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Machine Learning (ML) enables deployable modeling of parametric effects in manufacturing processes.
But this paradigm is largely limited to established processes, since the state-of-the-art ignores the signif-
icant cost of creating qualitatively accurate physics-based models for new processes. We propose a trans-
fer learning based method that addresses this issue by pushing the boundaries of the qualitative accuracy

demanded of the physics-based model. Our approach is evaluated for modeling the printed line width in
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Fused Filament Fabrication and shows reduction in the model development cost by multiple human-
years, experimental cost by 56—76%, computational cost by orders of magnitude, and error by 16—-24%.
® 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Machine Learning (ML) has become popular for modeling para-
metric effects in manufacturing processes due to its high deploya-
bility. But generating the required training data from experiments
incurs time and resources (experimental cost C). Generating the
training data from physics-based process models incurs a compu-
tational cost Cc, i.e., the CPU-hours needed to run simulations; and
a model development cost Cp, i.e., the time and human resources
needed for intuitive trial-and-error creation of constitutive laws
and numerical methods that qualitatively and quantitatively cap-
ture interactions between multiple physical phenomena over mul-
tiple time and length scales [1]. The root cause of high Cp» for new
processes, which is commonly on the order of decades [2-5], is that
qualitative knowledge of the underlying physics is often missing.

Multifidelity learning trains an ML model using a large amount
of inexpensive and inaccurate data (source) and fine-tunes it using
a small amount of costly but accurate data (target). Using compu-
tational process models as the source and experimental data as the
target reduces Ck relative to training with only experimental data,
reduces Cc compared to training with only computational data, and
captures the ground truth [6]. But this approach assumes that the
source must qualitatively match the target, i.e., multifidelity learn-
ing only effects a quantitative correction. Thus, Cb is still high since
a qualitatively accurate physics-based source is needed. Using
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analytical process models as the source decreases Cc even further,
but does not reduce C» [7]. Note that using experimental sources
for new processes is not possible due to their inherent novelty.

This paper proposes a multifidelity learning approach that
reduces Cp despite limited mechanistic knowledge of the process
physics. This method is demonstrated for modeling the printed
line’s width W in Fused Filament Fabrication (FFF) as a function
of the filament feed rate F and extruder speed S. This problem
involves complex physics including non-Newtonian flow, friction,
cooling, wetting, and compressibility [8,9]. While FFF is not new
and this problem has an existing solution, we choose this problem
since this very fact that allows us to quantify the reduction in Cp
possible.

2. Methods

Our approach uses transfer-based multifidelity learning, with a
physics-based process model as the source and experiments as the
target. Thus, the final ML model reflects the experimental ground
truth and reduces Cz. This process model must (a) include one or
more conservation laws to respect the fundamental laws of nature;
(b) use a guess for the form of the constitutive law without any
experimental calibration or validation, to reduce Cp; (¢) avoid or
minimize spatiotemporal discretization to minimize Cc. The reader
is referred to the literature for the various transfer learning meth-
ods available for regression [10,11]. In this paper, Epsilon Support
Vector Regression (SVR [12,13]) with a gaussian Radial Basis
Function was used as the ML model and the TrAdaBoost.R2
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algorithm was used for transfer learning [14]. The hyperparame-
ters for the e-SVR were based on brute force identification and
the number of boosting iterations for TrAdaBoostR2 was 30. The
reader is referred to the above literature for further details on both
SVRs and TrAdaBoostR2.

The source model was the mass conservation law, i.e., W = FA/
Sh, where h is the nozzle-to-platen distance and A4 is the filament’s
cross-sectional area. This model ignores the complexity of almost
all the earlier mentioned extrusion physics, and makes an incorrect
but simplifying assumption that h equals the line (or layer) height.
It took € 10-6 CPU-hours to generate the 624 source samples used
here. Experiments were performed to print PLA lines on a home-
built FFF machine with a 1 mm diameter nozzle for sixteen
equidistant S (between 350 and 725 mm/min) and F (between
153 and 729 mm/min) across h = 0.7, 0.85, 1.2 mm. The W was
measured using vernier calipers and averaged across 3 measure-
ments. Unstable printing regimes were excluded.

First, naive learning of the SVR was performed on only the
experimental target data. Progressively more training points were
used till the Root Mean Square Error (RMSE) on the testing data
(i.e., the remainder of the dataset) did not decrease further. This
training and testing was performed 1000 times using random sam-
pling, and yielded the average values of the smallest error
RMSEnave and the corresponding number of samples nnaive. Transfer
learning was performed with the source data of the same size as
nnaive. A progressively increasing amount of target data was used
to iteratively identify the smallest target dataset needed for trans-
fer learning (n:) such that the transfer learning error RMSE: was les-
ser than or equal to RMSEnave. This ensured that prediction
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accuracy was not sacrificed in the drive to reduce Cp. Testing of
the final SVR obtained after transfer learning was performed on
data obtained randomly from the a-priori withheld portion of the
experimental dataset. This test dataset was of the same size as
nnave to prevent a heavily lopsided train:test ratio and thus fairly
compare naive and transfer learning. This randomized testing
was performed 30 times to obtain the mean RMSE:.

3. Results

Fig. 1 shows the functional discrepancy between the source
model and the experimental target with 3D plots and representa-
tive 2D plots. The true effect of F and S on W is decidedly nonlinear,
especially at lower h, as compared to the linear assumption in the
source. Fig. 2a-c show the change in the tested RMSE of naive
learning on only experimental data as a function of the number
of training points, and reveals the RMSEnave and nnave (which is
constant at 150 for all h). Fig. 2d-f compare this RMSEnave to the
error from transfer learning for different amounts of experimental
training data (i.e., combinations of F and S). There are multiple
combinations of F and S for which transfer learning enables RMSE+
:;; RMSEnave and ne < nnawe. Qualitatively, Fig. 3 shows that the
transfer learnt SVR can capture the nonlinearity in the experimen-
tal data despite the qualitatively and quantitatively inaccurate
mechanistic knowledge embedded in the source model.

Our approach realizes a 56—76 % reduction in Cexr as compared
to naive learning and reduces the error by 16-24% (Table 1).
Existing computational or analytical process models can be used
as the source for naive learning since they are good qualitative
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Fig. 3. Comparison of transfer learnt model and target for h = (a-d) 0.7 mm (e-h) 0.85 mm (i-D 1.2 mm.
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Table 1

Manufacturing Letters 37 (2023) 53-56

Comparison of smallest RMSE and corresponding number of training samples for naive learning and transfer learning.

h (mm) Nnaive RMSE aive ne RMSE; Nygige = RMSE,;,, ~RMSE,
Nnaive RMSE give
No. of S No. of F
0.7 150 0.104 = 0.014 6 7 0.081 + 0.004 2% 292%
0.85 150 0.056 = 0.009 11 6 0.047 + 0.0006 56% 16%
1.2 150 0.059 £ 0.015 6 6 0.045 + 0.002 6% 24%
and quantitative matches to the ground truth [8,9]. Butit has taken Acknowledgements

significant time and effort for these models to reach this point,
from 2000 to 2019 for analytical equations [15,16] and from
2002 to 2018 for computational simulations [9,17]. This indicates
that using Smart-ML in 2000, which is when our source model
was reported in the literature, could have saved at least 18
human-years of Cpev. Overall, our approach reduces Cpev for new
processes by easing the need for qualitatively accurate human-
created physics-based process models. Note that using high-
fidelity computational models to generate just one training sample
for FFF needs orders of magnitude more CPU-hours than that for
Smart-ML G.e., 10 CPU-hours) [9,16]. Thus, Smart-ML reduces
Coev in addition to Ccomp and Cexp.

4. Conclusions

State-of-the-art approaches for ML models of parametric effects
in manufacturing processes focus on reducing the experimental
and computational cost of training data generation. This paper
pushes beyond this paradigm to examine the possibility of also
reducing the often-overlooked, but significant, cost of process
model development. This is achieved by testing the limits of the
requisite similarity between source process models and target
experimental data in transfer learning, via the use of an uncali-
brated guess for the functional form of the constitutive law to
avoid the cost of iterative model development. This approach over-
comes significant functional discrepancies between the source and
the target, unlike assumptions made in the manufacturing litera-
ture; reduces the developmental cost along with the experimental
and computational costs of generating training data; and reduces
the prediction error. A key challenge that will be tackled in our
future work is automated and intelligent sampling of the experi-
mental target, since the number of process parameters can be
numerous and where to sample in this parameter space is not intu-
itive for a new manufacturing process.
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