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ABSTRACT

In many real-world applications such as social network analysis
and online advertising/marketing, one of the most important and
popular problems is called influence maximization (IM), which finds
a set of k seed users that maximize the expected number of influ-
enced user nodes. In practice, however, maximizing the number
of influenced nodes may be far from satisfactory for real appli-
cations such as opinion promotion and collective buying. In this
paper, we explore the importance of stability and triangles in social
networks, and formulate a novel problem in the influence spread
scenario, named triangular stability maximization, over social net-
works, and generalize it to a general triangle influence maximization
problem, which is proved to be NP-hard. We develop an efficient
reverse influence sampling (RIS) based framework for the triangle
IM with theoretical guarantees. To enable unbiased estimators, it
demands probabilistic sampling of triangles, that is, sampling trian-
gles according to their probabilities. We propose an edge-based triple
sampling approach, which is exactly equivalent to probabilistic sam-
pling and avoids costly triangle enumeration and materialization.
We also design several pruning and reduction techniques, as well
as a cost-model-guided heuristic algorithm. Extensive experiments
and a case study over real-world graphs confirm the effectiveness of
our proposed algorithms and the superiority of triangular stability
maximization and triangle influence maximization.
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1 INTRODUCTION

One of the most important and popular topics in social networks is
the “Influence Maximization” (IM) problem [27], which finds a set
of k seed users such that the expected number of users influenced
by these seed users is maximized through the propagation process.
Many IM variants such as competitive IM [5], time-aware IM [28],
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Table 1: Statistics of Twitch users

Nodes View Lifetime (days) Dead account rate

w/ Triangles 203,074
w/o Triangles 8,906

1,560.89 0.023
1,312.49 0.114

topic-aware IM [21], and location-aware IM [30] have attracted ex-
tensive attention. Although these variants have addressed different
aspects of the IM problem, most of the variants are all seeking to
simply maximize the number of influenced nodes, via some diffu-
sion model, without realizing that the influence propagation process
also yields a sub-network structure induced by all influenced nodes.
Moreover, the number of influenced nodes is not the only quality
metric for analyzing a network. A pioneer work [57] relocates the
objective of influence maximization from nodes to edges and maxi-
mizes the so-called interaction strength in the subgraph induced
by influenced nodes with Sandwich Approximation [35]. But it is
still not aware that the influenced network creates opportunities
for maximizing some properties that are related to particular sub-
graph structures (e.g., triangles [58]). For applications like collective
buying and opinion promotion, the influenced users (nodes) are
expected to have a strong loyalty to the products or opinions.

1.1 Motivating Examples

Opinion Promotion. In addition to promoting products, IM is also
used to spread ideas, opinions, and even ideologies. For such pur-
poses, some topological properties, such as stability, of the network
formed by influence propagation will be more important than mere
quantity (i.e., the number of influenced nodes). Suppose an investor
holds a certain opinion and she wants to spread this opinion firmly
in the network. We might call the nodes that are influenced by this
opinion “believers”. When possible, the investor certainly wants
as many believers as possible, and that is the goal of IM. But if we
consider this point, i.e., if some believers betray this opinion, will the
influenced network consisting of believers become vulnerable or even
collapse? This question is not considered in the previous IM task. It
is well known that triangles are stable and highly correlated with
important properties such as clustering coefficients, connectivity,
etc. Li and Yu [32] argue that reducing the number of triangles effec-
tively makes a network vulnerable from the attacker’s perspective,
which is also consistent with our motivation above. Thus, a natural
idea to ensure the stability in an influence network is to increase
the number of triangles involved in the influence propagation.
The left part of Figure 1 shows two components of a social
network that are sufficiently distant from each other. For ease of
presentation, we assume that in the initial state, opinions can freely
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Figure 1: The left part shows a social network, where each node represents a user. Initially, these users do not hold any opinion.
The middle and right parts illustrate the propagation process if s; or s; were to be selected as the seed and then betray.

o
=]
S
o
=]
S

IS
S
S
IN
S
S

@
S
S
@
S
S

N
=1
S

# Triangles
N
8

# Triangles

=)
S
=)
S

36
—10__ e

[0,20) [20,40) [40,60) [60,80) [80,100] [0.2) [2.4) [4.6) 6,8) [8,10)
Profile Completion Ratio (%) User Activity (Logarithm)

o
o

(a) Pokec (b) LibraryThing

Figure 2: The correlation between the #triangles and user
quality (i.e., profile completion ratio and user activity).

spread in both parts of the network. Due to budget constraints,
only one seed node is allowed. The conventional IM solution would
suggest choosing s;. However, this choice is risky if s; were to
betray the network because a study in Nature [44] observed that
players (“nodes”) are inclined towards adopting the opinion of the
majority that they witness in election-related influence networks.
This means that the influenced network of s; would collapse as
shown in the middle part of Figure 1, making it difficult to maintain
the target opinion. In contrast, selecting s» may result in a smaller
number of believers, but the sub-network of believers is more stable
and less likely to collapse if s» were to betray the network, as shown
in the right part of Figure 1 since the majority of the neighbors of
the nodes influenced by sz hold the target opinion after the first
round of the propagation. Our objective is to propose a tailored
IM in order to identify the seed nodes like s, which maximizes
the stability contributed by the influenced triangular structures.
“Stability” also applies to group buying in social commerce [61],
which requires group members to be acquainted with each other.

Quality User Screening. Many recently emerging UGC (i.e., user-
generated content) based platforms such as Tiktok and Twitch are
embedded with functions such as entertainment content produc-
tion and social networking. The nodes (users) on these platforms
can serve as both producers (uploaders) and content consumers
(viewers). That is, they are both influencers and influencees in in-
formation spread activities such as online marketing. It is a natural

idea that users who contribute more to stability tend to have better
real attributes. We still use the triangle as an indicator of stabil-
ity. Table 1 depicts some statistics of users (nodes) involved or not
involved in triangles of the Twitch network [43], including the num-
ber of content views, account lifetime, and the rate of dead accounts.
These statistics indicate that a user node in triangular relationships
with other users tends to be more “active” (i.e., more actively influ-
ence or be influenced by other users). Hence, to promote products
on such UGC platforms, it is more important to identify targeting
users who can induce an influenced network with abundant tri-
angles composed of active users (rather than arbitrary, possibly
inactive or dead, user accounts). Figure 2 illustrates how the user
quality is affected by the number of triangles in two more datasets,
a social network, Pokec [45], and a book review site, LibraryThing
[9, 63]. This suggests that the number of triangles highly positively
correlates with the presence of high-quality users.

Inspired by the examples above, the triangle is one of the most
important structures in social-network graphs. It is also the basis
for forming more complex structures like k-truss [14] and (k, d)-
truss [26]. As indicated in Table 4, many real-world (directed and
undirected) graphs contain a large number of triangles, which we
may leverage to enhance the stability of the influenced network.

Therefore, in this paper, we propose the problem triangular sta-
bility maximization (TSM) by influence spread, which obtains a
set of k seed users such that the expected triangular structural
stability score in social networks is maximized after an influence
propagation process. In particular, we consider a generalized prob-
lem, general triangle influence maximization (denoted as GAIM),
where we count the weights of triangles. We propose two upper
and lower bound problems, component and homologous triangle
influence maximization (denoted as CAIM and HAIM, respectively).

1.2 Challenges and Our Contributions

Since TSM and the triangle IMs suffer from intractable computa-
tional cost (i.e., NP-hardness as proved in Theorem 1), it is required
to develop efficient algorithms while ensuring the quality of solu-
tions. Reverse influence sampling (RIS) is one of the widely used ap-
proaches to the IM problem [40, 47, 48]. It keeps generating random



reverse reachable (RR) sets until the total number of edges exam-
ined during the generation process reaches a pre-defined threshold.
Nevertheless, the influenced targets in our triangle IM problems
are triangles rather than nodes. To enable an unbiased estimator, it
demands sampling triangles according to their probabilities. How-
ever, listing and materializing all triangles of a large graph may be
infeasible, since the number of triangles may be much more than
that of nodes as studied in [53]. Another knotty problem is “empty
intersection” arising from constructing homologous triangles based
on RR sets, where homologous triangles are the triangles whose
nodes are “activated” by the same seeds. If RR sets of the three
nodes those form a triangle do not share any node, no homolo-
gous triangles will be activated, leading to invalid samples. At the
same time, the objective function of GAIM is not submodular (as
presented in Lemma 1), increasing the difficulty of employing RIS.

To address the challenges above, we propose a Joint Baking
Algorithmic Framework for GAIM. Under the widely used diffusion
models such as independent cascade (IC) [18] and linear threshold
(LT) [19], we prove that GAIM is monotonic, but not submodular;
HAIM is monotonic and submodular. In order to avoid the triangle
materialization, we design an edge-based triple sampling approach
which is exactly equivalent to sampling triangles according to their
probabilities. To relieve the problem of empty intersection, we
develop several techniques, including early pruning, dominance
reduction, descendant reduction, and DFS-interval reduction.

In summary, we make the following contributions in this paper.

o To our best knowledge, we are the first to formulate triangular
stability maximization by influence spread and triangle influence
maximization problems, which are proved to be NP-hard. We
also propose two submodular variants HAIM and CAIM as the
lower and upper bound, respectively.

e We develop an efficient Joint Baking Algorithmic Framework
for the triangle problem with theoretical guarantees. A novel
edge-based triple sampling approach is proposed to avoid costly
triangle enumeration and materialization.

e We design several reduction techniques to relieve the empty
intersection problem and propose a cost-model-guided heuristic
algorithm to improve the time efficiency.

o We evaluate our proposed algorithms through extensive experi-
ments. The experimental results show that our algorithms pro-
duce seed sets of higher quality than the baseline. We also present
a case study to illustrate the superiority of triangular stability
maximization and triangle influence maximization.

2 PROBLEM DEFINITION

2.1 Preliminaries

We model the social network as a directed graph G = (V, E), where
V is the set of nodes and E is the set of directed edges. (u, v, w) is
called a triple, where u, v, w € V. The triple (u, v, w) forms triangles
if there are edges between each pair of u, v, w.

2.1.1  Diffusion Models. Diffusion models describe the information
diffusion process in a social-network graph.

DErFINITION 1. (Diffusion Model [33]) Given a social-network
graph G = (V,E) and a user set S C V, a diffusion model M captures
the stochastic process for S spreading the information on G.

Table 2: Abbreviations and Symbols

Symbol  Meaning

n,m,nt  #nodes, #edges, #directed triangles of a graph
G/H/CAIM  General/Homologous/Component Triangle IM
WOuow The weight of triple (u, v, w)

RRy, A random RR set for IM
RRy, 0w A random RR sequence for GAIM
RRI 4y A random RRI set for HAIM
R The collection of samples

x(S) The set of triangles influenced by the seed set S
I(S) The set of nodes influenced by the seed set S

Coug(S)  The number of samples covered by S in R
S3 Triangular Structural Stability Score
o The objective function of the original problem
u The objective function of the lower-bound problem
v The objective function of the upper-bound problem

Each edge e(v, w) € E is assigned a weight p(v, w) representing
the probability of the information propagation from v to w. Next, we
briefly review the models independent cascade (IC) [18, 27], linear
threshold (LT) [19, 27], and triggering (TR) [27] models.
Independent Cascade (IC) [27]. For each neighbor w of anode v €
V, there exists an edge e(v, w) with the weight p(v, w) representing
the probability of spreading from v to w. If v is active and w is
inactive at time t, v will try to activate w with probability p(v, w).
Assuming that the activation is successful, w will become active at
time (¢ +1). However, if all the attempts to activate w by its already
active neighbors fail, w will stay inactive. Regardless of the result, v
will stop trying to activate w through the edge e(v, w) in the future.
Linear Threshold (LT) [27]. Each node v is assigned a threshold
0y. If there is no prior knowledge available about the node, the
threshold will be selected randomly from the range [0, 1]. Let N(v)
denote the neighbors of v. For each neighbor w € N(v), there
is a probability p(v, w) corresponding to the edge e(v, w), where
2 weN(v) P(0,w) < 1.1f v is inactive and it holds that ¥, N, (o)
p(v,w) = 0, at time ¢, v will be activated at the next time, where
N, (v) is the set of active nodes in N (v).

The TR model is also referred to as the Live Edge (LE) model.
In [27], triggering sets are denoted by “live” and “blocked” edges.
An edge e(u,v) is “live” if node u belongs to the triggering set of
v, otherwise, it is “blocked”. A node u ends up active if and only
if there is a path from some node in the seed set S to u consisting
entirely of live edges. Such a path is called a live-edge path. Both
IC and LT are special cases of the TR model [27]. Following
the paper [27], we say a node u is “activated” by a seed means that
there is a live-edge path starting from this seed and ending at u.
Then we say that a node u is influenced by the seed set S if and
only if there exists a seed node in S that activates the node u.

2.1.2  Influence Maximization. Given a diffusion model M and a
set, S, of nodes in V, we can compute the influence spread of S.

DEFINITION 2. (Influence Spread [33]) An influence spread (a.k.a.
the influence function) of S, denoted as oG pm(S), is given by the
expected number of users influenced by S, where o p(+) is a function
on a subset of users, i.e., oG M : 2V - R>o.



Table 3: Triangular Structural Stability Score

Pattern Score ‘ Pattern Score
; ; N ; 1 § Za 1
3 2
1
S \W/j 1

DEFINITION 3. (Influence Maximization (IM) [27, 33]) Given a
social-network graph G, a diffusion model M, and a positive integer
k, an influence maximization (IM) problem selects a set, S*, of k seed
users from V that maximize the influence spread S*, i.e., oG p (S*) =
arg maxscya|sj=k 0G,m(S)-

2.1.3 RR Sets and RIS. Let g be a subgraph obtained by removing
each edge e in G with a certain probability. A reverse reachable (RR)
set is defined as a set of nodes in g that can reach v, where v is
selected uniformly at random from g. Borgs et al. [6] proposed a
reverse influence sampling (RIS) approach (named by Tang et al. [48])
to solve the IM problem by using the RR sets.

2.1.4 Sandwich Approximation Strategy. Let o be the objective
function of a non-submodular variant of IM. Let y and v be sub-
modular functions such that p(S) < o(S) < v(S) forall S C V.
Denote S} as the optimal solution of o. The solution by Sandwich
Approximation [35] is Sgang = arg maXSe{Sﬂ,Sg,SV}U(S)’ where S,
and S, are approximate solutions to y and v, and S, is a heuristic
solution to o.

Wang et al. [57] proved that when the algorithm uses a (y, §)
estimator of o, and both S, and Sy are solved by RIS, it hold that

a(Sy) H (S:')
v (Sy) o (S5)

U(Ssand)Zmax{ }~(1—1/e—e)1;—;~0(52). 1)

2.2 Problem Statement

We follow the directed triangle patterns defined in Structural Stabil-
ity Level [62]. For a given node u, it can participate in four categories
of directed triangles as listed in Table 3. We propose the triangular
structural stability score according to the abundance of triangles.

DEFINITION 4. (Triangular Structural Stability Score.) Given a
triple (u, v, w), we define its triangular structural stability score, de-
noted by S3({u, v, w)), as the ratio of the number of directed triangles
formed by (u,v, w) over the maximum number of directed triangles
that can be produced by a triple. The triangular structural stability
score of a graph G is defined as S5(G) = 3 (.0,wycG S3({t, 0, w)).

Table 3 presents the detailed score of each triple pattern, and the
score of other patterns is 0.

2.2.1 Triangular Stability Maximization. We first introduce the
concept of the influenced subgraph.

DEFINITION 5. (Influenced Subgraph). The activated nodes induce
an influenced subgraph G’ = (V',E’), where V' = {v; : v; € V A
v; is activated} and E' = {e(v;,v;) : e(v;,0j) € E Avj,0j € V')

The subgraph composed of live-edge paths is essentially a sub-
graph of the influenced subgraph. We opt for “influenced subgraph”

since every edge in it definitely exists within the social network and
would contribute to stability, regardless of its propagation weight.

Problem Statement 1. (Triangular Stability Maximization
by Influence Spread, shorted as TSM.) Given a social-network graph
G, a diffusion model M and a positive integer k, TSM returns a set, S*,
of k seed users from V to maximize the expectation of the triangular
structural stability score of the influenced subgraph Es [S3(G’)], i.e.,
§* = argmaxscya|s|=k Es [S3(G)].

2.2.2  General Triangle IM. Assume each triple (u, v, w) that pro-
duces triangles has a weight wy4w > 0. Let the summed weights of
all triples that form triangles in G be Q(G) = Y wuow-

DEFINITION 6. (General Triangle Influence Spread). A general
triangle influence spread of S, denoted as I p(S), is defined as
Es [Q(G’)], the expected summed weights of the triples which are
forming triangles in the influenced subgraph G’.

For the sake of brevity, we use “triangles” to refer to the triples
that form the triangles when the context is without ambiguity. We
say that a triangle is influenced, only when all its three nodes have
been influenced.

Problem Statement 2. (General Triangle Influence Maxi-
mization, GAIM). Given a social-network graph G, a diffusion model
M and a positive integer k, GAIM returns a set, S*, of k seed users
fromV to maximize the general triangle influence spread I'g p (S),
ie,S* = argmaxgcya|s|=k l,m(S)-

It is clear that the objective function Es [S3(G’)] of TSM is a
special case of the objective function Eg [Q(G’)] of GAIM. They
are equal when wyyw = S3({u, v, w)). Let the set function y(S) be
the set of triangles influenced by the set S. To make the expression
easy to understand, we use Q(y(S)) to refer to Q(G’), where G’
is an influenced subgraph by S. In the GAIM problem, we can use
any widely used diffusion model M, such as IC [27] or LT [27].

LEMMA 1. Under the IC or LT model, the objective function of
GAIM is monotonic, but not submodular.

Proor. Due to the space limit, we provide a proof sketch. Since
both the IC and LT models are progressive models, monotonicity
can be deduced accordingly. To demonstrate non-submodularity,
we can consider a TSM counterexample: an undirected triangle in
which all edges have a probability of 0. O

2.2.3 Lower Bound (Homologous Triangle IM). We next define
a variant of GAIM, homologous triangle influence maximization
(HAIM), that only takes into account homologous triangles whose
nodes are able to be all influenced by the same seed users.

DEFINITION 7. (Homologous Node & Homologous Triangle). In an
influenced subgraph, those endpoints of live-edge paths from a same
seed are mutually called homologous nodes. A triangle consisting of
three homologous nodes is called a homologous triangle.

ExAMPLE 1. Figure 3 shows an example of homologous triangles.
We establish the seed set S = {s1, s2, 53} and assign them with distinct
colors. The arrows connect the nodes u, v, and w are used to represent
an edge, whereas a curve arrow directed from s1, sz, and s3 tou, v,
and w represents a path. The live paths, activated edges are solid,



(a) Non-homologous triangle

(b) Homologous triangle

Figure 3: Non-homologous and homologous triangles.

while a black dashed arrow signifies that the edge or path exists in the
influenced subgraph but is not activated. In one propagation process,
the nodes in triple (u, v, w) are activated by different seeds, forming a
non-homologous triangle, as shown in Figure 3(a). In another prop-
agation process, the triple (u,v, w) is activated by the same seed s,
which constitutes a homologous triangle as shown in Figure 3(b).

We refer to a graph as a “graph instance” [57] in both IC and
LT models if the graph is obtained by: marking each edge (u,v) as
“live” with a probability p(u, v) independently for the IC model, and
marking at most one incoming edge (u,v) of each node v as “live”
with a probability 1 - 3,en () p(%,v) for the LT model. Similar
to Definition 6, we can define homologous triangle influence spread,
Fg’{M(S), as the expected summed weights of homologous triangles
in the influenced subgraph.

LEMMA 2. Fng(S) is a lower bound of T pm(S).

Proor. Let I p(S|r) and Ing(Sh’) be the summed weights
of the triangles and homologous triangles of the influenced sub-
graphs in a graph instance r, respectively. This means I'G y(S)
= E[Tom(SIr)] and TX (S) = E[TZY, (SIr)]. For this graph in-
stance r, the following inequality holds.

ng{M(S|r) < IK{M (S|r) + Q({Influenced triangles that cannot be
activated by the same seed.}) = I'g ar(S|r).

Now, we take the expectation on both sides of the above inequal-
ity to obtain the conclusion I“g{M (S) <Tgm(S). |

Problem Statement 3. (Homologous Triangle Influence
Maximization, HAIM). Given a social-network graph G, a diffusion
model M, and a positive integer k, HAIM obtains a set, S*, of k seed
users from V that maximize homologous triangle influence spread
FC(;I:(M (S), ie, S* = argmaxgcya|s|=k Fg’{M(S).

LEMMA 3. Under the IC or LT model, the objective function of
HAIM is monotonic and submodular.

PrRoOOF. Monotonicity: Since both IC and LT are progressive mod-
els, a node is not extinguished after it is activated. A homologous
triangle being activated means that all three nodes that make it up
are activated and that these three nodes are the endpoints of the
live-paths of the same seed. Since the nodes are not extinguished
and the live-paths do not disappear when new seeds are added, the
summed weights of homologous triangles is not reduced either.

Let yW(S) be the set of homologous triangles influenced by S.
y'H ({u}) is the set of triangles influenced by u. Suppose that S C §’
and y(H(S) c y(H(S’). Add a new node u. In a graph instance,
consider the homologous triangles added by the addition of u to
S, e, yH(S + {wh) \ yH(S). Ifu € 5, yM(S + {u}) \ yH(S) = 0.
Therefore, Q(yH(S +{u})) — Q(y(H(S)) =0.Ifu ¢ S, the added
homologous triangles must belong to triangles composed of ho-
mologous nodes starting from u, and such triangles must be ac-
tivated by S + {u} as long as they have not been activated by
S, i, y7(S + {u}) \ y71(S) = y"!(w) \ y1(5). Since y7(5) ¢
yH(8"), we have {y"(uw) \ y"(s")} € {(y"()\ y"(5)}. Thus,
Q7S + uh] - ly($N] < iy (s + {uh] - ey (9)]
holds. O

THEOREM 1. The triangle IM problems are NP-hard.

Proor. The triangle IM can be reduced from the IM problem
which is proven to be NP-hard [27]. Let G = (V, E) be an arbitrary
graph instance of IM. For each node u; € V, we add 2|V|? new
nodes v;,,vj,, .. ., Vi3 and wi, Wi, ..., Wiy Then we build |V|3
undirected triangles of equal weight (u;, vi,, wi, ), (Ui, iy, Wi, ), - - .,
<ui’vi\v\3’wi\v|3> for u;, where the influence probability of each
edge is 1. Thus, we get a new graph G’ = (V’, E’). Suppose S is
the answer to the triangle IM problem over the graph G’. S is the
answer to the IM problem over G, otherwise there is a set $” which
would produce more influence triangles than S. If the triangle IM
problem can be solved in polynomial time, so will the IM problem
as the reduction process is achieved in polynomial time, which
contradicts the NP-hardness of the IM problem. O

2.2.4  Upper Bound (Component Triangle IM). Let the “component”
weight a)g of node u be wé‘" ,where (u, -, -) is a triple that contains
u and forms triangles. We can define component triangle influence
spread, FGC’: (), as the expected sum of component weights of the

nodes in the influenced subgraph.

LEMMA 4. FgM(S) is an upper bound of Tg p(S).

Proor. In a graph instance r, let T p1(S|r) and I‘CC;:M(S|r) de-
note the summed weights of the triangles and the component
weights of the nodes in the influenced subgraph, respectively. That
is, T.m(S) = E[TGm(SIr)] and rgM(S) = E[rgM(5|r)]. For this
graph instance r, the following inequality holds.

TSI =Tom(Sin+ Y >

ueV’ (u, )¢ x(S)

2w S T m(SIn).

Next, we take the expectation on both sides of the inequality above
to obtain the conclusion that Fg m(S) =T m(S). O

Problem Statement 4. (Component Triangle Influence
Maximization, CAIM). Given a social-network graph G, a diffusion
model M, and a positive integer k, CAIM obtains a set, S*, of k seed
users from V that maximize component triangle influence spread

FGC:M (S), ie, S* = argmaxgcy a|s|=k FGC:M(S).

CAIM is essentially a weighted conventional IM [56], so it also
possesses monotonicity, submodularity, and NP-hardness.



3 ALGORITHMIC FRAMEWORK
3.1 Joint Baking Algorithmic Framework

In this section, we present a Joint Baking Algorithmic Framework
(JBAF) to tackle the triangle IM problems, as illustrated in Algo-
rithm 1. JBAF is a RIS-based variant of the sandwich approximation.
The idea is to use RIS to solve (bake) the upper and lower bound
problems (breads) by generate samples (reverse reachable (RR) struc-
tures) jointly in the RIS process to reduce the overhead of sample
generation. Specifically, we estimate the objective function by con-
tinuously generating random RR sets. Then, it is transformed into
a “Max-Coverage” problem, i.e., finding a set of k nodes such that
this set intersects with as many RR structures as possible.

We call the process of randomly obtaining a node (or triple) and
generating its corresponding random RR structure one sampling
process. Each node (or triple) and its RR structure form a sample.

In Algorithm 1, it first sets the initial sample sizes, Ar and Ay,
for the lower and upper bound problems. Since the generated sam-
ples can be used for both problems, it selects the larger sample size,
A, for the first round. After that, it randomly generates A triples
that form triangles and generates a corresponding RR structure
for each triple. The subsequent process is similar to a typical RIS
algorithm, wherein we double the sample count and perform the
Max-Coverage procedure until the current seed sets meet the de-
sired approximation ratio or the number of samples reaches the
pre-determined maximum (Af . for the lower-bound problem
and Agpay for the upper-bound problem). Since the lower-bound
and upper-bound problems may need to vary the number of sam-
ples, we can terminate the problem early once it reaches a sufficient

Algorithm 1 Joint Baking Algorithmic Framework

Input: A graph G, a budget k, and an estimator of the objective
function &
Output: A set, S, of seed nodes
1: Arg < the number of samples for the lower-bound problem
: Ay < the number of samples for the upper-bound problem
: A — max(Arg, Aug)
: {{u,v,w)} « sample A triples that form triangles
: R «generate A samples of {(u,v, w)}
: repeat
generate triples and their samples to double the size of R
if the generated samples for S, are not sufficient then
S, «Max-Coverage(R, k)
if the generated samples for S, are not sufficient then
Sy «—Max-Coverage(R, k)
. until sufficient samples are generated for both S, and S,
: S¢ «— a solution of any strategy for the original problem
. S« arg maxge s s 5.} é(S)
: return S

T N T I )

[~ S S S S
(S N T A =

: Procedure Max-CovERAGE(R, k)

S0

. fori=1tokdo

0 « argmaxyey (Covg (S U {v}) — Covg(S))
insertd to S

. return S

[ R T I

RRu={u,2,3,4}
RRv={v,1,2}

g\ RRw={w,u,2,3,4,5}
RRluvw={2}

RRuw={{u,2,3,4},{v,1,
2},{w,u,2,3,4,5}}

Figure 4: An example of an RR sequence and an RRI set.

sample count first. Since the original problem is non-submodular,
we may have to use other tactics to solve it. After the solutions
to the lower/upper bound problems and the original problem are
finalized, it can return the optimal solution for each problem.

The data-dependent approximation guarantees for the sandwich
approximation are independent of the correlation between the sam-
ples used in the upper and lower bound, so JBAF still maintains the
same approximation guarantee as shown in Equation (1).

3.2 Theoretical Foundation

We first need to clarify some basic concepts. Let R denote a col-
lection of samples and Coug(S) denote the number of samples
covered by S in R. Since our problems consider the triangles in-

stead of nodes, the estimate Colz;/; I(S)

of the coverage of the RR sets

also changes. In the classic IM problem, the estimate is an unbiased

(S|
n

estimator of E [ ] where I(S) is the set of nodes influenced

by the seed set S and n is the number of nodes of a graph G. In

GAIM, we design an RR set generation approach such that C0|DRT”(S)

Q(x(S))
Q(G)
triangles influenced by the seed set S and Q(G) is the summed

weights of the triples that form triangles in the whole graph.

is an unbiased estimator of E [ ], where y(S) is the set of

DEFINITION 8. (Reverse Reachable Set & Reverse Reachable Se-
quence) Let (u,v,w) be a triple in graph G = (V,E) (denoted as
(u,0,w) € V3 for simplicity), and a reduced subgraph g be a graph
obtained by removing each edge e in G with the probability determined
by the edge weight p(e) and diffusion model M. A reverse reachable
(RR) set forv (RRy) in g is a set of nodes in g that can reachv. A re-
verse reachable (RR) sequence for (u,v, w), RRyyw, is the sequence of
the RR sets of u,v, w, i.e., RRyyw = {RRy, RRy, RRy,}. In addition, we
define the intersection of an RR sequence with a set S that is not empty
asRRyywNS # 0= (RR,NS # 0)A(RRy,NS # 0) A(RR,NS # 0).

In order to make our RIS estimator remain unbiased, the triple

Duvw

(u,v,w) then needs to be chosen with probability ai6) Since
Q(G) represents the total summed weights in the original graph,

(u,0,w)eV3 Wuow

0(G) = 1. We can prove that under the above definition,

COUR(S)
IR

is an unbiased estimator of E [Qggg))) ] under GAIM.
EXAMPLE 2. Figure 4 shows the subgraph of a reduced graph where

(1) nodes can be reached by u, v, or w, and (2) all edges in the subgraph

are activated reverse edges. Each RR set of u, v, and w consists of its



descendants in the reduced graph and the node itself. The RR sequence
of (u,0,w) is RRuyw = {{,2,3,4}, {0, 1,2}, {w, 4, 2,3,4,5}}.

LEmMMmA 5. E [Qggg)))] =E [ColvT’fl(S) under GAIM.

Proor. In conventional IM, the probability that the RR set of
a node v is covered by the seed set S is the probability that v is
influenced. Similarly, the probability that the RR sequence of a triple
(u, v, w) is covered by S is the probability that nodes u, v, and w are
influenced by S, and also the probability that the triangles formed
by (u,v, w) are influenced, denoted as Pripfuenced ({& v, W)|S). We
sample the triple by probability 22% and get the derivation.

Q(G)
C S
E OZIJ%I() =y %Pr(RRm,wﬂS #0)
(u,0,w)ev3
:
= Z %Prinﬂuenced“u» o, w)|S)
(u,0,w)evs3
_ Bauowexs)@uow __[Q(x(5))
Q(G) Q6) |

]

Similarly, we define the corresponding RR structure for HAIM,
which actually requires that the intersection of the RR sets of these
three nodes has an intersection with the seed set.

DEFINITION 9. (Reverse Reachable Intersection Set) Let {u,v, w)
be a triple in Graph G = (V, E), and a reduced subgraph g be a graph
obtained by removing each edge in G with a certain probability. The
reverse reachable intersection (RRI) set for (u,v, w), RRIyyw, is the
intersection of the RR sets of u, v, w, i.e., RRI;;5, = RRy, N RRy N RR,,.

EXAMPLE 3. As shown in Figure 4, the RRI set of (u,v, w) is RRI;pvy
= RRy N RRy N RR, = {2}.

H g
Lovwa 6. B[ 20700 | = | S | under HAIM.

We use the superscript H to denote the corresponding symbols
under HAIM. The proof procedure is similar to that of Lemma 5.
According to Lemma 3 and [39], the approximation ratio of the
solution of HAIM is guaranteed tobe 1 — 1/e — €.

CAIM is essentially a weighted conventional IM problem [56],
and we use the superscript C to denote the corresponding symbols

c
—Z“g((sc))w" =E [—Coluzgl(s)] holds un-
der CAIM and the greedy approximation algorithmic framework
can also be guaranteed to get a 1 — 1/e — e-approximate solution.

Specifically, although CAIM is essentially a weighted conven-
tional IM, it can still share samples with HAIM. It is only necessary
to select an RR set of the nodes with equal probability in a sampled
triple (u, v, w). We can prove that:

under CAIM. Therefore, E

1 wyow 1 Wy..
3Q(G)  Q(G) Z 3
(u,0,w):ue({u,o,w)

where S’(‘g‘g is the sampling probability of (4, v, w) and the right
hand side is proportional to }; “4- (i.e., the component weight of
node u as defined in Section 2.2.4). This is exactly the sampling
probability required by the RIS algorithm that is applicable to the

weighted conventional IM [56].

4 ALGORITHM DETAILS
4.1 Edge-based Triple Sampling

To sample the triples of nodes according to their probabilities, a
naive method is to compute probabilities for all triples by enumer-
ating and materializing all the triangles in TSM. However, it is not
practical as the space cost would be O(]V|?). A better way is to
store the summed weights of triangles that each edge participates in
and then perform the edge-based samplings, reducing the storage
overhead to O(|E|). It serves to sample triples with exact probability
for use while taking up less space.

Edge-based triple sampling approach. Let v, be the summed
weights of triangles containing an edge e(u, v). We sample an edge

e(u,v) with probability T w)“l;w . Then we compute the com-
e(u,v) e uv

mon neighbors of u and v, and sample the third node w in it based
on the number of occurrences, which is proportional to ‘Z)"—]jv“’

LEMMA 7. The edge-based triple sampling approach above is
equivalent to sampling directly according to the triple probability, i.e.,

)
Pr({u,v, w) is selected) = ——2

QG)

Proor. To make it easy to understand, we can consider e(u,v)
as the existence of an arbitrarily oriented edge between nodes u, v
and wyy as the summed weights of triangles consisting of arbitrarily
oriented edges between nodes u,v. Notice that for the weight of
each triangle consisting of triple (u, v, w), it’s actually counted 3
times in wyy, Wyw, Wyw- So it holds that Q(G) = % 2ie(u,0) €E Quo-
A triple (u, v, w) is sampled in only three cases: (1) edge e(u, v) is
sampled and afterward w is selected; (2) edge e(v, w) is sampled and
afterward u is selected; (3) edge e(u, w) is sampled and afterward v
is selected. Then we can obtain the following derivation.

Pr({u,v, w) is selected)
Wyo Wyow Wyw Wyow

Ze(u0)eE Quo Duv Ye(up)eE Wuv Wow

Wuw Wyuow
Ze(u,v) €E Wuv Wuw

Wyy  Wuow

+

Wow  Wyow Wyw Wyow

30(G) wuo  3QG) wyw  3Q(G) wuw
_ Quow + Ouow + Quow _ Quow
3Q(G) Q(G)’

[m]

4.2 Generate RR Sequences & Intersection Sets

According to Definition 8, the process of generating an RR set
is essentially the process of constructing a reduced subgraph. We
perform the depth-first search (DFS) with them in the order of u, v, w
respectively. When we finish generating RR,, we also partially
generate the reduced subgraph g (but the directions of all edges
are reserve). When generating RR,, if it meets a node in g, the
expansion terminates at that node and connects to g at that node.
Perform a similar operation when performing RR,, generation. On
completion, the entire reduced subgraph related to u, v, and w is
created. The reduced subgraph here is not composed of search trees.
It is composed of the influenced nodes and all the edges that are
activated, so it is likely to be a DAG and may even have cycles.



Area (a) Area (b)

RRu RRv RRw

Figure 5: An illustration of generating the RR sequence.

It is worth noting that during the DFS process, we do not know
the ancestral relationship between nodes. So we need to do BFS or
DFS on g after g is generated, and then do BFS or DFS on g with
u,v, and w as the starting node to get their descendants, which are
their RR sets, respectively. After generating RR sets, we generate RR
sequences (RRyyw = {RRy, RRy, RR,,}) for GAIM or RR Intersection
sets (RRI,yw = RRy, N RRy N RR,,) for HAIM.

EXAMPLE 4. Figure 5 illustrates a process to generate RR sequences,
where all edges are reverse edges activated during the generation
process. First, blue nodes form the RR set of node u (i.e., RRy,). Then,
we conduct a DFS from node v. When encountering a node previously
expanded by u, we directly add this node and its descendants (nodes
in Area (a)) to the RR set of node v (i.e., RRy). Similarly, the nodes in
Area (b) are directly added to the RR set of node w (i.e., RRy,). Only
the RR set of the first node u is completely enumerated.

RIS Time Complexity Analysis for GAIM and HAIM. Follow-
ing the proof for conventional IM [48], we can guarantee the com-
plexity O(E[o(v")]) for generating a random RR set in the pro-
cess of generating RR sequences for GAIM and intersection sets for
HAIM, where v* is sampled from a distribution where the proba-
bility of a node being selected is proportional to its in-degree. It is
worth noting that this distribution differs from the ones employed
in RIS for conventional IM or TSM, as it is primarily used to facilitate
the time complexity analysis. In fact, due to the generation strategy
above, it is not necessary to produce the complete RR set for every
node. The actual time cost would be lower than O(2E[c(0")]).
The time complexity of generating an RR sequence or an RRI
set is proportional to the size of an RR set (the merging of 3 RR
sets). The complexity of building seed sets in “Max-Coverage” is
linear for HAIM. As for GAIM, due to the loss of submodularity, the
worst case requires recalculating the marginal benefits and rank-
ing all nodes for each added seed, leading to the time complexity
O(kn (|R] +log (n))) by omitting the size of a single sample.
Theoretical Analysis of the Sample Size |R|. Generally, the
sample size |R| is the number of samples required to guarantee the
approximation ratio. Specifically, it is determined by factors the
maximum number of samples Ay .., the initial sample size Af,
and the approximation ratio as shown in the following theorem.

THEOREM 2. The expected number of sampled RRI sets for HAIM
isO ((k logn+ log(l/cS))Q(G)e_z/l"C(; M(SO)) to guarantee the ap-
proximation ratio 1 — 1/e — € when the following conditions are
satisfied: 6 < 1/2, the maximum number of samples Af .y =

Znt((l—l/e)\/lni%+, I(l—l/e)(ln (Z)Hn %))2

Z(k/3)

, the initial sample size A1

a1
2 T (8)

= ek3/\$ and the termination condition satisfies f,M— >1-
I (8%

1/e — € or the maximum number of samples AL .« is reached, where

2
3imax 3imax 3imax
) = (\/@z (5)+ Zlog(glé ) —\/log( 2 )) - = )

s IOg 3imax lOg 3imax
QG 5 £}
i and T3, (5°) = Voo 4 02 el

2

%, Imax = log[/\AL—L“(?X], S’ and S° denote current and optimal so-

lutions to HAIM, respectively. In the setup above, we have a sample
collection Ry for constructing the seed set and another sample collec-
tion Ry of size |R1| for estimating the approximation ratio. ®3 (S)
is an upper bound on the coverage Coug, (S) of a solution S in Ry,
which should not be greater than 1/(1 — 1/e) times the true value.
®; (S) is the coverage Covg, (S) of a solution S in Rs.

ProoF. Due to the space limit, we provide a proof sketch. First,
we identify a A’ satisfying O | (klogn + log(l/é))% .
2T, (59)
Let ¢ be any number greater than or equal to 1. When |R1| =
|R2| = cA’, there exists a collection of events A according to [47],
where the probability of any event occurring is less than or equal
to 6°. When none of the events in A occurs, we have

e The approximation guarantee of the current solution holds.
e The termination condition will be satisfied.

Therefore, when |R;| + |R2| = ¢A’ samples have been generated,
the probability that the algorithm has not terminated yet is 6°.
If |Ry] + |R2] = 2A’” samples have been generated at this point,
it can be proven that the total number of samples generated in
subsequent iterations will not exceed 8A’ in expectation. Thus, the
total number of samples will not exceed 10A’. This implies that |R|

is O ((k logn + 10g(1/5))Q(G)6_2/Fg{M(S")) in expectation. O

4.3 Reduction for RRI Set Generation

As justified in Table 5, RRI sets are likely to be empty. These empty
RRI sets do not contribute to the final seed set construction, yet they
increase time overheads. Therefore, we propose several techniques
to enhance the intersection operation for HAIM.

Early Pruning. Since we are asking for the intersection of three
RR sets, as long as the intersection of any 2 of them is empty, we
can end the generation process and return the empty intersection.
Considering the generation strategy in Section 4.2, g is partially
built up after the generation of RRy, is completed. In the process of
generating RR, and RR,y, if no node in g is encountered, the empty
intersection can be returned directly. Under many models such as
the weight cascade model, the probabilities on each edge are lower.
Degree-Oriented & Dominance Reduction. Most social net-
works follow the power-law distribution, indicating that most nodes
of the graph are of a low degree. Intuitively, the set formed by ex-
panding outward from the low-degree nodes tends to be much
smaller. We require that before generating RRI sets, the nodes in
the sampled triples are sorted in ascending order by in-degrees
to ensure that in-degree(u) < in-degree(v) < in-degree(w). This
helps to find the empty intersections as early as possible in the



Table 4: Statistics of Datasets

Dataset n m nt Type
DBLP 317K 1.05M 17.8M Undirected
Enron 36.7K 184K 5.81M Undirected

Epinions 132K 841K 13.3M Directed
Pokec 1.63M 30.6M 123M Directed

LiveJournal 4.85M 69.0M 1.12B Directed

early pruning session. Since the sampled are triples that can form
triangles, this means that there are edges between u, v, w. In the
process of generating RRy, if v is encountered, one can stop gener-
ating RR;, and go directly to generating RR,. It is because in this
case RR, N RR, = RR,. It is similar for other nodes as well.

Descendant Reduction. We need to finally search again on the
reduced subgraph g with u, v, and w as the starting nodes to get the
nodes in the RR sets. But for HAIM, since we are asking for their in-
tersection RRIy44, we can reduce the search space. Let g be updated
at the end of each node’s DFS. Let B; and By denote the set of nodes
that meet g in the DFS process of v and w, respectively. Then, we
have Descendant(B;) = RR,, N RR, and Descendant(B2) = (RR, U
RR,) N RR,,. We can obtain Descendant(B;) N Descendant(By) =
RR, NRRy NRR,, = RRI4. Thus, we just need to conduct a search
from B; and B to get their descendants and make an intersection.
DFS-Interval Reduction. The interval formed by the combination
of pre-order traversal order and post-order traversal order can be
used to determine the ancestral relationship between nodes [50].
Let ¢r(x) and ¢;(x) denote the visit index in the pre-order and
post-order traversal of node x. Assume ¢,(u) = 1, ¢;(u) = 1,
¢r(v) =2, ¢r(v) = 3, we have [2,3] C [1,4], indicating that u is an
ancestor of v. For a node by € B; and its descendants to be present
in RRI,4w, it is both necessary and sufficient that 3b; € By s.t.
by € Descendant(by). For a node by € By and its descendants to be
present in RRI,44y, it is both necessary and sufficient that 3b; € B;
s.t. by € Descendant(b;). The conditions above allow us to exclude
those nodes in B; and By that will not enter the RRI set, further
narrowing the search space and avoiding the intersection process. If
a node has more than one parent, the ancestor relationship may be
present even if the interval does not satisfy the above relationship.
Then it is required to search from B; and B to find the intersection.

4.4 A Cost-Model-Guided Heuristic for GAIM

Due to the non-submodularity of GAIM, applying RIS to GAIM
does not produce approximation guarantees while invoking the
very costly max-coverage process, which is not cost-effective.

In order to maximize the summed weights of the influenced
triangles, the seeds of GAIM should have relatively high values
at least locally on the following two factors: One is that the node
itself should participate in as many triangles with higher weights
as possible, and the other is that the edges it activates should also
participate in as many triangles with higher weights as possible.
Considering a graph where all edges have been marked as “live”
or “blocked”, we can design a cost-model function to evaluate the
quality score, h(u), of each node u as follows.

h(u) = wy + Z Wy, ()

e(u,v)€eEne(u,v) is live

where «,, is the summed weights of triangles containing node u and
Wyp is the summed weights of triangles containing the edge e(u, v).
Based on the cost model, we first sample “live” status for edges
and compute h(u) for each node, then sort all nodes in descending
order of h(u), and finally pick top-k nodes as the seed set.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Settings

Objectives. Our goal is to solve TSM by influence spread on the

datasets, that is, we need to solve the general triangle influence max-

imization problem that satisfies the weights wyyw = S3({u, v, w)).

Datasets. We tested five graphs, DBLP, Enron, Epinions, Pokec,

and LiveJournal, which were downloaded from SNAP [29]. Table 4

summarizes the statistics of these graphs.

Algorithms. We evaluate the following algorithms.

o INFMax. The algorithm used to solve the conventional IM prob-
lem, here we refer to the state-of-the-art algorithm OPIM-C [46].

e Sandwich. We extend the Sandwich Approximation [35, 57] to
triangle IM problems. Following the settings in [57], Stop-and-
Stare [40] RIS (also named “Polling” in [57]) is used to solve
the upper-bound, lower-bound, and original problems. In par-
ticular, “Polling” for weighted conventional IM is used to solve
CAIM, while we extend “Polling” with the generation strategy
of Sections 4.1 and 4.2 so that it can solve GAIM and HAIM. !

e Bounds. A variant of the method Sandwich by disabling the
solution to the original problem (like a sandwich without fillings).
Specifically, its solution Sg,,g' = arg maxge 5 5 3} o(S), where
4 and v are denoted as objective functions of lower and upper
bound problems, respectively in Section 2.1.4. This method is
used to compare with Sandwich and assess the quality of upper
and lower-bound problems we define.

e JBAF. Joint Baking Algorithmic Framework with applying all
the strategies described in Section 3 and 4 to Algorithm 1.

Parameter Settings. For the weight of each edge p(u,v), we fol-
low the convention [40, 48] and set it to Tndegree(o) We set other
parameters of RIS-based algorithms to default values, such as € =
y=0.16= % The setup above maintains the theoretical correct-
ness of the Stop-and-Stare and OPIM-C algorithms under the new
problems. We set the maximum timeout to 10,000 seconds.

Effectiveness Evaluation. To evaluate the quality of the delivered

seed sets for different algorithms, these seeds are used to initiate the

influence propagation in the network, and the number of influenced
directed triangles indicates Sz (the larger the better). Formally, we
define the metric, structural stability ratio, as the percentage of

the influenced directed triangles among all directed triangles, i.e.,

S3(x(85))/S3(G) x 100%. We use RIS to simulate the process above

and generate 100K samples for each seed set. All experiments are

conducted in a single thread on Ubuntu 16.04.7 with Intel Xeon

CPU E5-2678 v3 Processor @ 2.50GHz and 200 GB main memory.

5.2 Results Under IC and LT Models

Solution Quality. As shown in Figure 6, Sandwich can give the
highest quality solutions. In most cases, our JBAF is able to give
solutions of almost the same quality as Sandwich. In particular, the

1[40] was noted to have some errors by [24], and we adopted its corrected version.
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Figure 6: Structural Stability Ratio under IC and LT models.

Table 5: Triangle Densities and Empty Intersection Rates

Dataset nt/m Empty Int. (IC) Empty Int. (LT)
DBLP 17.0 88.4% 72.1%
Enron 31.6 97.5% 94.9%

Epinions 15.8 98.6% 93.8%
Pokec 4.0 99.2% 98.9%

LiveJournal 16.2 96.8% 76.4%
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Figure 7: Average lower bound of the approximation ratio.

quality of the JBAF solutions is highly consistent with Sandwich
under the IC model on datasets other than Pokec. It also implies that
our cost-model-guided heuristic also yields efficient solutions for
GAIM which are close to the results of the RIS algorithm that is used
directly to solve GAIM. The results of INFMAX, are significantly

worse than our algorithms adapted to the corresponding problems.

The performance under the LT model is generally consistent with
that under the IC model.

We observe that the algorithms behave differently on different
datasets. On LiveJournal, both Sandwich and JBAF are able to
get significantly more S3, while on Pokec this advantage is not
so significant. Table 5 shows the triangle density nt/m, where nt
represents the number of directed triangles. In most cases, on nt/m
larger datasets, Sandwich and JBAF produce more triangles than
INFMax and the gap is smaller on a nt/m smaller graph, implying
that the algorithms tailored for the TSM prefer structures with
densely distributed triangles. The method Bounds also performs
relatively well across data sets. This reflects the good approximation
quality of our proposed upper and lower bound problems.

(1-y)* 6(Sv)
(1+;//)2 -(1—1/e—6)~3(sv)

is a lower bound [57] of the approximation ratio for Equation (1).
Figure 7 shows the average lower bound of the approximation ratio
of JBAF on different datasets (averaged over k). The value of this
lower bound ranges from 20% to 30% on the LiveJournal, DBLP,
Enron, and Epinions datasets. JBAF performs well as the lower

bounds are close to the value of 1 — 1/e — € (=53.2%).
Overhead of the Algorithms. Figure 8 illustrates the time cost

and number of samples generated for the algorithms. With the
same settings, Sandwich spends significantly more time than JBAF.
For RIS-based algorithms, the running time heavily depends on
the number of samples |R|. Since JBAF avoids a lot of duplicate
samplings, it is very efficient. In addition, more advanced strategies
and an effective and efficient heuristic algorithm reduce samples.
Figure 8 shows that under both IC and LT models, JBAF generates
much fewer samples than Sandwich. Another important reason is
that Sandwich struggles with the issue that “Max-Coverage” for
GAIM cannot build the seed set in linear time. In most cases, the
number of samples generated by Bounds is close to that of Sandwich
but still reduces the time to a large extent compared to Sandwich.
This suggests that RIS of the original problem leads to much time
growth for just adding a minimal augmentation to the sample size.

JBAF runs much faster than Sandwich, but INFMAX is the most
efficient among these methods. The reason is that all three nodes
of a triangle require a reverse reachable operation, which increases
overhead for a single sample. Moreover, JBAF still invokes RIS to
solve HAIM. However, for HAIM, there is a major problem that
the generated RRI sets may be empty. These empty RRI sets urge a
large number of samples and do not contribute to the construction
of the seed set. The rate that an RRI set is empty at runtime on each
dataset is reported in Table 5.

Quality of Approximation Guarantee.

5.3 Efficiency of the RRI Set Generation

We label the four strategies in Section 4.3 as (a), (b), (c), and (d) in or-
der. In this subsection, we evaluate how these strategies contribute
to the efficiency. We report the relative time ratio (i.e., the time
cost of each variant over the method disabling all the strategies)
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Figure 8: Running time (a-j) and the number of samples (k-t) under IC and LT models.
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Figure 9: Effect of the pruning and reduction techniques.

for generating 1 million samples under the IC model. It shows that
the strategies can reduce the time cost of generating RRI set by 30%
to 45% on average. For a single strategy, the importance of (a), i.e.,
early pruning, is rather striking.

5.4 Case Study: Why Are Triangles Important

Rozemberczki et al. [43] provide a social network dataset of Twitch
gamers, consisting of 168,114 users, 6,797,557 edges, and 54,148,895
triangles. Each edge represents a mutually followed relationship.
We choose the rate of dead accounts, views, and lifetime as the
criteria to evaluate the importance. The average global views is
188,162, the average lifetime is 1,542 days, and the average dead

the properties of its three nodes. Each score is reported by averaging
10 replicate experiments, generating 100K samples per experiment.
Tables 6 and 7 show the average scores of the relevant attributes of
the corresponding structures of each algorithm under IC and LT
models. The experimental results under the LT model are similar
to those under the IC model. From the tables, we can learn that
triangles and homologous triangles tend to be more active. They
have more views, lifetime, and lower dead account rates.

We report the average attribute scores of triangles, excluding
those containing small-weight edges (denoted as “L-Triangles”).
We refer to an edge having a small weight when its weight is less
than 0.001. As presented in Tables 6 and 7, the views and lifetime
of L-Triangles are significantly lower than those of Triangles and
H-Triangles, accompanied only by a slight decrease in the dead rate.
This validates the rationale of our problem using the influenced
subgraph rather than the subgraph composed of living-edge paths.



Table 6: Results of the Case Study (Twitch, IC)

k=20 k =100 k =500
View Lifetime (days) Dead rate View Lifetime (days) Dead rate View Lifetime (days) Dead rate
Nodes 246,879 1,528 0.030 260,565 1,541 0.033 288,867 1,550 0.034
H-Triangles | 33,421,274 2,049 0.004 29,678,983 2,046 0.004 27,632,988 2,054 0.003
Triangles 53,275,466 2,142 0.003 38,800,349 2,168 0.003 23,996,320 2,184 0.003
L-Triangles 867,663 1,737 0.002 757,678 1,790 0.002 540,693 1,910 0.002
Table 7: Results of the Case Study (Twitch, LT)
k=20 k =100 k =500
View Lifetime (days) Dead rate View Lifetime (days) Dead rate View Lifetime (days) Dead rate
Nodes 187,473 1,544 0.030 194,350 1,546 0.031 198,821 1,547 0.031
H-Triangles | 17,395,932 2,044 0.003 16,912,540 2,046 0.003 16,759,062 2,044 0.003
Triangles 19,479,234 2,053 0.003 16,980,948 2,060 0.003 15,538,536 2,057 0.003
L-Triangles 698,843 1,784 0.002 652,703 1,796 0.002 649,583 1,803 0.002
Table 8: Results of the Case Study (Pokec) Borodin et al. [7] extended the LT model to competitive scenarios
and proved the non-submodularity of its objective function. Lu
Profile completion (%) et al. [35] proposed a Sandwich Approximation strategy to solve
IC LT non-submodular IM problem and give a data-dependent approxi-
k 20 100 500 20 100 500

Nodes 41.68 | 40.63 | 40.34 | 42.11 | 41.20 | 40.78
H-Triangles | 52.14 | 49.70 | 50.67 | 49.57 | 49.24 | 50.67
Triangles 55.26 | 49.39 | 48.62 | 53.17 | 48.02 | 50.98

We conduct similar experiments on Pokec [45]. The results in
Table 8 demonstrate that there is a higher probability that users
in triangles and homologous triangles will complete their profile,
implying that they are more active and more likely to share more
information to the platform. Such results confirm the motivation
of finding triangles, where users who frequently appear in the
influenced triangles are more active and loyal to the platform.

6 RELATED WORK

6.1 Influence Maximization

Kempe et al. [27] proved that the IM problem is NP-hard. They also
formulate the IC and LT models. Many studies [12, 23, 37, 40, 47]
apply IM to viral marketing. In addition, making IM more contextual
is a hot trend, such as combining it with topics [21, 34, 38, 49],
locations [10, 30, 54], time [28, 38], interaction strength [20, 57], and
competitive information [8, 35, 51]. There are some studies [11, 13,
23, 55, 64, 65] that exploit the community properties to address the
IM problem. Recent works also consider properties of the influenced
nodes that are related to the network structure, such as the diversity
of communities [31]. Triangle-related properties in the original
network can also heuristically help solve the conventional IM [11,
62]. For more details please refer to the survey paper [33]. RIS-based
algorithms [22, 40, 46—48] reduce the number of samples as much
as possible while ensuring the quality of the solution.

In certain situations, keeping the submodularity of IM variants
can be quite challenging and may not always be practical. For exam-
ple, the objective function of opinion-aware IM is non-submodular
[16, 17]. The idea that nodes can switch their positive/negative
opinions leads to such a non-submodularity. There are also non-
submodular objective functions in competitive IM that consider
simultaneous presence of multiple competitors within the network.

mation guarantee when studying the influence diffusion dynamics
of products with arbitrary degrees of competition. Following this
strategy, non-submodular activity-related [20, 57] and community-
related [23, 41] IM problems have been addressed. Huang et al. [25]
recently developed a lower bound to solve IM over closed social
networks, which is not submodular under the IC model.

6.2 Triangle Counting

Triangle counting is a key computational task in network analysis.
Many triangle-based metrics have been studied, such as clustering
coefficient [59] and transitivity ratio [36] to measure the quality of
the network. Surveys like [2] have also shown that many efforts are
using triangle counting to address tasks such as detecting web spam
[3], revealing hidden topic structures [15], and performing com-
munity discovery [42]. As applications have increased, researchers
also paid more attention to the actual time performance of triangle
counting. It also drives the emergence of numerous approximation
algorithms such as some sampling-based methods [1, 4, 52, 60].

7 CONCLUSION

In this paper, we propose triangular stability maximization by in-
fluence spread and triangle influence maximization problems which
find a set of k seed users such that the expected summed weights
of influenced triangles is maximized. We design an efficient RIS-
based Sandwich variant framework for triangle IM problems with
theoretical guarantees. To avoid enumerating and materializing
all the triangles, a novel edge-based triple sampling approach is
developed. We also present several pruning and reduction tech-
niques to further improve time efficiency. Extensive experiments
over real-world graphs demonstrate the effectiveness and efficiency
of our proposed approaches.
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