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ABSTRACT

In many real-world applications such as social network analysis

and online advertising/marketing, one of the most important and

popular problems is called influence maximization (IM), which finds

a set of 𝑘 seed users that maximize the expected number of influ-

enced user nodes. In practice, however, maximizing the number

of influenced nodes may be far from satisfactory for real appli-

cations such as opinion promotion and collective buying. In this

paper, we explore the importance of stability and triangles in social

networks, and formulate a novel problem in the influence spread

scenario, named triangular stability maximization, over social net-
works, and generalize it to a general triangle influence maximization
problem, which is proved to be NP-hard. We develop an efficient

reverse influence sampling (RIS) based framework for the triangle

IM with theoretical guarantees. To enable unbiased estimators, it

demands probabilistic sampling of triangles, that is, sampling trian-

gles according to their probabilities. We propose an edge-based triple
sampling approach, which is exactly equivalent to probabilistic sam-

pling and avoids costly triangle enumeration and materialization.

We also design several pruning and reduction techniques, as well

as a cost-model-guided heuristic algorithm. Extensive experiments

and a case study over real-world graphs confirm the effectiveness of

our proposed algorithms and the superiority of triangular stability
maximization and triangle influence maximization.
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1 INTRODUCTION

One of the most important and popular topics in social networks is

the “Influence Maximization” (IM) problem [27], which finds a set

of 𝑘 seed users such that the expected number of users influenced

by these seed users is maximized through the propagation process.

Many IM variants such as competitive IM [5], time-aware IM [28],
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Table 1: Statistics of Twitch users

Nodes View Lifetime (days) Dead account rate

w/ Triangles 203,074 1,560.89 0.023

w/o Triangles 8,906 1,312.49 0.114

topic-aware IM [21], and location-aware IM [30] have attracted ex-

tensive attention. Although these variants have addressed different

aspects of the IM problem, most of the variants are all seeking to

simply maximize the number of influenced nodes, via some diffu-

sion model, without realizing that the influence propagation process
also yields a sub-network structure induced by all influenced nodes.
Moreover, the number of influenced nodes is not the only quality

metric for analyzing a network. A pioneer work [57] relocates the

objective of influence maximization from nodes to edges and maxi-

mizes the so-called interaction strength in the subgraph induced

by influenced nodes with Sandwich Approximation [35]. But it is

still not aware that the influenced network creates opportunities

for maximizing some properties that are related to particular sub-
graph structures (e.g., triangles [58]). For applications like collective
buying and opinion promotion, the influenced users (nodes) are

expected to have a strong loyalty to the products or opinions.

1.1 Motivating Examples

Opinion Promotion. In addition to promoting products, IM is also

used to spread ideas, opinions, and even ideologies. For such pur-

poses, some topological properties, such as stability, of the network
formed by influence propagation will be more important than mere

quantity (i.e., the number of influenced nodes). Suppose an investor

holds a certain opinion and she wants to spread this opinion firmly

in the network. We might call the nodes that are influenced by this

opinion “believers”. When possible, the investor certainly wants

as many believers as possible, and that is the goal of IM. But if we

consider this point, i.e., if some believers betray this opinion, will the
influenced network consisting of believers become vulnerable or even
collapse? This question is not considered in the previous IM task. It

is well known that triangles are stable and highly correlated with

important properties such as clustering coefficients, connectivity,

etc. Li and Yu [32] argue that reducing the number of triangles effec-

tively makes a network vulnerable from the attacker’s perspective,

which is also consistent with our motivation above. Thus, a natural

idea to ensure the stability in an influence network is to increase

the number of triangles involved in the influence propagation.

The left part of Figure 1 shows two components of a social

network that are sufficiently distant from each other. For ease of

presentation, we assume that in the initial state, opinions can freely
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Figure 1: The left part shows a social network, where each node represents a user. Initially, these users do not hold any opinion.

The middle and right parts illustrate the propagation process if 𝑠1 or 𝑠2 were to be selected as the seed and then betray.
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Figure 2: The correlation between the #triangles and user

quality (i.e., profile completion ratio and user activity).

spread in both parts of the network. Due to budget constraints,

only one seed node is allowed. The conventional IM solution would

suggest choosing 𝑠1. However, this choice is risky if 𝑠1 were to

betray the network because a study in Nature [44] observed that

players (“nodes”) are inclined towards adopting the opinion of the

majority that they witness in election-related influence networks.

This means that the influenced network of 𝑠1 would collapse as

shown in the middle part of Figure 1, making it difficult to maintain

the target opinion. In contrast, selecting 𝑠2 may result in a smaller

number of believers, but the sub-network of believers is more stable

and less likely to collapse if 𝑠2 were to betray the network, as shown

in the right part of Figure 1 since the majority of the neighbors of

the nodes influenced by 𝑠2 hold the target opinion after the first

round of the propagation. Our objective is to propose a tailored

IM in order to identify the seed nodes like 𝑠2, which maximizes

the stability contributed by the influenced triangular structures.

“Stability” also applies to group buying in social commerce [61],

which requires group members to be acquainted with each other.

Quality User Screening. Many recently emerging UGC (i.e., user-

generated content) based platforms such as Tiktok and Twitch are

embedded with functions such as entertainment content produc-

tion and social networking. The nodes (users) on these platforms

can serve as both producers (uploaders) and content consumers

(viewers). That is, they are both influencers and influencees in in-

formation spread activities such as online marketing. It is a natural

idea that users who contribute more to stability tend to have better

real attributes. We still use the triangle as an indicator of stabil-

ity. Table 1 depicts some statistics of users (nodes) involved or not

involved in triangles of the Twitch network [43], including the num-

ber of content views, account lifetime, and the rate of dead accounts.

These statistics indicate that a user node in triangular relationships

with other users tends to be more “active” (i.e., more actively influ-

ence or be influenced by other users). Hence, to promote products

on such UGC platforms, it is more important to identify targeting

users who can induce an influenced network with abundant tri-

angles composed of active users (rather than arbitrary, possibly

inactive or dead, user accounts). Figure 2 illustrates how the user

quality is affected by the number of triangles in two more datasets,

a social network, Pokec [45], and a book review site, LibraryThing
[9, 63]. This suggests that the number of triangles highly positively

correlates with the presence of high-quality users.

Inspired by the examples above, the triangle is one of the most

important structures in social-network graphs. It is also the basis

for forming more complex structures like 𝑘-truss [14] and (𝑘,𝑑)-
truss [26]. As indicated in Table 4, many real-world (directed and

undirected) graphs contain a large number of triangles, which we

may leverage to enhance the stability of the influenced network.

Therefore, in this paper, we propose the problem triangular sta-
bility maximization (TSM) by influence spread, which obtains a

set of 𝑘 seed users such that the expected triangular structural
stability score in social networks is maximized after an influence

propagation process. In particular, we consider a generalized prob-

lem, general triangle influence maximization (denoted as GΔIM),

where we count the weights of triangles. We propose two upper

and lower bound problems, component and homologous triangle
influence maximization (denoted as CΔIM and HΔIM, respectively).

1.2 Challenges and Our Contributions

Since TSM and the triangle IMs suffer from intractable computa-

tional cost (i.e., NP-hardness as proved in Theorem 1), it is required

to develop efficient algorithms while ensuring the quality of solu-

tions. Reverse influence sampling (RIS) is one of the widely used ap-

proaches to the IM problem [40, 47, 48]. It keeps generating random



reverse reachable (RR) sets until the total number of edges exam-

ined during the generation process reaches a pre-defined threshold.

Nevertheless, the influenced targets in our triangle IM problems

are triangles rather than nodes. To enable an unbiased estimator, it

demands sampling triangles according to their probabilities. How-

ever, listing and materializing all triangles of a large graph may be

infeasible, since the number of triangles may be much more than

that of nodes as studied in [53]. Another knotty problem is “empty

intersection” arising from constructing homologous triangles based

on RR sets, where homologous triangles are the triangles whose

nodes are “activated” by the same seeds. If RR sets of the three

nodes those form a triangle do not share any node, no homolo-

gous triangles will be activated, leading to invalid samples. At the

same time, the objective function of GΔIM is not submodular (as

presented in Lemma 1), increasing the difficulty of employing RIS.

To address the challenges above, we propose a Joint Baking

Algorithmic Framework for GΔIM. Under the widely used diffusion

models such as independent cascade (IC) [18] and linear threshold
(LT) [19], we prove that GΔIM is monotonic, but not submodular;

HΔIM is monotonic and submodular. In order to avoid the triangle

materialization, we design an edge-based triple sampling approach

which is exactly equivalent to sampling triangles according to their

probabilities. To relieve the problem of empty intersection, we

develop several techniques, including early pruning, dominance

reduction, descendant reduction, and DFS-interval reduction.

In summary, we make the following contributions in this paper.

• To our best knowledge, we are the first to formulate triangular
stability maximization by influence spread and triangle influence
maximization problems, which are proved to be NP-hard. We

also propose two submodular variants HΔIM and CΔIM as the

lower and upper bound, respectively.

• We develop an efficient Joint Baking Algorithmic Framework

for the triangle problem with theoretical guarantees. A novel

edge-based triple sampling approach is proposed to avoid costly

triangle enumeration and materialization.

• We design several reduction techniques to relieve the empty

intersection problem and propose a cost-model-guided heuristic

algorithm to improve the time efficiency.

• We evaluate our proposed algorithms through extensive experi-

ments. The experimental results show that our algorithms pro-

duce seed sets of higher quality than the baseline.We also present

a case study to illustrate the superiority of triangular stability

maximization and triangle influence maximization.

2 PROBLEM DEFINITION

2.1 Preliminaries

We model the social network as a directed graph𝐺 = (𝑉 , 𝐸), where
𝑉 is the set of nodes and 𝐸 is the set of directed edges. ⟨𝑢, 𝑣,𝑤⟩ is
called a triple, where 𝑢, 𝑣,𝑤 ∈ 𝑉 . The triple ⟨𝑢, 𝑣,𝑤⟩ forms triangles

if there are edges between each pair of 𝑢, 𝑣,𝑤 .

2.1.1 Diffusion Models. Diffusion models describe the information

diffusion process in a social-network graph.

Definition 1. (Diffusion Model [33]) Given a social-network
graph𝐺 = (𝑉 , 𝐸) and a user set 𝑆 ⊆ 𝑉 , a diffusion model𝑀 captures
the stochastic process for 𝑆 spreading the information on 𝐺 .

Table 2: Abbreviations and Symbols

Symbol Meaning

𝑛,𝑚, 𝑛𝑡 #nodes, #edges, #directed triangles of a graph

G/H/CΔIM General/Homologous/Component Triangle IM

𝜔𝑢𝑣𝑤 The weight of triple ⟨𝑢, 𝑣,𝑤⟩
𝑅𝑅𝑢 A random RR set for IM

𝑅𝑅𝑢𝑣𝑤 A random RR sequence for GΔIM
𝑅𝑅𝐼𝑢𝑣𝑤 A random RRI set for HΔIM
R The collection of samples

𝜒 (𝑆) The set of triangles influenced by the seed set 𝑆

𝐼 (𝑆) The set of nodes influenced by the seed set 𝑆

𝐶𝑜𝑣R (𝑆) The number of samples covered by 𝑆 in R
S3 Triangular Structural Stability Score

𝜎 The objective function of the original problem

𝜇 The objective function of the lower-bound problem

𝜈 The objective function of the upper-bound problem

Each edge 𝑒 (𝑣,𝑤) ∈ 𝐸 is assigned a weight 𝑝 (𝑣,𝑤) representing
the probability of the information propagation from 𝑣 to𝑤 . Next, we

briefly review the models independent cascade (IC) [18, 27], linear
threshold (LT) [19, 27], and triggering (TR) [27] models.

IndependentCascade (IC) [27]. For each neighbor𝑤 of a node 𝑣 ∈
𝑉 , there exists an edge 𝑒 (𝑣,𝑤) with the weight 𝑝 (𝑣,𝑤) representing
the probability of spreading from 𝑣 to 𝑤 . If 𝑣 is active and 𝑤 is

inactive at time 𝑡 , 𝑣 will try to activate𝑤 with probability 𝑝 (𝑣,𝑤).
Assuming that the activation is successful,𝑤 will become active at

time (𝑡 + 1). However, if all the attempts to activate𝑤 by its already

active neighbors fail,𝑤 will stay inactive. Regardless of the result, 𝑣

will stop trying to activate𝑤 through the edge 𝑒 (𝑣,𝑤) in the future.

Linear Threshold (LT) [27]. Each node 𝑣 is assigned a threshold

𝜃𝑣 . If there is no prior knowledge available about the node, the

threshold will be selected randomly from the range [0, 1]. Let 𝑁 (𝑣)
denote the neighbors of 𝑣 . For each neighbor 𝑤 ∈ 𝑁 (𝑣), there
is a probability 𝑝 (𝑣,𝑤) corresponding to the edge 𝑒 (𝑣,𝑤), where∑

𝑤∈𝑁 (𝑣) 𝑝 (𝑣,𝑤) ≤ 1. If 𝑣 is inactive and it holds that

∑
𝑤∈𝑁𝑎 (𝑣)

𝑝 (𝑣,𝑤) ≥ 𝜃𝑣 at time 𝑡 , 𝑣 will be activated at the next time, where

𝑁𝑎 (𝑣) is the set of active nodes in 𝑁 (𝑣).
The TR model is also referred to as the Live Edge (LE) model.

In [27], triggering sets are denoted by “live” and “blocked” edges.

An edge 𝑒 (𝑢, 𝑣) is “live” if node 𝑢 belongs to the triggering set of

𝑣 , otherwise, it is “blocked”. A node 𝑢 ends up active if and only

if there is a path from some node in the seed set 𝑆 to 𝑢 consisting

entirely of live edges. Such a path is called a live-edge path. Both
IC and LT are special cases of the TR model [27]. Following

the paper [27], we say a node 𝑢 is “activated” by a seed means that

there is a live-edge path starting from this seed and ending at 𝑢.

Then we say that a node 𝑢 is influenced by the seed set 𝑆 if and

only if there exists a seed node in 𝑆 that activates the node 𝑢.

2.1.2 Influence Maximization. Given a diffusion model 𝑀 and a

set, 𝑆 , of nodes in 𝑉 , we can compute the influence spread of 𝑆 .

Definition 2. (Influence Spread [33]) An influence spread (a.k.a.
the influence function) of 𝑆 , denoted as 𝜎𝐺,𝑀 (𝑆), is given by the
expected number of users influenced by 𝑆 , where 𝜎𝐺,𝑀 (·) is a function
on a subset of users, i.e., 𝜎𝐺,𝑀 : 2

𝑉 → R≥0.
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Definition 3. (Influence Maximization (IM) [27, 33]) Given a
social-network graph 𝐺 , a diffusion model𝑀 , and a positive integer
𝑘 , an influence maximization (IM) problem selects a set, 𝑆∗, of 𝑘 seed
users from𝑉 that maximize the influence spread 𝑆∗, i.e., 𝜎𝐺,𝑀 (𝑆∗) =
argmax𝑆⊆𝑉∧|𝑆 |=𝑘 𝜎𝐺,𝑀 (𝑆).

2.1.3 RR Sets and RIS. Let 𝑔 be a subgraph obtained by removing

each edge 𝑒 in𝐺 with a certain probability. A reverse reachable (RR)
set is defined as a set of nodes in 𝑔 that can reach 𝑣 , where 𝑣 is

selected uniformly at random from 𝑔. Borgs et al. [6] proposed a

reverse influence sampling (RIS) approach (named by Tang et al. [48])

to solve the IM problem by using the RR sets.

2.1.4 Sandwich Approximation Strategy. Let 𝜎 be the objective

function of a non-submodular variant of IM. Let 𝜇 and 𝜈 be sub-

modular functions such that 𝜇 (𝑆) ≤ 𝜎 (𝑆) ≤ 𝜈 (𝑆) for all 𝑆 ⊆ 𝑉 .

Denote 𝑆∗𝜎 as the optimal solution of 𝜎 . The solution by Sandwich

Approximation [35] is 𝑆
sand

= argmax𝑆∈{𝑆𝜇 ,𝑆𝜎 ,𝑆𝜈 }𝜎 (𝑆), where 𝑆𝜇
and 𝑆𝜈 are approximate solutions to 𝜇 and 𝜈 , and 𝑆𝜎 is a heuristic

solution to 𝜎 .

Wang et al. [57] proved that when the algorithm uses a (𝛾, 𝛿)
estimator of 𝜎 , and both 𝑆𝜈 and 𝑆𝜇 are solved by RIS, it hold that

𝜎 (𝑆
sand
) ≥ max

{
𝜎 (𝑆𝜈 )
𝜈 (𝑆𝜈 )

,
𝜇
(
𝑆∗𝜎

)
𝜎 (𝑆∗𝜎 )

}
· (1−1/𝑒−𝜖) 1 − 𝛾

1 + 𝛾 ·𝜎
(
𝑆∗𝜎

)
. (1)

2.2 Problem Statement

We follow the directed triangle patterns defined in Structural Stabil-

ity Level [62]. For a given node𝑢, it can participate in four categories

of directed triangles as listed in Table 3. We propose the triangular

structural stability score according to the abundance of triangles.

Definition 4. (Triangular Structural Stability Score.) Given a
triple ⟨𝑢, 𝑣,𝑤⟩, we define its triangular structural stability score, de-
noted by S3 (⟨𝑢, 𝑣,𝑤⟩), as the ratio of the number of directed triangles
formed by ⟨𝑢, 𝑣,𝑤⟩ over the maximum number of directed triangles
that can be produced by a triple. The triangular structural stability
score of a graph 𝐺 is defined as S3 (𝐺) =

∑
⟨𝑢,𝑣,𝑤⟩⊂𝐺 S3 (⟨𝑢, 𝑣,𝑤⟩).

Table 3 presents the detailed score of each triple pattern, and the

score of other patterns is 0.

2.2.1 Triangular Stability Maximization. We first introduce the

concept of the influenced subgraph.

Definition 5. (Influenced Subgraph). The activated nodes induce
an influenced subgraph 𝐺 ′ = (𝑉 ′, 𝐸′), where 𝑉 ′ = {𝑣𝑖 : 𝑣𝑖 ∈ 𝑉 ∧
𝑣𝑖 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑} and 𝐸′ = {𝑒 (𝑣𝑖 , 𝑣 𝑗 ) : 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 ∧ 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 ′}.

The subgraph composed of live-edge paths is essentially a sub-

graph of the influenced subgraph. We opt for “influenced subgraph”

since every edge in it definitely exists within the social network and

would contribute to stability, regardless of its propagation weight.

Problem Statement 1. (Triangular Stability Maximization

by Influence Spread, shorted as TSM.) Given a social-network graph
𝐺 , a diffusion model𝑀 and a positive integer 𝑘 , TSM returns a set, 𝑆∗,
of 𝑘 seed users from 𝑉 to maximize the expectation of the triangular
structural stability score of the influenced subgraph 𝐸𝑆 [S3 (𝐺 ′)], i.e.,
𝑆∗ = argmax𝑆⊆𝑉∧|𝑆 |=𝑘 𝐸𝑆 [S3 (𝐺 ′)].

2.2.2 General Triangle IM. Assume each triple ⟨𝑢, 𝑣,𝑤⟩ that pro-
duces triangles has a weight 𝜔𝑢𝑣𝑤 ≥ 0. Let the summed weights of

all triples that form triangles in 𝐺 be Ω(𝐺) = ∑
𝜔𝑢𝑣𝑤 .

Definition 6. (General Triangle Influence Spread). A general
triangle influence spread of 𝑆 , denoted as Γ𝐺,𝑀 (𝑆), is defined as
𝐸𝑆 [Ω(𝐺 ′)], the expected summed weights of the triples which are
forming triangles in the influenced subgraph 𝐺 ′.

For the sake of brevity, we use “triangles” to refer to the triples

that form the triangles when the context is without ambiguity. We

say that a triangle is influenced, only when all its three nodes have

been influenced.

Problem Statement 2. (General Triangle Influence Maxi-

mization, GΔIM).Given a social-network graph𝐺 , a diffusion model
𝑀 and a positive integer 𝑘 , GΔIM returns a set, 𝑆∗, of 𝑘 seed users
from 𝑉 to maximize the general triangle influence spread Γ𝐺,𝑀 (𝑆),
i.e., 𝑆∗ = argmax𝑆⊆𝑉∧|𝑆 |=𝑘 Γ𝐺,𝑀 (𝑆).

It is clear that the objective function 𝐸𝑆 [S3 (𝐺 ′)] of TSM is a

special case of the objective function 𝐸𝑆 [Ω(𝐺 ′)] of GΔIM. They

are equal when 𝜔𝑢𝑣𝑤 = S3 (⟨𝑢, 𝑣,𝑤⟩). Let the set function 𝜒 (𝑆) be
the set of triangles influenced by the set 𝑆 . To make the expression

easy to understand, we use Ω(𝜒 (𝑆)) to refer to Ω(𝐺 ′), where 𝐺 ′
is an influenced subgraph by 𝑆 . In the GΔIM problem, we can use

any widely used diffusion model𝑀 , such as IC [27] or LT [27].

Lemma 1. Under the IC or LT model, the objective function of
GΔIM is monotonic, but not submodular.

Proof. Due to the space limit, we provide a proof sketch. Since

both the IC and LT models are progressive models, monotonicity

can be deduced accordingly. To demonstrate non-submodularity,

we can consider a TSM counterexample: an undirected triangle in

which all edges have a probability of 0. □

2.2.3 Lower Bound (Homologous Triangle IM). We next define

a variant of GΔIM, homologous triangle influence maximization
(HΔIM), that only takes into account homologous triangles whose
nodes are able to be all influenced by the same seed users.

Definition 7. (Homologous Node & Homologous Triangle). In an
influenced subgraph, those endpoints of live-edge paths from a same
seed are mutually called homologous nodes. A triangle consisting of
three homologous nodes is called a homologous triangle.

Example 1. Figure 3 shows an example of homologous triangles.
We establish the seed set 𝑆 = {𝑠1, 𝑠2, 𝑠3} and assign them with distinct
colors. The arrows connect the nodes 𝑢, 𝑣 , and𝑤 are used to represent
an edge, whereas a curve arrow directed from 𝑠1, 𝑠2, and 𝑠3 to 𝑢, 𝑣 ,
and 𝑤 represents a path. The live paths, activated edges are solid,
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Figure 3: Non-homologous and homologous triangles.

while a black dashed arrow signifies that the edge or path exists in the
influenced subgraph but is not activated. In one propagation process,
the nodes in triple ⟨𝑢, 𝑣,𝑤⟩ are activated by different seeds, forming a
non-homologous triangle, as shown in Figure 3(a). In another prop-
agation process, the triple ⟨𝑢, 𝑣,𝑤⟩ is activated by the same seed 𝑠1,
which constitutes a homologous triangle as shown in Figure 3(b).

We refer to a graph as a “graph instance” [57] in both IC and

LT models if the graph is obtained by: marking each edge (𝑢, 𝑣) as
“live” with a probability 𝑝 (𝑢, 𝑣) independently for the IC model, and

marking at most one incoming edge (𝑢, 𝑣) of each node 𝑣 as “live”

with a probability 1 −∑𝑢∈𝑁 (𝑣) 𝑝 (𝑢, 𝑣) for the LT model. Similar

to Definition 6, we can define homologous triangle influence spread,
ΓH
𝐺,𝑀
(𝑆), as the expected summed weights of homologous triangles

in the influenced subgraph.

Lemma 2. ΓH
𝐺,𝑀
(𝑆) is a lower bound of Γ𝐺,𝑀 (𝑆).

Proof. Let Γ𝐺,𝑀 (𝑆 |𝑟 ) and ΓH
𝐺,𝑀
(𝑆 |𝑟 ) be the summed weights

of the triangles and homologous triangles of the influenced sub-

graphs in a graph instance 𝑟 , respectively. This means Γ𝐺,𝑀 (𝑆)
= 𝐸 [Γ𝐺,𝑀 (𝑆 |𝑟 )] and ΓH

𝐺,𝑀
(𝑆) = 𝐸 [ΓH

𝐺,𝑀
(𝑆 |𝑟 )]. For this graph in-

stance 𝑟 , the following inequality holds.

ΓH
𝐺,𝑀
(𝑆 |𝑟 ) ≤ ΓH

𝐺,𝑀
(𝑆 |𝑟 ) + Ω({Influenced triangles that cannot be

activated by the same seed.}) = Γ𝐺,𝑀 (𝑆 |𝑟 ) .

Now, we take the expectation on both sides of the above inequal-

ity to obtain the conclusion ΓH
𝐺,𝑀
(𝑆) ≤ Γ𝐺,𝑀 (𝑆) . □

Problem Statement 3. (Homologous Triangle Influence

Maximization, HΔIM). Given a social-network graph G, a diffusion
model𝑀 , and a positive integer 𝑘 , HΔIM obtains a set, 𝑆∗, of 𝑘 seed
users from 𝑉 that maximize homologous triangle influence spread
ΓH
𝐺,𝑀
(𝑆), i.e., 𝑆∗ = argmax𝑆⊆𝑉∧|𝑆 |=𝑘 ΓH

𝐺,𝑀
(𝑆).

Lemma 3. Under the IC or LT model, the objective function of
HΔIM is monotonic and submodular.

Proof. Monotonicity: Since both IC and LT are progressivemod-

els, a node is not extinguished after it is activated. A homologous

triangle being activated means that all three nodes that make it up

are activated and that these three nodes are the endpoints of the

live-paths of the same seed. Since the nodes are not extinguished

and the live-paths do not disappear when new seeds are added, the

summed weights of homologous triangles is not reduced either.

Let 𝛾H (𝑆) be the set of homologous triangles influenced by 𝑆 .

𝛾H ({𝑢}) is the set of triangles influenced by 𝑢. Suppose that 𝑆 ⊆ 𝑆 ′

and 𝛾H (𝑆) ⊆ 𝛾H (𝑆 ′). Add a new node 𝑢. In a graph instance,

consider the homologous triangles added by the addition of 𝑢 to

𝑆 , i.e., 𝛾H (𝑆 + {𝑢}) \ 𝛾H (𝑆). If 𝑢 ∈ 𝑆 , 𝛾H (𝑆 + {𝑢}) \ 𝛾H (𝑆) = ∅.
Therefore, Ω(𝛾H (𝑆 + {𝑢})) − Ω(𝛾H (𝑆)) = 0. If 𝑢 ∉ 𝑆 , the added

homologous triangles must belong to triangles composed of ho-

mologous nodes starting from 𝑢, and such triangles must be ac-

tivated by 𝑆 + {𝑢} as long as they have not been activated by

𝑆 , i.e., 𝛾H (𝑆 + {𝑢}) \ 𝛾H (𝑆) = 𝛾H (𝑢) \ 𝛾H (𝑆). Since 𝛾H (𝑆) ⊆
𝛾H (𝑆 ′), we have {𝛾H (𝑢) \ 𝛾H (𝑆 ′)} ⊆ {𝛾H (𝑢) \ 𝛾H (𝑆)}. Thus,
Ω[𝛾H (𝑆 ′ + {𝑢})] − Ω[𝛾H (𝑆 ′)] ≤ Ω[𝛾H (𝑆 + {𝑢})] − Ω[𝛾H (𝑆)]
holds. □

Theorem 1. The triangle IM problems are NP-hard.

Proof. The triangle IM can be reduced from the IM problem

which is proven to be NP-hard [27]. Let 𝐺 = (𝑉 , 𝐸) be an arbitrary

graph instance of IM. For each node 𝑢𝑖 ∈ 𝑉 , we add 2|𝑉 |3 new

nodes 𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖 |𝑉 |3 and𝑤𝑖1 ,𝑤𝑖2 , . . . ,𝑤𝑖 |𝑉 |3 . Then we build |𝑉 |3
undirected triangles of equal weight ⟨𝑢𝑖 , 𝑣𝑖1 ,𝑤𝑖1 ⟩, ⟨𝑢𝑖 , 𝑣𝑖2 ,𝑤𝑖2 ⟩, . . .,
⟨𝑢𝑖 , 𝑣𝑖 |𝑉 |3 ,𝑤𝑖 |𝑉 |3 ⟩ for 𝑢𝑖 , where the influence probability of each

edge is 1. Thus, we get a new graph 𝐺 ′ = (𝑉 ′, 𝐸′). Suppose 𝑆 is

the answer to the triangle IM problem over the graph 𝐺 ′. 𝑆 is the

answer to the IM problem over𝐺 , otherwise there is a set 𝑆 ′ which
would produce more influence triangles than 𝑆 . If the triangle IM

problem can be solved in polynomial time, so will the IM problem

as the reduction process is achieved in polynomial time, which

contradicts the NP-hardness of the IM problem. □

2.2.4 Upper Bound (Component Triangle IM). Let the “component”

weight𝜔C𝑢 of node𝑢 be

∑ 𝜔𝑢 · ·
3

, where ⟨𝑢, ·, ·⟩ is a triple that contains
𝑢 and forms triangles. We can define component triangle influence
spread, ΓC

𝐺,𝑀
(𝑆), as the expected sum of component weights of the

nodes in the influenced subgraph.

Lemma 4. ΓC
𝐺,𝑀
(𝑆) is an upper bound of Γ𝐺,𝑀 (𝑆).

Proof. In a graph instance 𝑟 , let Γ𝐺,𝑀 (𝑆 |𝑟 ) and ΓC
𝐺,𝑀
(𝑆 |𝑟 ) de-

note the summed weights of the triangles and the component

weights of the nodes in the influenced subgraph, respectively. That

is, Γ𝐺,𝑀 (𝑆) = 𝐸 [Γ𝐺,𝑀 (𝑆 |𝑟 )] and ΓC
𝐺,𝑀
(𝑆) = 𝐸 [ΓC

𝐺,𝑀
(𝑆 |𝑟 )]. For this

graph instance 𝑟 , the following inequality holds.

ΓC
𝐺,𝑀
(𝑆 |𝑟 ) = Γ𝐺,𝑀 (𝑆 |𝑟 ) +

∑︁
𝑢∈𝑉 ′

∑︁
⟨𝑢,·,·⟩∉𝜒 (𝑆 )

𝜔𝑢 · ·
3

≥ Γ𝐺,𝑀 (𝑆 |𝑟 ).

Next, we take the expectation on both sides of the inequality above

to obtain the conclusion that ΓC
𝐺,𝑀
(𝑆) ≥ Γ𝐺,𝑀 (𝑆). □

Problem Statement 4. (Component Triangle Influence

Maximization, CΔIM). Given a social-network graph G, a diffusion
model𝑀 , and a positive integer 𝑘 , CΔIM obtains a set, 𝑆∗, of 𝑘 seed
users from 𝑉 that maximize component triangle influence spread
ΓC
𝐺,𝑀
(𝑆), i.e., 𝑆∗ = argmax𝑆⊆𝑉∧|𝑆 |=𝑘 ΓC

𝐺,𝑀
(𝑆).

CΔIM is essentially a weighted conventional IM [56], so it also

possesses monotonicity, submodularity, and NP-hardness.



3 ALGORITHMIC FRAMEWORK

3.1 Joint Baking Algorithmic Framework

In this section, we present a Joint Baking Algorithmic Framework

(JBAF) to tackle the triangle IM problems, as illustrated in Algo-

rithm 1. JBAF is a RIS-based variant of the sandwich approximation.

The idea is to use RIS to solve (bake) the upper and lower bound

problems (breads) by generate samples (reverse reachable (RR) struc-
tures) jointly in the RIS process to reduce the overhead of sample

generation. Specifically, we estimate the objective function by con-

tinuously generating random RR sets. Then, it is transformed into

a “Max-Coverage” problem, i.e., finding a set of 𝑘 nodes such that

this set intersects with as many RR structures as possible.

We call the process of randomly obtaining a node (or triple) and

generating its corresponding random RR structure one sampling
process. Each node (or triple) and its RR structure form a sample.

In Algorithm 1, it first sets the initial sample sizes, Λ𝐿0 and Λ𝑈 0
,

for the lower and upper bound problems. Since the generated sam-

ples can be used for both problems, it selects the larger sample size,

Λ, for the first round. After that, it randomly generates Λ triples

that form triangles and generates a corresponding RR structure

for each triple. The subsequent process is similar to a typical RIS

algorithm, wherein we double the sample count and perform the

Max-Coverage procedure until the current seed sets meet the de-

sired approximation ratio or the number of samples reaches the

pre-determined maximum (Λ𝐿max
for the lower-bound problem

and Λ𝑈 max
for the upper-bound problem). Since the lower-bound

and upper-bound problems may need to vary the number of sam-

ples, we can terminate the problem early once it reaches a sufficient

Algorithm 1 Joint Baking Algorithmic Framework

Input: A graph 𝐺 , a budget 𝑘 , and an estimator of the objective

function 𝜎̂

Output: A set, 𝑆 , of seed nodes

1: Λ𝐿0 ← the number of samples for the lower-bound problem

2: Λ𝑈 0
← the number of samples for the upper-bound problem

3: Λ← max(Λ𝐿0,Λ𝑈 0
)

4: {⟨𝑢, 𝑣,𝑤⟩} ← sample Λ triples that form triangles

5: R ←generate Λ samples of {⟨𝑢, 𝑣,𝑤⟩}
6: repeat

7: generate triples and their samples to double the size of R
8: if the generated samples for 𝑆𝜇 are not sufficient then

9: 𝑆𝜇 ←Max-Coverage(R, 𝑘)
10: if the generated samples for 𝑆𝜈 are not sufficient then

11: 𝑆𝜈 ←Max-Coverage(R, 𝑘)
12: until sufficient samples are generated for both 𝑆𝜇 and 𝑆𝜈 .

13: 𝑆𝜎 ← a solution of any strategy for the original problem

14: 𝑆 ← argmax𝑆∈{𝑆𝜇 ,𝑆𝜎 ,𝑆𝜈 } 𝜎̂ (𝑆)
15: return 𝑆

1: Procedure Max-Coverage(R, 𝑘)
2: 𝑆 ← ∅
3: for 𝑖 = 1 to 𝑘 do

4: 𝑣 ← argmax𝑣∈𝑉 (𝐶𝑜𝑣R (𝑆 ∪ {𝑣}) −𝐶𝑜𝑣R (𝑆))
5: insert 𝑣 to 𝑆

6: return 𝑆
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Figure 4: An example of an RR sequence and an RRI set.

sample count first. Since the original problem is non-submodular,

we may have to use other tactics to solve it. After the solutions

to the lower/upper bound problems and the original problem are

finalized, it can return the optimal solution for each problem.

The data-dependent approximation guarantees for the sandwich

approximation are independent of the correlation between the sam-

ples used in the upper and lower bound, so JBAF still maintains the

same approximation guarantee as shown in Equation (1).

3.2 Theoretical Foundation

We first need to clarify some basic concepts. Let R denote a col-

lection of samples and 𝐶𝑜𝑣R (𝑆) denote the number of samples

covered by 𝑆 in R. Since our problems consider the triangles in-

stead of nodes, the estimate
𝐶𝑜𝑣R (𝑆 )
|R | of the coverage of the RR sets

also changes. In the classic IM problem, the estimate is an unbiased

estimator of E
[
|𝐼 (𝑆 ) |
𝑛

]
, where 𝐼 (𝑆) is the set of nodes influenced

by the seed set 𝑆 and 𝑛 is the number of nodes of a graph 𝐺 . In

GΔIM, we design an RR set generation approach such that
𝐶𝑜𝑣R (𝑆 )
|R |

is an unbiased estimator of E
[
Ω (𝜒 (𝑆 ) )
Ω (𝐺 )

]
, where 𝜒 (𝑆) is the set of

triangles influenced by the seed set 𝑆 and Ω(𝐺) is the summed

weights of the triples that form triangles in the whole graph.

Definition 8. (Reverse Reachable Set & Reverse Reachable Se-
quence) Let ⟨𝑢, 𝑣,𝑤⟩ be a triple in graph 𝐺 = (𝑉 , 𝐸) (denoted as
⟨𝑢, 𝑣,𝑤⟩ ∈ 𝑉 3 for simplicity), and a reduced subgraph 𝑔 be a graph
obtained by removing each edge 𝑒 in𝐺 with the probability determined
by the edge weight 𝑝 (𝑒) and diffusion model 𝑀 . A reverse reachable
(RR) set for 𝑣 (𝑅𝑅𝑣) in 𝑔 is a set of nodes in 𝑔 that can reach 𝑣 . A re-
verse reachable (RR) sequence for ⟨𝑢, 𝑣,𝑤⟩, 𝑅𝑅𝑢𝑣𝑤 , is the sequence of
the RR sets of 𝑢, 𝑣,𝑤 , i.e., 𝑅𝑅𝑢𝑣𝑤 = {𝑅𝑅𝑢 , 𝑅𝑅𝑣, 𝑅𝑅𝑤}. In addition, we
define the intersection of an RR sequence with a set 𝑆 that is not empty
as 𝑅𝑅𝑢𝑣𝑤 ∩𝑆 ≠ ∅ ≡ (𝑅𝑅𝑢 ∩𝑆 ≠ ∅) ∧ (𝑅𝑅𝑣 ∩𝑆 ≠ ∅) ∧ (𝑅𝑅𝑤 ∩𝑆 ≠ ∅).

In order to make our RIS estimator remain unbiased, the triple

⟨𝑢, 𝑣,𝑤⟩ then needs to be chosen with probability
𝜔𝑢𝑣𝑤

Ω (𝐺 ) . Since
Ω(𝐺) represents the total summed weights in the original graph,∑
⟨𝑢,𝑣,𝑤⟩∈𝑉 3 𝜔𝑢𝑣𝑤

Ω (𝐺 ) = 1. We can prove that under the above definition,

𝐶𝑜𝑣R (𝑆 )
|R | is an unbiased estimator of E

[
Ω (𝜒 (𝑆 ) )
Ω (𝐺 )

]
under GΔIM.

Example 2. Figure 4 shows the subgraph of a reduced graph where
(1) nodes can be reached by𝑢, 𝑣 , or𝑤 , and (2) all edges in the subgraph
are activated reverse edges. Each RR set of 𝑢, 𝑣 , and𝑤 consists of its



descendants in the reduced graph and the node itself. The RR sequence
of ⟨𝑢, 𝑣,𝑤⟩ is 𝑅𝑅𝑢𝑣𝑤 = {{𝑢, 2, 3, 4}, {𝑣, 1, 2}, {𝑤,𝑢, 2, 3, 4, 5}}.

Lemma 5. E
[
Ω (𝜒 (𝑆 ) )
Ω (𝐺 )

]
= E

[
𝐶𝑜𝑣R (𝑆 )
|R |

]
under GΔIM.

Proof. In conventional IM, the probability that the RR set of

a node 𝑣 is covered by the seed set 𝑆 is the probability that 𝑣 is

influenced. Similarly, the probability that the RR sequence of a triple

⟨𝑢, 𝑣,𝑤⟩ is covered by 𝑆 is the probability that nodes 𝑢, 𝑣 , and𝑤 are

influenced by 𝑆 , and also the probability that the triangles formed

by ⟨𝑢, 𝑣,𝑤⟩ are influenced, denoted as 𝑃𝑟
influenced

(⟨𝑢, 𝑣,𝑤⟩|𝑆). We

sample the triple by probability
𝜔𝑢𝑣𝑤

Ω (𝐺 ) and get the derivation.

E

[
𝐶𝑜𝑣R (𝑆)
|R|

]
=

∑︁
⟨𝑢,𝑣,𝑤⟩∈𝑉 3

𝜔𝑢𝑣𝑤

Ω(𝐺) 𝑃𝑟 (𝑅𝑅𝑢𝑣𝑤 ∩ 𝑆 ≠ ∅)

=
∑︁

⟨𝑢,𝑣,𝑤⟩∈𝑉 3

𝜔𝑢𝑣𝑤

Ω(𝐺) 𝑃𝑟influenced (⟨𝑢, 𝑣,𝑤⟩|𝑆)

=
E⟨𝑢,𝑣,𝑤⟩∈𝜒 (𝑆 )𝜔𝑢𝑣𝑤

Ω(𝐺) = E

[
Ω(𝜒 (𝑆))
Ω(𝐺)

]
.

□

Similarly, we define the corresponding RR structure for HΔIM,

which actually requires that the intersection of the RR sets of these

three nodes has an intersection with the seed set.

Definition 9. (Reverse Reachable Intersection Set) Let ⟨𝑢, 𝑣,𝑤⟩
be a triple in Graph𝐺 = (𝑉 , 𝐸), and a reduced subgraph 𝑔 be a graph
obtained by removing each edge in 𝐺 with a certain probability. The
reverse reachable intersection (RRI) set for ⟨𝑢, 𝑣,𝑤⟩, 𝑅𝑅𝐼𝑢𝑣𝑤 , is the
intersection of the RR sets of 𝑢, 𝑣,𝑤 , i.e., 𝑅𝑅𝐼𝑢𝑣𝑤 = 𝑅𝑅𝑢 ∩𝑅𝑅𝑣 ∩𝑅𝑅𝑤 .

Example 3. As shown in Figure 4, the RRI set of ⟨𝑢, 𝑣,𝑤⟩ is 𝑅𝑅𝐼𝑢𝑣𝑤
= 𝑅𝑅𝑢 ∩ 𝑅𝑅𝑣 ∩ 𝑅𝑅𝑤 = {2}.

Lemma 6. E
[
Ω (𝛾H (𝑆 ) )

Ω (𝐺 )

]
= E

[
𝐶𝑜𝑣RH (𝑆 )
|RH |

]
under HΔIM.

We use the superscriptH to denote the corresponding symbols

under HΔIM. The proof procedure is similar to that of Lemma 5.

According to Lemma 3 and [39], the approximation ratio of the

solution of HΔIM is guaranteed to be 1 − 1/𝑒 − 𝜖 .
CΔIM is essentially a weighted conventional IM problem [56],

and we use the superscript C to denote the corresponding symbols

under CΔIM. Therefore, E

[∑
𝑢∈𝐼 (𝑆 ) 𝜔

C
𝑢

Ω (𝐺 )

]
= E

[
𝐶𝑜𝑣RC (𝑆 )
|RC |

]
holds un-

der CΔIM and the greedy approximation algorithmic framework

can also be guaranteed to get a 1 − 1/𝑒 − 𝜖-approximate solution.

Specifically, although CΔIM is essentially a weighted conven-

tional IM, it can still share samples with HΔIM. It is only necessary

to select an RR set of the nodes with equal probability in a sampled

triple ⟨𝑢, 𝑣,𝑤⟩. We can prove that:∑︁
⟨𝑢,𝑣,𝑤⟩:𝑢∈⟨𝑢,𝑣,𝑤⟩

1

3

𝜔𝑢𝑣𝑤

Ω(𝐺) =
1

Ω(𝐺)
∑︁ 𝜔𝑢 · ·

3

,

where
𝜔𝑢𝑣𝑤

Ω (𝐺 ) is the sampling probability of ⟨𝑢, 𝑣,𝑤⟩ and the right

hand side is proportional to

∑ 𝜔𝑢 · ·
3

(i.e., the component weight of

node 𝑢 as defined in Section 2.2.4). This is exactly the sampling

probability required by the RIS algorithm that is applicable to the

weighted conventional IM [56].

4 ALGORITHM DETAILS

4.1 Edge-based Triple Sampling

To sample the triples of nodes according to their probabilities, a

naive method is to compute probabilities for all triples by enumer-

ating and materializing all the triangles in TSM. However, it is not

practical as the space cost would be 𝑂 ( |𝑉 |3). A better way is to

store the summed weights of triangles that each edge participates in

and then perform the edge-based samplings, reducing the storage

overhead to𝑂 ( |𝐸 |). It serves to sample triples with exact probability

for use while taking up less space.

Edge-based triple sampling approach. Let 𝜔𝑢𝑣 be the summed

weights of triangles containing an edge 𝑒 (𝑢, 𝑣). We sample an edge

𝑒 (𝑢, 𝑣) with probability
𝜔𝑢𝑣∑

𝑒 (𝑢,𝑣) ∈𝐸 𝜔𝑢𝑣
. Then we compute the com-

mon neighbors of 𝑢 and 𝑣 , and sample the third node𝑤 in it based

on the number of occurrences, which is proportional to
𝜔𝑢𝑣𝑤

𝜔𝑢𝑣
.

Lemma 7. The edge-based triple sampling approach above is
equivalent to sampling directly according to the triple probability, i.e.,
𝑃𝑟 (⟨𝑢, 𝑣,𝑤⟩ is selected) = 𝜔𝑢𝑣𝑤

Ω(𝐺) .

Proof. To make it easy to understand, we can consider 𝑒 (𝑢, 𝑣)
as the existence of an arbitrarily oriented edge between nodes 𝑢, 𝑣

and𝜔𝑢𝑣 as the summed weights of triangles consisting of arbitrarily

oriented edges between nodes 𝑢, 𝑣 . Notice that for the weight of

each triangle consisting of triple ⟨𝑢, 𝑣,𝑤⟩, it’s actually counted 3

times in 𝜔𝑢𝑣, 𝜔𝑣𝑤 , 𝜔𝑢𝑤 . So it holds that Ω(𝐺) = 1

3

∑
𝑒 (𝑢,𝑣) ∈𝐸 𝜔𝑢𝑣 .

A triple ⟨𝑢, 𝑣,𝑤⟩ is sampled in only three cases: (1) edge 𝑒 (𝑢, 𝑣) is
sampled and afterward𝑤 is selected; (2) edge 𝑒 (𝑣,𝑤) is sampled and

afterward 𝑢 is selected; (3) edge 𝑒 (𝑢,𝑤) is sampled and afterward 𝑣

is selected. Then we can obtain the following derivation.

𝑃𝑟 (⟨𝑢, 𝑣,𝑤⟩ is selected)

=
𝜔𝑢𝑣∑

𝑒 (𝑢,𝑣) ∈𝐸 𝜔𝑢𝑣

𝜔𝑢𝑣𝑤

𝜔𝑢𝑣
+ 𝜔𝑣𝑤∑

𝑒 (𝑢,𝑣) ∈𝐸 𝜔𝑢𝑣

𝜔𝑢𝑣𝑤

𝜔𝑣𝑤

+ 𝜔𝑢𝑤∑
𝑒 (𝑢,𝑣) ∈𝐸 𝜔𝑢𝑣

𝜔𝑢𝑣𝑤

𝜔𝑢𝑤

=
𝜔𝑢𝑣

3Ω(𝐺)
𝜔𝑢𝑣𝑤

𝜔𝑢𝑣
+ 𝜔𝑣𝑤

3Ω(𝐺)
𝜔𝑢𝑣𝑤

𝜔𝑣𝑤
+ 𝜔𝑢𝑤

3Ω(𝐺)
𝜔𝑢𝑣𝑤

𝜔𝑢𝑤

=
𝜔𝑢𝑣𝑤 + 𝜔𝑢𝑣𝑤 + 𝜔𝑢𝑣𝑤

3Ω(𝐺) =
𝜔𝑢𝑣𝑤

Ω(𝐺) .

□

4.2 Generate RR Sequences & Intersection Sets

According to Definition 8, the process of generating an RR set

is essentially the process of constructing a reduced subgraph. We

perform the depth-first search (DFS) with them in the order of𝑢, 𝑣,𝑤

respectively. When we finish generating 𝑅𝑅𝑢 , we also partially

generate the reduced subgraph 𝑔 (but the directions of all edges

are reserve). When generating 𝑅𝑅𝑣 , if it meets a node in 𝑔, the

expansion terminates at that node and connects to 𝑔 at that node.

Perform a similar operation when performing 𝑅𝑅𝑤 generation. On

completion, the entire reduced subgraph related to 𝑢, 𝑣 , and 𝑤 is

created. The reduced subgraph here is not composed of search trees.

It is composed of the influenced nodes and all the edges that are

activated, so it is likely to be a DAG and may even have cycles.
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Figure 5: An illustration of generating the RR sequence.

It is worth noting that during the DFS process, we do not know

the ancestral relationship between nodes. So we need to do BFS or

DFS on 𝑔 after 𝑔 is generated, and then do BFS or DFS on 𝑔 with

𝑢, 𝑣 , and𝑤 as the starting node to get their descendants, which are

their RR sets, respectively. After generating RR sets, we generate RR

sequences (𝑅𝑅𝑢𝑣𝑤 = {𝑅𝑅𝑢 , 𝑅𝑅𝑣, 𝑅𝑅𝑤}) for GΔIM or RR Intersection

sets (𝑅𝑅𝐼𝑢𝑣𝑤 = 𝑅𝑅𝑢 ∩ 𝑅𝑅𝑣 ∩ 𝑅𝑅𝑤 ) for HΔIM.

Example 4. Figure 5 illustrates a process to generate RR sequences,
where all edges are reverse edges activated during the generation
process. First, blue nodes form the RR set of node 𝑢 (i.e., 𝑅𝑅𝑢 ). Then,
we conduct a DFS from node 𝑣 . When encountering a node previously
expanded by 𝑢, we directly add this node and its descendants (nodes
in Area (a)) to the RR set of node 𝑣 (i.e., 𝑅𝑅𝑣). Similarly, the nodes in
Area (b) are directly added to the RR set of node𝑤 (i.e., 𝑅𝑅𝑤 ). Only
the RR set of the first node 𝑢 is completely enumerated.

RIS Time Complexity Analysis for GΔIM and HΔIM. Follow-

ing the proof for conventional IM [48], we can guarantee the com-

plexity 𝑂 (𝑚𝑛 E[𝜎 (𝑣
∗)]) for generating a random RR set in the pro-

cess of generating RR sequences for GΔIM and intersection sets for

HΔIM, where 𝑣∗ is sampled from a distribution where the proba-

bility of a node being selected is proportional to its in-degree. It is

worth noting that this distribution differs from the ones employed

in RIS for conventional IM or TSM, as it is primarily used to facilitate

the time complexity analysis. In fact, due to the generation strategy

above, it is not necessary to produce the complete RR set for every

node. The actual time cost would be lower than 𝑂 (𝑚𝑛 E[𝜎 (𝑣
∗)]).

The time complexity of generating an RR sequence or an RRI

set is proportional to the size of an RR set (the merging of 3 RR

sets). The complexity of building seed sets in “Max-Coverage” is

linear for HΔIM. As for GΔIM, due to the loss of submodularity, the

worst case requires recalculating the marginal benefits and rank-

ing all nodes for each added seed, leading to the time complexity

𝑂 (𝑘𝑛 ( |R| + log (𝑛))) by omitting the size of a single sample.

Theoretical Analysis of the Sample Size |R |. Generally, the
sample size |R | is the number of samples required to guarantee the

approximation ratio. Specifically, it is determined by factors the

maximum number of samples Λ𝐿max
, the initial sample size Λ𝐿0,

and the approximation ratio as shown in the following theorem.

Theorem 2. The expected number of sampled RRI sets for HΔIM

is 𝑂
(
(𝑘 log𝑛 + log(1/𝛿))Ω(𝐺)𝜖−2/ΓH

𝐺,𝑀
(𝑆𝑜 )

)
to guarantee the ap-

proximation ratio 1 − 1/𝑒 − 𝜖 when the following conditions are
satisfied: 𝛿 ≤ 1/2, the maximum number of samples Λ𝐿max

=

2𝑛𝑡

(
(1−1/𝑒 )

√︃
ln

2

𝛿
+
√︂
(1−1/𝑒 )

(
ln

(𝑛
𝑘

)
+ln 2

𝛿

))2
𝜀2 (𝑘/3) , the initial sample sizeΛ𝐿0

=
𝜖2𝑘Λ𝐿max

3𝑛𝑡 , and the termination condition satisfies
ΓH
𝐺,𝑀

𝑙 (𝑆 ′ )
Γ̂H
𝐺,𝑀

𝑢 (𝑆𝑜 ) ≥ 1 −

1/𝑒 − 𝜖 or the maximum number of samples Λ𝐿max
is reached, where

ΓH
𝐺,𝑀

𝑙 (𝑆 ′ ) =
©­­«
©­«
√︂
Φ2 (𝑆 ′ ) +

2 log

(
3𝑖max

𝛿

)
9

−

√︂
log

(
3𝑖max

𝛿

)
2

ª®¬
2

−
log

(
3𝑖max

𝛿

)
18

ª®®¬
·Ω (𝐺 )|R |/2 and Γ̂H

𝐺,𝑀
𝑢 (𝑆𝑜 ) = ©­«

√︂
Φ𝑢
1
(𝑆𝑜 ) +

log

(
3𝑖max

𝛿

)
2

+

√︂
log

(
3𝑖max

𝛿

)
2

ª®¬
2

·

Ω (𝐺 )
|R |/2 , 𝑖max = log⌈Λ𝐿max

Λ𝐿0
⌉, 𝑆 ′ and 𝑆𝑜 denote current and optimal so-

lutions to HΔIM, respectively. In the setup above, we have a sample
collection R1 for constructing the seed set and another sample collec-
tion R2 of size |R1 | for estimating the approximation ratio. Φ𝑢

1
(𝑆)

is an upper bound on the coverage 𝐶𝑜𝑣R1 (𝑆) of a solution 𝑆 in R1,
which should not be greater than 1/(1 − 1/𝑒) times the true value.
Φ2 (𝑆) is the coverage 𝐶𝑜𝑣R2 (𝑆) of a solution 𝑆 in R2.

Proof. Due to the space limit, we provide a proof sketch. First,

we identify a Λ′ satisfying 𝑂

(
(𝑘 log𝑛 + log(1/𝛿)) Ω (𝐺 )

𝜖−2/ΓH
𝐺,𝑀
(𝑆𝑜 )

)
.

Let 𝑐 be any number greater than or equal to 1. When |R1 | =
|R2 | = 𝑐Λ′, there exists a collection of events A according to [47],

where the probability of any event occurring is less than or equal

to 𝛿𝑐 . When none of the events in A occurs, we have

• The approximation guarantee of the current solution holds.

• The termination condition will be satisfied.

Therefore, when |R1 | + |R2 | = 𝑐Λ′ samples have been generated,

the probability that the algorithm has not terminated yet is 𝛿𝑐 .

If |R1 | + |R2 | = 2Λ′ samples have been generated at this point,

it can be proven that the total number of samples generated in

subsequent iterations will not exceed 8Λ′ in expectation. Thus, the

total number of samples will not exceed 10Λ′. This implies that |R |
is 𝑂

(
(𝑘 log𝑛 + log(1/𝛿))Ω(𝐺)𝜖−2/ΓH

𝐺,𝑀
(𝑆𝑜 )

)
in expectation. □

4.3 Reduction for RRI Set Generation

As justified in Table 5, RRI sets are likely to be empty. These empty

RRI sets do not contribute to the final seed set construction, yet they

increase time overheads. Therefore, we propose several techniques

to enhance the intersection operation for HΔIM.

Early Pruning. Since we are asking for the intersection of three

RR sets, as long as the intersection of any 2 of them is empty, we

can end the generation process and return the empty intersection.

Considering the generation strategy in Section 4.2, 𝑔 is partially

built up after the generation of 𝑅𝑅𝑢 is completed. In the process of

generating 𝑅𝑅𝑣 and 𝑅𝑅𝑤 , if no node in 𝑔 is encountered, the empty

intersection can be returned directly. Under many models such as

the weight cascade model, the probabilities on each edge are lower.

Degree-Oriented & Dominance Reduction. Most social net-

works follow the power-law distribution, indicating that most nodes

of the graph are of a low degree. Intuitively, the set formed by ex-

panding outward from the low-degree nodes tends to be much

smaller. We require that before generating RRI sets, the nodes in

the sampled triples are sorted in ascending order by in-degrees

to ensure that in-degree(𝑢) ≤ in-degree(𝑣) ≤ in-degree(𝑤). This
helps to find the empty intersections as early as possible in the



Table 4: Statistics of Datasets

Dataset 𝑛 𝑚 𝑛𝑡 Type

DBLP 317K 1.05M 17.8M Undirected

Enron 36.7K 184K 5.81M Undirected

Epinions 132K 841K 13.3M Directed

Pokec 1.63M 30.6M 123M Directed

LiveJournal 4.85M 69.0M 1.12B Directed

early pruning session. Since the sampled are triples that can form

triangles, this means that there are edges between 𝑢, 𝑣,𝑤 . In the

process of generating 𝑅𝑅𝑢 , if 𝑣 is encountered, one can stop gener-

ating 𝑅𝑅𝑢 and go directly to generating 𝑅𝑅𝑣 . It is because in this

case 𝑅𝑅𝑢 ∩ 𝑅𝑅𝑣 = 𝑅𝑅𝑣 . It is similar for other nodes as well.

Descendant Reduction.We need to finally search again on the

reduced subgraph 𝑔 with 𝑢, 𝑣 , and𝑤 as the starting nodes to get the

nodes in the RR sets. But for HΔIM, since we are asking for their in-

tersection 𝑅𝑅𝐼𝑢𝑣𝑤 , we can reduce the search space. Let 𝑔 be updated

at the end of each node’s DFS. Let 𝐵1 and 𝐵2 denote the set of nodes

that meet 𝑔 in the DFS process of 𝑣 and𝑤 , respectively. Then, we

have Descendant(𝐵1) = 𝑅𝑅𝑢 ∩ 𝑅𝑅𝑣 and Descendant(𝐵2) = (𝑅𝑅𝑢 ∪
𝑅𝑅𝑣) ∩ 𝑅𝑅𝑤 . We can obtain Descendant(𝐵1) ∩ Descendant(𝐵2) =
𝑅𝑅𝑢 ∩𝑅𝑅𝑣 ∩𝑅𝑅𝑤 = 𝑅𝑅𝐼𝑢𝑣𝑤 . Thus, we just need to conduct a search

from 𝐵1 and 𝐵2 to get their descendants and make an intersection.

DFS-Interval Reduction. The interval formed by the combination

of pre-order traversal order and post-order traversal order can be

used to determine the ancestral relationship between nodes [50].

Let 𝜙𝑟 (𝑥) and 𝜙𝑡 (𝑥) denote the visit index in the pre-order and

post-order traversal of node 𝑥 . Assume 𝜙𝑟 (𝑢) = 1, 𝜙𝑡 (𝑢) = 1,

𝜙𝑟 (𝑣) = 2, 𝜙𝑡 (𝑣) = 3, we have [2, 3] ⊆ [1, 4], indicating that 𝑢 is an

ancestor of 𝑣 . For a node 𝑏1 ∈ 𝐵1 and its descendants to be present

in 𝑅𝑅𝐼𝑢𝑣𝑤 , it is both necessary and sufficient that ∃𝑏2 ∈ 𝐵2 s.t.

𝑏1 ∈ Descendant(𝑏2). For a node 𝑏2 ∈ 𝐵2 and its descendants to be

present in 𝑅𝑅𝐼𝑢𝑣𝑤 , it is both necessary and sufficient that ∃𝑏1 ∈ 𝐵1
s.t. 𝑏2 ∈ Descendant(𝑏1). The conditions above allow us to exclude

those nodes in 𝐵1 and 𝐵2 that will not enter the RRI set, further

narrowing the search space and avoiding the intersection process. If

a node has more than one parent, the ancestor relationship may be

present even if the interval does not satisfy the above relationship.

Then it is required to search from 𝐵1 and 𝐵2 to find the intersection.

4.4 A Cost-Model-Guided Heuristic for GΔIM
Due to the non-submodularity of GΔIM, applying RIS to GΔIM
does not produce approximation guarantees while invoking the

very costly max-coverage process, which is not cost-effective.

In order to maximize the summed weights of the influenced

triangles, the seeds of GΔIM should have relatively high values

at least locally on the following two factors: One is that the node

itself should participate in as many triangles with higher weights

as possible, and the other is that the edges it activates should also

participate in as many triangles with higher weights as possible.

Considering a graph where all edges have been marked as “live”

or “blocked”, we can design a cost-model function to evaluate the

quality score, ℎ(𝑢), of each node 𝑢 as follows.

ℎ(𝑢) = 𝜔𝑢 +
∑︁

𝑒 (𝑢,𝑣) ∈𝐸∧𝑒 (𝑢,𝑣) is live
𝜔𝑢𝑣, (2)

where𝜔𝑢 is the summed weights of triangles containing node𝑢 and

𝜔𝑢𝑣 is the summed weights of triangles containing the edge 𝑒 (𝑢, 𝑣).
Based on the cost model, we first sample “live” status for edges

and compute ℎ(𝑢) for each node, then sort all nodes in descending

order of ℎ(𝑢), and finally pick top-𝑘 nodes as the seed set.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Settings

Objectives. Our goal is to solve TSM by influence spread on the

datasets, that is, we need to solve the general triangle influence max-

imization problem that satisfies the weights 𝜔𝑢𝑣𝑤 = S3 (⟨𝑢, 𝑣,𝑤⟩).
Datasets. We tested five graphs, DBLP, Enron, Epinions, Pokec,

and LiveJournal, which were downloaded from SNAP [29]. Table 4

summarizes the statistics of these graphs.

Algorithms. We evaluate the following algorithms.

• InfMax. The algorithm used to solve the conventional IM prob-

lem, here we refer to the state-of-the-art algorithm OPIM-C [46].

• Sandwich. We extend the Sandwich Approximation [35, 57] to

triangle IM problems. Following the settings in [57], Stop-and-

Stare [40] RIS (also named “Polling” in [57]) is used to solve

the upper-bound, lower-bound, and original problems. In par-

ticular, “Polling” for weighted conventional IM is used to solve

CΔIM, while we extend “Polling” with the generation strategy

of Sections 4.1 and 4.2 so that it can solve GΔIM and HΔIM.
1

• Bounds. A variant of the method Sandwich by disabling the

solution to the original problem (like a sandwich without fillings).

Specifically, its solution 𝑆
sand’

= argmax𝑆∈{𝑆𝜇 ,𝑆𝜈 } 𝜎 (𝑆), where
𝜇 and 𝜈 are denoted as objective functions of lower and upper

bound problems, respectively in Section 2.1.4. This method is

used to compare with Sandwich and assess the quality of upper

and lower-bound problems we define.

• JBAF. Joint Baking Algorithmic Framework with applying all

the strategies described in Section 3 and 4 to Algorithm 1.

Parameter Settings. For the weight of each edge 𝑝 (𝑢, 𝑣), we fol-
low the convention [40, 48] and set it to

1

in-degree(𝑣) . We set other

parameters of RIS-based algorithms to default values, such as 𝜖 =

𝛾 = 0.1, 𝛿 = 1

𝑛 . The setup above maintains the theoretical correct-

ness of the Stop-and-Stare and OPIM-C algorithms under the new

problems. We set the maximum timeout to 10,000 seconds.

Effectiveness Evaluation. To evaluate the quality of the delivered

seed sets for different algorithms, these seeds are used to initiate the

influence propagation in the network, and the number of influenced

directed triangles indicates S3 (the larger the better). Formally, we

define the metric, structural stability ratio, as the percentage of

the influenced directed triangles among all directed triangles, i.e.,

S3 (𝜒 (𝑆))/S3 (𝐺) × 100%. We use RIS to simulate the process above

and generate 100K samples for each seed set. All experiments are

conducted in a single thread on Ubuntu 16.04.7 with Intel Xeon

CPU E5-2678 v3 Processor @ 2.50GHz and 200 GB main memory.

5.2 Results Under IC and LT Models

Solution Quality. As shown in Figure 6, Sandwich can give the

highest quality solutions. In most cases, our JBAF is able to give

solutions of almost the same quality as Sandwich. In particular, the

1
[40] was noted to have some errors by [24], and we adopted its corrected version.
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Figure 6: Structural Stability Ratio under IC and LT models.

Table 5: Triangle Densities and Empty Intersection Rates

Dataset 𝑛𝑡/𝑚 Empty Int. (IC) Empty Int. (LT)

DBLP 17.0 88.4% 72.1%

Enron 31.6 97.5% 94.9%

Epinions 15.8 98.6% 93.8%

Pokec 4.0 99.2% 98.9%

LiveJournal 16.2 96.8% 76.4%
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Figure 7: Average lower bound of the approximation ratio.

quality of the JBAF solutions is highly consistent with Sandwich

under the IC model on datasets other than Pokec. It also implies that

our cost-model-guided heuristic also yields efficient solutions for

GΔIMwhich are close to the results of the RIS algorithm that is used

directly to solve GΔIM. The results of InfMax, are significantly

worse than our algorithms adapted to the corresponding problems.

The performance under the LT model is generally consistent with

that under the IC model.

We observe that the algorithms behave differently on different

datasets. On LiveJournal, both Sandwich and JBAF are able to

get significantly more S3, while on Pokec this advantage is not

so significant. Table 5 shows the triangle density 𝑛𝑡/𝑚, where 𝑛𝑡

represents the number of directed triangles. In most cases, on 𝑛𝑡/𝑚
larger datasets, Sandwich and JBAF produce more triangles than

InfMax and the gap is smaller on a 𝑛𝑡/𝑚 smaller graph, implying

that the algorithms tailored for the TSM prefer structures with

densely distributed triangles. The method Bounds also performs

relatively well across data sets. This reflects the good approximation

quality of our proposed upper and lower bound problems.

Quality ofApproximationGuarantee.
(1−𝛾 )2
(1+𝛾 )2 ·(1−1/𝑒−𝜖)·

𝜎̂ (𝑆𝜈 )
𝜈 (𝑆𝜈 )

is a lower bound [57] of the approximation ratio for Equation (1).

Figure 7 shows the average lower bound of the approximation ratio

of JBAF on different datasets (averaged over 𝑘). The value of this

lower bound ranges from 20% to 30% on the LiveJournal, DBLP,

Enron, and Epinions datasets. JBAF performs well as the lower

bounds are close to the value of 1 − 1/𝑒 − 𝜖 (=53.2%).
Overhead of the Algorithms. Figure 8 illustrates the time cost

and number of samples generated for the algorithms. With the

same settings, Sandwich spends significantly more time than JBAF.

For RIS-based algorithms, the running time heavily depends on

the number of samples |R |. Since JBAF avoids a lot of duplicate

samplings, it is very efficient. In addition, more advanced strategies

and an effective and efficient heuristic algorithm reduce samples.

Figure 8 shows that under both IC and LT models, JBAF generates

much fewer samples than Sandwich. Another important reason is

that Sandwich struggles with the issue that “Max-Coverage” for

GΔIM cannot build the seed set in linear time. In most cases, the

number of samples generated by Bounds is close to that of Sandwich

but still reduces the time to a large extent compared to Sandwich.

This suggests that RIS of the original problem leads to much time

growth for just adding a minimal augmentation to the sample size.

JBAF runs much faster than Sandwich, but InfMax is the most

efficient among these methods. The reason is that all three nodes

of a triangle require a reverse reachable operation, which increases

overhead for a single sample. Moreover, JBAF still invokes RIS to

solve HΔIM. However, for HΔIM, there is a major problem that

the generated RRI sets may be empty. These empty RRI sets urge a

large number of samples and do not contribute to the construction

of the seed set. The rate that an RRI set is empty at runtime on each

dataset is reported in Table 5.

5.3 Efficiency of the RRI Set Generation

We label the four strategies in Section 4.3 as (a), (b), (c), and (d) in or-

der. In this subsection, we evaluate how these strategies contribute

to the efficiency. We report the relative time ratio (i.e., the time

cost of each variant over the method disabling all the strategies)
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Figure 8: Running time (a-j) and the number of samples (k-t) under IC and LT models.
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Figure 9: Effect of the pruning and reduction techniques.

for generating 1 million samples under the IC model. It shows that

the strategies can reduce the time cost of generating RRI set by 30%

to 45% on average. For a single strategy, the importance of (a), i.e.,

early pruning, is rather striking.

5.4 Case Study: Why Are Triangles Important

Rozemberczki et al. [43] provide a social network dataset of Twitch

gamers, consisting of 168,114 users, 6,797,557 edges, and 54,148,895

triangles. Each edge represents a mutually followed relationship.

We choose the rate of dead accounts, views, and lifetime as the

criteria to evaluate the importance. The average global views is

188,162, the average lifetime is 1,542 days, and the average dead

account rate is 0.031. We present the expectation of the above

properties for the nodes, our proposed homologous triangles (ab-

breviated as H-Triangles), and triangles in the influenced subgraph

with the seed sets selected by InfMax, RIS for HΔIM, and Sandwich,

respectively. The properties of a triangle are obtained by averaging

the properties of its three nodes. Each score is reported by averaging

10 replicate experiments, generating 100K samples per experiment.

Tables 6 and 7 show the average scores of the relevant attributes of

the corresponding structures of each algorithm under IC and LT

models. The experimental results under the LT model are similar

to those under the IC model. From the tables, we can learn that

triangles and homologous triangles tend to be more active. They

have more views, lifetime, and lower dead account rates.

We report the average attribute scores of triangles, excluding

those containing small-weight edges (denoted as “L-Triangles”).

We refer to an edge having a small weight when its weight is less

than 0.001. As presented in Tables 6 and 7, the views and lifetime

of L-Triangles are significantly lower than those of Triangles and

H-Triangles, accompanied only by a slight decrease in the dead rate.

This validates the rationale of our problem using the influenced

subgraph rather than the subgraph composed of living-edge paths.



Table 6: Results of the Case Study (Twitch, IC)

𝑘 = 20 𝑘 = 100 𝑘 = 500

View Lifetime (days) Dead rate View Lifetime (days) Dead rate View Lifetime (days) Dead rate

Nodes 246,879 1,528 0.030 260,565 1,541 0.033 288,867 1,550 0.034

H-Triangles 33,421,274 2,049 0.004 29,678,983 2,046 0.004 27,632,988 2,054 0.003

Triangles 53,275,466 2,142 0.003 38,800,349 2,168 0.003 23,996,320 2,184 0.003

L-Triangles 867,663 1,737 0.002 757,678 1,790 0.002 540,693 1,910 0.002

Table 7: Results of the Case Study (Twitch, LT)

𝑘 = 20 𝑘 = 100 𝑘 = 500

View Lifetime (days) Dead rate View Lifetime (days) Dead rate View Lifetime (days) Dead rate

Nodes 187,473 1,544 0.030 194,350 1,546 0.031 198,821 1,547 0.031

H-Triangles 17,395,932 2,044 0.003 16,912,540 2,046 0.003 16,759,062 2,044 0.003

Triangles 19,479,234 2,053 0.003 16,980,948 2,060 0.003 15,538,536 2,057 0.003

L-Triangles 698,843 1,784 0.002 652,703 1,796 0.002 649,583 1,803 0.002

Table 8: Results of the Case Study (Pokec)

Profile completion (%)

IC LT

𝑘 20 100 500 20 100 500

Nodes 41.68 40.63 40.34 42.11 41.20 40.78

H-Triangles 52.14 49.70 50.67 49.57 49.24 50.67

Triangles 55.26 49.39 48.62 53.17 48.02 50.98

We conduct similar experiments on Pokec [45]. The results in

Table 8 demonstrate that there is a higher probability that users

in triangles and homologous triangles will complete their profile,

implying that they are more active and more likely to share more

information to the platform. Such results confirm the motivation

of finding triangles, where users who frequently appear in the

influenced triangles are more active and loyal to the platform.

6 RELATEDWORK

6.1 Influence Maximization

Kempe et al. [27] proved that the IM problem is NP-hard. They also

formulate the IC and LT models. Many studies [12, 23, 37, 40, 47]

apply IM to viral marketing. In addition, making IMmore contextual

is a hot trend, such as combining it with topics [21, 34, 38, 49],

locations [10, 30, 54], time [28, 38], interaction strength [20, 57], and

competitive information [8, 35, 51]. There are some studies [11, 13,

23, 55, 64, 65] that exploit the community properties to address the

IM problem. Recent works also consider properties of the influenced

nodes that are related to the network structure, such as the diversity

of communities [31]. Triangle-related properties in the original

network can also heuristically help solve the conventional IM [11,

62]. For more details please refer to the survey paper [33]. RIS-based

algorithms [22, 40, 46–48] reduce the number of samples as much

as possible while ensuring the quality of the solution.

In certain situations, keeping the submodularity of IM variants

can be quite challenging and may not always be practical. For exam-

ple, the objective function of opinion-aware IM is non-submodular

[16, 17]. The idea that nodes can switch their positive/negative

opinions leads to such a non-submodularity. There are also non-

submodular objective functions in competitive IM that consider

simultaneous presence of multiple competitors within the network.

Borodin et al. [7] extended the LT model to competitive scenarios

and proved the non-submodularity of its objective function. Lu

et al. [35] proposed a Sandwich Approximation strategy to solve

non-submodular IM problem and give a data-dependent approxi-

mation guarantee when studying the influence diffusion dynamics

of products with arbitrary degrees of competition. Following this

strategy, non-submodular activity-related [20, 57] and community-

related [23, 41] IM problems have been addressed. Huang et al. [25]

recently developed a lower bound to solve IM over closed social

networks, which is not submodular under the IC model.

6.2 Triangle Counting

Triangle counting is a key computational task in network analysis.

Many triangle-based metrics have been studied, such as clustering

coefficient [59] and transitivity ratio [36] to measure the quality of

the network. Surveys like [2] have also shown that many efforts are

using triangle counting to address tasks such as detecting web spam

[3], revealing hidden topic structures [15], and performing com-

munity discovery [42]. As applications have increased, researchers

also paid more attention to the actual time performance of triangle

counting. It also drives the emergence of numerous approximation

algorithms such as some sampling-based methods [1, 4, 52, 60].

7 CONCLUSION

In this paper, we propose triangular stability maximization by in-

fluence spread and triangle influence maximization problems which
find a set of 𝑘 seed users such that the expected summed weights

of influenced triangles is maximized. We design an efficient RIS-

based Sandwich variant framework for triangle IM problems with

theoretical guarantees. To avoid enumerating and materializing

all the triangles, a novel edge-based triple sampling approach is

developed. We also present several pruning and reduction tech-

niques to further improve time efficiency. Extensive experiments

over real-world graphs demonstrate the effectiveness and efficiency

of our proposed approaches.
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