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a  b  s  t  r  a  c  t  
 

Machine Learning (ML) enables deployable modeling of parametric effects in manufacturing processes. 

But this paradigm is largely limited to established processes, since the state-of-the-art ignores the signif- 

icant cost of creating qualitatively accurate physics-based models for new processes. We propose a trans- 

fer learning based method that addresses this issue by pushing the boundaries of the qualitative accuracy 

demanded of the physics-based model. Our approach is evaluated for modeling the printed line width in 

Fused Filament Fabrication and shows reduction in the model development cost by multiple human - 

years, experimental cost by 56–76%, computational cost by orders of magnitude, and error by 16–24%. 

© 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved. 

 
 

 
1. Introduction 

 
Machine Learning (ML) has become popular for modeling para- 

metric effects in manufacturing processes due to its high deploya- 

bility. But generating the required training data from experiments 

incurs time and resources (experimental cost CE). Generating the 

training data from physics-based process models incurs a compu- 

tational cost CC, i.e., the CPU-hours needed to run simulations; and 

a model development cost CD, i.e., the time and human resources 

needed for intuitive trial-and-error creation of constitutive laws 

and numerical methods that qualitatively and quantitatively cap- 

ture interactions between multiple physical phenomena over mul- 

tiple time and length scales [1]. The root cause of high CD for new 

processes, which is commonly on the order of decades [2–5], is that 

qualitative knowledge of the underlying physics is often missing. 

Multifidelity learning trains an ML model using a large amount 

of inexpensive and inaccurate data (source) and fine-tunes it using 

a small amount of costly but accurate data (target). Using compu- 

tational process models as the source and experimental data as the 

target reduces CE relative to training with only experimental data, 

reduces CC compared to training with only computational data, and 

captures the ground truth [6]. But this approach assumes that the 

source must qualitatively match the target, i.e., multifidelity learn- 

ing only effects a quantitative correction. Thus, CD is still high since 

a qualitatively accurate physics-based source is needed. Using 
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analytical process models as the source decreases CC even further, 

but does not reduce CD [7]. Note that using experimental sources 

for new processes is not possible due to their inherent novelty. 

This paper proposes a multifidelity learning approach that 

reduces CD despite limited mechanistic knowledge of the process 

physics. This method is demonstrated for modeling the printed 

line’s width W in Fused Filament Fabrication (FFF) as a function 

of the filament feed rate F and extruder speed S. This problem 

involves complex physics including non-Newtonian flow, friction, 

cooling, wetting, and compressibility [8,9]. While FFF is not new 

and this problem has an existing solution, we choose this problem 

since this very fact that allows us to quantify the reduction in CD 
possible. 

 
2. Methods 

 
Our approach uses transfer-based multifidelity learning, with a 

physics-based process model as the source and experiments as the 

target. Thus, the final ML model reflects the experimental ground 

truth and reduces CE. This process model must (a) include one or 

more conservation laws to respect the fundamental laws of nature; 

(b) use a guess for the form of the constitutive law without any 

experimental calibration or validation, to reduce CD; (c) avoid or 

minimize spatiotemporal discretization to minimize CC. The reader 

is referred to the literature for the various transfer learning meth- 

ods available for regression [10,11]. In this paper, Epsilon Support 

Vector Regression (SVR [12,13]) with a gaussian Radial Basis 

Function was used as the ML model and the TrAdaBoost.R2 

 
https://doi.org/10.1016/j.mfglet.2023.07.017  

2213-8463/© 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved. 

Contents lists available at ScienceDirect 

 

Manufacturing Letters 

 
journa l homepage: www.elsevier.com/locate/mfglet   

https://doi.org/10.1016/j.mfglet.2023.07.017
mailto:rajiv.malhotra@rutgers.edu
https://doi.org/10.1016/j.mfglet.2023.07.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mfglet.2023.07.017&domain=pdf
http://www.sciencedirect.com/science/journal/22138463
http://www.elsevier.com/locate/mfglet


J. Cleeman, K. Agrawala and R. Malhotra Manufacturing Letters 37 (2023) 53–56 

54 

 

 

 

 
 

Fig. 1. Comparison of source and target for h = (a-d) 0.7 mm (e-h) 0.85 mm (i-l) 1.2 mm. Feed rate F and stage speed S are in mm/min. 

 

 

 

 
 

 

 

Fig. 2. RMSE from naive learning as a function of the number of target training points  for h = (a) 0.7 mm (b) 0.85 mm (c) 1.2 mm. Comparison of RMSEn a ive to the error 

obtained from transfer learning using different amounts  of experimental F and S and for h = (d) 0.7 mm (e) 0.85 mm (f)  1.2 mm. Feed rate F and stage speed S are in mm/min. 
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algorithm was used for transfer learning [14]. The hyperparame- 

ters for the e-SVR were based on brute force identification and 

the number of boosting iterations for TrAdaBoostR2 was 30. The 

reader is referred to the above literature for further details on both 

SVRs and TrAdaBoostR2. 

The source model was the mass conservation law, i.e., W = FA/ 

Sh, where h is the nozzle-to-platen distance and A is the filament’s 

cross-sectional area. This model ignores the complexity of almost 

all the earlier mentioned extrusion physics, and makes an incorrect 

but simplifying assumption that h equals the line (or layer) height. 

It took � 10-6 CPU-hours to generate the 624 source samples used 

here. Experiments were performed to print PLA lines on a home- 

built FFF machine with a 1 mm diameter nozzle for sixteen 

equidistant S (between 350 and 725 mm/min) and F (between 

153 and 729 mm/min) across h = 0.7, 0.85, 1.2 mm. The W was 

measured using vernier calipers and averaged across 3 measure- 

ments. Unstable printing regimes were excluded. 

First, naive learning of the SVR was performed on only the 

experimental target data. Progressively more training points were 

used till the Root Mean Square Error (RMSE) on the testing data 

(i.e., the remainder of the dataset) did not decrease further. This 

training and testing was performed 1000 times using random sam- 

pling, and yielded the average values of the smallest error 

RMSEnaive and the corresponding number of samples nnaive. Transfer 

learning was performed with the source data of the same size as 

nnaive. A progressively increasing amount of target data was used 

to iteratively identify the smallest target dataset needed for trans- 

fer learning (nt) such that the transfer learning error RMSEt was les- 

ser than or equal to RMSEnaive. This ensured that prediction 

accuracy was not sacrificed in the drive to reduce CD. Testing of 

the final SVR obtained after transfer learning was performed on 

data obtained randomly from the a-priori withheld portion of the 

experimental dataset. This test dataset was of the same size as 

nnaive to prevent a heavily lopsided train:test ratio and thus fairly 

compare naive and transfer learning. This randomized testing 

was performed 30 times to obtain the mean RMSEt. 

 
3. Results 

 
Fig. 1 shows the functional discrepancy between the source 

model and the experimental target with 3D plots and representa- 

tive 2D plots. The true effect of F and S on W is decidedly nonlinear, 

especially at lower h, as compared to the linear assumption in the 

source. Fig. 2a-c show the change in the tested RMSE of naive 

learning on only experimental data as a function of the number 

of training points, and reveals the RMSEnaive and nnaive (which is 

constant at 150 for all h). Fig. 2d-f compare this RMSEnaive to the 

error from transfer learning for different amounts of experimental 

training data (i.e., combinations of F and S). There are multiple 

combinations of F and S for which transfer learning enables RMSEt- 

::; RMSEnaive and nt < nnaive. Qualitatively, Fig. 3 shows that the 

transfer learnt SVR can capture the nonlinearity in the experimen- 

tal data despite the qualitatively and quantitatively inaccurate 

mechanistic knowledge embedded in the source model. 

Our approach realizes a 56–76 % reduction in CEXP as compared 

to naive learning and reduces the error by 16–24% (Table 1). 

Existing computational or analytical process models can be used 

as the source for naive learning since they are good qualitative 

 

 
 

Fig. 3. Comparison of transfer learnt model and target for h = (a-d) 0.7 mm (e-h) 0.85 mm (i-l)  1.2 mm. 
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Table 1 

Comparison of smallest RMSE and corresponding number of training samples for naive learning and transfer learning. 
 

h (mm) nnaive RMSEnaive  nt  RMSEt nnaive -nt RMSEnaive -RMSEt 

      nnaive RMSEnaive 

   
No. of S No. of F    

0.7 150 0.104 ± 0.014 6 7 0.081 ± 0.004 72% 22% 

0.85 150 0.056 ± 0.009 11 6 0.047 ± 0.0006 56% 16% 

1.2 150 0.059 ± 0.015 6 6 0.045 ± 0.002 76% 24% 

 

 

and quantitative matches to the ground truth [8,9]. But it has taken 

significant time and effort for these models to reach this point, 

from 2000 to 2019 for analytical equations [15,16] and from 

2002 to 2018 for computational simulations [9,17]. This indicates 

that using Smart-ML in 2000, which is when our source model 

was reported in the literature, could have saved at least 18 

human-years of CDEV. Overall, our approach reduces CDEV for new 

processes by easing the need for qualitatively accurate human - 

created physics-based process models. Note that using high- 

fidelity computational models to generate just one training sample 

for FFF needs orders of magnitude more CPU-hours than that for 

Smart-ML (i.e., 10-6 CPU-hours) [9,16]. Thus, Smart-ML reduces 

CDEV in addition to CC OMP and CEXP. 

 
 

4. Conclusions 

 
State-of-the-art approaches for ML models of parametric effects 

in manufacturing processes focus on reducing the experimental 

and computational cost of training data generation. This paper 

pushes beyond this paradigm to examine the possibility of also 

reducing the often-overlooked, but significant, cost of process 

model development. This is achieved by testing the limits of the 

requisite similarity between source process models and target 

experimental data in transfer learning, via the use of an uncali- 

brated guess for the functional form of the constitutive law to 

avoid the cost of iterative model development. This approach over- 

comes significant functional discrepancies between the source and 

the target, unlike assumptions made in the manufacturing litera- 

ture; reduces the developmental cost along with the experimental 

and computational costs of generating training data; and reduces 

the prediction error. A key challenge that will be tackled in our 

future work is automated and intelligent sampling of the experi- 

mental target, since the number of process parameters can be 

numerous and where to sample in this parameter space is not intu- 

itive for a new manufacturing process. 

 

Declaration of Competing Interest 

 
The authors declare that they have no known competing finan- 

cial interests or personal relationships that could have appeared 

to influence the work reported in this paper. 

Acknowledgements 

 
All the authors acknowledge the support from the US National 

Science Foundation Award No. CMMI # 2001081. Jeremy Cleeman 

further acknowledges additional support from the US National 

Science Foundation Graduate Research Fellowship Program (Fel- 

low ID: 2022291313) 

 
References 

 
[1] Arinez JF, Chang Q, Gao RX, Xu C, Zhang J. Artificial intelligence in advanced 

manufacturing: current status and future outlook. J Manuf Sci Eng 2020;142. 

[2] Allison J, Li M, Wolverton C, Su XuMing. Virtual aluminum castings: an  

industrial application of ICME. JOM 2006;58(11):28–35. 

[3] Mukherjee T, DebRoy T. A digital twin for rapid qualification  of 3D printed 

metallic components. Appl Mater Today 2019;14:59–65. 

[4] Zoch H-W. From single production step to entire process chain – the global 

approach of distortion engineering. Mater Werkst 2006;37(1):6 –10. 

[5] Zoch H-W. Distortion engineering – interim results  after one decade research 

within the Collaborative Research Center. Mater Werkst 2012;43(1 -2):9–15. 

[6] Alam MF, Shtein M, Barton K, Hoelzle DJ. Autonomous manufacturing using 

machine learning: a computational case study with a limited manufacturing  

budget V002T007A009pages (American Society of Mechanical Engineers).  

[7] Liu S, Lu Y, Zheng P, Shen H, Bao J. Adaptive reconstruction of digital twins for 

machining systems: a transfer learning approach. Rob Comput Integr Manuf 

2022;78:102390. 

[8] Serdeczny MP, Comminal R, Pedersen DB, Spangenberg J. Experimental and 

analytical study of the polymer melt flow through the hot-end in material 

extrusion additive manufacturing. Addit Manuf 2020;32:100997. 

[9] Serdeczny MP, Comminal R, Pedersen DB, Spangenberg J. Experimental 

validation of a numerical model for the strand shape in material extrusion  

additive manufacturing. Addit Manuf 2018;24:145–53. 

[10] Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, et al. A comprehensive survey on 

transfer learning. Proc IEEE 2021;109(1):43–76. 

[11] Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J of Big data 

2016;3:1–40. 

[12] Jain RK, Smith KM, Culligan PJ, Taylor JE. Forecasting energy consumption of  

multi-family residential buildings using support vector regression: 

investigating the impact of temporal and spatial monitoring granularity on  

performance accuracy. Appl Energy 2014;123:168–78. 

[13] Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V. Support vector regression 

machines. Adv Neural Inf Proces Syst 1996;9. 

[14] Pardoe D, Stone P. In: Proceedings of the Twenty-Seventh International 

Conference on Machine Learning, ICML 10 (Haifa, Israel, 2010).  

[15] Bellini A, Gu¨c_eri S, Bertoldi M. Liquefier dynamics in fused deposition. J 

Manuf Sci Eng 2004;126(2):237–46. 

[16] Agassant J-F, Pigeonneau F, Sardo L, Vincent M. Flow analysis of the polymer 

spreading during extrusion additive manufacturing. Addit Manuf  

2019;29:100794. 

[17] Bellini A. Fused deposition of ceramics: a comprehensive experimental,  

analytical and computational study of material behavior, fabrication process  

and equipment design. Philadelphia, PA: Drexel University; 2002. Ph D  

dissertation. 

http://refhub.elsevier.com/S2213-8463(23)00049-4/h0005
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0005
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0010
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0010
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0015
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0015
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0020
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0020
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0025
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0025
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0035
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0035
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0035
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0040
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0040
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0040
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0045
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0045
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0045
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0050
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0050
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0055
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0055
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0060
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0060
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0060
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0060
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0065
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0065
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0075
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0075
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0075
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0080
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0080
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0080
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0085
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0085
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0085
http://refhub.elsevier.com/S2213-8463(23)00049-4/h0085

