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a b s t r a c t

In laser-induced plasma micro-machining (LIPMM), a focused, ultrashort pulsed laser beam creates a
highly localized plasma zone within a transparent liquid dielectric. When the beam intensity is greater
than the breakdown threshold in the dielectric media, plasma is formed which is then used to ablate
the workpiece. This paper aims to facilitate in-situ process monitoring and quality prediction for
LIPMM by developing a deep learning model to (1) understand the relationship between acoustic emis-
sion data and quality of micro-machining with LIPMM, (2) transfer such understanding across different
process parameters, and (3) predict quality accurately by fine-tuning models with a smaller dataset.
Experiments and results show that the relationship learned from one process parameter can be trans-
ferred to other parameters, requiring lesser data and lesser computational time for training the model.
We investigate the feasibility of transfer learning and compare the performance of various transfer learn-
ing models: different input features, different CNN structures, and the same structure with different fine-
tuned layers. The findings provide insights into how to design effective transfer learning models for man-
ufacturing applications.

� 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
1. Introduction

Laser-induced plasma micro-machining (LIPMM) is a novel
multi-material, tool-less process that removes material at the
microscale by plasma-matter interaction [1–3]. Compared with
conventional laser ablation, LIPMM overcomes the shortcomings
in machining materials with low absorptivity or high reflectivity
[2] and has been shown to machine metal alloys, transparent
materials, brittle ceramics, and polymers [4,5]. In addition, LIPMM
enables reduced heat-affected zone (HAZ), enhanced material
removal rates, and higher aspect ratios of the machined features
[6].

The quality of micro-machining with LIPMM, indicated by the
uniformity in channel depth along the channel length, is acutely
sensitive to laser parameters such as pulse energy, pulse frequency,
and laser speed [7]. The quality of the micro-machined workpiece
is also affected by the generation of bubbles and ablation debris
[8]. Specifically, bubble-induced quality deterioration is a well-
known issue [9]. In order to achieve desired quality, it is necessary
to develop methods that facilitate in-situ process monitoring and
quality prediction for LIPMM. This paper aims to fill in two gaps
in literature. First, there is no work reported on the in-situ moni-
toring or predictive quality analysis for LIPMM, because LIPMM is
a newly developed process still under exploration. Second, none
of the existing works has investigated models that can be general-
ized to a variety of process parameters.

Looking into similar processes, there have been analytical,
numerical-based, or AI-based methods developed for process mon-
itoring or quality prediction in laser beam machining. Although
some of those methods can be applied to LIPMM, they focus on
finding the best combination of process parameters, rather than
in-situ monitoring or quality prediction. Moreover, most existing
works only use laser parameters (e.g., pulse energy) as the input
for quality prediction, while in-situ sensing data might help to
improve prediction accuracy by capturing uncertainties in the
actual process. In addition, none of the existing works has investi-
gated models that can be generalized in a variety of process param-
eters (e.g., different laser parameters and a variety of materials).
Besides, there is no in-situ monitoring for the LIPMM process
reported. To fill in these gaps, this paper develops a transferable
method for in-situ monitoring and quality prediction in LIPMM
considering a variety of process parameters.
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The objective of this paper is to develop a transferrable method
for in-situ process monitoring and quality prediction in LIPMM.
This study aims to provide the following contributions to the
state-of-the-art: firstly, deep CNN and process parameter-
informed (para-informed) deep CNN models are proposed for
understanding the relationship between acoustic emission data
and quality of micro-machining with LIPMM; secondly, such
understanding is transferred across different process parameters
by transfer learning and fine-tuning models with a smaller dataset;
thirdly, the feasibility of transfer learning is investigated and com-
pared under different designs of CNN architecture and input fea-
tures; lastly, the performance of transfer learning with different
designs of fine-tuning strategies are compared to provide insights
on how to design effective transfer learning models.
Fig. 1. Examples from LIPMM: (a) bad machining; (b) good machining; (c) the raw
AE signal from one of the LIPMM experiments; (d) the first segment from the AE
signal; (e) the second segment from the AE signal.
2. Sensing and data collection

LIPMM experiments were performed with a Quantum Light
Instruments pulsed laser (3 ns pulse duration, 50 mJ pulse energy
at a wavelength of 526 nm). The 4 mm diameter laser beam was
optically reduced to a 120 lm diameter beam at the focal point.
The workpiece material was 6061 Aluminum purchased from
McMaster Carr. Deionized water was used as the dielectric liquid.
The workpiece was kept in a glass beaker with a 2 mm thick water
layer above it. The glass beaker was, in turn, kept on a motorized
XYZ stage that had a resolution of 50 nm. The focal point for LIPMM
was identified by creating holes at different vertical distances of
the lens from the workpiece and examining the depth of the
machined features. As in past work on LIPMM, the focal point cho-
sen was that at which the machined depth was maximum and after
which the machined depth decreased again. Microchannels were
machined by moving the laser at a specified laser speed and pulse
energy along the desired direction in a single pass, i.e., without
translating the laser spot in the vertical direction. The dimensions
of the machined channels and holes were measured using a Key-
ence optical profilometer. An omnidirectional hydrophone (Aquar-
ian hydrophones, model AS-1) with a 1 Hz to 100 kHz range and a
sensitivity of 40 lV/Pa was kept at a fixed distance from the focal
spot during machining, and it was connected to a LabView device
to record the acoustic signals during LIPMM. The criteria for assign-
ing good or bad labels were based on the uniformity of machining
from the observed morphology of the machined channels. Different
combinations of the laser speed, laser pulse frequency, and laser
pulse energy resulted in good-quality and bad-quality (with
defects) micro-machined workpieces. Since this paper focuses on
in-situ sensing/monitoring rather than delineating process effects,
the parametric effects on defects are not discussed in this paper.

Examples of the micro-machined workpiece are shown in Fig. 1.
The Fig. 1(a) samples were labeled as bad; Fig. 1(b) samples were
labeled as good based on observably uniform depth along the
microchannel’s length. Fig. 1(c) shows the raw AE signal from
one of the experiments. The x-axis is time, and the y-axis is voltage,
which is linearly proportional to the actual acoustic pressure via a
known constant multiplication factor. We segment the data series
into smaller segments to alleviate the training burden. In addition,
segmenting data helps to enlarge the sample size, leading to a good
number of segments to have the models properly trained. Further-
more, when segmenting the AE signal in time order we can corre-
late each segment to a quality prediction. This enables us to locate
problematic segments for further root cause analysis. Therefore,
we cut each AE data series into equal-length, non-overlapping seg-
ments. The length of the segment is based on the laser pulse per-
iod. Fig. 1(d) and (e) show the first and second segments from
the raw signal in Fig. 1(c). The segments have the same length
and similar waveform-constant patterns.
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3. Method

3.1. Deep convolutional neural network (CNN) for AE signal and
LIPMM quality

The overall framework of the proposed method is illustrated in
Fig. 2. AE signals are cut into non-overlapping segments
s1; s2; � � � ; sN 2 Rnp�1 according to the pulse period, where N is the
total number of segments and np is the length of the pulse period.
Depending on how AE segments are analyzed as input, three types
of models are developed for comparison, namely, FFTNet, Wave-
Net, and AcouNet. AE segments can be converted from the time
domain into the frequency domain using Fast Fourier Transform
(FFT), and a CNN named FFTNet is proposed to predict quality
using frequency features computed by FFT. Selected frequency fea-
tures f 1; f 2; � � � ; f N 2 Rnf�1 are fed into a CNN, where nf is the num-
ber of selected features. Decomposing signals with Discrete
Wavelet Transform (DWT) allows us to obtain low frequency sig-
nals and high frequency signals at each level of decomposition.
Selected wavelet features w1;w2; � � � ;wN 2 Rnf�1 are fed into a
CNN. In AcouNet, the AE segments are used directly as input into
a CNN. Different architectures of AcouNet are proposed for com-
parison. The performance among models with different fine-
tuning strategies are also compared in AcouNet. To enhance mod-
els’ ability in handling more complex tasks, the FFTNet, WaveNet,
and AcouNet models are extended by adding process parameters
to the input information, forming process parameter-informed
(para-informed) CNNs.

Convolutional neural networks are well suited for processing
acoustic signal [10]. In each of the proposed models, the input is
processed by a series of one-dimensional convolutional layers with
ReLU activation functions and then pooling layers, followed by a
fully connected layer and several hidden layers. The output is a
2� 1 vector indicating the label of micro-machining quality (vec-
tor [1, 0] for bad and [0, 1] for good). As shown in Fig. 2, five CNNs
are developed, and their names include the number of convolu-



Fig. 2. Overall framework of the proposed method.
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tional layers, the number of hidden layers, and the type of input
used (FFTNet or WaveNet or AcouNet). To prevent overfitting, we
also add a 0.2 dropout rate to the fully connected and hidden lay-
ers, which means that each neuron on these layers will be dis-
carded with 0.2 probability.
3.2. Transfer learning with deep CNN

Transfer learning is a paradigm in which a model that has
already been trained on a similar task is reused to complete a sec-
ond task with minimal training cost. Fig. 3 illustrates different fine-
tuning strategies based on 4Conv2h-AcouNet for comparison. Fig. 3
(a) shows that all convolutional layers are fixed, and all fully con-
nected layer and hidden layers are used for fine-tuning, called fc-
h2. In Fig. 3(b), all convolutional layers and the fully connected
layer are fixed, and the last two hidden layers are used as fine-
tuning layers, called h1-h2. Fig. 3(c) shows that the last convolu-
tional layer (Conv4) is added to the fine-tuning layers, called
Conv4-h2. Fig. 3(d) provides an example of the para-informed
model, named 4Cov2h-AcouNet+. Two gray boxes refer to two neu-
rons representing pulse energy and laser speed, respectively.
Fig. 3. Different fine-tuning layers designed in this paper: (a) 4Conv2h-AcouNet
with fine-tuning layers fc, h1, and h2; (b) 4Conv2h-AcouNet with fine-tuning layers
h1 and h2; (c) 4Conv2h-AcouNet with fine-tuning layers Conv4, fc, h1, and h2; (d)
architecture of a para-informed CNN model ‘‘4Conv2h-AcouNet+”.
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4. Case study

We apply the proposed models in two transfer learning tasks. In
Task-1, we develop the CNN models using data from process
parameter Para-1 and then transfer the models to Para-2. Experi-
mental data from Para-1 are used to train the base CNN models.
A small amount of data from Para-2 is used for updating weights
in fine-tuning layers. Total 1883 AE segments (1004 for bad, 879
for good) are used for obtaining the weights in the base model,
and 726 AE segments (363 for bad, 363 for good) are used for
updating the weights in fine-tuning layers in transfer learning. In
Task-2, we further transfer the CNN models trained from Para-1
to three additional process parameters Para-3, Para-4, and Para-
5. Experimental data of Para-1 are used for training the para-
informed CNN models. Similarly, a total of 1883 AE segments
(1004 for bad, 879 for good) are used for obtaining the weights
in the base model, and a total of 612 AE segments (306 for bad,
306 for good) are used for updating the weights in fine-tuning lay-
ers in transfer learning. For both tasks, 80% of the data are used for
training and 20% are reserved for testing. In our experiment, the
length of the pulse period is around 1700, so we set segment length
np ¼ 1700: For FFTNet andWaveNet, features are selected based on
the linear correlation importance score. There is a trade-off in
determining the number of selected features nf : a large nf may
bring more information to the CNN model but may also lead to
redundant features and add to training burden, while a small nf

may cause information loss. Therefore, we select features with
importance score higher than 0.02, and nf ¼ 120. In training the
models, we use the cross-entropy loss function and select the
stochastic gradient descent method as the optimizer.

Table 1(a) shows the transfer learning performance for different

CNN models in Task-1, including the accuracy TPþTN
TPþFPþTNþFN

� �
, preci-

sion TP
TPþFP

� �
, negative predictive value NPV ¼ TN

TNþFN

� �
, sensitivity

TP
TPþFN

� �
, and specificity TN

FPþTN

� �
.

In this study, the ‘‘bad” class is positive and ‘‘good” is negative;
TP (true positive) refers to the correct prediction of undesired qual-
ity, TN (true negative) refers to the correct identification of satisfy-
ing quality, and FP (false positive) and FN (false negative) are the
errors in prediction.

Comparing the AcouNet models in Table 1(a) reveals how the
number of deep convolutional layers affects the learning and pre-
diction performance. Transfer learning drastically reduces training



Table 1
Transfer learning performance comparison.

(a) Transfer learning performance comparison of different models on Para-2 data (Task-1).

Model name Fine-tuning
layers

Accuracy Precision NPV Sensitivity Specificity Training time on transfer
layers (hr)

Training time on base
model (hr)

Base model
accuracy

4Conv2h-
AcouNet

fc-h2 0.9448 0.8760 0.9941 0.9180 0.9907 6.79 35.22 0.9766
h1-h2 0.8993 0.7694 1.0000 0.8484 1.0000 6.03 35.22
Conv4-h2 0.9469 0.9497 0.9450 0.9626 0.9264 7.72 35.22

5Conv1h-
AcouNet

fc-h1 0.9682 0.9935 0.9509 0.9325 0.9953 6.03 42.25 0.9824

5Conv2h-
AcouNet

fc-h2 0.9708 0.9872 0.9593 0.9448 0.9907 7.83 43.22 0.9824

2Conv1h-
FFTNet

fc-h1 0.6499 0.9445 0.6228 0.773 0.972 4.19 15.78 0.7966

2Conv1h-
WaveNet

fc-h1 0.9549 0.9563 0.9539 0.9563 0.9673 4.19 15.78 0.9771

(b) Transfer learning performance comparison of different models on Para-3, Para-4, and Para-5 data (Task-2).

Model name Fine-tuning
layers

Accuracy Precision NPV Sensitivity Specificity Training time on transfer
layers (hr)

Training time on base
model (hr)

Base model
accuracy

4Conv2h-
AcouNet+

fc-h2 0.9390 0.9000 1 1 0.8648 6.54 35.22 0.9618
h1-h2 0.8170 0.7500 1 1 0.5945 6.16 35.22
Conv4-h2 0.9390 0.9000 1 1 0.8648 7.89 35.22

5Conv1h-
AcouNet+

fc-h1 0.8536 0.7894 1 1 0.6756 6.16 42.25 0.9670

5Conv2h-
AcouNet+

fc-h2 0.8902 0.8333 1 1 0.7567 8.01 43.22 0.9670

2Conv1h-
FFTNet+

fc-h1 0.6951 0.6428 1 1 0.3243 4.28 15.78 0.8029

2Conv1h-
WaveNet+

fc-h1 1.0000 1.0000 1 1 1.0000 4.28 15.78 1.0000
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time, as evidenced by a 4Conv2h-AcouNet model’s training time
reduction from 35.22 to 6.79 h, achieving 94.48% accuracy. Accu-
racy and learning speed are influenced by the number of fine-
tuning layers: fewer layers save time at the potential cost of accu-
racy, and vice versa. For instance, fine-tuning Conv4-h2 layers led
to marginally better accuracy (94.69%) but required additional
0.93 h. Deeper convolutional layers enhance learning performance,
with models 5Conv1h-AcouNet and 5Conv2h-AcouNet outper-
forming the 4Conv2h-AcouNet model, achieving 96.82% and
97.08% accuracies, respectively. Input features significantly affect
model performance, with the 2Conv1h-WaveNet model outper-
forming the 2Conv1h-FFTNet model (95.49% versus 64.99% accu-
racy), proving wavelet features’ effectiveness in LIPMM quality
prediction. Table 1(b) shows the transfer learning performance
for para-informed CNN models in Task-2. In fine-tuning the
4Conv2h-AcouNet+ model, both Conv4-h2 and fc-h2 strategies
achieve 93.90% accuracy, suggesting the Conv4 layer redundant
for additional fine-tuning. The 5Conv2h-AcouNet+ model outshi-
nes the 5Conv1h-AcouNet+ with 89.02% accuracy, albeit at a longer
training time (8.01 versus 6.16 h). This showcases the trade-off
between more in-depth information capture and increased train-
ing time. In contrast, the 2Conv1h-FFTNet+ model, using only fre-
quency features, attains a poor accuracy (69.51%), highlighting the
crucial role of wavelet features in quality prediction demonstrated
by the 2Conv1h-WaveNet+ model’s 100% accuracy. A comparison
of the base models reveals the advantage of an additional convolu-
tional layer in the 5Conv2h-AcouNet model, which outperforms
the 4Conv2h-AcouNet model. Despite transfer learning models
showing a minor accuracy drop, their performance remains robust,
verifying their feature extraction and analysis potential.
5. Conclusion

Capturing acoustic emission during the laser-induced plasma
micro-machining process provides opportunities for in-situ pro-
cess monitoring and quality prediction. We develop deep learning
22
models that can timely and accurately predict the quality of micro-
machining in LIPMM process. The models learn the relationship
between acoustic emission data and quality of micro-machined
workpiece with LIPMM. The relationship learned from one process
setting can be transferred to other process parameters, requiring
less data and less computational time. Results show that transfer
learning is feasible and effective in predicting LIPMM quality.
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