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Abstract—This paper studies how to launch an attack on
reinforcement learning for network slicing in NextG radio access
network (RAN). An adversarial machine learning approach is
pursued to construct an over-the-air attack that manipulates
the reinforcement learning algorithm and disrupts resource
allocation of NextG RAN slicing. Resource blocks are allocated by
the base station (gNodeB) to the requests of user equipments and
reinforcement learning is applied to maximize the total reward of
accepted requests over time. In the meantime, the jammer builds
its surrogate model with its own reinforcement learning algorithm
by observing the spectrum. This surrogate model is used to select
which resource blocks to jam subject to an energy budget. The
jammer’s goal is to maximize the number of failed network slicing
requests. For that purpose, the jammer jams the resource blocks
and reduces the reinforcement learning algorithm’s reward that is
used as the input to update the reinforcement learning algorithm
for network slicing. As result, the network slicing performance
does not recover for a while even after the jammer stops jamming.
The recovery time and the loss in the reward are evaluated
for this attack. Results demonstrate the effectiveness of this
attack compared to benchmark (random and myopic) jamming
attacks, and indicate vulnerabilities of NextG RAN slicing to
smart jammers.

I. INTRODUCTION
A. Machine Learning for 5G Radio Access Network Slicing

As a key component of the radio access network (RAN),
network slicing is considered to be instrumental in meeting
the quality of experience (QoE) requirements in NextG com-
munications systems. Network slicing divides communication
resources into virtual resource blocks and allocates them to
the requests of user equipments (UEs). These resource blocks
can be allocated dynamically, e.g., via near-real time RAN
Intelligent Controller (Near-RT RIC), to support different
types of user applications such as Mobile Broadband (eMBB),
massive machine-type communications (mMTC), and ultra-
reliable low-latency communications [1]-[5].

Machine learning is considered as a key enabler for NextG
communication systems to optimize decision making for
complex tasks by learning from the rich representations of
spectrum data. Applications of machine learning in NextG
communications range from waveform design and spectrum

This effort is supported by the U.S. Army Research Office under contract
WO11INF-17-C-0090. The content of the information does not necessarily
reflect the position or the policy of the U.S. Government, and no official
endorsement should be inferred.

situational awareness to security [6]. Machine learning also
plays a major role in the design of network slicing solutions.
Relevant examples of machine learning applications in net-
work slicing include identifying applications and devices, clas-
sifying traffic [7] and managing load efficiency and availability
of the network [8]. In NextG communication systems, training
data may not be readily available to apply supervised learning
solutions. Instead, reinforcement learning can be utilized as a
model-free solution for network slicing in the RAN [9]-[17].
Reinforcement learning can effectively learn from the RAN
performance and update its decisions to allocate resources to
network slicing requests in the RAN.

In this paper, we study a jamming attack on network
slicing. In this setting, the NextG base station, namely the
gNodeB, is the victim system. Each UE requests network
slices from the gNodeB. These requests arrive with the QOE
requirements of user-centric priority (weight), throughput and
latency (deadline). A reinforcement learning algorithm (e.g.,
the Q-learning) is run at the gNodeB to dynamically allocate
resources to network slices for downlink communications from
the gNodeB to the UEs.

B. Adversarial Machine Learning based Attacks on NextG
Radio Access Network Slicing with reinforcement learning

A jammer can disrupt network slicing by jamming the
resource blocks in the RAN. In this context, the reinforce-
ment learning algorithm for network slicing is vulnerable to
jamming attacks. The vulnerabilities of machine learning to
various attacks in training and test times have been studied
under adversarial machine learning. These attacks have been
considered for wireless applications including spectrum sens-
ing and signal classification [18], [19]. In particular, attacks
on reinforcement learning algorithms have been studied in
different wireless applications such as channel access in [20],
[21], where a jammer can jam one channel over one time block
only. It is also possible to attack network slicing in the RAN
by generating fake requests in form of a flooding attack so that
there may not be resources left to serve real network slicing
requests [27].

This paper follows a separate attack approach and considers
an attack on potentially multiple resource blocks that can
be allocated to different users over a time horizon. The
jamming attack on a resource block that is assigned to a



network slicing request prevents the corresponding UE from
achieving the required QoE. Therefore, the reward of this
request drops to zero leading to performance loss. In addition,
the reinforcement learning algorithm of the gNodeB takes this
reward as the input (along with the state) to update itself.
This reward feedback will make the reinforcement learning
algorithm get confused and foot it into predicting the existence
of jamming attacks even if there is no attack. As a result, a
jamming attack can affect the current performance of network
slicing as well its immediate future performance even after the
jamming attack ends.

As time passes, network slicing starts recovering from
the attack by updating the reinforcement learning algorithm
with the correct feedback that arrives after the attack stops.
We measure the performance of this attack by computing
the recovery time, namely the duration of time from when
jamming ends until the gNodeB’s performance reaches the
level before the attack starts. In addition, we measure the
maximum and total loss in the reward during the recovery
time.

We assume that the jammer cannot jam all resource blocks
at the same time due to its energy budget. Under this con-
straint, the jammer needs to carefully select which resource
blocks to jam. The jammer builds a surrogate model with
its own reinforcement learning algorithm to learn how net-
work slicing decisions are made. This approach is similar
to building a deep neural network based surrogate model to
jam data transmissions such as studied in [22], [23] or to
launch adversarial attacks [24], [25] such as studied in [26].
However, the jammer in this paper builds a reinforcement
learning algorithm as the surrogate model. The jammer uses
this surrogate model to make jamming decisions in order to
manipulate the victim’s reinforcement learning algorithm for
network slicing and maximize the number of failed network
slicing requests.

This attack carefully exploits the following vulnerabilities:
(1) the victim’s reinforcement learning algorithm is affected
by the manipulated rewards and (ii) it takes a while for the
victim’s reinforcement learning algorithm to recover even after
the attack stops compared to conventional attacks [28], [29]
that jam data transmissions and remain effective only during
the jamming period.

We compare this attack with two benchmark jamming
attacks, namely the myopic jamming attack that jams the re-
source blocks to maximize the jammer’s instantaneous reward
and the random jamming attack that jams randomly selected
resource blocks). Our results demonstrate that the proposed
attack is much more effective in reducing the reward of
network slicing (under attack and after attack) and prolonging
the recovery time from the attack.

C. Contributions and Paper Organization

The contributions of this paper are summarized as follows.
For a reinforcement learning based NextG RAN slicing algo-
rithm, we present a novel reinforcement learning based attack
built upon adversarial machine learning that selectively jams
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Fig. 1: System model for NextG network slicing in the presence of a jammer.

the available resource blocks so that the victim’s reinforcement
learning algorithm receives incorrect reward (feedback) and
updates itself in a wrong way, thereby leading to a significant
performance loss of resource allocation for network slicing.
We show that the attack is more successful than benchmark
attack schemes in terms of increasing the recovery time and
the loss in the reward for network slicing.

The rest of the paper is organized as follows. Section II
presents how the resources are allocated to network slices
via a reinforcement learning algorithm. Section III introduces
the reinforcement learning based jamming attack. Section IV
provides the performance evaluation of the proposed attack.
Section V concludes this paper.

II. THE VICTIM SYSTEM UNDER ATTACK:
REINFORCEMENT LEARNING BASED RESOURCE
ALLOCATION FOR NEXTG RAN SLICING

We start with describing the victim system that is attacked
by the jammer, namely the reinforcement learning algorithm
that is used for network slicing in the RAN. We consider the
reinforcement learning formulation from [14] for allocation
of resources to network slices. Note that the proposed attack
can be also launched against other reinforcement learning
based RAN slicing settings (e.g., [9], [30]). The system model
is depicted in Fig. 1. We consider a general scenario in
which multiple UEs send their network slicing requests over
time with different QoE requirements including rate, latency
(deadline), and lifetime demands, and weights. The gNodeB
allocates the resource blocks to the selected requests. The
objective of this resource allocation problem is to maximize
the total weight of served requests over a time period. Any
request that cannot be granted is kept in a waiting list until its
deadline expires. The scenario also includes a jammer that is
described in Section III.

Let A(t) denote the set of active requests (that have just
arrived or are waiting in the waiting lists) at time slot £. The
rate requirement of UE 7’s request j is expressed as

Dij > dij7 (7".7) € A(t)a (1)



where D;; and d;; denote the achieved downlink data rate
and the minimum required rate, respectively. The required
bandwidth F}; follows from this demanded rate [14].

We have the following constraints on resource assignments
to network slices:

> Fymi(t) <F(), 2)

(i,5)€A(t)

where x;;(t) is the binary indicator determining whether
UE i’s request j is satisfied at time ¢ and F'(¢) denotes
the gNodeB’s available communication resources (resource
blocks) at time ¢ (note that resources that have been assigned
to requests and are not terminated yet become temporarily
unavailable).

The update of resources from time ¢ — 1 to time ¢ is given
by

F(t) = F(t_1)+FT(t_1)_Fa(t_1)7 3)

where F,.(t — 1) and F,(t — 1) are the released and allocated
resources at time ¢ — 1, respectively. If UE i’s request j is
satisfied and the service starts at time slot ¢, this request will
end at the end of time slot ¢ 4-1;; — 1, where [;; is the lifetime
of UE 7’s request j. Then, the released and allocated resources
at time ¢ are given by

F() = > Fy “)
(i,5)€R(t)

F.(t) = Z i (1) Fij, ®)
(i,5)€A(t)

where R(t) is the set of requests ending (completed) at time
t. Let w;; denote the weight for UE 4’s request j to reflect
its priority. The corresponding optimization problem can be
formulated as

Z wij xi5(t), (6)

(4,3)€A(t)

max
Zij (t) t

subject to (1)—(5).

We use Q-learning to learn the policy that decides on which
action (resource assignment) to take by the gNodeB for a given
state that includes available resources and active requests. The
function @ : S x A — R is computed and maintained as a
Q-table to evaluate the reward R for an action A taken at state
S. At any time ¢, an action a; is taken, the state transitions
from s; to sy+1 (depending on current state s, and action
at), a reward 1, is received, and () is updated. () function is
initialized as a random matrix and updated by the weighted
average of the old value and the new information as follows:

Q(st7 at) — Q(sta at) (7)
to (et max Qs 0) ~ Qs ar))

where « is the learning rate within in [0,1] and ~ is the
discount factor in [0, 1] for rewards over time. When the state
size grows, it is better to approximate the Q-function by a deep
neural network (leading to a deep Q-network formulation),
which is computationally more efficient [15].

If UE ¢’s request j is satisfied at time ¢, i.e., z;;(t) = 1,
the reward is w;;. Otherwise, the reward is 0. This reward
represents the satisfied QoE demands of network slices and
thus indirectly helps quantify the QoE performance regarding
throughput and delay. An action assigns resources to a network
slicing request at a given time. Note that it is possible to take
multiple actions at the same time. At any time ¢, the states are
F binary variables that determine the availability of F' resource
blocks and (F;j,w;;) for a request under consideration. The
state at time ¢ transitions depending on the allocation of
resources for requests granted at time t and the release of
resources when lifetimes of active services expire at time t.
The state transitions are given by (3)-(5).

III. ATTACK ON REINFORCEMENT LEARNING FOR NEXTG
RAN SLICING

We consider a jammer that attacks the reinforcement learn-
ing algorithm used for NextG RAN slicing, e.g., the one dis-
cussed in Section II. Other example victim systems including
the reinforcement learning based network slicing schemes in
[9], [30] can be attacked similarly.

A. Reinforcement Learning based Attack

We consider two unique properties of reinforcement learn-
ing that we leverage to formulate and evaluate the attack.

1) The jammer can change the state or the reward by
jamming the resource block, and consequently affect how
the reinforcement learning algorithm operates.

2) After the jammer stops attacking, the reinforcement learn-
ing algorithm recovers over time.

We exploit the first property to design the attack on the
reinforcement learning algorithm used for NextG RAN slicing.
Note that its takes a while for the reinforcement learning
algorithm to recover after the jamming attack stops. We
measure the effect of the attack due to the second property
in Section IV.

The jammer can affect the reward of the reinforcement
learning algorithm if it jams a resource block to be allocated
to a request. Then, the request fails even if the reinforcement
learning algorithm allocates resources and there is no reward
achieved.

We assume that the jammer has limited jamming capability
(typically due to limited energy budget) and can jam at most
B resource blocks at any given time. Therefore, the jammer
needs to carefully select and jam the resource blocks that are
likely to be allocated to network slicing requests.

In the ideal scenario, the jammer builds a surrogate model
as another reinforcement learning algorithm to predict which
resource blocks will be allocated. Then, the jammer can decide
which resource blocks to jam. This scenario is not practical.
First, the jammer does not have access to the state of the
victim’s reinforcement learning algorithm. Second, the jammer
does not know the achieved reward which is given by the
request’s weight. Instead, the jammer needs to use a different
reinforcement learning algorithm as an approximate surrogate
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Fig. 2: The interactions of the jammer and the victim system.

model. Different state, action, and reward properties of the
jammer are given as follows.

o The state is the set of binary variables that determine
whether resource blocks are available, or not. For that
purpose, the jammer passively senses the resource blocks.
Note that this corresponds to a black-box attack.

o An action selects which set of min{B, F(t)} resource
blocks from F'(t) available resource blocks to jam, or
decides not jam any resource block. Let Cg( £ denote the
number of B-combinations from a set of F'(t) elements,
i.e., the number of possibilities in picking B out of F'(t)).
Then, the number of possible actions is Cg o T 1if
F(t) > B, or 2 (jam or not) if F'(t) < B.

o The reward is determined by the number of requests that
are jammed at a given time. If the transmission is not
successful, the corresponding UE transmits a negative
acknowledgment (NACK) at the end of a time slot. A
retransmission is possible later subject to its deadline for
reliable communications. The reward on a channel is set
as 1 provided that the jammer jams a resource block
and later observes the NACK. The jammer only needs
to identify if a NACK is transmitted without any need
to decode it. For that purpose, the jammer distinguishes
the NACK from data transmissions by leveraging the
properties that the NACK is shorter than data portion
and appears between network slicing requests and data
transmissions.

The jammer applies reinforcement learning to learn the
effect of its attack and to update its Q-table by (7). The jammer
selects which resource blocks to jam in order to maximize
its expected jamming reward. This corresponds to an over-
the-air attack that indirectly manipulates the reward of the
reinforcement learning algorithm by jamming the resource
blocks. Fig. 2 shows how the victim reinforcement learning
algorithm of the gNodeB and the surrogate reinforcement
learning algorithm of the jammer interact with each other.

B. Performance Metrics and Benchmark Attack Schemes

The performance loss due to the attack is computed by
comparing it with the case of no attack. This loss is due
to the failure of some requests due to jamming of resource

blocks such that the reward does not include their weights.
Another way of measuring the effect of the attack is to
compute the recovery time of the reinforcement algorithm after
the jamming attack ends. By jamming resource blocks, the
jammer can change some rewards. Then, the reinforcement
learning algorithm of the gNodeB updates itself with these
changed rewards. Therefore, the attack also impacts how the
reinforcement learning algorithm operates. Hence, even if the
jamming attack ends, it takes a while for the performance
of network slicing to return to the levels before the attack
stops. The reason is that the gNodeB can only collect sufficient
data over some time to update and correct its reinforcement
learning algorithm and only after some time, its performance
can reach to the level before the attack.

We measure the impact of the jammer by computing the
following metrics.

e Recovery time: Recovery time is the time it takes (after
the jamming attack ends) for the reward of the victim’s
reinforcement learning algorithm to reach back the level
before the attack. If this recovery time is long, the jammer
does not need to jam for a long time period. This way, the
jammer can jam only for a short time period and resume
jamming later before the recovery time. This helps the
jammer operate in a stealth mode without continuous
jamming and save energy.

o Maximum performance loss: Maximum performance loss
is the maximum performance gap during the recovery
time compared to the level before the attack. We measure
the performance as the reward with running average.
The maximum performance loss represents the maximum
impact during the recovery time.

o Total performance loss: Total performance loss is the
accumulated performance gap during the recovery time
compared to the level before the attack. The total per-
formance loss is a more robust metric than the above
two, since it is not affected by a small performance loss
(compared with recovery time) or a single extreme point
(compared with the maximum performance loss).

We compare this attack with the case of no attack. In
addition, we consider two benchmark attacks:

e Random attack: The jammer uniformly randomly selects
some resource blocks from all resource blocks and jams
them subject to its jamming budget.

e Myopic attack: The jammer selects which resource blocks
to jam (subject to its jamming budget) in order to
maximize its instantaneous reward. The myopic attack
does not consider future rewards.

Note that the proposed attack takes some time to improve
its attack actions as the jammer’s reinforcement learning
algorithm learns how to make jamming decisions over time.
On the other hand, random and myopic attacks do not involve
gradual improvement. For fair comparison, we measure the
recovery time, maximum and total performance loss over the
same period of time (including the warm-up time) for all these



TABLE I: Performance comparison of Q-learning and other attacks.

Attack Maximum Recovery | Maximum Total
scheme number of time loss loss
jammed in reward | in reward
resource blocks
1 1038 1.447 736.216
2 1191 1.801 911.604
Q-learning 3 1548 1.957 1006.174
4 2086 2.014 1038.988
5 2038 2714 1410.069
1 1035 1.343 670.071
2 1060 1.587 788.289
Myopic 3 1028 1.684 836.998
4 1207 1.775 894.721
5 1365 1.772 889.113
1 1197 1.000 506.947
2 1233 1.489 750.976
Random 3 1170 1.813 907.546
4 1180 2.061 1032.088
5 1202 2273 1141.359
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Fig. 3: The reward of reinforcement learning algorithm for NextG RAN slicing
after the attack stops.

attacks. The evaluation of the attack performance is reported
in Section IV.

IV. PERFORMANCE EVALUATION

We simulated a scenario that consists of one gNodeB and
30 UEs. The gNodeB may receive requests from all the UEs.
Requests arrive with a rate of 0.05 per slot for each UE. Note
that each time block (0.23 ms long with 60 kHz subcarrier
spacing) is considered a slot. The weight is chosen uniformly
randomly in [1,5] for each request. Similarly, the lifetime is
assigned randomly in [1, 10] slots, and the deadline is assigned
randomly in [1,20] slots. The maximum received SNR is
selected randomly from [1.5,3]. We split the total bandwidth
of 10 MHz to 11 bands corresponding to 11 resource blocks.
We repeat this scenario over 1000 time slots to evaluate the
impact of the attacks. We set the discount factor as v = 0.95
and the learning rate as o = 0.1 for Q-learning.

The benchmark of no attack case is run over 10000 slots.
The jammer also launches its attack over 10000 slots. The
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Fig. 4: The reward of the reinforcement learning algorithm for NextG RAN
slicing under the attack.

reward is 3.032 over the first 1000 slots. This result is used
as the benchmark for recovery. Then, we measure the average
reward over the past 1000 slots after the jamming attack ends
and once this average reward reaches 3.032, namely when the
victim system recovers from the attack and the network slicing
reaches the level of performance before the attack. In addition,
we compute the (maximum and total) performance gap to the
benchmark during the recovery time.

We also consider random and myopic jamming attacks for
comparison purposes. The results for all these attacks are
shown in Table I. Note that the results for random jamming
are averaged over 20 runs. The reinforcement learning based
attack that was introduced in Section III-A has longer and
larger impact on the network slicing performance than the
other two attacks, indicating that the proposed attack is more
effective. In particular, the recovery time is increased by up to
77%, the maximum loss in the reward is increased by up to
53%, and the total loss in the reward is increased by up to 59%
compared to benchmark attacks depending on the maximum
number of jammed resource blocks with the reinforcement
learning based attack. Fig. 3 shows the change of the reward
over time after the attack ends when the maximum number of
jammed resource blocks is 5.

The advantage of the reinforcement learning based attack
comes from the smallest reward when the attack ends. Thus,
we also check the reward under different attacks. We evaluated
the performance of the victim’s reinforcement learning under
different attacks. The results are shown in Fig. 4. The average
reward is shown over the past 1000 slots, so we observe
that the performance is high at the beginning and rapidly
decreases over time. Under both random jamming or rein-
forcement learning based jamming attacks, the performance
still remains low. On the other hand, the performance under
myopic jamming attack keeps increasing. The deterministic
nature of the myopic algorithm causes this. The behavior of
the myopic jamming attack can easily be learned by the victim



reinforcement learning algorithm used for RAN slicing and its
effect can be mitigated.

V. CONCLUSION

We introduced a novel over-the-air attack on network slic-
ing for NextG RAN by jamming the resource blocks and
manipulating the reinforcement learning algorithm used for
resource allocation. We exploited the property that jamming a
resource block that is assigned to a request not only reduces
the associated reward to zero but also manipulates the update
of the reinforcement learning algorithm that takes this reward
as the input. Therefore, the effect of the jamming attack
continues and it takes a while for the reinforcement learning
algorithm for network slicing to update itself and recover
from the performance loss even after the jamming attack
ends. Subject to an energy budget, the goal of the jammer
is set as selecting which resource blocks to jam in order
to maximize the number of failed network slicing requests
over time. By monitoring the spectrum, the jammer builds
a surrogate reinforcement learning model to learn how the
reinforcement learning algorithm for network slicing operates
and jams the resource blocks to reduce its performance. Our
results demonstrated that this jamming attack is much more
effective in reducing the network slicing performance (namely,
increasing the recovery time and reducing the achieved reward)
compared to myopic and random jamming attacks, and poses
a major threat to network slicing in the NextG RAN.
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