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ARTICLEINFO ABSTRACT

Associate Editor: Marion Merklein The design and control of manufacturing processes hinges on predictive modeling of its parametric effects. The

deployability of Machine Learning (ML) models has made them of increasing interest for this purpose. Recent

Keywords: work has addressed the experimental and computational costs of creating the requisite training data. But these

Proc‘fss modeling ) ] methods incur a physics development cost due to the need to intuitively and iteratively derive accurate physics-
Physics-Informed Machine Learning based process models for generating the training data. This issue is rarely addressed in the literature. This paper

Multi-fidelity Li i . . . e . . . .
ulti-fidelity Learning describes a Science-informed multifidelity-aided reduced-cost Machine Learning (Smart-ML) approach to tackle

Transfer Learning

Training data cost this challenge. The novelty lies in relaxing the existing constraint that the physics-based source in multi-fidelity
learning must qualitatively match the experimental ground truth while constraining the source to use conser-
vation laws. An additive, a subtractive, and a hybrid additive-deformative process with different levels of
physical understanding are used as testbeds to demonstrate that Smart-ML can reduce the physics development
cost by multiple human-years, experimental cost by as much as 60 %, and computational cost by orders of
magnitude. These results are discussed in the context of how the proposed approach can move ML beyond the

creation of copies of known physics-based models towards the accelerated and inexpensive derivation of func-

tionally new ML-based process models from partially known physics and small experimental datasets.

1. Introduction

Innovative manufacturing processes can have a disruptive socio-
economic impact by going beyond existing limitations on cost, flexi-
bility, throughput, sustainability, and product functionality. Past ex-
amples include the reduction in automobile costs via stamping in the
19th century (Hounshell, 1984), the achievement of complex geometries
for hard-to-form sheet metal via superplastic forming in the 20th cen-
tury (Barnes, 2007), and the disruption of batch size-cost tradeoffs by
additive manufacturing in the 21st century (Huang et al., 2013). More
recent examples include advances in scalable micro/nanoscale additive
manufacturing of polymers based on massive multiplexing of light (Saha
et al., 2019); metamorphic approaches to flexible manufacturing that
obviate part-shape-specific tooling (Dachn and Taub, 2018); hybrid
processes that combine additive manufacturing and sheet/bulk metal
forming (Merklein et al., 2021); nanoscale deformation of 2D materials
to control their electronic behavior (Yi et al., 2022); approaches that
combine material deposition, forming and sintering to create
surface-conformal electronics (Devaraj and Malhotra, 2019); and
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dynamic deposition for massively multiplexed additive manufacturing
(Cleeman et al., 2022).

Such innovations often utilize new physical phenomena to realize
their technological advantage which, in turn, impose unique and com-
plex parametric effects on the part’s geometric and property attributes.
Predictive modeling of such parametric effects is crucial for design and
control of manufacturing processes and systems. Machine Learning (ML)
models are of increasing interest for this purpose since they enable
precise real-time predictions for complex multivariate parametric in-
teractions and are easy to deploy industrially (Arinez et al., 2020). This
is a significant advantage over spatiotemporally discretized
physics-based computational process models which have limited
real-time predictive capability. ML also has an edge over more compu-
tationally efficient physics-based analytical models since such models
are not always derivable. Even when they can be derived they are often
only partially complete since they cannot accurately capture the entire
spectrum of parametric effects in many cases.

Using experiments to generate the data needed to train the ML
models incurs a cost Cexp proportional to the time, material, and human
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Fig. 1. Schematic of (a) Direct learning (b) Multi-fidelity learning.

resources needed for experimentation. The computational cost Ccomp, in
CPU-hours, is the computational effort needed to perform physics-based
process simulations for generating the training data. But there is
another, often-ignored, physics development cost Cper which consists of
the time and resources needed for iterative and intuitive human deri-
vation of accurate physics-based process models from which data is
extracted to train ML models. This time and resources are necessary
because the fidelity of the training data dictates the ability of the trained
ML model to reflect reality. Thus, physics-based models that are used as
the source of training data must have sufficient qualitative and quanti-
tative agreement with the experimental ground truth. The quantitative
calibration of physics model parameters has a small contribution to Cpey
since multiple methods are available to perform this model calibration
in an automated and rapid fashion. The primary component of Cpey is
the time and human resources expended in the manual and iterative
identification of the physical constituents, the functional form of the
multiphysical and multiscale linkages, and the mathematical form of the
constitutive laws that constitute physics-based process models with
sufficient accuracy to supply training data for ML.

Since the physics-based models needed to generate training data for
ML models are often derived by humans in an iterative and intuitive
fashion this paper uses human-years as a metric of Cpey. The Cpey is
often on the order of many human-years of effort for new processes.
Consider incremental sheet metal forming. This process saw renewed
interest in academia in 2005 (Duflou et al., 2018) but it took till the
mid-2010s to create accurate physics-based predictive models of
in-process metal fracture and models of formed material properties like
fatigue are still unavailable. Fused Filament Fabrication has seen wide
usage since 2000 but models for predicting the printed road width have
taken nearly two more decades, till 2019 for analytical models (A gassant
et al.,, 2019) and till 2018 for computational fluid dynamics models
(Serdeczny et al., 2018). Different metal additive manufacturing pro-
cesses can yield different hardness and fatigue properties for the same
material and the physics modeling of the underlying parametric effects
is still an active area of research, even though these processes were first
developed more than a decade ago (Mukherjee and DebRoy, 2019). The
sintering of printed nanowires for highly conductive printed electronics
was reported as early as 2009 (Fan et al., 2009). But the development of
physics-based models that can predict the mesoscale electrical conduc-
tivity in terms of the sintering parameters has taken till 2021 (Devaraj
etal., 2021).

The relative magnitude of Cexp, Ccomr, and Cpev depends on the
approach used for training the ML model. The first training method,
called direct learning here, performs training using a single dataset from
asingle fount of information (Fig. la). Direct learning can be performed
on purely experimental data, numerous examples of which can be found

Initial ML Final training Final ML
model model
in a recent review by (Arinez et al., 2020). This results in high Cexr

despite the development of sparse sampling methods and niche cases of
high-throughput experimental testing, e.g., for measuring parametric
effects on the part’s microstructure in metal additive manufacturing
(Pegues et al., 2021).

This experimental approach is increasingly being replaced by direct
learning on data generated from physics-based models, which reduces
Cexp to the experimental effort needed for calibration and validation of
the physics-based models (Zhu et al., 2021). trained Physics-informed
Neural Networks (PINNs) on an experimentally calibrated high-fidelity
finite element model to predict the temperature dynamics of the melt
pool in metal additive manufacturing. The use of PINNs reduced Ccour
by decreasing the number of labeled model-generated samples needed
for training and minimized Cexpsince experiments were only needed for
calibrating and validating the finite element model. While this model
can be used to study the effects of the process parameters on the weld
pool size, the availability of sufficient physics and accurate constitutive
thermal laws for embedding in the PINNs was contingent on the
expenditure of sufficient Cper for model development in the author’s
previous work (Yan et al., 2018). Similarly, a Graph Neural Network
approach for modeling the mesoscale temperature history during
Directed-Energy-Deposition was trained on a finite element model by
(Mozaffar et al., 2021). This incurred a Cpev related to the identification
of the appropriate constitutive laws for the underlying heat and mass
transfer equations in (Mozaffar et al., 2019). Microstructure evolution
during metal additive manufacturing was modeled using a
physics-embedded graph network by (Xue et al., 2022), building on the
significant Cpey incurred over the years in both phase-field modeling
and metal additive manufacturing. The employment of analytical
models to generate the training data reduces the Ccomp relative to the
use of computational models. For example, (Kapusuzoglu and Maha-
devan, 2020) trained different ML models on data from a new analytical
model for accurately predicting the porosity and the bond strength in
Fused Filament Fabrication. This analytical model was built on past
efforts to incorporate actual filament geometry and the changes in it
induced by printing. This incurred a Cper in addition to that from past
literature, which stretched back 23 years (Pokluda et al., 1997), in order
to achieve the requisite accuracy on which the ML model could be
trained. Further, the derivation of analytical models is not always
possible for a given process or for a given geometric or property metric.
Overall, direct learning on model-generated data incurs a high Cpey that
can significantly overshadow the more commonly addressed Crexp and
Ccomp-

The second training approach is called multi-fidelity learning
(Fig. 1b). It trains a ML model on a large, inexpensive, but inaccurate
source dataset to satisfy the need for large amounts of data and then fine-
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Fig. 2. Comparison between experimental target and source process model for the effect of different process parameters on burr length in milling (Liu et al., 2022).

tunes it on a smaller, more expensive, and more accurate target dataset
to capture the ground truth (Peherstorfer et al., 2018). Computational or
analytical process models can be used as the target with process models
of lower fidelity as the source. (Ramezankhani et al., 2021) generated
the source and target data for a composites curing process using previ-
ously developed Finite Element Models. (Menon et al., 2022) used a
similar approach for modeling the melt pool size in laser-direct energy
deposition using Gaussian Processes. An Eager-Tsai model, based on
solution of the 3D temperature distribution produced by a traveling
distributed heat source moving on a semi-infinite plate, was used as the
source. A non-linear decoupled 3D transient FEM solver with Marangoni
convection, convection and radiation heat losses, and the
temperature-dependent thermophysical properties omitted by the
Eagar-Tsai model, was used as the target. (Huang et al., 2021) used a
similar approach for melt pool prediction in electron beam additive
manufacturing of metals with Rosenthal’s model as the source and a
Finite Element Model as the target, but with a point neural network as
the ML model. A key observation is that these multi-fidelity learning
approaches are predicated on high Cper for a new process since they are
contingent on the availability of a target process model of qualitative
completeness and quantitative accuracy sufficient to represent the
experimental ground truth.

A physics-based process model and experiments can be used as
source and target respectively. This ensures that the ground truth, i.e.,
experimental observations, are always captured by the final ML model
while reducing Cexp by decreasing the number of exp erimental samples
needed. (Alam et al., 2020) performed optimization of Fused Filament
Fabrication parameters for printing of log-pile metamaterials by using a
Gaussian process as the ML model, a Finite Element Mechanics model as
the source, and experimental measurements of the printed part’s me-
chanical response as the target. Multi-fidelity learning of a feedforward
neural network was performed to reduce the experimental cost of
creating models that predicted the part weight as a function of the in-
jection molding parameters across different materials (Lockner et al.,
2022) and different part sizes and machine types (Lockner and Hop-
mann, 2021). The source was a computational fluid dynamics model
with pre-identified constitutive laws and numerical techniques. (Liu
et al., 2022) used Finite Element simulations of burr formation during
milling as the source to create a 1D residual convolutional neural
network and corrected this learnt ML model to match experimental data
using transfer learning. (Wang et al., 2021) used a finite element model
as the source for predicting milling forces with a feedforward neural
network. (Saunders et al., 2022; Saunders et al., 2023) used multiple
sources, in the form of analytical and computational models of different
fidelities, with a Gaussian Process ML model of the melt pool size and
microstructure in laser powder bed fusion of metals. Other approaches
have used analytical models, when available, as the source, e.g., the

prediction of surface roughness in CNC machining (Misaka et al., 2020).
Despite its advantages, there is a fundamental issue that plagues this
last multi-fidelity learning approach. It is the fact that the physics-based
process models used as the source are developed to a point that ensures a
qualitative match between the source and the dataset. Thus, transfer
learning is only used to perform quantitative corrections such as scaling
and translation in the output space. This requires human identification
of the appropriate physical constituents of the process models, of
adequate constitutive laws to link these constituents, and of appropriate
numerical techniques for performing the simulations. Since the requisite
physical knowledge is often lacking for new manufacturing processes
this multi-fidelity learning approach is unable to reduce Cpzr despite
having the ability to decrease Cexr. Fig. 2 shows an example of this by-
design similarity between the source model and the experimental target
from past work on burr prediction in milling (Liu et al., 2022). The Cpsr
in this is case is incurred because the Finite Element Model of material
removal that predicts the necessary training data for the ML model re-
quires derivation of constitutive laws for strain hardening, strain-rate
sensitivity, and thermal softening, the form of the friction model, and
the iterative identification of appropriate mesh refinement and element
choices.

Overall, the issue of high Cpey for new processes is not addressed by
the state-of-the-art. The question is, is it possible to derive accurate ML-
based process models of parametric relationships in manufacturing
processes while simultaneously reducing the need for highly accurate
and functionally complete process physics models to create the training
data (thus reducing Cper), reducing the amount of experimentally
generated training data (thus reducing Cexp), and reducing the compu-
tational effort needed to create the training data (thus reducing Ccoumr).
This paper addresses this question by modifying the second multi-
fidelity learning method into an approach called Science-informed
multifidelity-aided reduced-cost Machine Learning (Smart-ML). The
novelty is to relax the constraint that a qualitative match between the
source and target data is necessary and to correct the resulting
discrepancy using transfer learning. The magnitudes of the different
training costs and prediction accuracy for Smart-ML are compared to
that for direct learning on only experimental data for three distinct types
of manufacturing processes whose working principles span material
addition, removal, and deformation.

Using these processes for demonstration purposes also tackles
another issue. The larger vision for Smart-ML is that it will become the
go-to approach for training ML models of parametric effects without
prior calculation of the reduction in Cpey. This is because such a
computation requires the creation of an accurate physics-based model
and therefore the expenditure of the very Cper that Smart-ML aims to
save. In fact, the projected savings of Crxr and Ccomp in any form of
multifidelity learning including Smart-ML are subject to a similar
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critique since closed-form a-priori calculation of the cost savings in
multifidelity learning is fundamentally impossible without sacrificing
the savings themselves. Thus, the adoption of multifidelity learning in
the literature is driven by empirical proof of cost savings across different
use cases, e.g., in image and signal processing for manufacturing pro-
cesses with Convolutional Neural Networks as the base machine
learning model. This indicates that realizing our vision for Smart-ML
requires empirical proof of the reduction in Cper, Cexpr and Ccomr via
Smart-ML. This work performs this examination by quantifying these
costs as described in Section 2.2 for each of the three process testbeds
that span different physical principles and different levels of physical
understanding.

The following sections discuss the details of the Smart-ML approach,
followed by a description of the source process models and the experi-
mental methods, and ending with the results and a discussion of the
larger impact of Smart-ML on manufacturing processes.

2. Methods
2.1. Machine learning techniques

2.1.1. Overview of Smart-ML

Fig. 3 illustrates the Smart-ML method. The physics-based process
models that constitute the source are based on the following principles.
First, the source process model should include one or more conservation
equations to retain conformance to the basic principles ofnature. This is
the science-informed component of Smart-ML that regularizes the ML
model within the constraints of existing knowledge of the process
physics. Second, the source process model should use an initial guess for
the physical phenomena to be included and for the constitutive laws to
be used without any trial-and-error based qualitative or quantitative
calibration against experiments. This is a key departure from the existing
literature on multi-fidelity learning in manufacturing. It obviates the
need for the source and the target to be qualitatively similar, thus
eliminating the trial-and-error construction of the process model, with
the goal ofreducing Cprr for new processes for which the knowledge of
the appropriate physics and constitutive laws is lacking. Finally, the
degree of spatiotemporal discretization used in the source model should
not be so high that it causes the Ccompr to exceed the user’s budget. This
budget is typically a finite non-zero value that is based on the resources
and time available for computational generation of training data. If
possible, purely analytical models without spatiotemporal discretization
should be used as the source since such models often need much lesser
computational effort than discretization-based models like Finite
Element Analysis. The ML model trained on the source is then updated
on a much smaller experimental dataset (i.e., target) than that necessary
for direct learning with only experimental data by using transfer
learning. This reduces Cexr as compared to direct learning while
ensuring that the final ML model’s predictions accurately capture the
experimental ground truth.

2.1.2. Base machine learning model

This paper uses epsilon-Support Vector Regression (e-SVR) as the
base ML model on which transfer learning is performed. Other regres -
sion ML approaches can be used without loss in generality. The me-
chanics ofthe e-SVR is described briefly here and the reader is referred
to past theoretical developments for further details (Drucker et al.,
1996). An €-SVR aims to find the function that maps the inputs to the
outputs within an error band ¢. If x and f(x) denote the inputs and
outputs respectively and w are the weights that perform the mapping
then the mapping function can be written as in Eq. (1). The constant b is
solved using the Karush-Kuhn-Tucker conditions. The vector of weights
, and the slack variables & and & used to cope with the fact some
deviations from the margin of error ¢ might have to be tolerated, are
computed by minimizing the expression in Eq. (2). The value of C de-
termines the penalty applied to violation of the error band. The Gaussian
Radial Basis Function (RBF) was used here for the kernel trick, thus
allowing the linear €e-SVR model to capture nonlinear functional re-
lationships (Jain et al., 2014). In this work the values of C and ¢ for the
e-SVR were based on brute force identification of parameter combina-
tions that maximized the model performance for a given source dataset
and were not changed during transfer learning.

[ =(w,x)+b o
1 +C5 €+ @)
E||a’| I R

2.1.3. Transfer Learning approach

Transfer learning updates the ML model based on the difference
between the source and the target. Consider a domain D = (X, Px) with
features X and a marginal probability distribution Px, and atask 7= (¥, f
(-)) that consists of a label space Y (continuous values here) and a
function f(-) which is trained to predict Y. For a source domain Dy and
learning task 7s and a target domain D: and learning task 7T, where Ds [
D:or Ts | Ty, transfer learning reduces the amount of data needed to learn
fi (-) by using the a-priori trained f; (-). This can be performed by
reweighting the training data (instance-based transfer learning),
altering the ML model’s weights (parameter-based transfer learning), or
leveraging common features between the source and target (feature-
based transfer learning). The reader is referred to the excellent review
article by (Pan and Yang, 2010) for a deeper survey of the different kinds
of transfer learning.

The instance-based transfer learning method used here is TrAda-
Boost.R2 by (Pardoe and Stone, 2010) since it is suitable for regression
tasks. This method derives from the AdaBoost family of techniques in
which each target and source instance receives a weight used for
training. The weight indicates the relative importance of each target or
source instance. The instances are reweighted after each training itera-
tion, with target instances that are incorrectly predicted by the ML
model trained in the previous iteration receiving larger weights. Thus,
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distribution for one laser pulse predicted by the M-LIPPM source.

learning iteratively focuses on those instances that are most difficult to
predict correctly. The TrAdaBoost.R2 variant of AdaBoost takes the
target and source datasets and combines them into a single training
dataset. Further, in each boosting iteration TrAdaBoost increases the
weights of target instances that are misclassified while reducing the
weights of the corresponding source instances.

The basic mechanics of this method is described here and the reader
is referred to (Pardoe and Stone, 2010) for greater depth. Each boosting
iteration consists of the following steps and the iterations are repeated
till a user-specified number of iterations N is reached. The weights of the
source and target instances ws and wr are normalized and the normal-
ized error vectors for the source and the target ¢s and er are computed.
The total weighted error for the target dataset Er is computed as in Eq.
(3), where nr is the number of target instances. The source weights are
reduced and the target weights increased based on the error, calculated
as in Eqs. 4 and 5, where ns is the number of source instances. Here, the
number of boosting iterations N was fixed at thirty.

Er= wler @)
nr
ws = wsff5 andwr = wrfr ¢ @)
e
1
d =F 1-F 5
o, andfr r ( r) (¢ 2 L

2.1.4. Training and testing

The following approach was used for training and testing and to
examine the advantages of Smart-ML relative to direct learning. First,
direct learning of the e-SVR was performed on only the experimental
target data in an incremental fashion. In each iteration a progressively
greater number of training samples were used for training till the Root
Mean Square Error (RMSE) on the testing data, i.e., withheld portion of
the experimental dataset, did not decrease further. This was done 1000
times using random sampling for obtaining training and testing datasets
in a 90:10 ratio, thus yielding the mean and standard deviation of the
smallest error ds and the corresponding number of samples ns for direct
learning.

The significant literature on direct learning indicates that various

methods may be used to decide the ns. One approach is to fix an arbi-
trary error limit and incrementally increase the number of experimental
training points generated till the testing error reduces below this limit.
This approach is fraught with an arbitrary subjectivity of how much
error is acceptable. The second approach is to a-priori designate the
maximum number of experimental points that can be generated and take
the corresponding testing error at this maximum limit as the lowest
possible error. This method is subject to unnecessarily increasing the
amount of experimental data needed, e.g., the error may not reduce
significantly with the addition of experimental data beyond a certain
threshold. The third approach involves setting an experimental budget
Np and incrementally increasing the number of experimental training
points till the percentage difference in testing error across consecutive
increments goes below a user-defined threshold &, or there is overfitting,
or the number oftraining points exceeds N, whichever occurs first. The
idea is that if the error difference from one increment to the next goes
below ¢ then there is no point in adding further experimental points
since it will not realize a significant enough error reduction. This
approach enables a more objective balance between the amount of
experimental data needed and the error while preventing overfitting. In
this work the third approach was used and the & was fixed as 2 %. The
process-specific Np was based on the experimental capabilities in the
author’s laboratory, as would be the case in industrial practice, and is
mentioned with the description of the experimental methods.

For Smart-ML, a separate e-SVR was trained on the data from the
source process model. An incrementally increasing amount of target
data was used to iteratively identify the smallest amount of experimental
data needed for transfer learning (n:) while satisfying the constraint that
the error ofthe final e-SVR J; on a withheld experimental dataset should
be lesser than or equal to the above computed da. This constraint ensured
that the drive towards reducing Cper did not compromise the prediction
accuracy. Note that this paper does not focus on the method for sampling
the experiments since its emphasis is on showing the feasibility of Smart-
ML and the corresponding cost savings that are possible. The test dataset
was of the same size as that corresponding to ns to prevent a heavily
lopsided train:test ratio and thus fairly compare direct learning and
Smart-ML. It was obtained randomly from the withheld target dataset.
The aforementioned testing for the final ML model was performed thirty
times over the entire dataset to obtain the mean and standard deviation
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of J.. Note that overfitting was not observed in this work for either direct 2.2. Source modeling and experimental methods
learning or Smart-ML since the testing error did not exceed the training

error. The capabilities of Smart-ML were explored for three manufacturing

problems. This section describes these processes and the source models
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used.

2.2.1. Fused Filament Fabrication (FFF)

The first problem, for an additive process, involves prediction of the
road width printed in Fused Filament Fabrication (FFF) as a function of
the stage speed and the filament feed rate (Fig. 4a). This problem has
been tackled over the last two decades with incrementally increasing
accuracy, including most recently by using computational fluid dy-
namics models (Serdeczny et al., 2018). These efforts have revealed that
the underlying physics involves non-Newtonian flow, compressibility,

nozzle-extrudate interaction, wetting and non-isothermal cooling.

The source process model used here is W = FA/Sh where W is the
road width, F is the filament feed rate, S is the stage speed, 4 is the
filament’s cross-sectional area, and /4 is the nozzle-to-stage distance. This
source assumes that the above physics and the corresponding constitu -
tive laws are unknown, makes the incorrect but simplifying assumption
that the nozzle-to-stage distance equals the height of the road, and in-
cludes the mass conservation law.

The experimental target data was generated by printing roads with a
I mm diameter nozzle, nozzle temperature of 230 °C, and bed
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temperature of 60 °C. A PLA filament of 0.75 mm diameter (from
3DExTech) without any particulate additives was used. For each value of
h explored here the experimental data was generated across 256 distinct
combinations of S and F. Specifically, sixteen equidistant S (between 350
and 725 mm/min) and F (between 153 and 729 mm/min) were used.
Three different 4 values 0f 0.7, 0.85, and 1.2 mm were explored. The W
was measured using vernier calipers and unstable printing regimes were
excluded from the dataset. The experimental budget N for each 4 was
fixed at a maximum of 150 training points.

Since this problem has an established and accurate physics-based
model that is applicable across the wide parameter range used in our
experiments, this process testbed allows decisive quantification of the
reduction in Cper achieved by Smart-ML. The Cper is computed as the
time in human-years between the first public report of the source model
used for Smart-ML and the accurate physics-based model. The savings in
Cexp are calculated as the percentage change between ns and ny, as in the
multifidelity learning literature. The savings in Ccoup are based on the
difference between the total computational effort (in CPU-hours) for the
accurate physics-based model, as reported in the literature, and the total
CPU-hours for the source model used for Smart-ML. Since these savings
only make sense if enough predictive accuracy is achieved using Smart-
ML they are reported in detail along with the testing error in the results
section.

2.2.2. Magnetically-Assisted Laser Induced Plasma Micromachining (M-
LIPMM)

The second problem, for a subtractive process, was to predict the
microchannel width and depth as a function of the laser speed and en-
ergy in the newer Magnetically Assisted Laser Induced Plasma Micro-
machining (M-LIPMM) process. LIPMM, illustrated in Fig. 4b, creates a
plasma in a dielectric liquid and then uses it for machining (Pallav et al.,
2015). M-LIPMM builds on the low thermal damage and
optically-agnostic material capabilities of LIPMM by adding a magnetic
field that manipulates the plasma and the machined feature’s di-
mensions beyond the optical and thermal limitations of LIPMM (Mal-
hotra et al., 2013). Several physical phenomena have been hypothesized
as being relevant to material removal in M-LIPMM. These include
dielectric breakdown, magnetohydrodynamics of evolution in plasma
size, pressure, and temperature, plasma-workpiece interactions via
thermal ablation and athermal material removal, heat transfer to the
fluid and bubble formation, and pressure-induced expulsion of the ab-
lated material between consecutive laser pulses. (Zhang et al., 2021)
discussed the competing effects of magnetic fields and
confinement-induced absorption on the plasma size, temperature, and
pressure. But the lack of plasma-workpiece interactions, the simplified
laser-plasma interaction, and the qualitative form of the model, meant
that the feature size could not be predicted. (Saxena et al., 2014) and
(Xie et al., 2020) modeled plasma generation due to dielectric break-
down but without a magnetic field or plasma-workpiece interactions.
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5 Hz pulse frequency.

(Wang et al., 2018) modeled plasma evolution in the absence of mag-
netic effects or plasma-workpiece interactions resulting in high predic-
tion errors of up to 50 %. Thus, purely physics-based modeling efforts
over the last decade cannot quantitatively model the machined feature
size in M-LIPMM. Thus, this problem is a true test of the capabilities of
Smart-ML since significant components of the process physics are
currently unknown and cannot be explicitly modeled.

The source process model in this paper ignores significant compo-
nents of the above hypothesized and modeled physics. It models mate-
rial removal based on a 2D Finite Element Analysis (FEA) of thermal
conduction in the workpiece within the COMSOL platform (Fig. 4d).
This accounts for the conservation of energy, mass and momentum but
with the following simplifications that omit the derivation of multiple
multiphysical couplings and constitutive models of material properties.
The heat source that represented the plasma heat flux into the workpiece
had a uniform spatial distribution over the region corresponding to the
diameter of the laser’s focal spot (see Fig. 4d) and was non-zero only
during the pulse duration of the laser (6 ns here). Complete absorption
of the laser pulse energy by the workpiece was assumed, thus elimi-
nating any thermal effects of the liquid and the optical-thermal-
hydrodynamic coupling inherent to the plasma formation and its
interaction with the workpiece. The laser was assumed to be stationary
to increase the computational speed of the FEA. Thus, thermal con-
duction into the workpiece during only one laser pulse was modeled.
The channel depth and width created in this one laser pulse was

manually extracted based on the spatial location of the elemental inte-
gration points at which the workpiece’s melting point was exceeded.
The laser’s residence time at a spot was calculated analytically based on
its speed and optics-based spot size. The corresponding number of pulses
at a given point was thus obtained based on the pulse frequency, as is
common in direct laser micromachining with low pulse frequencies
(Ling, 2011). The machined channel’s depth and width was predicted as
the product of the dimensions created by one pulse with the above
calculated number of pulses at a given material point. The underlying
assumption behind this method of calculating channel depth and width
is that material removal is purely additive over multiple pulses. Constant
thermal properties of the aluminum workpiece were assumed. The
density was fixed at 2.7 g/cm’, the thermal conductivity at 237 W/m-K,
the specific heat capacity at 903 J/kg-K, and the melting point at 934 K.
This state-independent assumption is esp ecially incorrect at the elevated
workpiece temperatures expected in M-LIPMM. Further, these proper-
ties were not measured but were based on commonly reported values in
the literature. The boundary conditions consisted of insulation at all
boundaries except where the laser flux was applied (Fig. 4d). The initial
condition was room temperature for the workpiece. The workpiece
width and depth were 200 um each, i.e., larger than the laser spot of
80 um used in experiments. Square mesh elements were used with a
uniform side length of 5 pm. No tests for mesh convergence or element
type were performed. Explicit time-marching simulations were per-
formed with the time steps decided automatically by the COMSOL
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software without user manipulation. Fig. 4d shows a representative
example of the temperature evolution predicted by this FEA.

Since this problem does not have an established and accurate
physics-based model, but the above simple source model has always
been available, the savings in Cperis a lower bound estimate based on
the time elapsed since the M-LIPMM process was first publicly reported
in 2013. The savings in Cexp are calculated as in the FFF problem. The
savings in Ccomp cannot be directly computed since the accurate
physics-based model is not available. Instead, we compare the CPU-
hours needed to generate the source data in Smart-ML to that needed
for computation of whatever sub-components of the process physics can
be accurately modeled today, namely the spatiotemporal evolution of
the size of the plasma under a magnetic field without modeling plasma-
material interactions (Kuzenov and Ryzhkov, 2018). These savings are
quantified in detail in the results section in light of the achieved pre-
diction accuracy.

The M-LIPMM experiments were performed on a Quantum Light
Instruments pulsed laser (3 ns pulse duration, 50 mJ pulse energy,
526 nm wavelength). The 4 mm diameter laser beam was optically
reduced to a non-diffraction-limited 80 um diameter at the focal point
where the plasma was produced. The workpiece material was 6061
Aluminum from McMaster Carr. The dielectric liquid was deionized
water. The workpiece was kept in a glass beaker with a2 mm thick layer
of water above it. The glass beaker was, in turn, kept on a motorized XYZ
stage that had a resolution of 50 nm. The microchannels were machined
by moving the laser at a specified speed along the desired direction in a
single pass, i.e., without translating the laser spot in the vertical

direction. The dimensions of the machined channels were measured
using a Keyence optical profilometer. This experimental data was
generated for combinations of thirteen equidistant laser speeds
(5 X107 to 6.5 X10™ m/s) and 10 equidistant laser energies (from 20
to 50 mJ), over each of the three laser pulse frequencies (5, 10 and
20 Hz). Thus, the total number of experimental training points for each
pulse frequency was 130. The experimental budget Np for each pulse
frequency was fixed at 100 so that enough withheld testing points were
also available.

2.2.3. In-situ rolling in fused filament fabrication

The third problem, for a hybrid additive-deformation process, was
in-situ rolling in FFF. In this heated and weighted rollers attached to the
FFF extruder heat and compress the printed road to eliminate voids
between roads (Fig. 4¢). This kind of hybrid additive-deformative pro-
cess for polymer extrusion additive manufacturing was first proposed by
(Duty et al., 2017). It markedly increases the strength and isotropy of
FFF parts. The modeling problem is to predict the part height induced by
in-situ rolling as a function of the weight on the roller and the
nozzle-to-stage distance. The only physics-based solution till date for
this problem is an analytical model of the contact width between two
cylinders (representing the roads) that are subjected to an applied load
(Qasaimeh et al., 2022). This is contingent on the assumption that the
as-deposited road has a circular cross-section with a diameter equal to
the nozzle diameter, thus ignoring the nozzle-extrudate interactions that
cause as-printed roads to have non-circular cross sections and greater
width than the nozzle diameter (Serdeczny et al., 2018). This model is
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consequently unable to consider the convolution between the effect of
layer height and roller mass. This problem constitutes a case where two
different physical effects in a hybrid process are known, i.e., compres-
sion by the rollers and nozzle-extrudate interaction, but a model that
couples these phenomenon is as yet unavailable. This paper uses the

above analytical model from (Qasaimeh et al.,

2022) as the source

process model. Since this problem also does not have an established and
accurate physics-based model the savings in Cpey, Cexp and Ccomp are
computed as in the case of the M-LIPMM problem and are quantified in
detail in the results section.

Experiments were performed on a commercial FFF printer after the
approach described by (Qasaimeh et al., 2022). PLA polymer was used
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with a nozzle temperature of 230 °C, bed temperature of 60 °C, roller
temperature of 110 °C, roller diameter of 6.35 mm, and nozzle diameter
of 1.8 mm. The change in part height over four consecutive layers was
measured using vernier calipers. The experiments were performed for
combinations of ten equidistant roller weights (0-500 g) and ten equi-
distant nozzle-to-stage distances (0.70-1.5 mm). Thus, the total number
of experimental points generated was 100. The experimental budget N3
was fixed at a maximum of 80 training points so that sufficient withheld
testing points were also available.

3. Results

3.1. The FFF problem

Fig. 5a shows a representative comparison between the experimen-
tally measured (target) road width and the predictions of the source
process model for the FFF problem. The source can only make good
predictions at lower feed rates and stage speeds. The extent of the
qualitative difference is seen in the representative 2D plot in Fig. 5b. A
quantitative recalibration of the source model or scaling of the source
data cannot capture this experimentally observed parametric effect, and
a functional correction is needed.

Fig. 6a shows an example of the change in J, with the number of
training samples used for direct learning, yielding a ns of 150. The
corresponding evolution of the transfer learning error J, for distinct
combinations ofthe number ofstage speeds and filament feed rates used
from the target dataset is reported in Fig. 6b. The minimum number of
experimental training points (n,) for which 6, < da is 42, nearly 72 %
lesser than ns. The corresponding reduction in the testing error with
Smart-ML relative to direct learning was 22 %. The ability of transfer
learning to capture the experimental observations both qualitatively and
quantitatively is illustrated via the examples in Fig. 7. Fig. 8 shows the
extent of these advantages for the other / values used here.

A reduction in Cexp and error is also seen in the literature on multi-
fidelity learning in manufacturing, but not for the kind of functional
differences between the source and the target used here. This shows that
the current advantages of multi-fidelity learning can be retained if the
source uses the conservation equations, even with functionally incom-
plete or quantitatively inaccurate constitutive laws, to capture at least
some of the experimental trends albeit in a qualitatively incorrect
manner. For example, the source captures the fact that the road width
reduces with increasing stage speed but in a functionally incorrect way.
This allowance for a qualitative discrepancy between the source and
target is critical for achieving low Cper for new processes. Existing
functionally accurate and physically complete process models can be
used as the source for multi-fidelity learning. But it has taken significant
incremental human effort over long periods of time for these models to
be developed to this level of functional accuracy. The source model used
here was first proposed in the year 2000 at the dawn of research into
road formation in FFF (Bellini et al., 2004). Analytical physics-based
models have taken till 2019 to predict the experimentally observed
nonlinearity over an appreciably wide range of filament and stage
speeds, specifically the model by (Agassant et al., 2019) based on a 3D
approximation of 2D Stokes flow with simple shear and isothermal
wetting. Computational fluid dynamics simulations, which started in
2002 with the dissertation of (Bellini, 2002), have taken till the 2018
work of (Comminal et al., 2018) to predict road width across a sub-
stantial range of filament and stage speeds. Thus, using Smart-ML in
2000, which is when the employed source model was available, could
have saved at least 18 years of Cper.

Finally, the authors note that using computational fluid dynamics
models to generate just one training sample for FFF needs orders of
magnitude more CPU-hours than the 3 X 107 CPU-hours needed here
to generate the entire source dataset for Smart-ML. This is because a
simplified analytical process model with no spatiotemporal discretiza-
tion is used as the source. While the widespread advent of significant
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computational capacity might make this advantage moot, it is worth
noting its existence.

3.2. The M-LIPMM problem

The experimentally measured channel width and depth in Fig. 9a-b
exhibit an inflection point at high laser energy and low laser speed that is
not seen in the source. This inflection is even clearer when plotting the
channel width and depth as a function of the laser energy for a fixed laser
speed, as shown in Fig. 9c-d.

Fig. 10a reports the evolution of ds with the number of exp erimental
training samples. The corresponding ns was 100. Fig. 10b-c show that
Smart-ML can achieve 6: < da with a 60-70 % reduction in the number of
experimental training samples, and thus in Cper. The ability of the final
ML model to capture the experimentally observed inflection point is
clear in Fig. 11. Compared to the FFF problem where the target data is
monotonic, the ability to capture the inflection point in M-LIPMM is a
more extreme example of the degree to which Smart-ML can compensate
for qualitative discrepancies between the source and the target. Fig. 12
shows that reductions in Cexp are possible across different laser pulse
frequencies without compromising the error significantly.

There is currently no physics-based model that can predict the
experimentally observed non-monotonic response of the channel di-
mensions in M-LIPMM to the laser energy and speed. Given that the M-
LIPMM process was first reported a decade ago in (Malhotra et al.,
2013), and the simple source model used in this paper has been available
at least since then if not earlier, the use of Smart-ML could have saved at
least 10 human-years of Cpey. Further, just one simulation of the
plasma-magnet interaction even without modeling plasma-material
interaction needs at least 10 times more CPU-hours (Kuzenov and
Ryzhkov, 2018) than the total Cconr of 2 CPU-hours to generate the
source data in Smart-ML here. Thus, the reduction in Ccoup is also sig-
nificant. Overall, these results show that even large functional differ-
ences between the source and the target, represented by a monotonic
source and a non-monotonic target here, can be accommodated by
Smart-ML while retaining high reductions in Cper, Cexp, and Ccompr and
high prediction accuracy.

3.3. The in-situ rolling problem

Fig. 13a-b show the difference between the linear source model and
the nonlinear target data which leads to significant differences in the
predicted part height at a smaller layer height. Smart-ML comp ensates
for this discrepancy by accurately capturing the experimentally
observed convolution of the layer height and roller mass effects on the
part height (Fig. 13c-d).

The evolution of the error for direct learning and Smart-ML for
different number of training samples, as shown in Fig. 14a-b, yields an na
of 80 and a n: of 20 (i.e., 4 layer heights and 5 roller masses). This
corresponds to a 17 % reduction in the error from a ds0f8.2 X 105toa
0:0f6.8 X 107%and an 75 % reduction in Cexp. As described earlier, this
in-situ rolling process was introduced in 2017 and the source process
model used here was developed in 2022. Assuming a similar timeframe
for advancing this process model by coupling past computational fluid
dynamics models of road formation (Serdeczny et al., 2018) with ther-
momechanical finite element models of deformation of roads with a
non-circular cross section by two hot rollers, it is estimated that
Smart-ML can save at least 5 human-years of Cpey. Further, the Ccour of
107¢ CPU-hours needed to generate all the source samples here is ex-
pected to be orders of magnitude lower than the above advanced model.
Thus, Smart-ML can correct process models which may be only valid in
certain regions of the parameter space due to the absence of a coupling
between critical physics.
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4. Conclusions

This paper develops and demonstrates a Smart-ML approach for
machine learning of parametric relationships in manufacturing pro-
cesses, especially new ones, for which a qualitative understanding ofthe
process physics, constitutive relationships, and multiphysical and mul-
tiscale couplings is either unavailable or incomplete. The key advance is
areduction not just ofthe experimental and computational costs but also
of the often-ignored and significant physics development cost of
generating data for training the ML models. The three process examples
for which Smart-ML is explored show that the reduction in the physics
development cost can be on the order of multiple human-years, the
reduction in experimental costs can be as high as 60 %, and the reduc-
tion in computational costs could be on orders of magnitude, without an
increase in prediction error. This demonstration across three processes
with different physical principles and different levels of physics-based
understanding builds confidence that Smart-ML can be used for rapid,
accurate, and experimentally inexpensive training of ML models of
parametric relationships in manufacturing processes.

The reduction in Cper is achieved by relaxing the constraint that the
source and the target in multi-fidelity transfer learning should be func-
tionally similar. It is possible to retain low prediction error despite this
greatly simplifying restriction on the fidelity of the source models. This
is because the mandatory inclusion of the conservation equations in the
source model provides a physical regularization, albeit incomplete, that
leads the ML model partially towards the ground truth. Since the
experimental data inherently adheres to the conservation laws the
transfer learning-based update of the ML model compensates for the
other simplifications made in the source model. The key insight is that
this regularization need not be qualitatively complete, unlike the
assumption in the state-of-the-art, which enables significant reductions
in the physics development cost by eliminating the need to iteratively
calibrate and validate the physics-based source model.

The reduction in Cexp is possible because the source data satisfies
some of the hunger of the ML model for data. Specifically, the source
data allows an initial estimation of the weights of the base ML model
(e-SVR here) so that the amount of experimental data needed for the
finalizing the ML model’s weights to math predictions to the ground
truth is lesser than that needed for direct learning. Note that the
approach for choosing na for direct learning balances the number of
experimental training points needed and the error. It is also worth
noting that the experimental budget for direct learning Nz may be
reduced arbitrarily, but at the cost of significant error and without any
significant advantage over Smart-ML. For example, fixing the Ng and
thus ngat 50 in the case of FFF increases the RMSE by nearly 25 % as
compared to a ns of 150 points (Fig. 6a). Further, the reduction in error
from 30 to 50 experimental training points for direct learning is a sig-
nificant 20 % (Fig. 6a). This indicates that more experimental training
points are certainly needed for direct learning. Finally, Smart-ML still
achieves a lower error of 0.123 with 27 experimental training points (3
feed rates and 9 stage speeds in Fig. 6b) which constitutes a 46 %
reduction in Cexp even with ns= 50. Continuing with the same example,
one might say that the Np and thus the ns could be reduced even further
to 30, but the error will be sacrificed too significantly to claim that the
direct learning-based ML model has any reasonable accuracy even
compared to Smart-ML with 3 feed rates and 9 stage speeds (Fig. 6b).

The reduction in Ccomp is realized because Smart-ML enables the use
of simplified physics-based models (i.e., source) which need not be
quantitatively accurate or qualitatively complete. This enables signifi-
cant reductions in the amount of multiphysical and multiscale couplings
needed in the physics-based model, e.g., complete omission of the
plasma-magnet coupling in the M-LIPMM, and significantly reduces the
amount of spatiotemporal discretization needed, e.g., a simple analytical
model without finite element discretization or time-marching solvers
can be used in the FFF problem. Meanwhile, the increase in error due to
the reductions in quantitative and functional accuracy of the physics-
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based model is compensated for by the transfer learning component of
Smart-ML.

Training ML models of parametric relationships on model-generated
rather than experimentally-generated data has become increasingly
common to reduce the experimental cost. But this approach results in
ML being restricted to processes for which physics-based process models
are mechanistically complete. The above advantages of Smart-ML can
change this paradigm by accelerating ML of processes even when there is
significantly incomplete or limited knowledge on their underlying
physics. It is envisioned that Smart-ML will transform the function of ML
from the calibration and replication of existing physics-based models in
a computationally efficient form to rapid model discovery for difficult to
model or novel processes. At the same time, Smart-ML is not meant to
replace human intuition but to augment it. The authors believe that the
critical role of the process engineer in Smart-ML of choosing the source
model will create a new form of human-machine interaction in the realm
of manufacturing process modeling.

But there are also challenges in the current form of Smart-ML. The
first is the lack of appropriate methods for sampling the target so that the
experimental cost can be reduced in practice by identifying the target
dataset in an a-priori and intelligent manner. The second is an effort to
extend Smart-ML to modeling evolution of the spatiotemporal material
state in manufacturing processes where using advanced base ML models
will be necessary. These areas of future work are being pursued by the
authors. Finally, the process testbeds used in this work are limited by the
resources in the author’s laboratory. The authors anticipate greater
testing of Smart-ML across multiple additional processes in the larger
manufacturing processes community and welcome such collaborations.
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