 2002b) and stationary multipolar vortex arrays (Crowdy 1999,
2002a; Tur & Yanovsky 2004; Xue, Johnson & McDonald 2017).
This paper reports several new classes of recurrent solutions – equilibria, travelling

waves and time-periodic states – of the two-dimensional (2-D) Euler equation on a domain
with periodic boundary conditions which can be thought of as generalizations of vortex
crystals (Aref et al. 2003). A distinguishing feature of these solutions is their dynamical
relevance for high-Re statistically stationary turbulent flows which balance forcing and
dissipation: just like in the case of weakly turbulent flows, we find recurrent solutions to
organize and guide the dynamics of turbulent flow on large scales. As expected, the library
of inviscid recurrent solutions is found to be far larger than that describing viscous flows:
unlike their analogues for weakly turbulent flows which are isolated, solutions of the Euler
equation are found to belong to continuous families spanned by an infinite number of
parameters.
The rest of the paper is organized as follows. Section 2 describes the problem set-up

investigated here, and § 3 discusses the relation between solutions of the Euler and
Navier–Stokes equation in the high-Re limit. Our results are presented in § 4, their
implications for the problem of fully developed fluid turbulence are discussed in § 5, and
conclusions are presented in § 6.

2. Problem description

We consider an incompressible Newtonian fluid in two spatial dimensions. In the presence
of forcing and dissipation, its dynamics are governed by the Navier–Stokes equation,

∂tu + (u · ∇)u = −∇p + Re−1∇2u + f , (2.1)

where p is the pressure, f represents the external forcing and Re is the Reynolds number. In
two spatial dimensions, it can be conveniently rewritten in terms of vorticity ω = ∂xuy −
∂yux = −∇2ψ ,

∂tω + (u · ∇)ω = Re−1∇2ω + ϕ, (2.2)

where ux = ∂yψ and uy = −∂xψ are the components of the velocity field, ψ is the stream
function, and ϕ = ∂xfy − ∂yfx. In this study, we confine our attention to spatially periodic
domains 0 ≤ x, y < 2π with stationary checkerboard forcing

ϕ = sin(Nx) sin(Ny), (2.3)

where N = 4. With this choice of non-dimensionalization, the length, time, velocity and
vorticity scales are all O(1).
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Figure 1. The energy of turbulent flow. (a) The energy spectrum averaged over a long time interval (103

non-dimensional units) in the asymptotic regime exhibits a clear power-law scaling E(k) ∝ kα (shown as dashed
line) in the inertial range. (b) The exponent α of the power law computed for energy spectra averaged over a
characteristic time scale Tc. (c) Variation in the energy over a long time interval. Note that t = 0 in different
plots corresponds to arbitrary and different times.

The frequency of the spatial forcing, kf = √
2N ≈ 6 is chosen to be reasonably well

separated from both the dominant wavenumber k0 = 1/
√
2 describing the large-scale flow

on the low wavenumber side and the inertial range on the higher wavenumber side. This
choice of the forcing frequency ensures that the direct (enstrophy) cascade takes place
over most of the wavenumber range resolved in the simulations while the inverse (energy)
cascade is constrained to the narrow range [k0, kf ]. As far as the structure of the large-scale
flows at high Re is concerned, the particular choice of the forcing profile does not appear
to play a noticeable role according to both our simulations and the results of previous
systematic studies (Gallet & Young 2013; Kim et al. 2017). Note that, unlike, say, a
Kolmogorov forcing profile (Tithof et al. 2017), a checkerboard profile breaks continuous
translational symmetry in both spatial directions, constraining the types of ECSs that can
be found at moderate Re (Suri 2021). This symmetry breaking effectively disappears at
higher Re, however, as discussed below.
To generate turbulent flows, we computed solutions of (2.2) numerically using a

pseudospectral method. We used a variable time step Runge–Kutta–Fehlberg scheme
where spatial derivatives and all linear terms were computed in Fourier space and the
nonlinear term was computed in physical space. Additionally, we used a two-thirds
dealiasing scheme for numerical stability. Most of the results reported here used the grid
resolution of 512 × 512.
In this study we set the Reynolds number to a relatively high value of Re = 105 in

order for structure on a broad range of scales to develop, as illustrated by figure 1(a).
The energy spectrum is found to exhibit a clear power-law scaling E(k) ∝ kα over at least
a decade in the wavenumbers (16 ≤ k ≤ 170). This scaling indicates the presence of an
inertial range characteristic of fully developed turbulence and clear separation between the
O(1) length scale of the forcing and the Taylor microscale k−1

t . The exponent α ≈ −4.5
of the power law is found to differ substantially from the value of −3 predicted by the
classical theory of turbulent cascades in 2-D turbulence developed by Kraichnan (1967),
Leith (1968) and Batchelor (1969). This discrepancy is well known (Boffetta & Ecke
2012) and demonstrates the limitations of the Kraichnan–Leith–Batchelor (KLB) theory in
properly accounting for the effect of coherent structures on the direct cascade, despite its
acknowledgement of the non-local nature of interactions (Kraichnan 1967, 1971). Indeed,
figure 1(b) shows that, although the energy spectrum still retains the power-law scaling
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Figure 2. A typical snapshot of turbulent vorticity field ω. The corresponding large-scale flow L̂16ω (b) and
small-scale flow (1 − L̂24)ω (c). Panel (d) shows a snapshot of the converged time-periodic ECS. This and all
subsequent plots use the same colour bar. For solutions of the Euler equation, such as that shown in panel (d),
vorticity scale is arbitrary due to scaling invariance. Hence, the colour bar shown in panel (a) can be used to
interpret vorticity fields shown in all subsequent figures.

when averaged over a short time interval, the exponent α exhibits substantial fluctuations
in time reflecting changes in the large-scale structure of the flow.
The general structure of coherent components of turbulent flow at large and small

scales can be easily recognized by applying a Fourier filter. For illustration, we use here a
low-pass Fourier filter, denoted by the linear operator L̂k, which corresponds to a smoothed
circular window of radius k in Fourier space. We arbitrarily consider wavenumbers k ≤ 16
as representing large scales and k ≥ 24 as representing small scales. For reference, taking
dealiasing into account, our numerical simulations resolve spatial frequencies from the
lowest, kmin = k0, to the highest, kmax = 
512/3� = 170. The wavenumber associated
with the Taylor microscale at which viscous effects become important is somewhat
higher, kt ∼ Re1/2 = O(300). As figure 1(a) illustrates, we find power-law scaling over the
entire wavenumber range corresponding to small scales while, for large scales, significant
deviations from a power law are observed.
A typical snapshot of turbulent flow is shown in figure 2(a). Figures 2(b) and 2(c)

show, respectively, the large-scale flow L̂16ω and the small-scale flow (1 − L̂24)ω. The
large-scale component, for sufficiently low-frequency forcing such as the one considered
here, features a pair of counter-rotating vortices. This is an expected result of the inverse
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cascade that accumulates the energy in the largest scales accessible to the flow. Small
scales represent filaments of vorticity which mainly occupy the space between the two
vortices. Stretching (or thinning) of these vorticity filaments in the hyperbolic regions of
the large-scale flow is believed to be a key physical mechanism behind the direct cascade
(Chen et al. 2003).
For higher-frequency forcing, the vortices at the scale closer to that of the forcing

become more prominent, and the spectrum has two separate scaling regions, one between
the domain scale and the forcing scale controlled by the inverse cascade and another
between the forcing scale and the Taylor microscale controlled by the direct cascade. This
more complicated situation is outside the scope of the present study.
The spatial resolution used in our simulations, which may be considered low by modern

standards, was motivated by the need to evolve the flow over extremely long time scales.
As illustrated in figure 1(c), for the high Re considered here, it takes on the order of 105
non-dimensional time units for the flow to come to a statistical equilibrium and for the
energy E = ‖u‖2/2 to approach its long-term average Ē ≈ 0.44. Here and below, we use
the bar to denote the temporal mean and the L2-norm defined by the spatial mean

‖u‖2 = 1
4π2

∫ 2π

0

∫ 2π

0
u · u dx dy. (2.4)

The results presented here describe the statistically stationary turbulence that is found
after the long transients have died down we initialize the simulation using a small random
perturbation about u = 0. A sample movie of turbulent flow in the asymptotic regime is
provided as supplementary movies available at https://doi.org/10.1017/jfm.2023.584.
To fully resolve the flow at the target Re, one formally needs to use an n × n grid

with n � 3kt ≈ 103. Hence, simulations on a 2048 × 2048 grid can be considered fully
resolved. While a number of previous studies of 2-D turbulence have used simulations
with this resolution (Smith & Yakhot 1993; Bracco et al. 2000), they computed flows over
time intervals many orders of magnitude shorter than those considered here. To make sure
that our numerical results are representative of fully resolved simulations of turbulence, we
compared them with those obtained on a 2048 × 2048 grid and found the differences to
be negligible on the time scale Tc = 10 characteristic of the recurrent solutions discussed
below. We also found the flows, and the recurrence diagrams discussed below, computed
on 512 × 512 and 2048 × 2048 grids, to remain qualitatively similar on time scales of
O(103).

3. The Re → ∞ limit

It is well known that the viscous term in the Navier–Stokes equation represents a singular
perturbation in the limit of Re → ∞. As a result, the solutions of the Euler equation

∂tω + (u · ∇)ω = 0, (3.1)

which describes the inviscid limit, may have properties that are dramatically different from
those of the Navier–Stokes equation. In the inviscid limit, vorticity is materially conserved,
giving rise to an infinite number of conserved quantities such as

In = 1
4π2

∫ 2π

0

∫ 2π

0
ωn dx dy (3.2)

with integer n ≥ 1 (Eyink 1996; Clercx & Van Heijst 2009), in addition to the conserved
energy E. Hence, by Noether’s theorem, the Euler equation has an infinite number of
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continuous symmetries and inviscid flows belong to infinite-dimensional solution families
spanned by continuous parameters σn, n = 1, 2, . . ., associated with the corresponding
symmetries. On the other hand, the Navier–Stokes equation generally breaks all of these
continuous symmetries (except for the temporal translation, so long as the forcing is
time-independent), retaining only the discrete translational symmetries of the forcing, if
there are any.
As a result of their different symmetries, the Euler equation has a much broader variety

of solutions than the Navier–Stokes equation. Consequently, it is natural to ask which
solutions of the Euler equation are physically relevant, i.e. correspond to a solution of the
Navier–Stokes equation at a high, but finite Re. For steady flows with closed streamlines,
this limit was originally considered by Batchelor (1956) who derived an integral condition
on the stream function of the Euler flow. Okamoto (1994) has subsequently shown that
Batchelor’s criterion is equivalent to a solvability condition for this singularly perturbed
problem.
This idea can be developed further to obtain several specific, interpretable constraints

on the dynamically relevant solutions of the Euler equation, not only steady, but also
time-periodic. Let [u0, p0] be a solution of the Euler equation and [u, p] = [u0, p0] +
Re−1[u1, p1] be a solution of the Navier–Stokes equation (2.1) with Re � 1. The
perturbation [u1, p1] satisfies the equation

N̂[u1, p1] = [H , 0], (3.3)

where we have defined
N̂[u1, p1] = [∂tu1 + (u0 · ∇)u1 + (u1 · ∇)u0 + ∇p1, ∇ · u1],

H = ∇2u0 + h,

}
(3.4)

and assumed that h = Re f is O(1).
Subject to the proper boundary conditions in space (and, for time-periodic solutions,

in time), (3.3) defines a boundary value problem for the perturbation [u1, p1]. Since the
linear operator N̂ has null eigenvalues associated with every continuous symmetry of the
Euler equation, where en = [∂u0/∂σn, ∂p0/∂σn] are the corresponding eigenfunctions,
the boundary value problem is ill-posed and only has solutions provided the solvability
condition

〈∂u0/∂σn,H〉 = 0 (3.5)
is satisfied for each of the group parameters σn, where

〈u, v〉 =
∫

Ω

(u · v) dΩ (3.6)

and the integral is taken over the entire domain in space (and, for time-periodic solutions,
time) on which the inviscid solution [u0, p0] is defined.
In particular, the scaling symmetry of the Euler equation implies that u0|σt = eσtu0|σt=0

and p0|σt = e2σt p0|σt=0 is a solution for any real σt. Hence, et = [u0, 2p0]σt=0, and the
corresponding solvability condition reduces to

〈u0, h〉 = −〈u0, ∇2u0〉. (3.7)

For Re � 1, we can replace the inviscid solution with the viscous one yielding, to leading
order in Re−1,

〈u, f 〉 = −Re−1〈u, ∇2u〉, (3.8)

so the energy injection by the forcing has to balance the energy dissipation by viscosity at
every instant for steady-state solutions and over one period for time-periodic solutions
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of the Navier–Stokes equation. While energy conservation clearly has to be satisfied
for steady and time-periodic viscous flows, our numerical simulations show that, in the
asymptotic regime, turbulent flow also satisfies this condition, with the energy becoming
essentially time-independent or slowly varying, as figure 1(c) illustrates. Moreover, for
smooth solutions of the Euler equation describing large-scale flows, 〈u0, ∇2u0〉 = O(1).
Hence, so long as the turbulent flow field is close to such an inviscid solution, we have
〈u, ∇2u〉 ≈ 〈u0, ∇2u0〉, hence u remains essentially orthogonal to the forcing field.
Continuous translational symmetry in the x-direction corresponds to the Goldstone

mode ex = [∂xu0, ∂xp0] and yields the solvability condition

〈∂xu0, h〉 = −〈u0, ∂xh〉 = −〈∂xu0, ∇2u0〉. (3.9)

For a corresponding viscous solution u, we find, to leading order in Re−1,

〈u, ∂xf 〉 = −Re−1〈∂xu, ∇2u〉. (3.10)

Again, since 〈∂xu, ∇2u〉 ≈ 〈∂xu0, ∇2u0〉 = O(1) for viscous flows that are close to smooth
solutions of the Euler equation, u should be (nearly) orthogonal to ∂x f . Coupled with the
condition (3.8), this implies local continuous translational symmetry of the viscous flow
field. Similar statements can be made regarding translational symmetry in the y-direction.
Therefore, although forcing generally breaks continuous translational symmetry at finite
Re, this symmetry should be effectively restored, at least for infinitesimal shifts, in the
limit Re → ∞ for the forcing profiles that do not significantly affect the structure of the
large-scale flow. The same conclusions should apply to a turbulent flow field at high Re,
so long as it stays in the neighbourhood of smooth inviscid solutions.
The implications of the solvability conditions for turbulent flow can be quantified by

computing the rate of energy injection

P = 1
4π2

∫ 2π

0

∫ 2π

0
u · f dx dy (3.11)

and the measure of local translational symmetry breaking

Q = 1
4π2N

∣∣∣∣∣
∫ 2π

0

∫ 2π

0

∑
i

ui · ∇fi dx dy

∣∣∣∣∣ . (3.12)

Figure 3 shows the results for a portion of turbulent trajectory, 300 < t < 400, for
which the large-scale flow is nearly time-periodic with the apparent period of T ≈ 10,
as indicated by the instantaneous value of P in figure 3(a). Assuming there is a nearby
smooth, time-periodic solution of the Euler equation, we should expect the average of
P computed over that period to be O(Re−1) for all times, and this is what we find.
The temporal average becomes almost constant, with the magnitude representing the
balance between the energy injection and viscous dissipation. Moreover, the temporal
averages of both P and Q shown in figures 3(b) and 3(c) are found to be O(Re−1) not
only for the turbulent flow u(x, t) but also for its shifted version u(x − a, t), where the
shift a is allowed to vary continuously over one period of the forcing in both directions,
i.e. −π/4 < ax, ay < π/4. This suggests that, in the limit Re → ∞, the large-scale flow
recovers continuous translational symmetry with respect to finite, not just infinitesimal,
shifts.
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Figure 3. The energy injection P as a function of time (a). The instantaneous value is shown in blue and the
running average computed over the apparent period of the large-scale flow is shown in orange. The temporal
average of P (b) and Q (c) computed over the entire time interval 300 < t < 400 as a function of the shift a.

4. Numerical results

Temporal evolution of the large-scale flow can be conveniently analysed by inspecting a
suitably defined recurrence function (Cvitanović & Gibson 2010; Lucas & Kerswell 2015):

R(t, τ ) = min
a

‖L̂16[u(x, t) − u(x + a, t − τ)]‖. (4.1)

To avoid explicit minimization over the shift a, effective continuous translational
symmetry of the large-scale flow was reduced using Fourier-mode slicing (Budanur et al.
2015). Specifically, we shifted u(x, t) in both spatial directions so that the phase φx (φy) of
the first Fourier mode k = (1, 0) (k = (0, 1)) becomes zero before the filtering is applied
and the norm is computed in (4.1). The components of the shift a were then reconstructed
from the original phases, e.g. ax = φx(t) − φx(t − τ). Deep (relative to the mean value)
minima of R(t, τ ) which correspond to |a| � 1 represent segments of turbulent flow
that come close to equilibria or time-periodic states, while deep minima with |a| = O(1)
correspond to relative equilibria (travelling waves) or relative periodic orbits.
A representative example of such recurrence function is shown in figure 4. Note

that qualitatively similar recurrence functions are produced by DNS on finer meshes
(e.g. 2048 × 2048). Deep minima of R(t, τ ) at integer multiples of τ ≈ 10 which, for this
time interval, correspond to a ≈ 0, suggest that the large-scale component of the turbulent
flow closely follows (or shadows, in the language of dynamical systems) a time-periodic
solution of the unforced Euler equation (3.1) with a period T ≈ 10. The corresponding
numerically exact solutions can be found using the tuples {u(x, t), τ, a} representing the
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Figure 4. Recurrence function R(t, τ ) for a Fourier-filtered turbulent flow. The minima at multiples of
τ ≈ 10 show that large-scale flow exhibits nearly periodic dynamics with a period T ≈ 10 over extremely
long intervals.

minima as initial conditions for a Newton-generalized minimal residual (Newton-GMRES)
solver accounting for translational symmetry of the Euler equation. A detailed description
of such a solver is provided, for instance, byMarcotte & Grigoriev (2015). In this study, our
focus is entirely on smooth solutions describing large-scale flows. Hence, initial conditions
should be prepared by smoothing the flow field u(x, t) to eliminate the fine structure,
as discussed in the Appendix. Smoothing also helps speed up convergence and improve
the success rate of the solver. For illustration, figures 2(b) and 2(d) show, respectively,
snapshots of the vorticity field representing an initial condition (here the large-scale flow
without additional smoothing) and the almost indistinguishable converged solution of the
Euler equation.
Another example of near-recurrences of turbulent flow is shown in figure 5, which

corresponds to the zoomed-in version of figure 4. In particular, a dark blue triangular
region at t ≈ 603 and τ � 2 represents a short interval when the large-scale flow is nearly
stationary. The minima of the recurrence function at 605 � t � 615 and τ ≈ 1 represent
a longer interval when the large-scale flow is nearly time-periodic. The corresponding
solutions of the Euler equation and their properties are discussed in detail in the subsequent
sections.

4.1. Equilibria
Equilibria are the simplest type of recurrent solutions. Perhaps the best-known example is
Taylor–Green vortex equilibria which, in two spatial dimensions, are described by

ψ = A cos(γ (x + ax)) cos(γ ( y + ay)),

ω = −Aγ 2 cos(γ (x + ax)) cos(γ ( y + ay)).

}
(4.2)
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Figure 5. A zoomed-in version of figure 4 showing a shorter interval of nearly time-periodic dynamics with a
period T ≈ 1.

Due to the translational symmetry of the Euler equation, the two constant phases ax
and ay are arbitrary. The constant amplitude A (the analogue of the energy E) as well
as wavenumber γ are also arbitrary due to the scaling symmetry of the Euler equation
which, on an unbounded domain, implies that if u(x, t) (and ω(x, t)) is a solution of the
Euler equation, then so is γ −1λu(γ x, λt) (and γ −1λ2ω(γ x, t)) for any λ and γ . Spatial
periodicity restricts γ to integer multiples of 1 or 1/

√
2, but λ can take a continuum of

values.
As discussed in § 3, each of the Taylor–Green vortices should belong to a family of

equilibria spanned by an infinite number of continuous parameters including ax, ay and λ.
Other continuous parameters describe the shape of the vortices. These shape parameters
correspond to Lie point symmetries of the Euler equation (Liu, Li & Zhao 2019). For
instance, on an unbounded domain, a single circular vortex

ω = F(r), r =
√
x2 + y2 (4.3)

is a solution to the steady-state version of the Euler equation

(u · ∇)ω = 0 (4.4)

for any choice of the shape function F(r). Indeed, we can expand F(r) in a basis of, say,
Bessel functions, with the infinite set of Fourier–Bessel coefficients playing the role of
continuous shape parameters.
For our purposes, it is convenient to classify different solution families using topology

of their streamlines following Moffatt (1987). For instance, the Taylor–Green vortex with

ω = cos x + cos y (4.5)

is obtained by setting γ = 1/
√
2 and a = 0 in (4.2) and rotating the coordinate system by

π/4. It belongs to a family of solutions featuring two counter-rotating vortices which also
includes an infinite number of other equilibria unrelated by either translational or scaling
symmetry.
These solutions can be found either by applying Newton-GMRES solver to flows

time-integrated over a short time interval or by solving (4.4) directly using GMRES
iterations for different initial conditions. For instance, using the state ω = (cos x +
cos y)4 sign(cos x + cos y) as a non-equilibrium initial condition, we found the equilibrium
shown in figure 6(a). We then used homotopy (see the Appendix) to construct a continuous
family of equilibria connecting that numerical solution with the analytical solution
(4.5). Note that homotopy uses known smooth solutions to generate new smooth initial
conditions, so no additional smoothing is needed prior to Newton-GMRES iterations.
Representative intermediate equilibria belonging to this family are shown in figure 6(b,c).
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(a) (b) (c)

Figure 6. A family of symmetric equilibria, computed via homotopy between the state shown in panel (a)
and a Taylor–Green vortex (4.5) (not shown). Intermediate states are shown in panels (b) and (c).

(a) (b) (c)

Figure 7. A family of asymmetric equilibria, computed via homotopy between the states shown in panels (a)
and (c). An intermediate state is shown in panel (b).

The members of this family feature two symmetric, counter-rotating vortices and differ
mainly in the width of the vortices.
A different continuous family of equilibria can be obtained by breaking the reflection

symmetry between the two vortices. For instance, adding a Gaussian patch of vorticity to
the reflection-symmetric equilibrium state shown in figure 7(a) and then subtracting the
mean amplifies one of the vortices and weakens and broadens the other. Reconverging the
resulting (non-equilibrium) state using Newton-GMRES solver, we found the asymmetric
equilibrium state shown in figure 7(c). We then used homotopy to construct another
continuous family of solutions, with a representative intermediate equilibrium belonging
to this family shown in figure 7(b).
Which members of such continuous families, if any, are dynamically relevant for

(e.g. are visited by) high-Re turbulent flow needs to be established, however. As discussed
previously, such dynamically relevant equilibria can be found using the Newton-GMRES
solver seeded with initial conditions identified through recurrence analysis. Good initial
conditions correspond to deep minima (compared with the mean value) of R(t, τ ) with a
fixed non-vanishing τ � 1. One example of such an equilibrium is shown in figure 8(a);
the corresponding initial condition was obtained by applying spectral and stream function
smoothing to the snapshot of turbulent flow at t ≈ 603 corresponding to figure 4. This
solution is qualitatively quite similar to the equilibria shown in figures 6 and 7 which also
speaks in favour of all these equilibria belonging to one family parameterized by multiple
continuous parameters.
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Figure 8. (a) A dynamically relevant equilibrium computed using a turbulent flow snapshot and (b) the
corresponding spectrum of stability eigenvalues λi computed on a 100 × 100 grid. The horizontal (vertical)
axis corresponds to the real (imaginary) part of λ. (c) The number M of marginal stability eigenvalues found
on an n × n grid.

The number of continuous parameters for any family will be reflected in the stability
spectrum of any member of the family. Since generators of the Lie group describing
different continuous parameters commute with the evolution operator, each continuous
parameter would correspond to a marginal eigenvalue associated with a corresponding
marginal mode. Consider, for instance, the dynamically relevant equilibrium shown
in figure 8(a). Its stability spectrum computed in Fourier space using the MATLAB
function eig() is shown in figure 8(b). Due to memory constraints, this computation has
been performed on grids up to 100 × 100. Since the total number and accuracy of the
eigenvalues depends on both the spatial resolution of the flow field and the accuracy
of eig(), it is difficult to estimate the number of continuous parameters precisely. Let
us define, rather arbitrarily, an eigenvalue λi to be marginal so long as |λi| < 10−5 �
maxi(Re(λi)) ≈ 0.06. The numberM of such marginal eigenvalues, computed on an n × n
grid, grows roughly linearly with n, as illustrated by figure 8(c), suggesting thatM → ∞ as
n → ∞. Note that the limited accuracy of eig() is also responsible for the deviations from
the expected inversion symmetry λ→ −λ in figure 8(b) which reflects the time-reversal
symmetry of the Euler equation.
The stability spectrum also shows that the equilibrium is only moderately unstable.

Unstable perturbations grow on a time scale of max(Re(λ))−1 ≈ 17 comparable to the
characteristic time scale Tc ≈ 10 associated with turbulent flow. At first sight, this result
appears very surprising. Indeed, this equilibrium describes inviscid flow and therefore
corresponds to the limit Re → ∞, where ECSs are expected to be very strongly unstable.
While that may indeed be the case for recurrent solutions describing small-scale flows
(i.e. coherent substructures), the presence of the inverse cascade in two spatial dimensions
implies that recurrent solutions describing large-scale flows (i.e. coherent structures)
can only be unstable with respect to perturbations with low spatial frequencies. These
low-frequency modes are largely aligned with the infinite-dimensional subspace spanned
by the marginal modes for any large-scale Euler equilibrium. This near-alignment is
responsible for the relatively small real parts of the eigenvalues associated with unstable
eigenmodes.
Overall, we find that although the large-scale turbulent flow does occasionally visit the

neighbourhoods of equilibrium solutions of Euler, recurrence analysis shows that these
instances are quite rare. In order to understand why that is the case, we computed the
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(a) (b)

Figure 9. The leading mode of instability for equilibria calculated using power iteration. (a) The leading
eigenfunction for the equilibrium shown in figure 7(a) represents an infinitesimal shift associated with
translation of the flow pattern in the direction shown by the arrow. (b) The leading Floquet mode for the
equilibrium shown in figure 7(b) represents an infinitesimal shift of the vortex cores associated with circular
motion of the flow pattern indicated by the arrows. The snapshot shown corresponds to a particular phase of
the oscillation.

leading eigenmodes associated with a pair of representative equilibrium states. The most
unstable eigenmode corresponding to the symmetric equilibrium from figure 7(a) is shown
in figure 9(a). It is almost indistinguishable from the marginal mode associated with spatial
translation in the direction indicated by the black arrow. Indeed, numerically evolving the
equilibrium, we find that it transitions to a travelling wave moving in the corresponding
direction. The similarity of the leading eigenmode to the translational marginal mode
implies that the relative position of the vortices for the travelling wave does not change
in time and hence neither does the flow generated by the vortex array in the comoving
reference frame. As a result, the direction in which the vortices travel never changes either.
For the asymmetric equilibrium from figure 7(b), the situation is quite different. The

leading eigenvalues in this case form a complex conjugate pair, so the corresponding
eigenmode is time-periodic; its snapshot is shown in figure 9(b). The spatial structure
of this mode is quite interesting and sheds some light on the dynamics of both large-
and small-scale flow structures in turbulence. In the regions associated with the vortex
cores, the eigenfunction is similar to the translational marginal mode, and represents a
shift of the vortices. As time progresses, the corresponding dipolar structures rotate in
the direction indicated by the arrows, which suggests that this equilibrium evolves into a
time-periodic flow, with the vortex centres executing a circular motion, as confirmed by
numerical simulation.
The structure of the eigenmode in the hyperbolic regions does not correspond to a

rigid spatial shift, as can be seen by comparison with figure 9(a), suggesting that the
flow pattern not only translates but also deforms. Instead, the eigenmode features thin
vorticity filaments aligned with the streamlines of the base flow. These vorticity filaments
are qualitatively similar to those found in turbulent flow (cf. figure 2c). This observation
suggests that it is the time-dependence of the large-scale flow that is responsible for
generation of small scales and the direct cascade overall.
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Since symmetric equilibria are rare compared with asymmetric ones (they represent
a set of measure zero in the corresponding continuous parameter space), we should
expect equilibria to transition predominantly to time-periodic flows. Indeed, the recurrence
function (cf. figure 4) illustrates that the large-scale flow is nearly time-periodic over a
significant fraction of the time, but only rarely resembles travelling waves. Both types of
solutions are discussed in more detail below.

4.2. Travelling waves
While travelling waves appear to represent time-periodic flows on a domain with periodic
boundary conditions, they become equilibria in a comoving reference frame, i.e. they
correspond to relative equilibria. Absolute equilibria discussed in the previous section
correspond to the special case of the comoving frame having a zero velocity. Since the
velocity of a generic comoving frame is quite unlikely to vanish, equilibria are expected
to be far less common than travelling waves, which explains why time-independent
large-scale flows are so rarely observed in the DNS of turbulence.
Travelling waves and equilibria of the Navier–Stokes equation are distinct and the

velocity of the comoving frame for travelling waves can only take discrete values
(Chandler & Kerswell 2013; Lucas & Kerswell 2014, 2015). In contrast, travelling waves
and equilibria of the Euler equation are connected, and the velocity of the comoving
frame can take a continuum of values. This is illustrated in figure 10, which describes
a continuous family of travelling wave solutions obtained with the help of homotopy
between an equilibrium shown in figure 10(a), which belongs to the family shown in
figure 6, and a travelling wave shown in figure 10(b). The initial condition for the travelling
wave was generated by shifting one of the vortices. Specifically, the vorticity field was
updated according to ω → ω + εn · ∇ω in the regions with ω > 0, where ε � 2π and
n = (1, −1), followed by spectral smoothing, and then integrating the flow in time until
visible transients disappeared. While the corresponding vorticity fields for these two
solutions appear extremely similar, they are slightly different. Their difference is described
by the marginal mode associated with this continuous family which is shown in figure 10(c)
and represents a relative displacement of the two vortices. Just like arrays of point vortices,
equilibrium arrangements of extended vortices require high symmetry balancing advection
flows generated by actual or virtual neighbours. When the symmetry of a vortex array is
broken, advection causes an overall drift in the pattern. As shown in figure 10(d), the drift
velocity v increases with the degree of asymmetry quantified by the normalized state space
distance

d(u) = ‖u − u0‖
‖‖u0 (4.6)

from the equilibrium u0.
In the example considered here, the two vortices have the same shape and strength and

drift with the same velocity, yielding a travelling wave. When the shapes and/or strengths
of the two vortices are different, their drift speeds will not be the same, yielding a gradual
change in the relative position of the vortices and therefore a change in the direction of the
drift. Hence, asymmetric vortices will generally have dynamics that are more complicated
than travelling waves; one example is time-periodic states discussed in the next section.
We can again invoke the argument that symmetric vortex arrangements are rare, so ECSs
in the form of travelling waves should also be relatively uncommon in turbulence. This
prediction is indeed born out by recurrence analysis.
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Figure 10. A continuous family of solutions connecting an equilibrium (a) and a travelling wave solution (b).
The marginal mode representing this solution family (c). The speed of the comoving frame as a function of the
state space distance to the equilibrium (d).

We will conclude our discussion of travelling waves by noting that they, just like absolute
equilibria, are expected to belong to families with an infinite number of continuous
parameters, some of which correspond to translational and scaling symmetry while the
rest describe the shape and relative position of the vortices. The non-trivial example shown
in figure 10 represents continuous variation in the relative position for vortices with a
particular shape. However, given the arbitrary choice of the vortex shape in this example,
vortices with any other shape can also be continued to corresponding travelling waves by
varying their relative position.

4.3. Periodic orbits
As illustrated by the recurrence function shown in figure 4, turbulent flow exhibits long
intervals during which large-scale flow is almost time-periodic in some reference frame.
The shift a during these intervals tends to be quite small, suggesting that the comoving
reference frame is stationary and, therefore, the large-scale flow is well-described by an
unstable periodic orbit solution (UPO) of Euler. The recurrence function shows that there
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(a) (b) (c)

Figure 11. Snapshot of turbulent flow ω (a), the corresponding large-scale flow L̂16ω (b) and the converged
UPO with the period T ≈ 1.05 (c). The arrow indicates the direction of rotation for the tripolar vortex.

are two distinct types of UPOs characterized by substantially different periods: T ≈ 10 or
T ≈ 1. A representative example of UPO with period 10.017 is shown in figure 2(d), and
a corresponding movie is provided as supplementary movies. This type of UPO features a
pair of axially symmetric vortices, just like the equilibria and travelling waves discussed
previously. The shapes of the vortices do not change noticeably over the period, while their
centres undergo a nearly circular motion.
A representative example of UPO with the shorter period is shown in figure 11(b);

a corresponding movie is provided as supplementary movies. The initial condition was
obtained by applying a combination of hyperviscous smoothing and spectral smoothing
to a snapshot of a turbulent flow. This type of UPO features a pair of vortices only
one of which is axially symmetric. The other vortex has a strongly asymmetric shape,
e.g. elliptical or, as in the present example, tripolar. We find that the centres of both
vortices are essentially stationary, so the time-dependence is associated entirely with the
rigid rotation of the asymmetric vortex. Coherent structures featuring tripolar vortices in
particular have been frequently observed in both numerical simulations of 2-D turbulence
(Legras, Santangelo & Benzi 1988) and experiments in rotating tanks (van Heijst,
Kloosterziel & Williams 1991). Our results show that such coherent structures correspond
to numerically exact solutions of the Euler equation.
This is illustrated by figure 11 which compares a snapshot of DNS of 2-D turbulence

featuring a tripolar vortex with the corresponding large-scale flow and numerically
converged UPO of Euler. It is important to note that smoothing affects the smaller-scale
structures of the flow, and Newton-GMRES solver is not guaranteed to converge to the
ECS that is the closest to the initial condition, so some difference in the vorticity fields
shown in figures 11(b) and 11(c) is expected. It is worth noting that solutions featuring a
single tripolar vortex on an unbounded spatial domain correspond to relative equilibria of
Euler, e.g. equilibria in a corotating reference frame. In the present case, time-periodicity
arises from breaking of the rotational symmetry of Euler by both the boundary conditions
and the presence of another (stationary and axially symmetric) vortex.
Just like equilibrium and travelling wave solutions of the Euler equation, UPOs are

found to come in families parameterized by numerous continuous parameters, some of
which correspond to translational and scaling symmetry of Euler while others describe
the shape and relative position of the vortices. Figure 12 shows one such family of UPOs;
a corresponding movie is provided as supplementary movies. A reference time-periodic
solution shown in figure 12(b) was obtained by further smoothing the flow shown in
figure 2(b). The solution family was constructed by converging initial conditions obtained
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Figure 12. A continuous family of UPOs which reflects variation in the shape of the vortices. Panels (a–c)
show snapshots of representative states from the same family. (d) Dependence of the amplitude and period of
UPOs on the normalized enstrophy for this solution family.

by modifying the vorticity field of the reference solution according to ω → |ω|κsign(ω)

over a continuous range of parameter κ . Solutions corresponding to κ = 0.5 and κ = 1.8
are shown in figure 12(a,c), respectively. This procedure is an alternative to the homotopy
that allows constructing a continuous family of solutions using one reference state rather
than two. The continuous nature of this solution family is seen in figure 12(d) which shows
the period T and the amplitude

A = 1
T

∫ T

0

√
(φx(t) − φx)2 + (φy(t) − φy)2 dt, (4.7)

of the UPO, which quantifies the degree of unsteadiness of the flow, as a function of the
enstrophy H = I2.
Just like travelling wave solutions, for the Euler equation, UPOs are not isolated from

the other types of solutions. Figure 13 illustrates this for a continuous family of solutions
connecting an equilibrium shown in figure 13(a) and a UPO shown in figure 13(b); a
corresponding movie is provided as supplementary movies. The equilibrium featuring two
asymmetric vortices was obtained through the same approach as that used to generate
the state shown in figure 7(c) and the UPO was obtained from the equilibrium through
the same procedure as that used to generate the state shown figure 10(c). The marginal
mode describing this family is shown in figure 13(c) and represents a relative shift of
the vortices. The equilibrium here, unlike that shown in figure 10, features vortices with
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Figure 13. A continuous family of UPOs connecting the equilibrium shown in panel (a) and a UPO shown in
panel (b). The arrow represents the direction in which the pattern moves. (c) The marginal mode associated
with this solution family. (d) The period and amplitude of UPOs as a function of the state space distance to the
equilibrium.

different shapes. As discussed previously, the shape asymmetry leads to the drift of the
vortices in a direction that changes with time. The vortex pattern moves in a circular path,
as indicated by an arrow in figure 13(b), repeating after period T .
All UPOs characterized by the overall drift of the pattern that we found are formally

preperiodic: the state at time t = T/4 is related to the state at time t = 0 by a π/2 rotation
about some point in the domain. As a result, the pattern moves in an almost circular
trajectory (an example is shown in figure 14 in red). The amplitude A effectively describes
the radius of the circle. For the family of UPOs shown in figure 13, the amplitude is
shown in figure 13(d) and is found to vanish at the corresponding equilibrium and grow
monotonically as the distance d from that equilibrium increases. As the supplementary
movies show, both vortices move along nearly circular trajectories with somewhat different
radii, but the vortex pattern remains qualitatively the same at all times.
To illustrate that families of UPOs characterized by such circular motion do indeed

describe the dynamics of turbulent flow, we have plotted the position of the vortex pattern
describing the large-scale flow, as characterized by the first-Fourier-mode phases φx and
φy, in figure 14. The trajectory of the turbulent flow in this low-dimensional projection
of the state space is nearly time-periodic over the time intervals 77 � t � 200 and 270 �
t � 400. These intervals are separated by an interval 200 � t � 270 during which the
dynamics are aperiodic. Indeed, during the time-periodic intervals, the pattern moves in
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Figure 14. The position of the vortex pattern describing turbulent large-scale flow (in black) corresponding
to figure 4 over the time interval 77 � t � 400. Subintervals of recurrent (non-recurrent) dynamics are shown
as solid (dashed) lines. The trajectory of a representative UPO, computed from an initial condition along the
recurrent portion of the flow, is shown in red.

a (nearly) circular trajectory (shown as a solid black line) which closely resembles the
trajectory of particular UPOs (shown as red circles). During the aperiodic interval, the
trajectory (shown as a dashed black line) becomes much more complicated and is not
described by any UPO. The observation that the phases φx and φy vary continuously in
time instead of taking discrete values is consistent with the analysis of § 3 which suggests
that, at high Re, turbulent flow recovers continuous translational symmetry.
As the recurrence function shown in figure 4 further illustrates, the temporal period

of the large-scale flow is not constant but varies slowly, and so does the amplitude A.
Therefore, turbulent flow follows different UPOs. This variation represents a slow drift
in the infinite-dimensional parameter space describing a family of the UPOs. Due to the
scaling invariance of the Euler equation, one of these continuous parameters is the energy
E; the energy of dynamically relevant UPOs of the Euler equation should be equal to the
energy of the large-scale turbulent flow. Recall that the Euler equation conserves energy,
so E is constant for any solution, including UPOs. Since the period of any UPO scales with
its energy, T ∝ E−1/2, a slow variation in E should cause a slow variation in the temporal
period. However, the energy is not the only parameter that varies and affects the period.
In particular, consider the variation in the enstrophy H of the turbulent flow shown

as a continuous blue line in figure 15, computed after the low-pass filter has been
applied, during the time interval where the dynamics are nearly time-periodic. We used
appropriately smoothed snapshots of the turbulent flow as initial conditions for the
Newton-GMRES solver to compute the corresponding UPOs. The enstrophy describing
these UPOs (shown as black circles) is found to track that of the turbulent flow, providing
further evidence that the evolution of large-scale flow at high but finite Re can be
well-described as a slow drift in the infinite-dimensional space of parameters describing
continuous families of unstable time-periodic solutions of Euler.
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Figure 15. The normalized enstrophy H of turbulent large-scale flow (in blue) corresponding to the interval
t ∈ [300, 400] in figure 4. The symbols correspond to UPOs converged from turbulent flow at the corresponding
points in time.

In conclusion of this section, let us address the issue of stability of dynamically relevant
UPOs which explains why large-scale flow can remain nearly time-periodic over time
intervals far exceeding the characteristic time scale Tc. Computing stability spectra of
UPOs of the Euler equation with meaningful precision is extremely challenging due to
the very large number of marginal (unit) Floquet multipliers associated with various
continuous parameters and the absence of a spectral gap with unstable multipliers. As
a result, standard approaches such as Arnoldi iterations become intractable. To assess the
stability of a representative UPO u(x, t) with period T = 12.23, (whose snapshot is shown
in figure 16a), we computed the evolution of a random perturbation by time-integrating the
Euler equation linearized about this UPO. The magnitude of an infinitesimal perturbation
δu at integral multiples of the period is shown in figure 16(b). The growth is found
to be algebraic rather than exponential over 30+ periods, with the growth rate steadily
decreasing over time. This suggests that the leading Floquet multiplier is extremely close
to unity and we simply observe transient growth associated with the non-normality of
the evolution operator. Additional validation of this conclusion is provided by the spatial
profile of the perturbation which, at long times, becomes virtually indistinguishable from
that of the marginal mode ∂tu associated with time translation (cf. figure 16c,d). The
corresponding perturbation essentially represents a slow drift in the period of the UPO.

5. Discussion

We found that sustained high-Re turbulence in a spatially periodic 2-D domain driven by
stationary forcing, for extended intervals of time, exhibits nearly time-periodic dynamics
on large scales. This observation has important implications for our understanding of the
direct cascade. During these intervals, the large-scale flow is well-described by particular
weakly unstable time-periodic solutions of the Euler equation. These UPOs all feature
a pair of counter-rotating vortices separated by hyperbolic regions of extensional flow
which contain most, if not all, of the small-scale structure. The stretching and folding
of thin vorticity filaments due to, respectively, the advection by the large-scale flow and
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Figure 16. Stability of a dynamically relevant periodic orbit shown in panel (a). Transient growth in the
amplitude of a random infinitesimal perturbation (b). The shape of the perturbation at long times (c) is nearly
identical to the marginal mode ∂tu (d).

its time-dependent nature are a familiar mechanism which generates small-scale structure
in chaotic advection of passive tracers by time-periodic flows (Cartwright, Feingold &
Piro 1996; Grigoriev 2005). Indeed, the analogy between small-scale vorticity and passive
tracers whose evolution is described by formally the same equation, has been noted
a long time ago by Kraichnan (1975). However, the realization that flow at a single
(e.g. large) scale could be solely responsible for generating a fractal structure characterized
by power-law scaling with a non-integral exponent is much more recent (Ott 1999).
The presence of large-scale coherent structures is well known (Clercx & Van Heijst

2009; Boffetta & Ecke 2012) to lead to substantial deviations from the predictions of
KLB theory which assumes implicitly or explicitly (Kraichnan 1975) that small scales
add up incoherently. Indeed the presence of large-scale structure implies strong coherence
at small scales as well. As our results illustrate, the relative position of the vortices and
hence the orientation of the extensional flow remains nearly constant, implying strong
correlations between the orientation of vorticity filaments at all scales. These strong
correlations explain why the observed power law exponent α deviates so strongly from
the KLB prediction for the turbulent flow considered here.
Rather counter-intuitively, while the properties of the large-scale flow, which control the

dynamics of small-scale vorticity and hence the direct cascade, tend to change slowly and
smoothly, the scaling exponent changes rather abruptly and unpredictably, as illustrated by
figure 1(b). This observation echoes a similar one made by Ottino (1989) who noticed that
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transport properties of time-periodic 2-D flows can change in a rather irregular fashion
when their parameters are varied smoothly. Transport and mixing of passive scalars is a
result of Lagrangian chaos, and chaotic sets are known to exhibit irregular dependencies
on parameters. Perhaps the best-known example of such irregular dependence is provided
by the windows of periodic dynamics of the logistic map (characterized by poor mixing)
interspersed within the chaotic parameter interval (characterized by good mixing).

6. Conclusions

The present study identified several classes of numerically exact unstable recurrent
solutions of the Euler equation on a 2-D square domain with periodic boundary conditions:
equilibria; travelling waves; and periodic orbits. All three types of solutions feature a pair
of extended counter-rotating vortices. These solutions are the infinite-Re analogues of the
so-called ‘unimodal’ stationary and time-periodic solutions of the Navier–Stokes equation
at high Re (Kim & Okamoto 2010; Gallet & Young 2013; Kim & Okamoto 2015; Kim
et al. 2017). Unlike the vast majority of exact solutions of 2-D Euler reported previously,
many of the solutions reported here are dynamically relevant: they provide a reasonably
accurate description of the spatial structure and dynamics of the large-scale component of
high-Reynolds number turbulent flow. Hence, they should be thought of as the proper exact
coherent structures in the limit of infinite Reynolds number. The time-periodic solutions
were found to be particularly important: large-scale turbulent flow was found to mirror this
type of recurrent solutions of the Euler equation surprisingly frequently.
Another important result of this study is that recurrent solutions of Euler belong to

families parameterized by an infinite number of continuous parameters. Some of these
parameters correspond to translational and scaling symmetries of Euler, while the rest can
be thought of as ‘shape’ parameters describing the spatial profile and relative position
of the vortices. Clearly, only a fraction of the members of those solution families are
dynamically relevant. What distinguishes the region of the huge parameter space that is
dynamically relevant from the rest is yet to be determined, although solvability conditions
can provide useful insight.
Rather unexpectedly, recurrent solutions of Euler featuring a pair of counter-rotating

vortices were found to be only weakly unstable. This is in contrast with the intuition
generated by previous numerical studies of weakly turbulent flows which suggests that
ECSs become progressively more unstable as the Reynolds number increases. The likely
reason this intuition breaks down is that the recurrent solutions of Euler investigated
here are analogues of classical coherent structures describing large-scale flows. On the
other hand, continuation of recurrent solutions describing weakly turbulent flows to higher
Reynolds numbers typically yields coherent substructures describing small-scale flows. It
is these substructures that become increasingly unstable.
Another interesting fundamental question that remains unresolved is the relation

between the spatial and temporal structure of the prevailing time-periodic ECSs and the
enstrophy flux towards small scales (direct cascade). The KLB theory completely fails to
describe the turbulent flow studied here, yet we still find a power-law scaling of the energy
spectrum, albeit with a non-integer exponent. Subsequent work should determine why a
power law emerges and what the exponent is.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.584.
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no. 2032657.
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Appendix A. Numerical methods

A.1. Solving the Euler and Navier–Stokes equations
Both the Euler equation and the Navier–Stokes equation can be written entirely in terms
of the stream function ψ = −∇−2ω,

∂tψ = g(ψ), (A1)

with an appropriately defined function g(ψ). In the case of the Navier–Stokes equation,

g(ψ) = ∇−2
(

∂ψ

∂x
∂

∂y
∇2ψ − ∂ψ

∂y
∂

∂x
∇2ψ − ϕ(x, y)

)
+ 1

Re
∇2ψ, (A2)

where ϕ is the forcing profile introduced in (2.2).
To handle a wide range of time scales present in turbulence, time stepping was

performed using variable time step Runge–Kutta–Fehlberg scheme

ψ(t + �t) = ψ(t) + �t
(

47
450

k1 + 12
25

k3 + 32
225

k4 + 1
30

k5 + 6
25

k6

)
, (A3)

where

k1 = g (ψ(t)) ,

k2 = g
(

ψ(t) + 2�t
9

k1

)
,

k3 = g
(

ψ(t) + 1�t
12

k1 + 1�t
4

k2

)
,

k4 = g
(

ψ(t) + 69�t
128

k1 − 243�t
128

k2 + 135�t
64

k3

)
,

k5 = g
(

ψ(t) − 17�t
12

k1 + 27�t
4

k2 − 27�t
5

k3 + 16�t
15

k4

)
,

k6 = g
(

ψ(t) + 65�t
432

k1 − 5�t
16

k2 + 13�t
16

k3 + 4�t
27

k4 + 5�t
144

k4

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

The step size �t was adjusted according to

�tnew = εE−1/5�told (A5)

with fixed tolerance ε (typically ε = 1.5) and

E = �t
∥∥∥∥ 1
360

k1 − 128
4275

k3 − 2197
75240

k4 + 1
50

k5 + 2
55

k6

∥∥∥∥ . (A6)

970 A18-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/cdggt/euler2D/tree/main
https://github.com/cdggt/euler2D/tree/main
https://orcid.org/0000-0002-9196-6147
https://orcid.org/0000-0002-9196-6147
https://orcid.org/0000-0001-6220-4701
https://orcid.org/0000-0001-6220-4701
https://doi.org/10.1017/jfm.2023.584


Exact coherent structures in two-dimensional turbulence

In the case of the Euler equation, where

g(ψ) = ∇−2
(

∂ψ

∂x
∂

∂y
∇2ψ − ∂ψ

∂y
∂

∂x
∇2ψ

)
, (A7)

time-dependent solutions were computed using a fixed-step-size fourth-order Runge–Kutta
method,

ψ(t + �t) = ψ(t) + �t
(
1
6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4

)
, (A8)

where
k1 = g(ψ(t)),

k2 = g
(

ψ(t) + �t
2
k1

)
,

k3 = g
(

ψ(t) + �t
2
k2

)
,

k4 = g(ψ(t) + �tk3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)

To prevent contamination of smooth solutions by high-frequency noise associated with
discretization and truncation errors, we added a term D̂ψ representing hyperviscosity to
g(ψ), where

D̂ eik · x =
⎧⎨
⎩α(kv − k) exp

(
β

kv − k

)
eik·x, if k > kv,

0, otherwise.
(A10)

We used the following choices of parameters: kv = 40; α = 0.5; and β = 1/13. We
also checked that converged solutions change negligibly if kv is increased to 64. The
choice of the functional form of the hyperviscous term is arbitrary, so long as it has no
effect on wavenumbers below the threshold kv , while the high wavenumbers are strongly
suppressed. For our choice of kv , hyperviscosity only affects the high frequencies that are
essentially absent in large-scale flows.
Spatial derivatives were all computed spectrally for both the Euler and Navier–Stokes

equation. Additionally, a 2/3 dealiasing scheme was implemented for numerical stability.
Typically, we computed solutions to the Navier–Stokes equation on a 512 × 512 grid,
although we also checked the key results for consistency using grids up 2048 × 2048. A
time-averaged energy spectrum shown in figure 17 indicates that, for a 2048 × 2048 grid,
the energy decreases by 10 orders of magnitude (corresponding to an O(10−5) relative
error for the velocity field) between modes with k = 1 and modes with k = 170 (indicated
by the dashed line in the figure), the latter corresponding to the dealiasing cutoff on a
512 × 512 grid. This is consistent with the result shown in figure 1(a) and suggests that
our simulations of turbulent flow are fairly well-resolved even on 512 × 512 grids.
Solutions of the Euler equation were computed on a 256 × 256 grid, which provides

sufficient resolution for the smooth solutions we are interested in. Indeed, as seen in
figure 17, for a family of time-periodic ECSs, we find the time-averaged energy to decrease
by 10 orders of magnitude between modes with k = 1 and modes with k = kv = 40
(indicated by the dashed line in the figure), suggesting that hyperviscosity has a negligible
effect on the solution. Note that dealiasing cutoff corresponds to a far higher frequency
k = 85 in this case.
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Figure 17. Time-averaged energy spectra of (a) the periodic orbits in the family presented in figure 12
computed on a 256 × 256 grid and (b) turbulent trajectory computed on a 2048 × 2048 grid. The dashed
vertical line in (a) represents the hyperviscosity threshold kv , and in (b) it represents the two-thirds dealiasing
cutoff corresponding to a 512 × 512 grid. The spectra at k = 1 have been normalized to unity in both cases.

A.2. Newton-GMRES solver
Exact coherent structures of all types were computed using a Krylov subspace Newton
method (see, e.g. Viswanath 2007), which uses GMRES to solve the equation

J(ωj)�ωj = F(ωj) (A11)

for the vorticity field, where F represents the relevant conditions for either equilibria or
periodic orbits (specified below), and J is the Jacobian of F. The initial condition ω0 is
either taken to be a properly smoothed snapshot of the turbulent flow field or constructed
using homotopy from previously converged solutions. Vorticity is then updated iteratively
as ωj+1 = ωj − �ωj until the relative error ζ = ‖F(ω)‖/‖ω‖ becomes less than
5 × 10−5. Note that, in terms of the velocity field, the accuracy of our converged solutions
corresponds to an O(10−5) relative residual, which is the same as the relative error of
our numerical simulations. Hence, converged solutions can be considered numerically
exact, with their accuracy limited mainly by the spatial and temporal resolution of the
simulations.
Since ECSs of the Euler equation have marginal directions, J becomes non-invertible

near a solution of F(ω) = 0. Although, due to the presence of marginal directions,
equation (A11) has infinitely many solutions in the full state space, its projection

P̂KJ(ωj)�ωj = P̂KF(ωj) (A12)

onto the Krylov subspace
K = span{Jx, J2x, J3x, . . .}, (A13)

constructed using Arnoldi iteration (where vector x does not lie in the kernel of J) has
a well-defined unique solution so long as dimK ≤ dim image(J). In practice, the latter
condition is always satisfied.

A.3. Equilibria
For equilibria, we used the function

F(ω, v) = ((u − v) · ∇ω, E − E0, φx, φy), (A14)
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where the additional constraints fix the energy E and the spatial position (φx, φy) of the
solution. The energy E0 was typically set equal to that of the initial condition ω0. The
velocity v of the reference frame was set to be zero for absolute equilibria and treated as
part of our solution space for relative equilibria.

A.4. Periodic orbits
For time-periodic solutions, we used the objective function

F(ω) = ω − L̂Φ̂Tω, (A15)

where Φ̂T denotes the time-T map, i.e. Φ̂ω(0) = ω(T), and L̂ is a linear operator
that includes translations (to allow relative solutions) and discrete rotations (to allow
preperiodic solutions such as those presented in figure 6). For time-periodic solutions,
we fixed the period T instead of the energy, since the former constraint was more
straightforward to implement numerically.
The introduction of the hyperviscous term (A10) was crucial for converging

time-periodic orbits, as it prevented Newton iterations from introducing high frequencies
into the solution. As the solution become better converged, the threshold frequency kv can
be increased to make sure the converged solution satisfies the Euler equation to a higher
accuracy.

A.5. Homotopy
Solution families reported here have been constructed using homotopy. In its standard
form, homotopy represents a linear interpolation

u(σ ) = σu(0) + (1 − σ)u(1) (A16)

between a pair of states u(0) and u(1) characterized by a continuous parameter σ ∈ [0, 1].
Note that the flow fields defined by (A16) generally do not satisfy the Euler equation even
when both u(0) and u(1) do. Hence, one could use these flow fields as initial conditions to
the Newton-GMRES solver. This naive approach works sufficiently well for solutions that
are close to each other.
For solutions that are not particularly close, simple interpolation generates initial

conditions that are not close to solutions either unless σ is close to 0 or 1. In such
cases, a sequential interpolation scheme can be used which employs a homotopy between
previously converged solutions. Namely, for some discrete set {σj} ∈ (0, 1) and previously
converged solutions u(σj−1) and u(1) we define the initial condition for u(σj−1) as

u∗(σj) = (1 − σj)u(σj−1) + (σj − σj−1)u(1)
1 − σj−1

. (A17)

This method yields better (smoother) approximations to continuous families connecting
distant states. Indeed, while the homotopy may yield a smooth family of initial conditions
u∗(σj), converged states u(σj) may not form a smooth family since the difference u∗(σj) −
u(σj) is not guaranteed to be small unless the initial condition is close to a solution. Most
of the families of solutions described in the paper were constructed via this method.

A.6. Smoothing of initial conditions
In order to speed up convergence of Newton-GMRES iterations and improve the success
rate of the solver, initial conditions found from recurrence analysis of turbulent flow should
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(b)(a)

(c) (d )

Figure 18. A snapshot of turbulent flow field (a) and initial conditions for the Newton-GMRES solver obtained
by applying spectral smoothing with ks = 7 (b), stream function smoothing with σ = 0.5 (c), and hyperviscous
smoothing with kv = 7, α = 1, and β = 1/13. The relative error ζ for the corresponding initial conditions is
0.226 in (a), 0.0932 in (b), 0.105 in (c) and 0.163 in (d).

be properly smoothed. The rate of success depends rather sensitively on the choice of
both the smoothing method and its various parameters. While quantifying the rate of
success and convergence speed as a function of all these choices is outside the scope
of our study, we note that sufficiently aggressive smoothing yields an effectively 100%
success rate, as is the case for the solutions shown in figure 15. Below we describe three
different smoothing methods that have been used to prepare initial conditions for the
Newton-GMRES solver, with the results compared in figure 18 for an initial condition
that corresponds to a nearly time-periodic large-scale flow.

(i) Spectral smoothing. The flow field can be smoothed by applying an axially
symmetric mask in Fourier space. The most common and effective choice was the
Gaussian blur which corresponds to the mask

M(k; ks) = exp
(

−k2

k2s

)
(A18)

with a characteristic wavenumber ks controlling the degree of smoothing. Another
mask that was occasionally used is

M(k; ks) = min
(
1,

ks
k

)
. (A19)
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In a few instances we also used the Fourier filtering operator L̂ks used to split the
flow into the large- and small-scale component, which corresponds to the mask

M(k; ks) = 1
2

[
1 − tanh

(
k − ks

�

)]
, (A20)

where we set � = 5.
Spectral smoothing is a very standard and simple approach which is effective at

removing small-scale structure while preserving some large-scale structure of the
flow. It can noticeably change the dynamics, however.

(ii) Hyperviscous smoothing. The fine structures in the flow field can also be effectively
eliminated via the action of hyperviscosity over a suitable long period of time. For
time-periodic states, we evolve the flow over one period using the time-integrator
for the Euler equation with kv set to a relatively low value (compared with that
used in the Newton-GMRES solver). This approach allows small-scale structure to
be removed without significantly affecting the spatial or temporal structure of the
large-scale flow.

(iii) Stream function smoothing. Solutions of the Euler equation can vary quickly
transverse to, but not along, the streamlines of the flow. Hence, it is helpful to average
the vorticity field ω along the instantaneous streamlines. The smoothed vorticity
field is then given by

ω̄(x, y) =
∫∫

exp
(
[ψ(x, y) − ψ(x′, y′)]2

2σ 2

)
ω(x′, y′) dx′ dy′. (A21)

Unlike the other two smoothing approaches, this method is better at preserving
the edges of the vortex cores where vorticity changes rapidly, while damping
out asymmetrical structures around the vortices. For instance, the flow shown in
figures 18(a), 18(b) and 18(d), features vortices with pronounced azimuthal structure;
this structure has been largely removed by the stream function smoothing as shown
in figure 18(c). Hence, this smoothing method is unsuitable for computing solutions
featuring structured vortices, such as the tripolar vortex seen in figure 11.

In particular, in computing the solutions reported in figure 15, we created initial
conditions by sequentially performing stream function smoothing followed by spectral
smoothing and, ultimately, hyperviscous smoothing, with the combination of three
methods reducing the relative error ζ from O(0.1) to O(10−3). A few tens of Newton
iterations were then sufficient to achieve convergence with ζ < 5 × 10−5 for all initial
conditions. This aggressive smoothing is the reason why some properties of converged
solutions differ substantially from those of the corresponding turbulent flow snapshots,
especially at later times.
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