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ABSTRACT
Machine learning for additive manufacturing (ML4AM) has emerged as a viable strategy in recent
years to enhance 3D printing performance. However, the amount of data required for model train-
ing and the lack of ability to infer AM process insights can be serious barriers for black-box learn-
ing methods. Due to the nature of low-volume fabrication of infinite product variety in AM,
ML4AM also faces “small data, big tasks” challenges to learn heterogeneous point cloud data and
control the quality of new designs. To address these challenges, this work establishes an impulse
response formulation of layer-wise AM processes to relate design inputs with the deformed final
products. To enable prescriptive learning from a small sample of printed parts with different 3D
shapes, we develop a fabrication-aware input–output representation, where each product is con-
structed by a large amount of basic shap primitives. The impulse response model depicts how the
2D shape primitives (circular sectors, line segments, and corner segments) in each layer are
stacked up to become final 3D shape primitives. A geometric quality of a new design can there-
fore be predicted through the construction of learned shape primitives. Essentially, the small-sam-
ple learning of printed products is transformed into a large-sample learning of printed shape
primitives under the impulse response formulation of AM. This fabrication-aware formulation
builds the foundation for applying well-established control theory to the intelligent quality control
in AM. It not only provides theoretical underpinning and justification of our previous work, but
also enable new opportunities in ML4AM. As an example, it leads to transfer function characteriza-
tion of AM processes to uncover process insights. It also provides block-diagram representation of
AM processes to design and optimize the control of AM quality.
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1. Introduction

Geometric and dimensional quality has long been essential
to ensure product functionality and correct mechanical
assemblies in complex engineering systems (Walker and
Srinivasan, 1994; Srinivasan, 1999). As 3D printing (aka
Additive Manufacturing: AM) technologies rapidly advance
with broader applications in aerospace, automotive, medical
industries, and beyond, intelligent Quality Control (QC) has
become increasingly critical for cost-effective precision
printing (Huang et al., 2015; Colosimo et al., 2018; Huang
et al., 2020).

However, AM poses unique challenges to QC (Colosimo
et al., 2018). Although it enables direct fabrication of products
with complex geometries in a single production phase without
tooling and fixturing, each phase actually consists of thousands
of correlated steps forming and accumulating materials layer
by layer. During printing, a multitude of factors such as mate-
rials, processing techniques, settings, and inter-layer interac-
tions may cause printing defects. Physical modeling and
simulation of complete layer-wise fabrication is still computa-
tionally prohibitive for timely prediction and QC operations

(Bourell et al., 2009; King et al., 2015). Multiple iterations or
trial builds drive up printing costs significantly.

Quality verification of AM-built products is also a highly
non-trivial procedure. Established primarily for multi-stage
subtractive manufacturing, standard quality verification meth-
ods often depend on features fabricated in the previous stages
as datum references to verify the quality of those made later
(e.g., distance or parallelism of plane feature relative to a
datum). Since AM builds complex geometries in a layer-wise
fashion, representation and verification of complex freeform
surfaces demand AM-specific specification standards and toler-
ancing methods. This has been widely recognized by various
international organizations and engineering communities as
one of the top priorities to reduce the risk and cost of adopt-
ing rapid-growing AM technologies (Ameta et al., 2015; Morse
et al., 2018; Leach et al., 2019).

Unlike scale-driven manufacturing, where operation
expertise can be built up around a limited number of prod-
uct families, AM aims at a versatile capability of making a
theoretically infinite variety of products. Learning from simi-
lar cases or past experience finds difficulty in defining
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similarity, particularly for low-volume AM with frequent
design changes and heterogeneous AM processes. Current
QC operations are heavily dependent on human expertise
and intervention.

Lately, Machine Learning for AM (ML4AM) has emerged
as a viable strategy to enhance 3D printing performance
(Huang et al., 2014; Huang et al., 2015; Luan and Huang,
2017; Samie Tootooni et al., 2017; Khanzadeh et al., 2018;
Sabbaghi and Huang, 2018; Sabbaghi et al., 2018; Tsung
et al., 2018; de Souza Borges Ferreira et al., 2020; Huang
et al., 2020; Wang et al., 2022). General-purpose machine
learning and analysis of 3D shapes have been extensively
studied in computer vision for shape analysis. It focuses on
shape classification, matching, deformation (e.g., facial
expression change), and correspondence (Montagnat et al.,
2001; Zhang and Lu, 2004; Van Kaick et al., 2011).
However, purely geometric analysis without consideration of
engineering mechanisms of shape generation limits the
scope of applying general-purpose Machine Learning (ML)
techniques to manufacturing. For example, deformation pat-
terns of 3D printed products not only vary with shape, but
also object size, due to thousands of correlated steps of layer
formation and accumulation (Huang et al., 2015; Jin et al.,
2016; Huang et al., 2020). Currently, establishing fabrica-
tion-aware representation and learning of manifold-valued
shape data are open issues (Bermano et al., 2017).
Progress in ML4AM has been made for specific tasks such
as empirical and statistical modeling of AM processes
(Zhou et al., 2000; Tong et al., 2003; Campanelli et al.,
2007; Tong et al., 2008), sensing and inspection (Tapia
and Elwany, 2014; Everton et al., 2016; Samie Tootooni
et al., 2017; Khanzadeh et al., 2018), statistical shape ana-
lysis (Colosimo et al., 2008; del Castillo and Colosimo,
2011; del Castillo et al., 2015), monitoring and detection
(Grasso et al., 2018).

Despite these advances in ML4AM, the large amount of
data required for model training and the lack of model
interpretability and scalability are serious barriers to the
application of black-box learning methods to manufacturing.
Product shape complexity, process complexity, and data het-
erogeneity in AM further complicate the QC efforts in AM.
Recent exciting interactions between model-driven control
theory and data-driven ML are motivated both by methodo-
logical development and practical applications such as self-
driving cars and advanced robotics (Pillonetto et al., 2014;
Bensoussan et al., 2020). Although this line of research pro-
vides a promising direction to achieve interpretability and
principled design of ML methods, there is a lack of engin-
eering-informed formulation of AM processes to enable
model-driven ML4AM.

The current article reports on work to fill this gap by
establishing an impulse response formulation of layer-wise
AM processes. To enable prescriptive learning from a small
sample of printed parts with different 3D shapes, we develop
a fabrication-aware input–output representation, where each
product is constructed by a large amount of basic shape
primitives. The impulse response model depicts how the 2D
shape primitives (circular sectors, line segments, and corner

segments) in each layer are stacked up to become the final
3D shape primitives. The geometric quality of a new design
can therefore be predicted through the construction of
learned shape primitives. Essentially, the small-sample learn-
ing of printed products is transformed into a large-sample
learning of printed shape primitives under the impulse
response formulation of AM.

This impulse response formulation of AM processes pro-
vides a control-theoretic justification of our convolution
modeling framework for AM (Huang et al., 2020), due to
the convolution form being the solution of the impulse
response system. By extending our prescriptive 2D freeform
shape modeling approaches (Huang et al., 2014; Huang
et al., 2015; Luan and Huang, 2017), this work provides, for
the first time, a methodological framework suitable for 3D
freeform shape quality prediction based on shape primitives
generated under the impulse response formulation.
Furthermore, this new control-theoretic formulation of AM
builds the foundation for applying control theory to the
intelligent QC. As an example, it leads to transfer function
characterization of AM processes to uncover process
insights. It also provides block-diagram representation of
AM processes to design and optimize the control of
AM quality.

Following the Introduction, Section 2 defines a set of
open ML4AM problems for intelligent QC in AM. Section 3
establishes an impulse response formulation of layer-wise
AM processes. Based on fabrication-aware representation of
process input and output, impulse response functions are
derived to characterize AM processes. Transfer functions
and block diagrams are readily obtained to describe, design,
and analyze AM process. Examples are presented to demon-
strate the developed theories. Summary and conclusions are
given in Section 4.

2. Problem definition for fabrication-aware ML and
control in AM

2.1. Problem definition

To achieve intelligent QC for precision 3D printing, we
define three key categories of open problems where control-
theoretic formulation and learning has the potential to sig-
nificantly advance both fundamental understanding and
computational AM research. Note that the problem defin-
ition below is far from being comprehensive. Other critical
categories of problems are discussed in the end.

Let input u to a 3D printing process be the designed
shape of a 3D object. The set of design shapes is denoted as
U. The output y represents the shape quality or the surface
deformation/deviation of the actual printed product from its
intended design u. The set of shape deviations of u 2 U is
denoted as YU:

� Learning Problem (LP): The learning objective is to
establish functional mapping f : U ! YU , that is, to gen-
erate a model f(u) to predict y by learning from a small
set of training data DS ¼ fðu, yuÞjðui, yuiÞ, i ¼ 1, 2, ::, ng:
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The function f is a curve for a 2D shape or a surface for
a 3D shape. A product u to be predicted belongs to
either source data DS or a validation set DV, i.e., u 2
DS [ DV and DS \ DV ¼ ;:

� Control Problem (CP): The control objective is to find
input adjustment du for design u 2 DS [ DV so that the
modified design input uþ dðuÞ is expected to minimize
the shape deformation yuþdðuÞ in reference to the
intended design u.

� Generalization Problem (GP): The generalization object-
ive is to discover the structures of f(u) and dðuÞ and
physical underpinnings so that the generation of f(u) and
dðuÞ, that is, solving LP and CP problems for new prod-
uct designs under new AM processes can be guided
by principles.

2.2. Sub-problem definition with AM-specific constraints

The descriptions for LP, CP, and GP problems are relatively
generic. As discussed in the Introduction, QC for AM faces
issues of shape complexity, process complexity, data hetero-
geneity, and small data. To tackle LP, CP, and GP problems,
we further define a set of sub-problems to accommodate
AM-specific constraints:

� Input and output representation (LP.1): A proper rep-
resentation of ðu, yuÞ should enable small-sample learn-
ing. Training data DS contains n products (e.g., n < 10)
in different shapes and sizes. In general, the 3D shape u
of AM built products has infinite variety and the shape
space is a manifold without natural linear structure. The
output yu is a deviation of a product shape, not the shape
itself. The pattern of yu depends both on u and specific
AM processes.

� Model f(u) generation and “1-to-1” learning (LP.2):
Model f(u) is expected to predict product quality of
infinite varieties by learning from small data DS. This “1-
to-1” learning problem prefers f(u) to be constructed
with a limited number of building blocks, primitives or
basis functions for robustness and flexibility. Model
interpretability is another key consideration to ensure
better understanding of physical systems.

� Optimal design compensation and optimality defin-
ition (CP.1): Optimal criteria for minimizing the shape
deformation have to be defined with consideration of tol-
erance design and verification in AM. Optimal design
compensation is to derive d�u such that yuþd�u is mini-
mized in reference to the nominal design u for a
given criterion.

� Transfer function and system dynamics identification
through learning (GP.1): Deriving the transfer function
from f(u) will provide a compact description of AM
processes and facilitate the understanding of physical
process insights. Note that obtaining transfer functions
independently for individual products will only result in
a projected view of transfer functions in subspaces.

In the next section, we present a theoretical framework
to address some critical issues related to these problems.

3. Impulse response formulation and learning for
geometric quality prediction and control in AM

To enable model-driven learning and control for AM, we
propose a control-theoretic framework which consists of: (i)
fabrication-aware input and output representation; (ii)
impulse response formulation and modeling of AM; (iii)
ML for impulse response estimation; (iv) transfer function
characterization of AM process dynamics; and (v) block

Figure 1. The control-theoretic foundation for computational AM.
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diagram algebra for principled design and analysis of AM.
The schematic diagram of this new control-theoretic founda-
tion is illustrated in Figure 1.

3.1. Input and output representation (LP.1)

3.1.1. Review of shape and shape quality representa-
tion methods

Representation of design input u involves mathematical
description of 3D shapes. Depending on applications, vari-
ous methods have been developed to describe 3D objects,
for example, parametric surfaces, solids, or constructive solid
geometry representations (Bloomenthal, 1988; Snyder, 1992;
Alliez et al., 2005; Bermano et al., 2017; Achlioptas et al.,
2018) finite element meshes (Ho-Le, 1988; Mori et al., 1996;
Pal et al., 2014; King et al., 2015) for multi-physics analysis,
slices in STL format and landmarks (del Castillo and
Colosimo, 2011; Alshraideh and Del Castillo, 2013; Dryden
and Mardia, 2016; Khanzadeh et al., 2018), point clouds
(Besl and McKay, 1992; Tam et al., 2013; Huang et al., 2015;
Yang et al., 2016; Samie Tootooni et al., 2017; Wang et al.,
2017; Xu et al., 2017; Huang et al., 2020; McConaha and
Anand, 2020), or meshes (Besl and McKay, 1992; Tam et al.,
2013; Decker et al., 2021) for shape registration, inspection,
and distortion control.

Representation of shape quality yu involves the descrip-
tion and measure of the deviations between a build product
and its nominal design. Generally there are two strategies to
represent output quality yu:

� Extracting characteristic features or descriptors from a
shape and measuring their deviations: The common fea-
tures or descriptors include geometric and dimensional
measures related to angular or distance metrics (e.g., par-
allelism, Euclidean, Hausdorff or geodesic distances)
(Ameta et al., 2015); differential measures such as curva-
tures and surface roughness (Savio et al., 2007); and inte-
gral descriptors such as areas and volumes (e.g., volume
shrinkage factor (Hilton and Jacobs, 2000).

� Describing full shape deviations/deformation for complex
freeform surfaces: A finite number of descriptors is
mathematically inadequate to represent complex shapes

obtained by topological optimization in AM. Complete
description of local surface deviations everywhere along
product boundaries not only provides a comprehensive
representation solution, but also enables full control
access to any region on a product surface (Huang et al.,
2015; Huang, 2016; Huang et al., 2020). Naturally this
study adopts this strategy to represent complete shape
deviations. Note that this strategy also facilitates compre-
hensive feature extraction and evaluation afterwards.

Though each representation method is powerful in its
own right, little work has concurrently considered the
proper representation of design input u and quality output
yu for the purpose of small-sample learning, prediction, and
control. Some limited attempts have been made towards this
direction (Huang et al., 2014; Huang et al., 2015; Jin et al.,
2016; Luan and Huang, 2017; Wang et al., 2017; Cheng
et al., 2018; Sabbaghi et al., 2018; Sabbaghi and Huang,
2018; Jin et al., 2019; de Souza Borges Ferreira et al., 2020;
Huang et al., 2020). Using input u, materials and process
information, finite element representation and modeling in
theory is able to predict quality yu with small sample data
for parameter tuning and model validation. However, it is
computationally costly (Bugeda Miguel Cervera and
Lombera, 1999; King et al., 2015) and it has been difficult to
generalize the knowledge to new part geometries without
extensive rounds of new simulations or new test builds.

To meet the goals defined in Section 2, we present input
and output representation methods in the following two
sub-sections.

3.1.2. Fabrication-aware input representation based on
constructive shape primitives

To enable engineering-informed small-sample learning, we
propose an input representation method based on the shape
primitive concept, and establish a fabrication-aware formula-
tion. Essentially, the small-sample learning of printed prod-
ucts is transformed into a large-sample learning of printed
shape primitives.

Geometric (shape) primitives have been developed in
computer graphics and CAD systems to construct
3D-shaped objects (Bermano et al., 2017). Geometric

Figure 2. Primitive inputs to fabrication: (a) discretized layers through slicing 3D shapes along the z-direction; and (b) piecewise linear approximation of layer boun-
daries in the x – y build plane.
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primitives are simple shaped such as sphere, cube, cylinder,
or surface patches. In 2D computer graphics, primitives
include segments of straight lines, circles and more compli-
cated curves. The true input u to the AM processes, how-
ever, is not the smooth shape defined analytically, for
example, a dome in dash line illustrated in Figure 2(a), but
rather discretized or sliced layers (Figure 2(a)) and piecewise
linear approximation of layer boundaries (Figure 2(b)).
Accuracy of the approximation is not only determined by
computational modeling, but also by materials and proc-
esses. For example, resolution along the build direction (z)
is determined by the layer thickness in Figure 2(a), whereas
the resolution in the build plane (x – y plane in Figure 2(b))
or the minimum feature size is limited by materials proper-
ties and technologies such as the laser spot size or the pixel
size of a digital light projector.

The input representation therefore entails the representa-
tion of individual layers and layer stackup. Borrowing geo-
metric primitive concepts from computer graphics, we
propose to use line segments, circular sectors, and corners
as primitive shapes to construct individual layer boundaries
or 2D shapes (Figure 3(a)). Notice that the three 2D shape
primitives have curvatures of zero, constant, and infinity,
respectively. Comparing to line segments on the grids in
Figure 2(b), the choice of primitives will reduce computa-
tional load of approximation and assist in the interpretation
of the deviation patterns. We therefore state the following
accepted truth as the basis for the subsequent derivation:

Definition 1 (Primitive manufacturing input). A 3D object
built in AM is based on primitive manufacturing inputs, that
is, sliced layers to be stacked up and individual layers with
boundaries composed by 2D shape primitives.

Essentially, the design input to AM machines is the sliced
and discretized model (e.g., in STL format defined by the
unit normal and vertices), as opposed to smooth CAD mod-
els. Also note that even though the sliced layers can be geo-
metrically stacked up in the design input, the final print
outcome is nonlinear, due to physical layer interactions and
accumulation. Considering layer stackup in input/output
representation is therefore critical to capture underlying
physical mechanisms.

To conveniently represent shape deformation (Huang
et al., 2015; Huang, 2016), we represent layers or 2D shapes
in the Polar Coordinate System (PCS) and 3D shapes in the
Spherical Coordinate System (SCS). The layer boundary is
represented as piecewise segments through a circular
approximation with selective cornering strategy developed in
Luan and Huang (2017):

uðhÞ ¼
XI

i¼0

1h2 hi , hiþ1Þ riðhÞ½ (1)

where in the interval ½hi, hiþ1Þ, riðhÞ is either a line segment,
circular sector, or a corner segment. Each segment consists
of a set of points describing the primitive.

Figure 3. Geometric shape primitives: (a) 2D shape primitives for layer boundary approximation; and (b) 3D shape primitives for surface approximation.
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When considering a layer indexed by j with height zj,
input u is represented as

uðh,/Þ ¼
XJ

j¼0

XI

i¼0

1h2½hi , hiþ1Þ1f/: rðh,/Þ cos/¼zjg riðh,/Þ sin/ (2)

Purely from the geometric point of view, it is more con-
venient to adopt plane surface patches, spherical patches,
and surface edges as 3D shape primitives to represent and
construct 3D shapes. However, it is still an open issue to
segment a 3D shape into 3D shape primitives for AM
(Wang et al., 2022). In particular, prediction of the shape
deformation in AM relies on a description of how products
are fabricated. Since 3D shape primitives are constituents of
a 3D shape, they are the results of primitive manufacturing
inputs. We hence define 3D shape primitives for AM with
the schematic plot shown in Figure 3(b).

Definition 2 (3D shape primitive). The 3D shape primitives,
that is, plane surface patches, spherical patches, and surface
edge, are the result of layer stackup with layer boundaries
composed by 2D shape primitives.

In essence the definitions of primitive manufacturing
input and 3D shape primitive intends to establish a fabrica-
tion-aware formulation that enables understanding of the
deformation of 3D shape primitives. As such, deformation
prediction of a freeform shape product can be achieved by
predicting the deformation of the shape constructed by 3D
shape primitives. A freeform 3D shape can be constructed
as:

uðh,/Þ ¼
XJ

j¼0

XI

i¼0

1fh2½hi , hiþ1Þ, /2½/j ,/jþ1Þg rijðh,/Þ (3)

where rijðh,/Þ is either a plane surface patch, spherical
patch, or a surface edges.

3.1.3. Output representation based on transformation of
point cloud data

By representing design shapes in the SCS (Huang et al.,
2015; Huang, 2016), the output yu is the difference between

the actual printed product rðh,/Þ and its intended design
r0ðh,/Þ :

yu ¼ Drðh,/Þ ¼ rðh,/Þ � r0ðh,/Þ (4)

And for individual layers or 2D shapes, yu is simply
DrðhÞ: Also note that quality yu is benchmarked by the
nominal design, not the input uðh,/Þ to the fabrication
process, though uðh,/Þ is a close approximation of
design r0ðh,/Þ:

Representation of yu in the SCS or the PCS intends to
decouple the shape complexity from deviation modeling and
to identify systematic shape deformation patterns. Figure 4
illustrate the deviation curves of four flat disks with different
sizes (left) (Huang et al., 2015) and a deviation surface of a
dome shape (right) (Huang et al., 2020). Figure 5 shows
deviation curves of three square plates, two pentagon plates
with different sizes (top panel) (Huang et al., 2014), and
four thin walls in half-disk shapes. All products were printed
in a stereolithography process (SLA) (similar patterns have
been observed in other AM processes (Wang et al., 2017;
Cheng et al., 2018; Luan et al., 2019)).

Remark. The proposed input–output representation
approaches reveal the following information:

� Comparing with the scanned data in point cloud format,
the output representation in the SCS and PCS uncovers
deformation patterns for both 2D and 3D shapes.

� Deformation patterns vary with shapes and sizes (pls
refer to additional example in (Jin et al., 2016, 2020)).
Learning deformation patterns based on shapes is not
suitable and efficient for small-sample learning.

� Being as constructive as shape primitives to shapes, the
deformation of the proposed three shape primitives are
distinctive, and can be utilized to learn and construct the
deformation patterns of many different shapes with small
training data.

� The deformation pattern of a 3D shape is not a simple
linear summation or extension of the deformation pat-
terns of its constructive layers. For example, the pattern
of the dome in Figure 4 is not composed by simply

Figure 4. Deviation profiles of disks (Huang et al., 2015) (left) and deviation surface of a dome (Huang et al., 2020) (right).
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stacking up the patterns of disks along the z-direction.
But the deviation profile of a 3D shape at a given height
/ (i.e., a horizontal section) partially resembles the one
of its 2D counterpart. It is particularly remarkable to see
in Figure 5 that the horizontal section of the thin walls
in half-disk shapes has a rectangular shape. At a given /
(Figure 5(c), right panel), the deformation pattern resem-
bles the ones for square plates to a large degree
(Figure 5(a)).

� The connection between 2D and 3D shape deformation pat-
terns implies that deformation models for 2D shapes should
be special cases of those for 3D shapes. The 2D deviation mod-
els can be viewed as a projection of its 3D counterpart onto a
subspace. The physical underpinning of projection relation is
the nonlinear stackup of 2D layers into 3D shapes.

For complicated geometries, shape segmentation may be
necessary to accurately represent shape deviations with devi-
ation primitives. Shape segmentation has long been applied
in 3D object recognition (Besl and Jain, 1985; Besl and Jain,
1988), reverse engineering (V�arady et al., 1997), and free-
form surface metrology (Savio et al., 2007). It involves the

process of dividing the original point set into subsets corre-
sponding to natural surfaces. Segmentation for the purpose
of deformation identification and modeling is worthy of fur-
ther investigation. Little research has been reported.

3.2. Model f(u) generation and “1-to-‘” learning (LP.2)
– an impulse response formulation and
modeling approach

The proposed input–output representation enables the mod-
eling of a model primitive, that is, to construct f(u) with a
small set of basis functions that characterize deformation
patterns of shape primitives. Small-sample “1-to-1” learning
therefore becomes feasible.

Definition 3 (2D model primitive). A 2D model primitive is
defined as a functional model that predicts the deviation of a
2D shape primitive, which is either a circular sector, a line
segment, or a corner.

Remark. Since a line segment can be viewed as a special
case of a corner with one edge being zero, we only need two

Figure 5. Deviation profiles of polygon plates (a)(b) (Huang et al., 2014) and (c) thin walls in half-disk shapes.
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types of 2D model primitives for circular sectors and cor-
ners, denoted as function g1ð�Þ and g2ð�Þ, respectively.

Definition 4 (3D model primitive). A 3D model primitive is
defined as a functional model that predicts the deviation of a
3D shape primitive, which is either spherical patch or a sur-
face edge with the plane surface patches being a special case
of the surface edge.

2D model primitives are connected with 3D model primi-
tives through the definition of 3D shape primitives. The
strategy to establish 3D model primitives is to model primi-
tive manufacturing inputs, that is, 2D shape primitives that
form the boundaries of layers and layer stackup. Therefore,
2D model primitives have to be established first.

3.2.1. Impulse response modeling for 2D model primitives
Our previous work (Huang et al., 2014; Luan and Huang,
2017) innovated the shape deviation primitive concept for
data-driven modeling of 2D shape deviation. The input rep-
resentation, particularly, primitive inputs to the fabrication
process shown in Figure 2 inspires the impulse response
modeling developed in this work.

Theorem 1 (Impulse response characterization of 2D model
primitives). The 2D model primitive gf1, 2gðhÞ for a 2D primi-
tive shape uðhÞ can be characterized by an impulse response
function hf1, 2gðhÞ through a convolution formulation:

gf1, 2gðhÞ ¼ ðhf1, 2g � uÞðhÞ ¼
ðh
0
hf1, 2gðh� sÞuðsÞds (5)

Proof. As shown in Figure 3(a), a 2D shape primitive is a
piecewise constant input, which can be represented as a sum
of 1D step signals represented in the PCS with h being equiva-
lent to the time variable t. Once this critical connection is
established, the proof follows an excellent control reference
along Figure 6 [in chapter 6 of Åstr€om and Murray (2021)].

Let the input u(t) in Figure 6 represent a primitive angu-
lar input with t ¼ h: The model primitive gf1, 2gðhÞ repre-
sents the output or the deviation of the primitive shape. Let
Hf1, 2gðhÞ be the response to a unit step applied at h¼ 0 and
assume Hf1, 2gð0Þ ¼ 0: The responses to a series of step
inputs are Hf1, 2gðh� h0Þuðh0Þ, Hf1, 2gðh� h1Þðuðh1Þ �
uðh0ÞÞ, and so on. The output gf1, 2gðhÞ is the sum of indi-
vidual responses (Åstr€om and Murray, 2021):

where hf1, 2gðhÞ ¼ dHf1, 2gðhÞ
dh , the derivative of the step

response, is commonly known as the Impulse Response
Function (IRF) in control theory. w

Based on the definition of 2D model primitives, we have
IRFs h1ðhÞ and h2ðhÞ corresponding to g1ðhÞ and g2ðhÞ for
circular sectors and corners, respectively.

3.2.2. Impulse response modeling for 3D model primitives
We first postulated a convolution formulation of 3D shape
generation in AM without proof (Huang et al., 2020). Based
on the definition of the 3D shape primitive and Theorem 1,
this work provides a theoretical justification of the shape devi-
ation generator model established in Huang et al., (2020).

Theorem 2 (Impulse response characterization of 3D model
primitives). The 3D model primitive for a 3D primitive shape
uðh,/Þ can be characterized by a 2D impulse response func-
tion gðh,/Þ through a 2D convolution formulation:

ðgf1, 2g � �gf1, 2gÞðh,/Þ ¼
ð/
0

ðh
0
gf1, 2gðh� s1,/

� s2Þgf1, 2gðs1, s2Þds1ds2 (6)

Proof. As shown in Figure 3(b) and Figure 2(a), a 3D shape
primitive can be viewed as an extension of a 1D piecewise
constant input to the 2D case. In addition to the time variable
s1 ¼ h in the x – y plan for 2D shape primitives, there is an
additional time variable z or equivalently s2 ¼ / along the
z-direction to stack up 2D shape primitives at time s2. Since a
3D shape primitive is the result or output of stacking up 2D
shape primitives, the true step input to a 3D primitive at time
s2 is therefore gf1, 2gðh, s2Þ, that is, the deviation of a 2D
shape primitive (here we remove the nominal input of 2D
shape primitives for simplification of notation).

Let Gf1, 2gðh, s2Þ be the response to the 2D unit step
applied at s2 ¼ 0 and further assume Gf1, 2gðh, 0Þ ¼ 0: The
responses to a series of 2D step inputs are Gf1, 2gðh� h0,/�
/0Þgf1, 2gðh0,/0Þ, Gf1, 2gðh� h1,/�/1Þðgf1, 2gðh1,/1Þ� gf1,2g
ðh0,/0ÞÞ, and so on. Following the same procedure, but
working in the 2D time space s1,s2, we will have the output
or the 3D model primitive asð/

0

ðh
0

@2Gf1,2g
@h,@/

ðh� s1,/� s2Þgf1, 2gðs1,s2Þds1ds2

gf1, 2gðhÞ ¼ Hf1, 2gðh� h0Þuðh0Þ þHf1, 2gðh� h1Þðuðh1Þ � uðh0ÞÞ þ � � �
¼ ðHf1, 2gðh� h0Þ �Hf1, 2gðh� h1ÞÞuðh0Þ þ ðHf1, 2gðh� h1Þ � Hf1, 2gðh� h2ÞÞuðh1Þ þ � � �
¼ limn!1

Xn
k¼1

ðHf1, 2gðh� hk�1Þ �Hf1, 2gðh� hkÞÞuðhk�1Þ þ Hf1, 2gðh� hnÞuðhnÞ

¼ limn!1
Xn
k¼1

Hf1, 2gðh� hk�1Þ �Hf1, 2gðh� hkÞ
hk � hk�1

uðhk�1Þ � ðhk � hk�1Þ þHf1, 2gðh� hnÞuðhnÞ

¼
ðh
0
Hf1, 2g0ðh� sÞuðsÞds ¼

ðh
0
hf1, 2gðh� sÞuðsÞds ¼ ðhf1, 2g � uÞðhÞ
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And let gf1, 2gðh,/Þ ¼ @2Gf1, 2g
@h, @/ , the partial derivative of the

2D step response, or the 2D IRF. Denoting this 2D convolu-
tion integral as ðgf1, 2g � gf1, 2gÞðh,/Þ, we have the proof for

Theorem 2. w

Remark. As we pointed out in Huang et al. (2020), if we only
print a single layer of the 3D primitive shape, the IRF gf1, 2gðh,/Þ
is degenerated to a Dirac’s delta function dðh, z � 0Þ: Then

ðgf1, 2g � �dÞðh, z � 0Þ ¼ gf1, 2gðh, z � 0Þ ¼ gf1, 2gðhÞ
which is the 2D model primitive in (5). Clearly, Theorem 2
is an extension of Theorem 1.

3.2.3. Model construction and “1-to-1” learning based on
model primitives

Theorems 1 and 2 establish a fabrication-aware, control-theor-
etic formulation of model building blocks that can be learned
from a small training sample DS. Furthermore, the two theo-
rems enable model construction to predict the quality of free-
form shapes in theory. In this work we use simple examples
to show the feasibility and potential of applying the two theo-
rems. Certainly, significant efforts are needed to achieve ultim-
ate “1-to-1” learning for complex 3D freeform shapes.

a. “1-to-1” learning to predict deformation of 2D free-
form shapes: We have achieved data-driven “1-to-1”

learning to predict deformation of 2D freeform shapes
(Huang et al., 2014; Huang et al., 2015; Luan and
Huang, 2017; Wang et al., 2017; de Souza Borges
Ferreira et al., 2020). By taking a fresh look under the
control-theoretic formulation, we intend to discover not
only the process dynamics, but also principles for
generalization.

Corollary 2.1 (Deformation model for 2D freeform shapes).
Based on Theorem 1, (5), and (1), the deformation of a free-
form 2D shape or layer can be derived as yðuðhÞÞ ¼
f ðuðhÞÞ þ � with f ðuðhÞÞ:

f ðuðhÞÞ ¼
XI

i¼0

1h2½hi , hiþ1Þ 1cðriðhÞÞðh1 � riÞðhÞ þ ð1� 1cðriðhÞÞÞðh2 � riÞðhÞ½ �

¼
XI

i¼0

1cðriðhÞÞg1ðh, riðhÞÞ þ ð1� 1cðriðhÞÞÞg2ðh, riðhÞÞ½ �

(7)

where 1cðriðhÞÞ ¼ 1 if riðhÞ is a circular sector and zero
otherwise. Notation gf1, 2gðh, riðhÞÞ specifies that the model
primitive gf1, 2gðhÞ has shape primitive riðhÞ as input. The
error term � can be noise or can impose a correlation struc-
ture to capture the interaction among neighboring shape
primitives, depending on AM processes.

However, modeling and computation can be complicated
and inefficient when the number of shape primitives I is
large. One improvement of model (7) is provided.

Figure 7. Simplification of deformation model (7) for 2D freeform shapes.

Figure 6. Response to piecewise constant input (a) piecewise constant input as a summation of step inputs and (b) output as the sum of individual output (Åstr€om
and Murray, 2021), [copyright] Princeton University Press.
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Corollary 2.2 (Cookie-cutter modeling for 2D freeform
shapes). The deformation model f ðuðhÞÞ for 2D freeform
shapes in (7) can be well approximated as

f ðuðhÞÞ ¼
XI

i¼0

g1ðh,~riðhÞÞ þ
XI

i¼0

g2ðh, riðhÞ � ~riðhÞÞ (8)

where ~riðhÞ is the smallest circular sector that covers a line
segment or a corner (Figure 7(a)).

Proof. We can find a smallest circular sector ~riðhÞ to
approximate each shape primitive riðhÞ: Apparently, riðhÞ �
~riðhÞ ¼ 0 if riðhÞÞ is a circular sector. Then (7) can be
rewritten as:

f ðuðhÞÞ ¼
XI

i¼0

g1ðh,~riðhÞÞ

þ ð1� 1cðriðhÞÞÞ
XI

i¼0

g2ðh, riðhÞÞ � g1ðh,~riðhÞÞ½ �

When riðhÞÞ � ~riðhÞ 6¼ 0, as shown in Figure 7(b), the
shape of riðhÞÞ � ~riðhÞ can still be approximated by a corner
or a line segment with a higher-order approximation error.
Therefore, g2ðh, riðhÞÞ � g1ðh,~riðhÞÞ � g2ðh, riðhÞ � ~riðhÞÞ:
When riðhÞ � ~riðhÞ ¼ 0, clearly g2ðh, riðhÞ � ~riðhÞÞ ¼ 0, so
we can drop the indicator ð1� 1cðriðhÞÞÞ and obtain (8). w

Remark. This revised model (8) essentially treats a 2D shape
as being carved out from a circular disk or segments of circu-
lar disks using cookie-cutters. In Huang et al. (2014) we
empirically established the so-called “cookie-cutter” modeling
framework. Corollary 2.2 provides a theoretical justification
and opportunity to further enhance the model identification.

Learning 2D model primitives can now be achieved by a
small training sample consisting of disks and polygon shapes
with different sizes. From our study of different AM processes
(Huang et al., 2014; Huang et al., 2015; Wang et al., 2017;
Cheng et al., 2018; Luan et al., 2019)), g1ðh,~riðhÞÞ for a circular
sector can be well approximated by low-order Fourier bases:

g1ðh,~riðhÞÞ ¼
XK
k¼0

akðg1ðh,~riðhÞÞÞ cos ðkhþ ukÞ (9)

For example, four disks (Figure 4, left panel) printed in a
SLA process can be well modeled by g1ðh, rÞ ¼
�0:0134ðr þ 0:0088Þ0:86 þ 0:0057ðr þ 0:0088Þ1:13 cos ð2hÞ
with r being the disk radius (Huang et al., 2015). This data-
driven model provides a complete description of circular
sectors at different location h.

Candidate choice of g2ðh, riðhÞ � ~riðhÞÞ is proposed in
Huang et al. (2014), for example, for three square plates
(Figure 5(a)), which can be a square wave function:

g2ðh,~rðhÞÞ ¼ bð~rðhÞÞ sign cos ðnðh� /0Þ=2Þ½ �
or a sawtooth wave function:

g2ðh,~rðhÞÞ ¼ bð~rðhÞÞ fsign sin ðnðh� /0Þ=2Þ½ � þ 1g
� ðh� /0Þ MOD ð2p=nÞ½ �

where n represents the number of polygon sides, the MOD
function obtains remainders, and /0 is the phase variable.

Apparently if a segment of a 2D shape boundary can be
approximated by a circular sector, or a corner of an n-sided
polygon (including a line segment), the corresponding
model primitive can be utilized for prediction. This devi-
ation primitive concept was first postulated in Luan and
Huang (2017) through a unified data-driven model to pre-
dict deformation of 2D freeform shapes. Now model (8)
essentially provides a theoretical justification and model-
driven formulation.

a. “1-to-1” learning to predict deformation of 3D
shapes: “1-to-1” learning for 3D freeform shapes
remains an open issue, due to the lack of fabrication-
aware modeling and learning theories (Huang et al.,
2020). Theorem 2 has shown that the deviation of a
spherical patch on a 3D shape can be modeled as ðg1 �
g1Þðh,/Þ and the deviation of a surface edge (including
the plane surface patch) can be modeled as ðg2 �
g2Þðh,/Þ: With a 3D shape defined in (3), the deform-
ation of a freeform 3D shape is provided by the follow-
ing corollary.

Corollary 2.3 (Cookie-cutter modeling for 3D freeform
shapes).

yðuðh,/ÞÞ ¼
XJ

j¼0

XI

i¼0

1fh2½hi , hiþ1Þ, /2½/j ,/jþ1Þg

½1sðrijðh,/ÞÞðg1 � �g1Þðh,/, rijðh,/ÞÞþ
ð1� 1sðrijðh,/ÞÞÞðg2 � �g2Þðh,/, rijðh,/ÞÞ�
þ wðh,/, rijðh,/ÞÞ þ �

(10)

where 1sðrijðh,/ÞÞ ¼ 1 if rijðh,/Þ is a spherical patch, and
zero otherwise. wðh,/, rijðh,/ÞÞ models the spatial correla-
tions among shape primitives, and � is the noise term.

If we denote yðuðh,/ÞÞ ¼ f ðuðh,/ÞÞ þ wðh,/, rijðh,
/ÞÞ þ �. Model f ðuðh,/ÞÞ in (10) can be further improved
through approximation as

f ðuðh,/ÞÞ ¼
XJ

j¼0

XI

i¼0

ðg1 � �g1Þðh,/,~rijðh,/ÞÞ

þ
XJ

j¼0

XI

i¼0

ðg2 � �g2Þðh,/, rijðh,/Þ � ~rijðh,/ÞÞ

(11)

where ~riðh,/Þ is the smallest spherical patch that covers a
plane surface patch or a surface edge.

The proof of this corollary is omitted because it is exten-
sion from the 2D case presented in Corollary 2.1 and 2.2.

In Huang et al. (2020) we studied the dome shapes
(Figure 4, right panel) and first proposed a convolution
formulation of AM processes. The model takes the form
of:
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yðh,/, rÞ ¼ aðrÞ
ðp=2
0

ð2p
0
g1ðh� s1,/� s2Þ � g1ðs1, s2Þds1ds2

þ bðrÞ þ wðh,/, rÞ þ �

(12)

where g1ðh,/Þ ¼ cos ð2hÞ sin ð/Þ and g1ðh,/Þ ¼
cos ðn1/Þ½1þ cos ðn2hþ /0Þ� are found suitable for the
studied SLA process (pls refer to Huang et al. (2020) for
detailed modeling and model estimation).

Apparently the model for dome shapes in (12) is a special
case of the model in (11). It provides meaningful understand-
ing of the deformation of spherical patches. Further modeling
and “1-to-1” learning based on the generalized model (11)
will make the quality prediction of 3D freeform shapes feasible
with small training data and cost-effective experimentation.

Remark. Our initial data-driven “1-to-1” modeling and
learning (Huang et al., 2014; Huang et al., 2015; Luan and
Huang, 2017; Wang et al., 2017; de Souza Borges Ferreira
et al., 2020; Huang et al., 2020) is consistent with the theor-
etic framework established in this study. The control-theor-
etic framework enables the exciting and more powerful
model-based ML for example, impulse response estimation
through kernel methods in system identification and
machine learning (Pillonetto et al., 2014).

3.3. AM process representation and dynamics analysis
using transfer functions and block diagrams (GP.1)

Transfer functions and block diagrams are powerful tools in
control theory to design, learn, identify, and analyze system
dynamics. Comparing with data-driven models (Huang et al.,
2014; Huang et al., 2015; Luan and Huang, 2017; Wang et al.,
2017; de Souza Borges Ferreira et al., 2020; Huang et al.,
2020), the control-theoretic framework established in the study
allows the utilization of transfer functions to find new inter-
pretation of AM processes.

3.3.1. Transfer function characterization of AM process
dynamics

A Laplace transform maps function f : Rþ ! R to function
F ¼ L1½f � : C ! C of a complex variable s. The double
Laplace transform of a 2D f is denoted as L2½f �: By the
property of the Laplace transform of a convolution, i.e.,
L½f � g� ¼ FðsÞGðsÞ, the prediction model in (8) for 2D
shapes and prediction model in (11) for 3D shapes can be
transformed as

FðsÞ ¼ H1ðsÞ~RðsÞ þH2ðsÞ UðsÞ � ~RðsÞ
� �

(13)

Fðs1, s2Þ ¼ H1ðs1, s2ÞG1ðs1, s2Þ~Rðs1, s2Þ
þH2ðs1, s2ÞG2ðs1, s2Þ Uðs1, s2Þ � ~Rðs1, s2Þ

� �
(14)

where Ŷ represents the prediction without considering the
error terms.

Remark. Clearly, the input/output dynamics of the AM
processes can be captured by transfer functions H1ðsÞ and
H2ðsÞ for printing 2D shapes (plates), and by transfer func-
tions H1ðs1, s2Þ, H2ðs1, s2Þ, G1ðs1, s2Þ, and G2ðs1, s2Þ for print-
ing 3D shapes. Identification of transfer functions for AM
processes and systems is therefore a critical area that can
enable principled design, control, and generalization of pro-
cess knowledge.

There are generally two strategies to identify transfer
functions. Data-driven system identification and model-
based machine learning (Pillonetto et al., 2014). There is no
reported research for AM quality control in this regard.

Here we present an example of a data-driven method to
identify transfer functions when printing 2D shapes. For the
SLA process that printed the four disks (Figure 4, left panel)

we obtained g1ðh, rÞ ¼ �0:0134ðr þ 0:0088Þ0:86 þ 0:0057ðrþ
0:0088Þ1:13 cos ð2hÞ (Huang et al., 2015). By the Laplace
transform of (5), we have L1½gf1, 2g� ¼ Hf1, 2gðsÞUðsÞ: As to

the true input uðhÞ to the SLA process of study, as we
pointed out in Huang et al. (2015), it is not the nominal

Figure 8. Block diagrams of AM processes (a) printing 2D shapes; (b) printing 3D shapes; (c) feedback control for printing 2D shapes; and (d) feedback control for
printing 3D shapes.
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design r, but rather uðhÞ ¼ ðr þ 0:0088Þ due to the effect of
over-exposure.

Since the input to printing disks is r, then H1ðsÞ can be
obtained as

H1ðsÞ ¼ L1 g1ðh, rÞ½ �
L1 r þ 0:0088½ � ¼ � 0:0134ðr þ 0:0088Þ0:86

r þ 0:0088

þ 0:0057ðr þ 0:0088Þ1:13
r þ 0:0088

s2

s2 þ 4

¼ �0:0134ðr þ 0:0088Þ�0:14 þ 0:0057ðr þ 0:0088Þ0:13 s2

s2 þ 4

Apparently, the radius/size of the disk has an impact on
the process dynamics that causes the deformation of the
disk. The transfer function also indicates that the SLA pro-
cess needs improvement in two aspects: tuning the process
to be independent of size (dimensionless), and to be close to
zero gain.

Following the same procedure, we can also obtain H2ðsÞ
by Laplace transform of the square wave function or saw-
tooth function. For example, by expressing the square wave
function in term of Heaviside’s function, the H2ðsÞ for the
SLA process of study is

H2ðsÞ ¼ bð~rÞ
s

tanh
p
n
s

and H2ðsÞ is

H2ðsÞ ¼ bð~rÞ n
2ps2

� 1

se
2p
n s � s

� �

for the sawtooth wave function.

3.3.2. Block diagram representation of AM processes
The transfer function expression of AM processes in (13)
and (14) can be conveniently represented in block diagrams.
Figure 8(a) and (b) shows the block diagrams for AM proc-
esses to print 2D and 3D shapes, respectively. With the
obtained transfer functions, the system dynamics can be
analyzed and simulated with, e.g., Matlab Simulink.

Another important application of the block diagram alge-
bra for AM is to represent, design, and analyze feedback
control systems (Figure 8(c) and (d)). Since most AM
machines adopt standard settings for different materials and
designs, a common feedback control strategy is to change
the design if errors occur in the manufacturing (Huang
et al., 2015; Huang, 2016), as opposed to changing process
settings. Following the block diagram algebra for feedback
control, we first define the equivalent transfer functions for
2D and 3D printing in Figure 8(a) and (b) as:

G2D ¼ H1 �H2Þ½ �
~R
U
þH2 (15)

G3D ¼ H1G1 �H2G2½ �
~R
U
þH2G2 (16)

Let dðsÞ represent the feedback adjustment. From the
block diagram algebra, we know dðsÞ ¼ �YðsÞBf1, 2gðsÞ: Our

previous work (Huang, 2016) has shown that

d�ðuÞ ¼ � f ðh,/, rðh,/Þ
1þ df ðh,/, rðh,/Þ

drðh,/Þ
¼ � f ðuÞ

1þ f 0ðuÞ

where f(u) is given in either (8) or (11). (Examples of d�ðuÞ
can be found in Huang (2016).

Through the Laplace transform, we have d�ðsÞ ¼
L½d�ðuÞ�: For system robustness, we replace Y(s) with F(s).
Then the transfer function for feedback adjustment is

Bf1, 2gðsÞ ¼ L f ðuÞ
1þ f 0ðuÞ

� ��
FðsÞ (17)

With this design, the transfer function of the feedback
control system is

Gfb ¼
Gf2D, 3Dg

1þ Gf2D, 3DgBf1, 2g
(18)

The predicted process response after feedback control is
L�1½Gfbu�: System robustness and stability can be analyzed
through powerful tools in control theory (e.g.,
Nyquist’s criterion).

4. Summary and conclusion

By establishing a fabrication-aware, impulse response formu-
lation and modeling framework, this work attempts to
bridge exciting research at the intersection of ML, control
theory, and 3D printing. Though data-driven ML models
have achieved notable progress in AM, this establish theoret-
ical foundation enables model-driven machine learning
which provides not only guided model formulation, but also
new perspectives and insights into process dynamics. The
well-established control theory can thus be readily applied
to AM and advance intelligent QC in AM.

This control-theoretic framework is built upon the primi-
tives AM inputs, that is, sliced layers to be stacked up and
individual layers with boundaries composed by 2D shape
primitives. Two theorems are developed to characterize AM
processes using impulse response functions. AM process
models in convolution formulation are then derived based
on the theorems. Transfer function theory and block dia-
gram algebra are then applied to AM process representation,
design, and analysis. Examples from SLA processes are given
to demonstrate the proposed control-theoretic framework,
including design and analysis of feedback control of
AM processes.

There are many other critical categories of ML4AM prob-
lems. These open problems include, but not limited to veri-
fication problem (VP) that aims to to define, measure,
characterize, evaluate, and verify the quality of 3D printed
products; detection and diagnosis problem (DDP) with goals
to detect process changes and identify root causes in AM;
model adaptation and transfer learning (DTL) problem that
aims to quickly generate new models for new AM processes
or process conditions; and optimal design for system identi-
fication (ODSI) that aims to design an optimal set of train-
ing data set that maximize the system identification, etc.
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Further research is imperative to advance the control-theor-
etic foundation and computational research for intelli-
gent AM.
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