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The design and control of manufacturing processes hinges on pred ict ive modeling of  its parametric effects. The  

deployability of  Machine Learning (ML) models has made them of  increasing interest  for this purpose. Recent  

work has add ressed  the experimental and computat ional costs of  creating the requisite t raining data. But these  

methods incur a physics development cost due to the need to intuit ively and iterat ively derive accurate physics - 

based process models for generat ing the training data. This issue is rarely add ressed in the literature. This paper  

describes a Science-informed mult if idelity-aided  reduced -cost Machine Learning (Smart -ML) approach to tackle 

this challenge. The novelty lies in relaxing the exist ing constraint  that the physics -based  source in mult i-f idelity 

learning must qualitat ively match the experimental ground truth while constraining the source to use conser- 

vat ion laws. An add it ive, a subtractive, and a hybrid add it ive-deformative process with d ifferent levels of  

physical understand ing are used  as testbeds to demonstrate that  Smart -ML can reduce the physics development  

cost by mult iple human-years, experimental cost  by as much as 60 %, and  computat ional cost by orders of  

magnitude. These results are d iscussed  in the context  of  how the proposed  approach can move ML beyond  the  

creat ion of copies of known physics-based models towards the accelerated and inexpensive derivat ion of func- 

tionally new ML-based  process models f rom part ially known physics and  small experimental datasets. 
 

 

 
 

1. Introduction 

 
Innovative manufacturing processes can have a disruptive socio - 

economic impact by going beyond existing limitations on cost, flexi- 

bility, throughput, sustainability, and product functionality. Past ex- 

amples include the reduction in automobile costs via stamping in the 

19th century (Hounshell, 1984), the achievement of complex geometries  

for hard-to-form sheet metal via sup erplastic forming in the 20th cen- 

tury (Barnes, 2007), and the disruption of batch size-cost tradeoffs by  

additive manufacturing in the 21st century (Huang et al., 2013). More 

recent examples include advances in scalable micro/nanoscale additive 

manufacturing of polymers based on massive multiplexing of light (Saha 

et al., 2019); metamorphic approaches to flexible manufacturing that 

obviate part-shap e-sp ecific tooling (Daehn and Taub, 2018); hybrid  

processes that combine additive manufacturing and sheet/bulk metal 

forming (Merklein et al., 2021); nanoscale deformation of 2D materials  

to control their electronic behavior (Yi et al., 2022); approaches that 

combine material deposition, forming and sintering to create 

surface-conformal electronics (Devaraj and Malhotra, 2019); and 

 
dynamic deposition for massively multiplexed additive manufacturing 

(Cleeman et al., 2022). 

Such innovations often utilize new physical phenomena to realize 

their technological advantage which, in turn, impose unique and com - 

plex parametric effects on the part ’s geometric and property attributes. 

Predictive modeling of such parametric effects is crucial for design and 

control of manufacturing processes and systems. Machine Learning (ML) 

models are of increasing interest for this purpose since they enable 

precise real-t ime predictions for complex multivariate parametric in - 

teractions and are easy to deploy industrially (Arinez et al., 2020). This 

is a significant advantage over spatiotemporally discretized 

physics-based computational process models which have limited 

real-time predictive capability. ML also has an edge over more compu- 

tationally efficient physics -based analytical models since such models 

are not always derivable. Even when they can be derived they are often 

only partially complete since they cannot accurately capture the entire 

spectrum of parametric effects in many cases. 

Using exp eriments to generate the data needed to train the ML 

models incurs a cost CEXP proportional to the time, material, and human 
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Fig. 1. Schematic of (a) Direct learning (b) Mult i-f idelity learning. 

 

resources needed for experimentation. The computational cost CCOMP, in 

CPU-hours, is the computational effort needed to perform physics-based 

process simulations for generating the training data. But  there is 

another, often-ignored, physics development cost CDEV which consists of 

the time and resources needed for iterative and intuitive human deri - 

vation of accurate physics-based process models from which data is 

extracted to train ML models. This time and resources are necessary 

because the fidelity of the training data dictates the ability of the trained 

ML model to reflect  reality. Thus, physics-based models that are used as 

the source of training data must have sufficient qualitative and quanti - 

tative agreement with the experimental ground truth. The quantitative 

calibration of physics model parameters has a small contribution to CDEV 

since multiple methods are available to perform this model calibration 

in an automated and rapid fashion. The primary component of CDEV is 

the time and human resources exp ended in the manual and iterative 

identification of the physical constituents, the functional form of the 

multiphysical and multiscale linkages, and the mathematical form of the 

constitutive laws that constitute physics-based process models with 

sufficient accuracy to supply training data for ML.  

Since the physics-based models needed to generate training data for 

ML models are often derived by humans in an iterative and intuitive 

fashion this paper uses human-years as a metric of CDEV. The CDEV is 

often on the order of many human-years of effort for new processes. 

Consider incremental sheet metal forming. This process saw renewed 

interest in academia in 2005 (Duflou et al., 2018) but it took till the 

mid-2010s to create accurate physics-based predictive models of 

in-process metal fracture and models of formed material properties like 

fatigue are still unavailable. Fused Filament Fabrication has seen wide 

usage since 2000 but models for predicting the printed road width have 

taken nearly two more decades, till 2019 for analytical models (Agassant 

et al., 2019) and till 2018 for computational fluid dynamics models 

(Serdeczny et al., 2018). Different metal additive manufacturing pro - 

cesses can yield different hardness and fatigue properties for the same 

material and the physics modeling of the underlying parametric effects 

is still an active area of research, even though these processes were first  

developed more than a decade ago (Mukherjee and DebRoy, 2019). The 

sintering of printed nanowires for highly conductive printed electronics 

was reported as early as 2009 (Fan et  al., 2009). But the develop ment of 

physics-based models that can predict the mesoscale electrical conduc- 

tivity in terms of the sintering parameters has taken till 2021 (Devaraj 

et al., 2021). 

The relative magnitude of CEXP, CCOMP, and CDEV depends on the 

approach used for training the ML model. The first training method, 

called direct learning here, performs training using a single dataset from 

a single fount of information (Fig. 1a). Direct learning can be performed 

on purely experimental data, numerous examples of which can be found 

in a recent review by (Arinez et al., 2020). This results in high CEXP 

despite the development of sparse sampling methods and niche cases of 

high-throughput experimental testing, e.g., for measuring parametric 

effects on the part’s microstructure in metal additive manufacturing 

(Pegues et al., 2021). 

This exp erimental approach is increasingly being replaced by direct 

learning on data generated from physics -based models, which reduces 

CEXP to the experimental effort needed for calibration and validation of 

the physics-based models (Zhu et al., 2021). trained Physics-informed 

Neural Networks (PINNs) on an exp erimentally calibrated high-fidelity 

finite element model to predict the temperature dynamics of the melt  

pool in metal additive manufacturing. The use of PINNs reduced CCOMP 

by decreasing the number of labeled model-generated samples needed 

for training and minimized CEXP since experiments were only needed for 

calibrating and validating the finite element model. While this model 

can be used to study the effects of the process parameters on the weld 

pool size, the availability of sufficient physics and accurate constitutive 

thermal laws for embedding in the PINNs was contingent on the 

exp enditure of sufficient CDEV for model develop ment in the author ’s 

previous work (Yan et al., 2018). Similarly, a Graph Neural Network 

approach for modeling the mesoscale temperature history during 

Directed-Energy-Deposition was trained on a finite element model by 

(Mozaffar et al., 2021). This incurred a CDEV related to the identification 

of the appropriate constitutive laws for the underlying heat and mass 

transfer equations in (Mozaffar et al., 2019). Microstructure evolution 

during metal additive manufacturing was modeled using a 

physics-embedded graph network by (Xue et al., 2022), building on the 

significant CDEV incurred over the years in both phase-field modeling 

and metal additive manufacturing. The employment of analytical 

models to generate the training data reduces the CCOMP relative to the 

use of computational models. For example, (Kapusuzoglu and Maha- 

devan, 2020) trained different  ML models on data from a new analytical 

model for accurately predicting the porosity and the bond strength in 

Fused Filament Fabrication. This analytical model was built on past 

efforts to incorporate actual filament geometry and the changes in it  

induced by printing. This incurred a CDEV in addition to that from past 

literature, which stretched back 23 years (Pokluda et al., 1997), in order 

to achieve the requisite accuracy on which the ML model could be 

trained. Further, the derivation of analytical models is not always 

possible for a given process or for a given geometric or property metric. 

Overall, direct learning on model-generated data incurs a high CDEV that 

can significantly overshadow the more commonly addressed CEXP and 

CCOMP. 
The second training approach is called multi-fidelity learning 

(Fig. 1b). It trains a ML model on a large, inexpensive, but inaccurate 

source dataset to satisfy the need for large amounts of data and then fine- 
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Fig. 2. Comparison between experimental target  and  sou rce process model for the effect  of d ifferent  process parameters on bu rr length in milling (Liu et  al., 2022). 

 

tunes it on a smaller, more expensive, and more accurate target dataset 

to capture the ground truth (Peherstorfer  et  al., 2018). Computational or 

analytical process models can be used as the target with process models  

of lower fidelity as the source. (Ramezankhani et al., 2021) generated  

the source and target data for a composites curing process using previ- 

ously developed Finite Element Models. (Menon et al., 2022) used a  

similar approach for modeling the melt pool size in laser -direct energy  

deposition using Gaussian Processes. An Eager -Tsai model, based on  

solution of the 3D temp erature distribution produced by a traveling 

distributed heat source moving on a semi-infinite plate, was used as the 

source. A non-linear decoupled 3D transient FEM solver with Marangoni 

convection, convection and radiation heat losses, and the 

temperature-dep endent thermophysical properties omitted by the 

Eagar-Tsai model, was used as the target. (Huang et al., 2021) used a 

similar approach for melt pool prediction in electron beam additive 

manufacturing of metals with Rosenthal’s model as the source and a  

Finite Element Model as the target, but with a point neural network as  

the ML model. A key observation is that these multi -fidelity learning 

approaches are predicated on high CDEV for a new process since they are 

contingent on the availability of a target process model of qualitative 

completeness and quantitative accuracy sufficient to represent the 

exp erimental ground truth.  

A physics-based process model and exp eriments can be used as 

source and target respectively. This ensures that the ground truth, i.e.,  

exp erimental observations, are always captured by the final ML model 

while reducing CEXP by decreasing the number of exp erimental samples  

needed. (Alam et al., 2020) performed optimization of Fused Filament 

Fabrication parameters for printing of log-pile metamaterials by using a  

Gaussian process as the ML model, a Finite Element Mechanics model as 

the source, and experimental measur ements of the printed part’s me- 

chanical response as the target. Multi-fidelity learning of a feedforward  

neural network was performed to reduce the experimental cost of 

creating models that predicted the part weight as a function of the in- 

jection molding parameters across different materials (Lockner et al.,  

2022) and different part sizes and machine types (Lockner and Hop- 

mann, 2021). The source was a computational fluid dynamics model 

with pre-identified constitutive laws and numerical techniques. (Liu  

et al., 2022) used Finite Element simulations of burr formation during 

milling as the source to create a 1D residual convolutional neural 

network and corrected this learnt ML model to match experimental data 

using transfer  learning. (Wang et al., 2021) used a finite element model 

as the source for predicting milling forces with a feedforward neural 

network. (Saunders et al., 2022; Saunders et  al. , 2023) used multiple 

sources, in the form of analytical and computational models of different 

fidelit ies, with a Gaussian Process ML model of the melt pool size  and  

microstructure in laser powder bed fusion of metals. Other approaches  

have used analytical models, when available, as the source, e.g., the 

prediction of surface roughness in CNC machining (Misaka et al., 2020). 

Despite its advantages, there is a fundamental issue that plagues this 

last multi-fidelity learning approach. It is the fact that the physics-based 

process models used as the source are develop ed to a point that ensures a 

qualitative match between the source and the dataset. Thus, transfer  

learning is only used to perform quantitative corrections such as scaling 

and translation in the output space. This requires human identification 

of the appropriate physical constituents of the process models, of 

adequate constitutive laws to link these constituents, and of appropriate 

numerical techniques for performing the simulations. Since the requisite 

physical knowledge is often lacking for new manufacturing processes 

this multi-fidelity learning approach is unable to reduce CDEV despite 

having the ability to decrease CEXP. Fig. 2 shows an example of this by- 

design similarity between the source model and the experimental target 

from past work on burr prediction in milling (Liu et al., 2022). The CDEV 

in this is case is incurred because the Finite Element Model of material 

removal that predicts the necessary training data for the ML model re - 

quires derivation of constitutive laws for strain hardening, stra in-rate 

sensitivity, and thermal softening, the form of the friction model, and 

the iterative identification of appropriate mesh refinement and element 

choices. 

Overall, the issue of high CDEV for new processes is not addressed by 

the state-of-the-art. The question is, is it possible to derive accurate ML- 

based process models of parametric relationships in manufacturing 

processes while simultaneously reducing the need for highly accurate 

and functionally complete process physics models to create the training 

data (thus reducing CDEV), reducing the amount of exp erimentally 

generated training data (thus reducing CEXP), and reducing the compu- 

tational effort needed to create the training data (thus reducing CCOMP). 

This paper addresses this question by modifying the second multi- 

fidelity learning method into an approach called Science-informed 

multifidelity-aided reduced-cost Machine Learning (Smart-ML). The 

novelty is to relax the constraint that a qualitative match between the 

source and target data is necessary and to correct the resulting 

discrepancy using transfer learning. The magnitudes of the different 

training costs and prediction accuracy for Smart-ML are compared to 

that for direct learning on only experimental data for three distinct  types 

of manufacturing processes whose working principles span material 

addition, removal, and deformation.  

Using these processes for demonstration purposes also tackles 

another issue. The larger vision for Smart-ML is that it will become the 

go-to approach for training ML models of parametric effects without 

prior calculation of the reduction in CDEV. This is because such a 

computation requires the creation of an accurate physics -based model 

and therefore the expenditure of the very CDEV that Smart-ML aims to 

save. In fact, the projected savings of CEXP and CCOMP in any form of 

multifidelity learning including Smart-ML are subject to a similar  
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Fig. 3. Proposed Smart-ML approach. 

 

critique since closed-form a-priori calculation of the cost savings in  

multifidelity learning is fundamentally impossible without sacrificing 

the savings themselves. Thus, the adoption of multifidelity learning in  

the literature is driven by empirical proof of cost savings across different 

use cases, e.g., in image and signal processing for manufacturing pro- 

cesses with Convolutional Neural Networks as the base machine 

learning model. This indicates that realizing our vision for Smart -ML 

requires empirical proof of the reduction in CDEV, CEXP and CCOMP via  

Smart-ML. This work performs this examination by quantifying these 

costs as described in Section 2.2 for each of the three process testbeds  

that span different physical principles and different levels of physical 

understanding. 

The following sections discuss the details of the Smart-ML approach, 

followed by a description of the source process models and the experi-  

mental methods, and ending with the results and a discussion of the 

larger impact of Smart-ML on manufacturing processes.  

 
2. Methods 

 
2.1. Machine learning techniques 

 
2.1.1. Overview of Smart-ML 

Fig. 3 illustrates the Smart-ML method. The physics-based process 

models that constitute the source are based on the following principles. 

First, the source process model should include one or more conservation 

2.1.2. Base machine learning model 

This paper uses epsilon-Support Vector Regression (ε-SVR) as the 

base ML model on which transfer learning is performed. Other regres - 

sion ML approaches can be used without loss in generality. The me- 

chanics of the ε-SVR is described briefly here and the reader is referred 

to past theoretical develop ments for further details (Drucker et al.,  

1996). An ε-SVR aims to find the function that maps the inputs to the 

outputs within an error band ε. If x and f(x) denote the inputs and 

outputs respectively and ω are the weights that p erform the mapping 

then the mapping function can be written as in Eq. (1). The constant b is 

solved using the Karush-Kuhn-Tucker conditions. The vector of weights 

ω, and the slack variables ξi and ξ∗ used to cope with the fact some 

deviations from the margin of error ε might have to be tolerat ed, are 

computed by minimizing the expression in Eq. (2). The value of C de- 

termines the p enalty applied to violation of the error band. The Gaussian 

Radial Basis Function (RBF) was used here for the kernel trick, thus 

allowing the linear ε-SVR model to capture nonlinear functional re- 

lationships (Jain et al., 2014). In this work the values of C and ε for the 

ε-SVR were based on brute force identification of parameter combina - 

tions that maximized the model performance for a given source dataset 

and were not changed during transfer learning.  

f (x) = 〈ω, x〉 + b (1) 

 
l + C (ξ + ξ∗) (2) 

equations to retain conformance to the basic principles of nature. This is 

the science-informed component of Smart-ML that regularizes  the ML 

|| | | 2 
i i 

i=1 

model within the constraints of existing knowledge of the process  

physics. Second, the source process model should use an initial guess for 

the physical phenomena to be included and for the constitutive laws to 

be used without any trial-and-error based qualitative or quantitative 

calibration against experiments. This is a key departure from the existing 

literature on multi-fidelity learning in manufacturing. It obviates the 

need for the source and the target to be qualitatively similar, thus  

eliminating the trial-and-error construction of the process model, with  

the goal of reducing CDEV for new processes for which the knowledge of 

the appropriate physics and constitutive laws is lacking. Finally, the 

degree of spatiotemporal discretization used in the source model should  

not be so high that it causes the CCOMP to exceed the user ’s budget. This  

budget is typically a finite non-zero value that is based on the resources  

and time available for computational generation of training data. If  

possible, purely analytical models without spatiotemporal discretization  

should be used as the source since such models  often need much lesser  

computational effort than discretization-based models like Finite 

Element Analysis. The ML model trained on the source is then updated  

on a much smaller experimental dataset (i.e., target) than that necessary  

for direct learning with only exp erimental data by using transfer  

learning. This reduces CEXP as compared to direct learning while 

ensuring that the final ML model ’s predictions accurately capture the 

exp erimental ground truth.  

2.1.3. Transfer Learning approach 

Transfer learning updates the ML model based on the difference 

between the source and the target. Consider a domain D = (X, PX) with 

features X and a marginal probability distribution PX, and a task T = (Y, f 

(⋅)) that consists of a label space Y (continuous values here) and a 

function f (⋅) which is trained to predict Y. For a source domain Ds and 

learning task Ts and a target domain Dt and learning task T t, where Ds ‡ 

Dt or Ts ‡ T t, transfer learning reduces the amount of data needed to learn 

ft (⋅) by using the a-priori trained fs (⋅). This can be p erformed by 

reweighting the training data (instance-based transfer learning),  

altering the ML model’s weights (parameter-based transfer learning), or 

leveraging common features between the source and target  (feature- 

based transfer learning). The reader is referred to the excellent review 

article by (Pan and Yang, 2010) for a deeper survey of the different  kinds 

of transfer learning. 

The instance-based transfer learning method used here is TrAda - 

Boost.R2 by (Pardoe and Stone, 2010) since it is suitable for regression 

tasks. This method derives from the AdaBoost family of techniques in 

which each target and source instance receives a weight used for 

training. The weight indicates the relative importance of each target or 

source instance. The instances are reweighted after each training itera - 

tion, with target instances that are incorrectly predicted by the ML 

model trained in the previous iteration receiving larger weights. Thus, 
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Fig. 4. Schematic of the process and associated ML model for the (a) FFF problem (b) M-LIPMM problem (c) In-situ rolling problem. (d ) Example of peak temperature 

d istribution for one la ser pulse pred icted  by the M -LIPP M source.  

 

learning iteratively focuses on those instances that are most difficult to 

predict correctly. The TrAdaBoost.R2 variant of AdaBoost takes the 

target and source datasets and combines them into a single training 

dataset. Further, in each boosting iteration TrAdaBoost increases the 

weights of target instances that are misclassified while reducing the 

weights of the corresponding source instances.  

The basic mechanics of this method is described here and the reader 

is referred to (Pardoe and Stone, 2010) for greater depth. Each boosting 

iteration consists of the following steps and the iterations are repeated 

till a user-sp ecified number of iterations N is reached. The weights of the 

source and target instances wS and wT are normalized and the normal- 

ized error vectors for the source and the target εS and εT are computed. 

The total weighted error for the target dataset ET is computed as in Eq. 

(3), where nT is the number of target instances. The source weights are 

reduced and the target weights increased based on the error, calculated 

as in Eqs. 4 and 5, where nS is the number of source instances. Here, the 

number of boosting iterations N was fixed at thirty.  

methods may be used to decide the nd. One approach is to fix an arbi- 

trary error limit and incrementally increase the number of experimental 

training points generated till the testing error reduces below this limit. 

This approach is fraught with an arbitrary subjectivity of how much 

error is acceptable. The second approach is to a -priori designate the 

maximum number of experimental points that can be generated and take 

the corresponding testing error at this maximum limit as the lowest 

possible error. This method is subject to unnecessarily increasing the 

amount of experimental data needed, e.g., the error may not reduce 

significantly with the addition of experimental data beyond a certain 

threshold. The third approach involves setting an experimental budget 

NB and incrementally increasing the number of exp erimental training 

points till the p ercentage difference in testing error across consecutive 

increments goes below a user-defined threshold ξ, or there is overfitting, 

or the number of training points exceeds NB, whichever occurs first. The 

idea is that if the error difference from one increment to the next goes 

below ξ then there is no point in adding further experimental points 

1 T 

since it will not realize a significant enough error reduction. This 

ET = 
nT 

wT εT (3) 

ws = wsβεS andwT = wT βT -εT (4) 

βS = andβT = ET 

/

(1 - ET ) (5)
(1 

+ 
√̅̅  
2
 
l
 
n
   
(
  
n
      
     
 

2.1.4. Training and testing 

The following approach was used for training and testing and  to 

examine the advantages of Smart-ML relative to direct learning. First, 

direct learning of the ε-SVR was performed on only the experimental 

target data in an incremental fashion. In each iteration a progressively  

greater number of training samples were used for training till the Root 

Mean Square Error (RMSE) on the testing data, i.e., withheld portion of 

the exp erimental dataset, did not decrease further. This was done 1000  

times using random sampling for obtaining training and testing datasets 

in a 90:10 ratio, thus yielding the mean and standard deviation of the 

smallest error δd and the corresponding number of samples nd for direct 

learning. 

The significant literature on direct learning indicates that various 

approach enables a more objective balance between the amount of 

exp erimental data needed and the error while preventing overfitt ing. In 

this work the third approach was used and the ξ was fixed as 2 %. The 

process-sp ecific NB was based on the exp erimental capabilit ies in the 

author’s laboratory, as would be the case in industrial practice, and is 

mentioned with the description of the experimental methods.  

For Smart-ML, a separate ε-SVR was trained on the data from the 

source process model. An incrementally  increasing amount of target 

data was used to iteratively identify the smallest amount of exp erimental 

data needed for transfer learning (nt) while satisfying the constraint that 

the error  of the final ε-SVR δt on a withheld experimental dataset should 

be lesser than or equal to the above computed δd. This constraint ensured 

that the drive towards reducing CDEV did not compromise the prediction 

accuracy. Note that this paper does not focus on the method for sampling 

the experiments since its emphasis is on showing the feasibility of Smart- 

ML and the corresponding cost savings that are possible. The test dataset 

was of the same size as that corresponding to nd to prevent a heavily 

lopsided train:test ratio and thus fa irly compare direct learning and 

Smart-ML. It was obtained randomly from the withheld target dataset. 

The aforementioned testing for the final ML model was performed thirty 

times over the entire dataset to obtain the mean and standard deviation 
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Fig. 5. Comparison of  source and target (a) 3D plot (b) 2D plot at a constant stage speed  of 350 mm/min. All shown for a nozzle-to-stage d istance of 0.7 mm. 

 
 

 

Fig. 6. Change in error on test ing dataset  with (a) number of  total t raining points in d irect  learning (b ) combinations of  number of  stage  speeds and  feed rates in 

S mart -ML.  

 
 

 

Fig. 7. Comparison of  f ina l ML model after S mart -ML to experimental target  (a) 3D p lot . The red  surface show s the f inal ML model. The blue squares represent  the 

target data (b) 2D plot  at  stage speed  of  350 mm/min. A ll show n for a nozz le -to-stage d istance of  0.7 mm.  

 

of δ t. Note that overfitting was not observed in this work for either direct 

learning or Smart-ML since the testing error did not exceed the training 

error. 

2.2. Source modeling and experimental methods 

 
The capabilities of Smart-ML were explored for three manufacturing 

problems. This section describes these processes and the source models 
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Fig. 8. Comparison of  d irect  learning and  S mart -ML in terms of  (a) error on test ing dataset  (b) number of experimental samples needed  for t raining. 

 
 

 

Fig. 9. Comparison of  source and  target  for pred ict ion of  microchannel (a) width (b) depth. Representat ive 2D plots of  (c) Microchannel width at laser speed  of 

650 µm/s (d ) Microchannel width at laser speed  of 350 µm/s. All shown for a laser pulse f requency of 5 Hz. 

 

used. 

 
2.2.1. Fused Filament Fabrication (FFF) 

The first problem, for an additive process, involves prediction of the 

road width printed in Fused Filament  Fabrication (FFF) as a function of 

the stage speed and the filament feed rate (Fig. 4a). This problem has  

been tackled over the last two decades with incrementally increasing 

accuracy, including most recently by using computational fluid dy- 

namics models (Serdeczny et al., 2018). These efforts have revealed that 

the underlying physics involves non-Newtonian flow, compressibility, 

nozzle-extrudate interaction, wetting and non-isothermal cooling. 

The source process model used here is W = FA/Sh where W is the 

road width, F is the filament feed rate, S is the stage sp eed, A is the 

filament’s cross-sectional area, and h is the nozzle-to-stage distance. This 

source assumes that the above physics and the corresponding constitu - 

tive laws are unknown, makes the incorrect but simplifying assumption 

that the nozzle-to-stage distance equals the height of the road, and in - 

cludes the mass conservation law. 

The exp erimental target data was generated by printing roads with a 

1 mm diameter nozzle, nozzle temp erature of 230 ℃, and bed 
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Fig. 10. (a) Direct  learn ing test ing error w ith number of total t raining points. S mart -ML test ing erro r with d ifferent  combinations of number of experimental laser 

speeds and  energ ies for (b) Channe l wid th and  (c) Channel depth. All for 5  Hz laser f requency. 
 

temperature of 60 ℃. A PLA filament of 0.75 mm diameter (from 

3DExTech) without any particulate additives was used. For each value of 

h explored here the exp erimental data was generated across 256 distinct 

combinations of S and F. Specifically, sixteen equidistant S (between 350 

and 725 mm/min) and F (between 153 and 729 mm/min) were used. 

Three different h values of 0.7, 0.85, and 1.2 mm were explored. The W 

was measured using vernier calip ers and unstable printing regimes were 

excluded from the dataset. The experimental budget NB for each h was 

fixed at a maximum of 150 training points. 

Since this problem has an established and accurate physics-based 

model that is applicable across the wide parameter range used in our 

exp eriments, this process testbed allows decisive quantification of the 

reduction in CDEV achieved by Smart -ML. The CDEV is computed as the 

time in human-years between the first  public report of the source model 

used for Smart-ML and the accurate physics-based model. The savings in 

CEXP are calculated as the percentage change between nd and nt, as in the 

multifidelity learning literature. The savings in CCOMP are based on the 

difference between the total computational effort (in CPU-hours) for the 

accurate physics-based model, as reported in the literature, and the total 

CPU-hours for the source model used for Smart-ML. Since these savings 

only make sense if enough predictive accuracy is achieved using Smart- 

ML they are reported in detail along with the testing error in the results 

section. 

2.2.2. Magnetically-Assisted Laser Induced Plasma Micromachining (M- 

LIPMM) 

The second problem, for a subtractive process, was to predict the 

microchannel width and depth as a function of the laser speed and en - 

ergy in the newer Magnetically Assisted Laser Induced Plasma Micro- 

machining (M-LIPMM) process. LIPMM, illustrated in Fig. 4b, creates a 

plasma in a dielectric liquid and then uses it for machining (Pallav et  al., 

2015). M-LIPMM builds on the low thermal damage and 

optically-agnostic material capabilities  of LIPMM by adding a magnetic 

field that manipulates the plasma and the machined feature ’s di- 

mensions beyond the optical and thermal limitations of LIPMM (Mal- 

hotra et al., 2013). Several physical phenomena have been hypothesized 

as being relevant to material removal in M-LIPMM. These include 

dielectric breakdown, magnetohydrodynamics of evolution in plasma 

size, pressure, and temperature, plasma-workpiece interactions via 

thermal ablation and athermal material removal, heat transfer to the 

fluid and bubble formation, and pressure-induced expulsion of the ab- 

lated material between consecutive laser pulses. (Zhang et al., 2021) 

discussed the competing effects of magnetic fields and 

confinement-induced absorption on the plasma size, temp erature, and 

pressure. But the lack of plasma-workpiece interactions, the simplified 

laser-plasma interaction, and the qualitative form of the model, meant 

that the feature size could not be predicted. (Saxena et al., 2014) and 

(Xie et al., 2020) modeled plasma generation due to dielectric break - 

down but without a magnetic field or plasma-workpiece interactions. 



J. Cleeman et al. Journal of Materials Processing Tech. 320 (2023) 118125 

9 

 

 

 

 
 

Fig. 11. Comparison of f inal Smart -ML model to experimental target  (a-b) 3D plots for channel width and depth. The red  surface shows the f inal ML model. Blue  

squares represent  target data. Correspond ing 2D plots for microchannel (c) width at laser speed  of 650 µm/s (d ) width at  laser speed of  350 µm/s. All shown for a 

5 Hz pulse f requency. 

 

(Wang et al., 2018) modeled plasma evolution in the absence of mag- 

netic effects or plasma-workpiece interactions resulting in high predic- 

tion errors of up to 50 %. Thus, purely physics -based modeling efforts 

over the last  decade cannot quantitatively model the machined feature 

size in M-LIPMM. Thus, this problem is a true test  of the capabilit ies of 

Smart-ML since significant components of the process physics are 

currently unknown and cannot be explicitly modeled.  

The source process model in this paper ignores significant compo - 

nents of the above hypothesized and modeled physics. It models mate- 

rial removal based on a 2D Finite Element Analysis (FEA) of thermal 

conduction in the workpiece within the COMSOL platform (Fig. 4d).  

This accounts for the conservation of energy, mass and momentum but 

with the following simplifications that omit the derivation of multiple 

multiphysical couplings and constitutive models of material properties.  

The heat source that represented the plasma heat flux into the workpiece 

had a uniform spatial distribution over the region corresponding to the 

diameter of the laser ’s focal spot (see Fig. 4d) and was non-zero only  

during the pulse duration of the laser (6 ns here). Complete absorption  

of the laser pulse energy by the workpiece was assumed, thus elimi- 

nating any thermal effects of the liquid and the optical-thermal- 

hydrodynamic coupling inherent to the plasma formation and its 

interaction with the workpiece. The laser was assumed to be stationary  

to increase the computational speed of the FEA. Thus, thermal con- 

duction into the workpiece during only one laser pulse was modeled.  

The channel depth and width created in this one laser pulse was 

manually extracted based on the spatial location of the elemental inte- 

gration points at which the workpiece ’s melting point was exceeded. 

The laser’s residence t ime at a spot was calculated analytically based on 

its speed and optics-based spot size. The corresponding number of pulses 

at a given point was thus obtained based on the pulse frequency, as is 

common in direct laser micromachining with low pulse frequencies 

(Ling, 2011). The machined channel’s depth and width was predicted as 

the product of the dimensions created by one pulse with the above 

calculated number of pulses at a given material point. The underlying 

assumption behind this method of calculating channel depth and width 

is that material removal is purely additive over multiple pulses. Constant 

thermal properties of the aluminum workpiece were assumed. The 

density was fixed at 2.7 g/cm3, the thermal conductivity at 237 W/m-K, 

the specific heat capacity at 903 J/kg-K, and the melting point at 934 K. 

This state-independent assumption is esp ecially incorrect at the elevated 

workpiece temp eratures expected in M-LIPMM. Further, these proper- 

ties were not measured but were based on commonly reported values in 

the literature. The boundary conditions consisted of insulation at all 

boundaries except where the laser flux was applied (Fig. 4d). The initial 

condition was room temp erature for the workpiece. The workpiece 

width and depth were 200 µm each, i.e., larger than the laser spot of 

80 µm used in experiments. Square mesh elements were used with a 

uniform side length of 5 µm. No tests for mesh convergence or element 

type were performed. Explicit time-marching simulations were per - 

formed with the time steps decided automatically by the COMSOL 
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Fig. 12. Comparison of  d irect  learning and  S mart -ML in terms of  error on test ing dataset  for pred ict ion of  (a) channe l wid th (b) channe l depth; and  number of 

experimental samp les needed  for t raining for (c) channel w idth (d ) channel depth.  

 

software without user manipulation. Fig. 4d shows a representative 

example of the temperature evolution predicted by this FEA.  

Since this problem does not have an established and accurate 

physics-based model, but the above simple source model has always  

been available, the savings in CDEV is a lower bound estimate based on  

the t ime elapsed since the M-LIPMM process was first publicly reported  

in 2013. The savings in CEXP are calculated as in the FFF problem. The 

savings in CCOMP cannot be directly computed since the accurate 

physics-based model is not available. Instead, we compare the CPU- 

hours needed to generate the source data in Smart -ML to that needed  

for computation of whatever sub-components of the process physics can  

be accurately modeled today, namely the spatiotemporal evolution of 

the size of the plasma under a magnetic field without modeling plasma- 

material interactions (Kuzenov and Ryzhkov, 2018). These savings are 

quantified in detail in the results section in light of the achieved pre- 

diction accuracy. 

The M-LIPMM exp eriments were performed on a Quantum Light 

Instruments pulsed laser (3 ns pulse duration, 50 mJ pulse energy,  

526 nm wavelength). The 4 mm diameter laser beam was optically  

reduced to a non-diffraction-limited 80 µm diameter at the focal point 

where the plasma was produced. The workpiece material was 6061  

Aluminum from McMaster Carr. The dielectric liquid was deionized  

water. The workpiece was kept in a glass beaker with a 2 mm thick layer 

of water above it. The glass beaker was, in turn, kept on a motorized XYZ 

stage that had a resolution of 50 nm. The microchannels were machined  

by moving the laser at a specified speed along the desired direction in a  

single pass, i.e., without translating the laser spot in the vertical 

direction. The dimensions of the machined channels were measured 

using a Keyence optical profilometer. This experimental data was 

generated for combinations of thirteen equidistant  laser speeds 

(5 ×10-5 to 6.5 ×10-4 m/s) and 10 equidistant laser energies (from 20 

to 50 mJ), over each of the three laser pulse frequencies (5, 10 and 

20 Hz). Thus, the total number of experimental training points for each 

pulse frequency was 130. The experimental budget NB for each pulse 

frequency was fixed at 100 so that enough withheld testing points were 

also available. 

 
2.2.3. In-situ rolling in fused filament fabrication 

The third problem, for a hybrid additive-deformation process, was 

in-situ rolling in FFF. In this heated and weighted rollers attached to the 

FFF extruder heat and compress the printed road to eliminate voids 

between roads (Fig. 4c). This kind of hybrid additive-deformative pro- 

cess for polymer extrusion additive manufacturing was first proposed by 

(Duty et al., 2017). It markedly increases the strength and isotropy of 

FFF parts. The modeling problem is to predict the part height induced by 

in-situ rolling as a function of the weight on the roller and the 

nozzle-to-stage distance. The only physics -based solution t ill date for 

this problem is an analytical model of the contact width between two 

cylinders (representing the roads) that are subjected to an applied load 

(Qasaimeh et al., 2022). This is contingent on the assumption that the 

as-deposited road has a circular cross -section with a diameter equal to 

the nozzle diameter, thus ignoring the nozzle-extrudate interactions that 

cause as-printed roads to have non-circular cross sections and greater 

width than the nozzle diameter (Serdeczny et al., 2018). This model is 
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Fig. 13. Comparison  of  sou rce  and  target  (a ) 3D p lot  (b) 2D  plot  at  a constant  nozz le -to-stage d istance  of  0.75 mm. Comparison of  final  S mart -ML model to  

experimental target (c) 3D plots. The red  surface shows the f inal ML model. The blue squares represent  the target  data. (d ) 2D plot  at  a con stant nozzle -to-stage  

d istance of  0.75 mm.  

 
 

 

Fig. 14. Change in test ing error with (a) number of  t raining points used in d irect learning (b) combinations of  number of masses and nozzle-to-stage d istances used in 

S mart -ML.  

 

consequently unable to consider the convolution between the effect of 

layer height and roller mass. This problem constitutes a case where two  

different physical effects in a hybrid process are known, i.e., compres - 

sion by the rollers and nozzle-extrudate interaction, but a model that 

couples these phenomenon is as yet unavailable. This paper uses the 

above analytical model from (Qasaimeh et al., 2022) as the source 

process model. Since this problem also does not have an established and 

accurate physics-based model the savings in CDEV, CEXP and CCOMP are 

computed as in the case of the M-LIPMM problem and are quantified in 

detail in the results section.  

Experiments were performed on a commercial FFF printer after the 

approach described by (Qasaimeh et al., 2022). PLA polymer was used 
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with a nozzle temperature of 230 ℃, bed temp erature of 60 ℃, roller  

temperature of 110 ℃, roller diameter of 6.35 mm, and nozzle diameter 

of 1.8 mm. The change in part height over four consecutive layers was 

measured using vernier calip ers. The experiments were p erformed for 

combinations of ten equidistant roller weights (0–500 g) and ten equi- 

distant nozzle-to-stage distances (0.70–1.5 mm). Thus, the total number  

of experimental points generated was 100. The experimental budget NB  

was fixed at  a maximum of 80 training points so that sufficient  withheld  

testing points were also available.  

 
3. Results 

 
3.1. The FFF problem 

 
Fig. 5a shows a representative comparison between the exp erimen - 

tally measured (target) road width and the predictions of the source 

process model for the FFF problem. The source can only make good  

predictions at lower feed rates and stage speeds. The extent of the 

qualitative difference is seen in the representative 2D plot in Fig. 5b. A  

quantitative recalibration of the source model or scaling of the source 

data cannot capture this experimentally observed parametric effect, and  

a functional correction is needed.  

Fig. 6a shows an example of the change in δd with the number of 

training samples used for direct learning, yielding a nd of 150. The 

corresponding evolution of the transfer learning error δ t for distinct 

combinations of the number of stage sp eeds and filament feed rates used  

from the target dataset is reported in Fig. 6b. The minimum number of 

exp erimental training points (nt) for which δt ≤ δd is 42, nearly 72 % 

lesser than nd. The corresponding reduction in the testing error with  

Smart-ML relative to direct learning was 22 %. The ability of transfer  

learning to capture the experimental observations both qualitatively and  

quantitatively is illustrated via the examples in Fig. 7. Fig. 8 shows the 

extent of these advantages for the other h values used here. 

A reduction in CEXP and error is also seen in the literature on multi- 

fidelity learning in manufacturing, but not for the kind of functional 

differences between the source and the target  used here. This shows that 

the current advantages of multi-fidelity learning can be retained if the 

source uses the conservation equations, even with functionally incom- 

plete or quantitatively inaccurate constitutive laws, to capture at least  

some of the exp erimental trends albeit in a qualitatively incorrect 

manner. For example, the source captures the fact that the road width  

reduces with increasing stage sp eed but in a functionally incorrect way.  

This allowance for a qualitative discrepancy between the source and  

target is crit ical for achieving low CDEV for new processes. Existing 

functionally accurate and physically complete process models can be 

used as the source for multi-fidelity learning. But it has taken significant 

incremental human effort over long periods of time for these models to 

be develop ed to this level of functional accuracy. The source model used  

here was first proposed in the year 2000 at the dawn of research into  

road formation in FFF (Bellini et al., 2004). Analytical physics-based  

models have taken till 2019 to predict the experimentally observed  

nonlinearity over an appreciably wide range of filament and stage 

speeds, sp ecifically the model by (Agassant et al., 2019) based on a 3D 

approximation of 2D Stokes flow with simple shear and isothermal 

wetting. Computational fluid dynamics simulations, which started in  

2002 with the dissertation of (Bellini, 2002), have taken till the 2018  

work of (Comminal et al., 2018) to predict road width across a sub- 

stantial range of filament and stage speeds. Thus, using Smart -ML in  

2000, which is when the employed source model was available, could  

have saved at least 18 years of CDEV. 

Finally, the authors note that using computational fluid dynamics 

models to generate just one training sample for FFF needs orders of 

magnitude more CPU-hours than the 3 × 10-6 CPU-hours needed here 

to generate the entire source dataset for Smart -ML. This is because a  

simplified analytical process model with no spatiotemporal discretiza- 

tion is used as the source. While the widespread advent of significant 

 
computational capacity might make this advantage moot, it is worth  

noting its existence. 

 
3.2. The M-LIPMM problem 

 
The exp erimentally measured channel width and depth in Fig. 9a-b 

exhibit an inflection point at high laser energy and low laser sp eed that is 

not seen in the source. This inflection is even clearer when plotting the 

channel width and depth as a function of the laser energy for a fixed laser 

speed, as shown in Fig. 9c-d. 

Fig. 10a reports the evolution of δd with the number of exp erimental 

training samples. The corresponding nd was 100. Fig. 10b-c show that 

Smart-ML can achieve δt ≤ δd with a 60–70 % reduction in the number of 

exp erimental training samples, and thus in CDEV. The ability of the final 

ML model to capture the experimentally observed inflection point is 

clear in Fig. 11. Compared to the FFF problem where the target data is 

monotonic, the ability to capture the inflection point in M-LIPMM is a 

more extreme example of the degree to which Smart-ML can compensate 

for qualitative discrepancies between the source and the target. Fig. 12 

shows that reductions in CEXP are possible across different laser pulse 

frequencies without compromising the error significantly.  

There is current ly no physics-based model that can predict the 

exp erimentally observed non-monotonic response of the channel di- 

mensions in M-LIPMM to the laser energy and sp eed. Given that the M- 

LIPMM process was first reported a decade ago in (Malhotra et al.,  

2013), and the simple source model used in this paper has been available 

at least since then if not earlier, the use of Smart-ML could have saved at  

least 10 human-years of CDEV. Further, just one simulation of the 

plasma-magnet interaction even without modeling plasma -material 

interaction needs at least 10 t imes more CPU-hours (Kuzenov and 

Ryzhkov, 2018) than the total CCOMP of 2 CPU-hours to generate the 

source data in Smart-ML here. Thus, the reduction in CCOMP is also sig- 

nificant. Overall, these results show that even large functional differ - 

ences between the source and the target, represented by a monotonic 

source and a non-monotonic target here, can be accommodated by 

Smart-ML while retaining high reductions in CDEV, CEXP, and CCOMP and 

high prediction accuracy.  

 
3.3. The in-situ rolling problem 

 
Fig. 13a-b show the difference between the linear source model and 

the nonlinear target data which leads to significant differences in the 

predicted part height at a smaller layer height. Smart-ML comp ensates 

for this discrepancy by accurately capturing the experimentally 

observed convolution of the layer height and roller mass effects on the 

part height (Fig. 13c-d). 

The evolution of the error for direct learning and Smart-ML for 

different number of training samples, as shown in Fig. 14a-b, yields an nd 

of 80 and a nt of 20 (i.e., 4 layer heights and 5 roller masses). This 

corresponds to a 17 % reduction in the error from a δd of 8.2 × 10-5 to a 

δt of 6.8 × 10-5 and an 75 % reduction in CEXP. As described earlier, this 

in-situ rolling process was introduced in 2017 and the source process 

model used here was developed in 2022. Assuming a similar  timeframe 

for advancing this process model by coupling past computational fluid 

dynamics models of road formation (Serdeczny et al., 2018) with ther- 

momechanical finite element models of deformation of roads with a 

non-circular cross section by two hot rollers, it  is estimated that 

Smart-ML can save at least 5 human-years of CDEV. Further, the CCOMP of 

10-6 CPU-hours needed to generate all the source samples here is ex - 

pected to be orders of magnitude lower than the above advanced model. 

Thus, Smart-ML can correct process models which may be only valid in 

certain regions of the parameter space due to the absence of a coupling 

between crit ical physics.  
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4. Conclusions 

 
This paper develops and demonstrates a Smart-ML approach for 

machine learning of parametric relationships in manufacturing pro- 

cesses, especially new ones, for which a qualitative understanding of the 

process physics, constitutive relationships, and multiphysical and mul- 

tiscale couplings is either unavailable or incomplete. The key advance is  

a reduction not just of the experimental and computational costs but also  

of the often-ignored and significant physics develop ment cost of 

generating data for training the ML models. The three process examples  

for which Smart-ML is explored show that the reduction in the physics  

development cost can be on the order of multiple human -years, the 

reduction in experimental costs can be as high as 60 %, and the reduc- 

tion in computational costs could be on orders of magnitude, without an  

increase in prediction error. This demonstration across three processes  

with different physical principles and different levels of physics -based  

understanding builds confidence that Smart-ML can be used for rapid,  

accurate, and experimentally inexp ensive training of ML models of 

parametric relationships in manufacturing processes.  

The reduction in CDEV is achieved by relaxing the constraint that the 

source and the target in multi-fidelity transfer learning should be func- 

tionally similar. It is possible to retain low prediction error despite this  

greatly simplifying restriction on the fidelity of the source models. This  

is because the mandatory inclusion of the conservation equations in the 

source model provides a physical regularization, albeit incomplete, that 

leads the ML model partially towards the ground truth. Since the 

exp erimental data inherently adheres to the conservation laws the 

transfer learning-based update of the ML model comp ensates for the 

other simplifications made in the source model. The key insight is that 

this regularization need not be qualitatively complete, unlike the 

assumption in the state-of-the-art, which enables significant reductions  

in the physics development cost by eliminating the need to iteratively  

calibrate and validate the physics-based source model.  

The reduction in CEXP is possible because the source data satisfies 

some of the hunger of the ML model for data. Specifically, the source 

data allows an initial estimation of the weights of the base ML model 

(ε-SVR here) so that the amount of exp erimental data needed for the 

finalizing the ML model’s weights to math predictions to the ground  

truth is lesser than that needed for direct learning. Note that the 

approach for choosing nd for direct learning balances the number of 

exp erimental training points needed and the error. It is also worth 

noting that the experimental budget for direct learning NB may be 

reduced arbitrarily, but at the cost of significant error and without any  

significant advantage over Smart-ML. For example, fixing the NB and  

thus nd at 50 in the case of FFF increases the RMSE by nearly 25 % as  

compared to a nd of 150 points (Fig. 6a). Further, the reduction in error 

from 30 to 50 experimental training points for direct learning is a sig- 

nificant 20 % (Fig. 6a). This indicates that more experimental training 

points are certainly needed for direct learning. Finally, Smart -ML still  

achieves a lower error of 0.123 with 27 experimental training points (3  

feed rates and 9 stage sp eeds in Fig. 6b) which constitutes a 46 % 

reduction in CEXP even with nd = 50. Continuing with the same example,  

one might say that the NB and thus the nd could be reduced even further 

to 30, but the error will be sacrificed too significantly to claim that the 

direct learning-based ML model has any reasonable accuracy even  

compared to Smart-ML with 3 feed rates and 9 stage speeds (Fig. 6b). 

The reduction in CCOMP is realized because Smart-ML enables the use 

of simplified physics-based models (i.e., source) which need not be 

quantitatively accurate or qualitatively complete. This enables signifi-  

cant reductions in the amount of multiphysical and multiscale couplings  

needed in the physics-based model, e.g., complete omission of the 

plasma-magnet coupling in the M-LIPMM, and significantly reduces the 

amount of spatiotemporal discretization needed, e.g., a simple analytical 

model without finite element discretization or t ime-marching solvers  

can be used in the FFF problem. Meanwhile, the increase in error due to  

the reductions in quantitative and functional accuracy of the physics- 

based model is compensated for by the transfer learning component of 

Smart-ML. 

Training ML models of parametric relationships on model-generated 

rather than exp erimentally-generated data has become increasingly 

common to reduce the experimental cost. But this approach results in 

ML being restricted to processes for which physics-based process models 

are mechanistically complete. The above advantages of Smart -ML can 

change this paradigm by accelerating ML of processes even when there is 

significantly incomplete or limited knowledge on their underlying 

physics. It is envisioned that Smart-ML will transform the function of ML 

from the calibration and replication of existing physics-based models in 

a computationally efficient form to rapid model discovery for difficult to 

model or novel processes. At the same time, Smart -ML is not meant to 

replace human intuition but to augment it. The authors believe that the 

critical role of the process engineer in Smart-ML of choosing the source 

model will create a new form of human-machine interaction in the realm 

of manufacturing process modeling.  

But there are also challenges in the current form of Smart -ML. The 

first is the lack of appropriate methods for sampling the target so that the 

exp erimental cost can be reduced in practice by identifying the target 

dataset in an a-priori and intelligent manner. The second is an effort to 

extend Smart-ML to modeling evolution of the spatiotemporal material 

state in manufacturing processes where using advanced base ML models 

will be necessary. These areas of future work are being pursued by the 

authors. Finally, the process testbeds used in this work are limited by the 

resources in the author’s laboratory. The authors anticipate gr eater 

testing of Smart -ML across multiple additional processes in the larger 

manufacturing processes community and welcome such collaborations. 
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