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Abstract—This paper studies how to launch an attack on
reinforcement learning for network slicing in NextG radio access
network (RAN). An adversarial machine learning approach is
pursued to construct an over-the-air attack that manipulates
the reinforcement learning algorithm and disrupts resource
allocation of NextG RAN slicing. Resource blocks are allocated by
the base station (gNodeB) to the requests of user equipments and
reinforcement learning is applied to maximize the total reward of
accepted requests over time. In the meantime, the jammer builds
its surrogate model with its own reinforcement learning algorithm
by observing the spectrum. This surrogate model is used to select
which resource blocks to jam subject to an energy budget. The
jammer’s goal is to maximize the number of failed network slicing
requests. For that purpose, the jammer jams the resource blocks
and reduces the reinforcement learning algorithm’s reward that is
used as the input to update the reinforcement learning algorithm
for network slicing. As result, the network slicing performance
does not recover for a while even after the jammer stops jamming.
The recovery time and the loss in the reward are evaluated
for this attack. Results demonstrate the effectiveness of this
attack compared to benchmark (random and myopic) jamming
attacks, and indicate vulnerabilities of NextG RAN slicing to
smart jammers.

I. INTRODUCTION

A. Machine Learning for 5G Radio Access Network Slicing

As a key component of the radio access network (RAN),

network slicing is considered to be instrumental in meeting

the quality of experience (QoE) requirements in NextG com-

munications systems. Network slicing divides communication

resources into virtual resource blocks and allocates them to

the requests of user equipments (UEs). These resource blocks

can be allocated dynamically, e.g., via near-real time RAN

Intelligent Controller (Near-RT RIC), to support different

types of user applications such as Mobile Broadband (eMBB),

massive machine-type communications (mMTC), and ultra-

reliable low-latency communications [1]–[5].

Machine learning is considered as a key enabler for NextG

communication systems to optimize decision making for

complex tasks by learning from the rich representations of

spectrum data. Applications of machine learning in NextG

communications range from waveform design and spectrum
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situational awareness to security [6]. Machine learning also

plays a major role in the design of network slicing solutions.

Relevant examples of machine learning applications in net-

work slicing include identifying applications and devices, clas-

sifying traffic [7] and managing load efficiency and availability

of the network [8]. In NextG communication systems, training

data may not be readily available to apply supervised learning

solutions. Instead, reinforcement learning can be utilized as a

model-free solution for network slicing in the RAN [9]–[17].

Reinforcement learning can effectively learn from the RAN

performance and update its decisions to allocate resources to

network slicing requests in the RAN.

In this paper, we study a jamming attack on network

slicing. In this setting, the NextG base station, namely the

gNodeB, is the victim system. Each UE requests network

slices from the gNodeB. These requests arrive with the QOE

requirements of user-centric priority (weight), throughput and

latency (deadline). A reinforcement learning algorithm (e.g.,

the Q-learning) is run at the gNodeB to dynamically allocate

resources to network slices for downlink communications from

the gNodeB to the UEs.

B. Adversarial Machine Learning based Attacks on NextG

Radio Access Network Slicing with reinforcement learning

A jammer can disrupt network slicing by jamming the

resource blocks in the RAN. In this context, the reinforce-

ment learning algorithm for network slicing is vulnerable to

jamming attacks. The vulnerabilities of machine learning to

various attacks in training and test times have been studied

under adversarial machine learning. These attacks have been

considered for wireless applications including spectrum sens-

ing and signal classification [18], [19]. In particular, attacks

on reinforcement learning algorithms have been studied in

different wireless applications such as channel access in [20],

[21], where a jammer can jam one channel over one time block

only. It is also possible to attack network slicing in the RAN

by generating fake requests in form of a flooding attack so that

there may not be resources left to serve real network slicing

requests [27].

This paper follows a separate attack approach and considers

an attack on potentially multiple resource blocks that can

be allocated to different users over a time horizon. The

jamming attack on a resource block that is assigned to a



network slicing request prevents the corresponding UE from

achieving the required QoE. Therefore, the reward of this

request drops to zero leading to performance loss. In addition,

the reinforcement learning algorithm of the gNodeB takes this

reward as the input (along with the state) to update itself.

This reward feedback will make the reinforcement learning

algorithm get confused and foot it into predicting the existence

of jamming attacks even if there is no attack. As a result, a

jamming attack can affect the current performance of network

slicing as well its immediate future performance even after the

jamming attack ends.

As time passes, network slicing starts recovering from

the attack by updating the reinforcement learning algorithm

with the correct feedback that arrives after the attack stops.

We measure the performance of this attack by computing

the recovery time, namely the duration of time from when

jamming ends until the gNodeB’s performance reaches the

level before the attack starts. In addition, we measure the

maximum and total loss in the reward during the recovery

time.

We assume that the jammer cannot jam all resource blocks

at the same time due to its energy budget. Under this con-

straint, the jammer needs to carefully select which resource

blocks to jam. The jammer builds a surrogate model with

its own reinforcement learning algorithm to learn how net-

work slicing decisions are made. This approach is similar

to building a deep neural network based surrogate model to

jam data transmissions such as studied in [22], [23] or to

launch adversarial attacks [24], [25] such as studied in [26].

However, the jammer in this paper builds a reinforcement

learning algorithm as the surrogate model. The jammer uses

this surrogate model to make jamming decisions in order to

manipulate the victim’s reinforcement learning algorithm for

network slicing and maximize the number of failed network

slicing requests.

This attack carefully exploits the following vulnerabilities:

(i) the victim’s reinforcement learning algorithm is affected

by the manipulated rewards and (ii) it takes a while for the

victim’s reinforcement learning algorithm to recover even after

the attack stops compared to conventional attacks [28], [29]

that jam data transmissions and remain effective only during

the jamming period.

We compare this attack with two benchmark jamming

attacks, namely the myopic jamming attack that jams the re-

source blocks to maximize the jammer’s instantaneous reward

and the random jamming attack that jams randomly selected

resource blocks). Our results demonstrate that the proposed

attack is much more effective in reducing the reward of

network slicing (under attack and after attack) and prolonging

the recovery time from the attack.

C. Contributions and Paper Organization

The contributions of this paper are summarized as follows.

For a reinforcement learning based NextG RAN slicing algo-

rithm, we present a novel reinforcement learning based attack

built upon adversarial machine learning that selectively jams
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Fig. 1: System model for NextG network slicing in the presence of a jammer.

the available resource blocks so that the victim’s reinforcement

learning algorithm receives incorrect reward (feedback) and

updates itself in a wrong way, thereby leading to a significant

performance loss of resource allocation for network slicing.

We show that the attack is more successful than benchmark

attack schemes in terms of increasing the recovery time and

the loss in the reward for network slicing.

The rest of the paper is organized as follows. Section II

presents how the resources are allocated to network slices

via a reinforcement learning algorithm. Section III introduces

the reinforcement learning based jamming attack. Section IV

provides the performance evaluation of the proposed attack.

Section V concludes this paper.

II. THE VICTIM SYSTEM UNDER ATTACK:

REINFORCEMENT LEARNING BASED RESOURCE

ALLOCATION FOR NEXTG RAN SLICING

We start with describing the victim system that is attacked

by the jammer, namely the reinforcement learning algorithm

that is used for network slicing in the RAN. We consider the

reinforcement learning formulation from [14] for allocation

of resources to network slices. Note that the proposed attack

can be also launched against other reinforcement learning

based RAN slicing settings (e.g., [9], [30]). The system model

is depicted in Fig. 1. We consider a general scenario in

which multiple UEs send their network slicing requests over

time with different QoE requirements including rate, latency

(deadline), and lifetime demands, and weights. The gNodeB

allocates the resource blocks to the selected requests. The

objective of this resource allocation problem is to maximize

the total weight of served requests over a time period. Any

request that cannot be granted is kept in a waiting list until its

deadline expires. The scenario also includes a jammer that is

described in Section III.

Let A(t) denote the set of active requests (that have just

arrived or are waiting in the waiting lists) at time slot t. The

rate requirement of UE i’s request j is expressed as

Dij ≥ dij , (i, j) ∈ A(t), (1)



where Dij and dij denote the achieved downlink data rate

and the minimum required rate, respectively. The required

bandwidth Fij follows from this demanded rate [14].

We have the following constraints on resource assignments

to network slices:
∑

(i,j)∈A(t)

Fij xij(t) ≤ F (t), (2)

where xij(t) is the binary indicator determining whether

UE i’s request j is satisfied at time t and F (t) denotes

the gNodeB’s available communication resources (resource

blocks) at time t (note that resources that have been assigned

to requests and are not terminated yet become temporarily

unavailable).

The update of resources from time t− 1 to time t is given

by

F (t) = F (t− 1) + Fr(t− 1)− Fa(t− 1), (3)

where Fr(t− 1) and Fa(t− 1) are the released and allocated

resources at time t − 1, respectively. If UE i’s request j is

satisfied and the service starts at time slot t, this request will

end at the end of time slot t+ lij −1, where lij is the lifetime

of UE i’s request j. Then, the released and allocated resources

at time t are given by

Fr(t) =
∑

(i,j)∈R(t)

Fij , (4)

Fa(t) =
∑

(i,j)∈A(t)

xij(t)Fij , (5)

where R(t) is the set of requests ending (completed) at time

t. Let wij denote the weight for UE i’s request j to reflect

its priority. The corresponding optimization problem can be

formulated as

max
xij(t)

∑

t

∑

(i,j)∈A(t)

wij xij(t), (6)

subject to (1)–(5).

We use Q-learning to learn the policy that decides on which

action (resource assignment) to take by the gNodeB for a given

state that includes available resources and active requests. The

function Q : S × A → R is computed and maintained as a

Q-table to evaluate the reward R for an action A taken at state

S. At any time t, an action at is taken, the state transitions

from st to st+1 (depending on current state st and action

at), a reward rt is received, and Q is updated. Q function is

initialized as a random matrix and updated by the weighted

average of the old value and the new information as follows:

Q(st, at) ← Q(st, at) (7)

+α ·
(

rt + γ ·max
a

Q(st+1, a)−Q(st, at)
)

,

where α is the learning rate within in [0, 1] and γ is the

discount factor in [0, 1] for rewards over time. When the state

size grows, it is better to approximate the Q-function by a deep

neural network (leading to a deep Q-network formulation),

which is computationally more efficient [15].

If UE i’s request j is satisfied at time t, i.e., xij(t) = 1,

the reward is wij . Otherwise, the reward is 0. This reward

represents the satisfied QoE demands of network slices and

thus indirectly helps quantify the QoE performance regarding

throughput and delay. An action assigns resources to a network

slicing request at a given time. Note that it is possible to take

multiple actions at the same time. At any time t, the states are

F binary variables that determine the availability of F resource

blocks and (Fij , wij) for a request under consideration. The

state at time t transitions depending on the allocation of

resources for requests granted at time t and the release of

resources when lifetimes of active services expire at time t.

The state transitions are given by (3)-(5).

III. ATTACK ON REINFORCEMENT LEARNING FOR NEXTG

RAN SLICING

We consider a jammer that attacks the reinforcement learn-

ing algorithm used for NextG RAN slicing, e.g., the one dis-

cussed in Section II. Other example victim systems including

the reinforcement learning based network slicing schemes in

[9], [30] can be attacked similarly.

A. Reinforcement Learning based Attack

We consider two unique properties of reinforcement learn-

ing that we leverage to formulate and evaluate the attack.

1) The jammer can change the state or the reward by

jamming the resource block, and consequently affect how

the reinforcement learning algorithm operates.

2) After the jammer stops attacking, the reinforcement learn-

ing algorithm recovers over time.

We exploit the first property to design the attack on the

reinforcement learning algorithm used for NextG RAN slicing.

Note that its takes a while for the reinforcement learning

algorithm to recover after the jamming attack stops. We

measure the effect of the attack due to the second property

in Section IV.

The jammer can affect the reward of the reinforcement

learning algorithm if it jams a resource block to be allocated

to a request. Then, the request fails even if the reinforcement

learning algorithm allocates resources and there is no reward

achieved.

We assume that the jammer has limited jamming capability

(typically due to limited energy budget) and can jam at most

B resource blocks at any given time. Therefore, the jammer

needs to carefully select and jam the resource blocks that are

likely to be allocated to network slicing requests.

In the ideal scenario, the jammer builds a surrogate model

as another reinforcement learning algorithm to predict which

resource blocks will be allocated. Then, the jammer can decide

which resource blocks to jam. This scenario is not practical.

First, the jammer does not have access to the state of the

victim’s reinforcement learning algorithm. Second, the jammer

does not know the achieved reward which is given by the

request’s weight. Instead, the jammer needs to use a different

reinforcement learning algorithm as an approximate surrogate
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Fig. 2: The interactions of the jammer and the victim system.

model. Different state, action, and reward properties of the

jammer are given as follows.

• The state is the set of binary variables that determine

whether resource blocks are available, or not. For that

purpose, the jammer passively senses the resource blocks.

Note that this corresponds to a black-box attack.

• An action selects which set of min{B,F (t)} resource

blocks from F (t) available resource blocks to jam, or

decides not jam any resource block. Let CB
F (t) denote the

number of B-combinations from a set of F (t) elements,

i.e., the number of possibilities in picking B out of F (t)).
Then, the number of possible actions is CB

F (t) + 1 if

F (t) > B, or 2 (jam or not) if F (t) ≤ B.

• The reward is determined by the number of requests that

are jammed at a given time. If the transmission is not

successful, the corresponding UE transmits a negative

acknowledgment (NACK) at the end of a time slot. A

retransmission is possible later subject to its deadline for

reliable communications. The reward on a channel is set

as 1 provided that the jammer jams a resource block

and later observes the NACK. The jammer only needs

to identify if a NACK is transmitted without any need

to decode it. For that purpose, the jammer distinguishes

the NACK from data transmissions by leveraging the

properties that the NACK is shorter than data portion

and appears between network slicing requests and data

transmissions.

The jammer applies reinforcement learning to learn the

effect of its attack and to update its Q-table by (7). The jammer

selects which resource blocks to jam in order to maximize

its expected jamming reward. This corresponds to an over-

the-air attack that indirectly manipulates the reward of the

reinforcement learning algorithm by jamming the resource

blocks. Fig. 2 shows how the victim reinforcement learning

algorithm of the gNodeB and the surrogate reinforcement

learning algorithm of the jammer interact with each other.

B. Performance Metrics and Benchmark Attack Schemes

The performance loss due to the attack is computed by

comparing it with the case of no attack. This loss is due

to the failure of some requests due to jamming of resource

blocks such that the reward does not include their weights.

Another way of measuring the effect of the attack is to

compute the recovery time of the reinforcement algorithm after

the jamming attack ends. By jamming resource blocks, the

jammer can change some rewards. Then, the reinforcement

learning algorithm of the gNodeB updates itself with these

changed rewards. Therefore, the attack also impacts how the

reinforcement learning algorithm operates. Hence, even if the

jamming attack ends, it takes a while for the performance

of network slicing to return to the levels before the attack

stops. The reason is that the gNodeB can only collect sufficient

data over some time to update and correct its reinforcement

learning algorithm and only after some time, its performance

can reach to the level before the attack.

We measure the impact of the jammer by computing the

following metrics.

• Recovery time: Recovery time is the time it takes (after

the jamming attack ends) for the reward of the victim’s

reinforcement learning algorithm to reach back the level

before the attack. If this recovery time is long, the jammer

does not need to jam for a long time period. This way, the

jammer can jam only for a short time period and resume

jamming later before the recovery time. This helps the

jammer operate in a stealth mode without continuous

jamming and save energy.

• Maximum performance loss: Maximum performance loss

is the maximum performance gap during the recovery

time compared to the level before the attack. We measure

the performance as the reward with running average.

The maximum performance loss represents the maximum

impact during the recovery time.

• Total performance loss: Total performance loss is the

accumulated performance gap during the recovery time

compared to the level before the attack. The total per-

formance loss is a more robust metric than the above

two, since it is not affected by a small performance loss

(compared with recovery time) or a single extreme point

(compared with the maximum performance loss).

We compare this attack with the case of no attack. In

addition, we consider two benchmark attacks:

• Random attack: The jammer uniformly randomly selects

some resource blocks from all resource blocks and jams

them subject to its jamming budget.

• Myopic attack: The jammer selects which resource blocks

to jam (subject to its jamming budget) in order to

maximize its instantaneous reward. The myopic attack

does not consider future rewards.

Note that the proposed attack takes some time to improve

its attack actions as the jammer’s reinforcement learning

algorithm learns how to make jamming decisions over time.

On the other hand, random and myopic attacks do not involve

gradual improvement. For fair comparison, we measure the

recovery time, maximum and total performance loss over the

same period of time (including the warm-up time) for all these



TABLE I: Performance comparison of Q-learning and other attacks.

Attack Maximum Recovery Maximum Total
scheme number of time loss loss

jammed in reward in reward
resource blocks

1 1038 1.447 736.216
2 1191 1.801 911.604

Q-learning 3 1548 1.957 1006.174
4 2086 2.014 1038.988
5 2038 2.714 1410.069

1 1035 1.343 670.071
2 1060 1.587 788.289

Myopic 3 1028 1.684 836.998
4 1207 1.775 894.721
5 1365 1.772 889.113

1 1197 1.000 506.947
2 1233 1.489 750.976

Random 3 1170 1.813 907.546
4 1180 2.061 1032.088
5 1202 2.273 1141.359
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Fig. 3: The reward of reinforcement learning algorithm for NextG RAN slicing
after the attack stops.

attacks. The evaluation of the attack performance is reported

in Section IV.

IV. PERFORMANCE EVALUATION

We simulated a scenario that consists of one gNodeB and

30 UEs. The gNodeB may receive requests from all the UEs.

Requests arrive with a rate of 0.05 per slot for each UE. Note

that each time block (0.23 ms long with 60 kHz subcarrier

spacing) is considered a slot. The weight is chosen uniformly

randomly in [1, 5] for each request. Similarly, the lifetime is

assigned randomly in [1, 10] slots, and the deadline is assigned

randomly in [1, 20] slots. The maximum received SNR is

selected randomly from [1.5, 3]. We split the total bandwidth

of 10 MHz to 11 bands corresponding to 11 resource blocks.

We repeat this scenario over 1000 time slots to evaluate the

impact of the attacks. We set the discount factor as γ = 0.95
and the learning rate as α = 0.1 for Q-learning.

The benchmark of no attack case is run over 10000 slots.

The jammer also launches its attack over 10000 slots. The
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Fig. 4: The reward of the reinforcement learning algorithm for NextG RAN
slicing under the attack.

reward is 3.032 over the first 1000 slots. This result is used

as the benchmark for recovery. Then, we measure the average

reward over the past 1000 slots after the jamming attack ends

and once this average reward reaches 3.032, namely when the

victim system recovers from the attack and the network slicing

reaches the level of performance before the attack. In addition,

we compute the (maximum and total) performance gap to the

benchmark during the recovery time.

We also consider random and myopic jamming attacks for

comparison purposes. The results for all these attacks are

shown in Table I. Note that the results for random jamming

are averaged over 20 runs. The reinforcement learning based

attack that was introduced in Section III-A has longer and

larger impact on the network slicing performance than the

other two attacks, indicating that the proposed attack is more

effective. In particular, the recovery time is increased by up to

77%, the maximum loss in the reward is increased by up to

53%, and the total loss in the reward is increased by up to 59%
compared to benchmark attacks depending on the maximum

number of jammed resource blocks with the reinforcement

learning based attack. Fig. 3 shows the change of the reward

over time after the attack ends when the maximum number of

jammed resource blocks is 5.

The advantage of the reinforcement learning based attack

comes from the smallest reward when the attack ends. Thus,

we also check the reward under different attacks. We evaluated

the performance of the victim’s reinforcement learning under

different attacks. The results are shown in Fig. 4. The average

reward is shown over the past 1000 slots, so we observe

that the performance is high at the beginning and rapidly

decreases over time. Under both random jamming or rein-

forcement learning based jamming attacks, the performance

still remains low. On the other hand, the performance under

myopic jamming attack keeps increasing. The deterministic

nature of the myopic algorithm causes this. The behavior of

the myopic jamming attack can easily be learned by the victim



reinforcement learning algorithm used for RAN slicing and its

effect can be mitigated.

V. CONCLUSION

We introduced a novel over-the-air attack on network slic-

ing for NextG RAN by jamming the resource blocks and

manipulating the reinforcement learning algorithm used for

resource allocation. We exploited the property that jamming a

resource block that is assigned to a request not only reduces

the associated reward to zero but also manipulates the update

of the reinforcement learning algorithm that takes this reward

as the input. Therefore, the effect of the jamming attack

continues and it takes a while for the reinforcement learning

algorithm for network slicing to update itself and recover

from the performance loss even after the jamming attack

ends. Subject to an energy budget, the goal of the jammer

is set as selecting which resource blocks to jam in order

to maximize the number of failed network slicing requests

over time. By monitoring the spectrum, the jammer builds

a surrogate reinforcement learning model to learn how the

reinforcement learning algorithm for network slicing operates

and jams the resource blocks to reduce its performance. Our

results demonstrated that this jamming attack is much more

effective in reducing the network slicing performance (namely,

increasing the recovery time and reducing the achieved reward)

compared to myopic and random jamming attacks, and poses

a major threat to network slicing in the NextG RAN.
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