
Trajectory Design for Unmanned Aerial Vehicles
via Meta-Reinforcement Learning

Ziyang Lu∗, Xueyuan Wang†, M. Cenk Gursoy∗∗Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY† School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
Email:zlu112@syr.edu, xywang@cczu.edu.cn, mcgursoy@syr.edu

Abstract—This paper considers the trajectory design problem
for unmanned aerial vehicles (UAVs) via meta-reinforcement
learning. It is assumed that the UAV can move in different direc-
tions to explore a specific area and collect data from the ground
nodes (GNs) located in the area. The goal of the UAV is to reach
the destination and maximize the total data collected during the
flight on the trajectory while avoiding collisions with other UAVs.
In the literature on UAV trajectory designs, vanilla learning
algorithms are typically used to train a task-specific model, and
provide near-optimal solutions for a specific spatial distribution of
the GNs. However, this approach requires retraining from scratch
when the locations of the GNs vary. In this work, we propose
a meta reinforcement learning framework that incorporates the
method of Model-Agnostic Meta-Learning (MAML). Instead of
training task-specific models, we train a common initialization for
different distributions of GNs and different channel conditions.
From the initialization, only a few gradient descents are required
for adapting to different tasks with different GN distributions
and channel conditions. Additionally, we also explore when the
proposed MAML framework is preferred and can outperform
the compared algorithms.

I. INTRODUCTION

A. Background
1) Unmanned Aerial Vehicles: Unmanned aerial vehicles

(UAVs) have been deployed in various applications due to their
flexibility in positioning/placement and their ability to conduct
tasks without human onboard. Indeed, due to their numerous
benefits, UAVs in wireless networks have been intensively
studied [1]. In [2], trajectory design in a UAV-assisted wireless
network has been considered. In this work, the objective is
to find trajectories with which the throughput is maximized
while taking into account propulsion energy consumption. The
authors tackle the problem with graph theory and utilize the
shortest path algorithm. Other recent studies incorporate deep
reinforcement learning (DRL) into the analysis. In [3], the
optimization of the placement of multiple UAVs is addressed
via DRL and the numerical results show that the proposed
algorithm can outperform the benchmarks such as K-means
algorithms. The work in [4] proposes a DRL-based framework
for UAV trajectory design. During each time-limited episode,
the goal is to have the DRL-assisted UAV to return to the
starting point while maximizing the data collected from the
ground nodes (GNs) during the flight. Prior work on DRL-
assisted UAVs typically assumes fixed and known environment
(e.g., fixed and known GN locations). If the environment
varies, retraining from scratch is generally needed to have good
performance.

In order to overcome this challenge, we propose a frame-
work that utilizes meta-reinforcement in UAV trajectory de-
sign. Our goal is to let the UAV make adaptive decisions in
different environments with the least amount of information.

2) Meta-Reinforcement Learning: The concept of meta
learning is inspired by the fact that humans can learn quickly in
an unseen task from their previous experiences in similar tasks.
With meta learning, agents can learn from their experience in a
set of similar tasks and automatically find the hyperparameters
and architectures of the models for an unseen task with

few training samples. Meta-reinforcement learning is basically
meta-learning framework applied to the reinforcement learning
algorithm.

A novel meta-learning algorithm called Model-Agnostic
Meta-Learning (MAML) was first proposed in [5]. The benefit
of MAML compared to the other meta-learning algorithms
is that it is easy to implement and is independent of model
structure. Instead of learning a task-specific model that ex-
hibits strong performance in the corresponding task, MAML
algorithm learns an efficient initialization of the deep neural
network (DNN) for similar tasks through gradient descent. It
is assumed that there exist tasks following a distribution p(T ),
MAML algorithm continuously samples batches of similar
tasks from p(T ) for learning the initialization φ. The goal is
to obtain an efficient initialization φ∗, from which only one or
a few gradient descents are required to adapt to an unseen task
Ti ∼ p(T ). The convergence of MAML is sensitive to hyper-
parameters in the algorithm. Besides, implementing MAML
involves second derivatives when performing backpropagation,
incurring a large computational cost. To address the issue
of stability, authors in [6] propose MAML++, a framework
that contains various schemes for stabilizing the training of
MAML. Regarding the computational cost, authors in [5]
note that omitting the second derivative will not significantly
diminish the performance and hence MAML can be reduced
to first-order MAML (FOMAML). Several other first-order
approximations of MAML are also proposed in recent work,
including Reptile [7], Hessian-free MAML (HF-MAML) [8]
and Evolution-Strategies MAML (ES-MAML) [9]. In our
work, FOMAML is considered in the proposed framework.

In this paper, we address the UAV trajectory design problem
with randomly distributed GNs. More specifically, in our
setting, the UAV is given the task of collecting data from a
set of GNs that are randomly distributed in the serving area.
Our key contributions can be summarized as follows:

• We construct trajectories from a fixed starting point to a
fixed destination while maximizing the overall informa-
tion collected from all the GNs during the flight

• We take into account practical requirements such as
maximum flight duration, UAV kinematic constraints
(e.g., that limit the turning angle of the UAV), and
collision avoidance with other UAVs (whose policies and
trajectories are a priori unknown and whose position
and speed can be acquired only within a certain sensing
range).

• We design a meta-reinforcement learning agent that
makes dynamic decisions for the trajectory without prior
access to the GNs’ spatial distribution and becomes aware
of other UAVs in real time only if they are within the
sensing range. It is important to note that there is no
centralized control for the UAVs, and each UAV has its
own decision-making policies.

• We provide comparisons with conventional DRL and
joint-learning frameworks.

• We demonstrate that the proposed meta-reinforcement



learning framework can learn an efficient initialization
and only a few gradient descents and training data are
required for obtaining a task-specific model that provides
strong performance in an unexperienced environment
with previously unseen GN distribution.

II. PROBLEM STATEMENT

A. Channel Model

We assume that the line-of-sight (LOS) links are dominant
in the air-to-ground channels due to the high altitude of the
UAV [10]. The path loss can then be expressed as

L(d) = (d2 +H2
v )

Γ/2 (1)

where d is the horizontal distance between the GN and the
UAV, Hv is the height of UAV, and Γ is the path loss exponent.

It is further assumed that antennas at the GNs are omni-
directional with the gain of Gn = 0 dB. The UAV is equipped
with a receiver with a horizontally oriented antenna. The
antenna gain provided by the UAV can then be expressed as

GV (d) = sin(ω) =
Hv√

d2 +H2
v

(2)

where ω is the elevation angle between the GN and the UAV.
We note that the ensuing analysis is applicable to any choice
of antenna gains, and the above antenna gains are selected for
the sake of being concrete.

Now, the signal-to-noise ratio (SNR) at the UAV from the
nth GN can be formulated as

SNRn =
P

σ2
GV (dn)L

−1(dn)
= P

σ2
Hv(d

2
n +H2

v )
− 1+Γ

2 . (3)

If we assume that the UAV connects to the nth GN at time
t, the transmission rate is,

Ratet = log2(1 + SNRn). (4)

We assume that the height Hv of the UAV is fixed. Therefore,
the transmission rate between the UAV and the connected GN
varies depending on the horizontal distance dn between them.

B. UAV Modeling and Collision Avoidance

We assume that there is one UAV collecting data from G
GNs in the serving area and it has a maximum flying time of
T . The UAV is required to arrive at the destination at the end
of time slot T . The UAV flies from the fixed starting point (SP)
to a fixed final area (FA) while maximizing the data collected
from the GNs that are randomly distributed in the serving area.

In each time slot, the UAV can move horizontally with a
turning angle that is assumed to be within [−π/3, π/3] due to
the kinematic constraints. We assume that the spatial distribu-
tion of GNs follows a two-dimensional Gaussian distribution
around a cluster center. And the cluster center is randomly
generated in the serving area.

We further assume that there exist other UAVs flying in
the serving area, whose flight policies and trajectories are
unknown beforehand. The data-collecting UAV considered in
this work is equipped with sensors that can detect the location
and speed of the other UAVs only within a certain sensing
range. This information is required for collision avoidance.

We assume that the location information of the GNs is un-
available to the data-collecting UAV and the goal of this work
is to design a framework that enables the UAV to determine
effective trajectories under different spatial distributions of the
GNs in the presence of other UAVs, without the knowledge
of such dynamics in the environment.

III. DECISION-MAKING UAV AGENT

It is assumed that the UAV is equipped with a DRL agent
for dynamically determining the trajectory. The DRL agent
does not have prior access to the GNs’ spatial distribution on
the ground, and only becomes aware of the other UAVs in real
time if they are within the sensing range. In time slot t, the
DRL agent interacts with the environment by taking action at
based on its current state st. Subsequently, it receives a reward
rt and learns a policy by updating the DNN parameters with
the experience tuple (st, at, rt).

A. Problem Formulation
As stated at the end of Section II, the goal for the UAV is

to maximize the total data collected during each flight. It is
required that the UAV reaches its destination within T time
slots due to its power constraint. The second constraint is that
the UAV should not leave the serving area for safety. Yet
another constraint is that the UAV does not collide with the
other UAVs. If any of the above three constraints is violated,
the episode will be terminated.

It is assumed that each GN has the same amount of data
and UAV will connect to one of the GNs at a time until all
the data of the connected GN is collected. Before the flight or
after collecting all the data from a GN, the UAV will connect
to the next closest GN. Note that finding the next closest
GN can be realized by measuring the signal strength of GN
transmissions/reference signals.

B. State
In this work, we set the state as st =

(xt

L , yt

L , t
T ,

dU

step×T ,Φ, datag, IDg, obs), where (xt, yt) is
the current location of the data-collecting UAV, and t is the
current time slot. In the fourth term dU

step , dU indicates the
horizontal distance between the current UAV location and
the center of the final area. dU is then divided by the UAV
movement step size (i.e., distance traveled within a unit
time interval) to indicate the estimated arriving time to the
destination. As seen in st, we normalize (xt, yt) to the side
length L of the serving area, and normalize t and dU

step with
the time constraint T . Φ denotes the facing direction of the
UAV.

The sixth term datag in the state denotes the remaining
data of the connected GN. IDg is an M -bit digital number
indicating the ID of the connected GN, which allows the
proposed framework to support up to 2M GNs.

In the state, the last term obs =
{xu1/L, yu1/L, vu1, xu2/L, yu2/L, vu2} contains the location
and velocity information of the other UAVs that are within
the sensing range rA of the UAV. Without loss of generality,
we assume that the other UAVs have trajectories that
follow random walk at the same speed. Note that this is an
assumption that leads to a challenging scenario since it is
difficult to predict the movements of other UAVs. We assume
the UAV can sense up to two other UAVs (U1 and U2)
within the sensing area. The UAV will collide with the other
UAVs if their horizontal distance is within 2ru, where the ru
denotes the size of the UAVs.

C. Action
In each time slot t, UAV can select one of the five turning

angles (uniformly quantized within [−π/3, π/3]). After taking
one of the five possible actions, the location of the UAV will
change to (xt+1, yt+1). If the next location (xt+1, yt+1) falls
outside the serving area or leads to a collision, this episode
will be terminated.



D. Reward
Reward function rt is designed to encourage the UAV to

reach the final area while maximizing the total sum-rate and
avoiding any constraint violations (e.g., deadline violations,
collisions, and flying outside the serving area) during the
episode. We define the reward rt of taking the action at in
time slot t as

rt = εRatet + Pcol + Plost + Ptime +Rgoal − 1 (5)

where we set the coefficient ε = 50 and the other terms are
defined as follows:

1) Pcol: If the next location of the UAV leads to a collision
with another UAV, we set the collision penalty as Pcol =−50, otherwise Pcol = 0.

2) Plost: If the next location is outside the serving area, the
penalty is Plost = −50, otherwise Plost = 0.

3) Ptime: If t > T and the next location is still outside
the final area, the deadline violation penalty is Ptime =−50, otherwise Ptime = 0.

If the UAV has arrived into the final area, there will be an
extra reward Rgoal = ε

∑Tf

t=0 Ratet for encouraging the UAV
to collect as much data as possible during the episode. Above,
Tf is the time duration of the episode.

Finally, we give a small penalty to each step during the
flight to encourage the UAV to reach the destination quickly
after collecting all the data.

E. Policy Gradient
Experiments in the policy gradient algorithm are carried out

in episodes, each of which contains H time slots. In time slot
t, action at will be performed based on the current state st
and then next state st+1 and reward r will be obtained. Each
episode can be seen as a Markov decision process (MDP) with
the tuple (s1, a1, r1, ...sH , aH , rH ). DNN parameters θ are
then updated by minimizing the loss function

L(θ) = − 1

H

H∑
t=1

[(
H∑
i=t

γiri

)
log(πθ(at|st))

]
(6)

where γ denotes the discount factor in the policy gradient
algorithm. πθ(st) denotes the DRL policy with parameters θ,
mapping the current state st to the probabilities of actions.
In time slot t, agent will take the action with the highest
probability for maximizing the total discounted reward of an
episode.

IV. META-REINFORCEMENT LEARNING

In this work, we propose a framework called meta-DRL
that combines the techniques of meta-learning with deep
reinforcement learning. Conventional (vanilla) DRL aims to
train a task-specific model θi which can demonstrate promising
performance in the corresponding task i. However, training
such a DRL model can be expensive since it requires a large
amount of data collected from the environment, which may not
be easily accessible. Inspired by this, MAML seeks to acquire
an initialization φ, from which only a single (or a few) gradient
descent gi1 is required for reaching the task-specific model θi,
as shown in Fig. 1. i.e.

θi = φ− αgi1 = φ− α�φLTi(φ) (7)

where α denotes the adaptation learning rate and �φLTi
(φ)

denotes the gradient of loss over φ with the MDP trajectories
sampled from task i with φ. In the remainder of this section,
we assume that only one gradient descent is needed.

Fig. 1. Diagram of MAML.

In MAML, the loss function can be defined as

L(φ) =

K∑
i=1

LTi
(θi) (8)

where K is the number of tasks sampled from the same
distribution p(T ) in every meta-DRL iteration. K is also
referred to as meta-batch size.

According to the loss function in (8), MAML aims to
minimize the total loss of the evolved parameters θi on task Ti.
In other words, MAML looks for an initialization φ such that,
after a single gradient descent, the Ti-specific models θi are
obtained and each θi can demonstrate promising performance
on the corresponding task Ti. With the goal to minimize L(φ),
the update of φ can be expressed as

φ = φ− β�φL(φ) = φ− β�φ

K∑
i=1

LTi
(θi) (9)

where β denotes the meta learning rate.
Finding the gradient in (9) is not trivial. By applying the

chain rule, we can rewrite the gradient as

�φ

K∑
i=1

LTi(θi) =

K∑
i=1

�φLTi(θi)

=
K∑
i=1

∂LTi(θi)

∂φ
=

K∑
i=1

∑
j

∂LTi(θi)

∂θji

∂θji
∂φ

(10)

where θji denotes the jth parameter in θi. Now, (7) can be
rewritten as

θji = φj − α
∂LTi

(φ)

∂φj
. (11)

Therefore, each element of the last term
∂θj

i

∂φ in (10) can be
computed as

∂θji
∂φm

=

{
−α

∂LTi
(φ)

∂φj∂φm j �= m

1− α
∂2LTi

(φ)

∂φj2 j = m.
(12)

The first-order MAML (FOMAML) was proposed by the
authors in [5], in which the Hessian matrices in (12) are
ignored, i.e, the value of (12) becomes 0 if j �= m and 1 if
j = m. The work in [7] provides a proof and numerical results
showing that FOMAML can achieve similar performance lev-
els as MAML while significantly reducing the computational
cost. In our work, we employ FOMAML in the proposed meta-
DRL framework for UAV trajectory design.

With the approximation in FOMAML, gradient in (10) is



simplified as

K∑
i=1

�φLTi
(θi) =

K∑
i=1

∂LTi(θi)

∂θi
=

K∑
i=1

�θiLTi
(θi). (13)

After applying the approximation in FOMAML, the gra-
dient in (13) is simply the sum or average of the second-
update gradients in each task Ti, i.e. gi2 as shown in Fig. 1.
Algorithm 1 describes the implementation of Meta-DRL with
the method of FOMAML. Although we present the derivation
with only two inner updates, it can be generalized to more
inner updates according to [5]. For example, if I inner updates
are performed, the first I − 1 updates aim to obtain the task-
specific parameter θi and the last update is the evaluation of
θi in task Ti. FOMAML will collect the last gradients from
all {Ti} for updating the initialization φ.

Algorithm 1 Meta-DRL

1: Initialize φ = φ0
2: while not done do
3: Sample a batch of tasks Ti with different environment.
4: for all Ti do
5: Sample an episode of experiences D =

(s1, a1, r1, ..., sH , aH , rH ) in task Ti using DNN
parameters φ.

6: Perform gradient descent using experience D and
compute the Ti-specific parameters θi, as shown in
(7).

7: Sample another episode of experiences D′ =
(s1, a1, r1, ..., sH , aH , rH ) in task Ti using DNN
parameters θi.

8: Perform gradient descent using experience D′ and
obtain θ

′
i.

9: end for
10: Update φ ← φ − β

K

∑K
i=1 �θiLTi

(θi) = φ −
β
K

∑
Ti
(θ

′
i − θi).

11: end while

Algorithm 2 Joint-Learning

1: Initialize φ = φ0
2: while not done do
3: Sample a batch of tasks Ti with different environment.
4: for all Ti do
5: Sample an episode of experiences D =

(s1, a1, r1, ..., sH , aH , rH ) in task Ti using DNN
parameters φ.

6: Perform gradient descent using experience D and
update φ ← φ− α2�φLTi

(φ).
7: end for
8: end while

Benchmark Algorithms: We consider vanilla (conventional)
DRL and joint learning as the benchmark algorithms in this
work. The goal of joint learning is to find a global model that
performs well across all the tasks. Algorithm 2 describes the
implementation of joint learning. Joint-learning and meta-DRL
share the same algorithmic framework for fair comparison.
The only distinction is that, in joint-learning, only one update
is performed in each sampled task Ti and this gradient will
be used directly to update the neural network φ.

For vanilla DRL, we apply the method of conventional pol-
icy gradient to train a task-specific DNN in a selected task until
convergence and evaluate its performance in a different task for
comparison. Algorithm 3 is the vanilla DRL algorithm, which
is also used for sampling the tuple (s1, a1, r1, ..., sH , aH , rH)
with the current DNN parameters in Algorithms 1 and 2.

Algorithm 3 Sampling experiences in each episode

1: At the beginning of the first time slot, initialize UAV
location as (x1, y1)=(0, 0). Initialize state as s1.

2: for time slot t = 1, ..., T do
3: UAV chooses an action at based on st with the current

DNN parameters.
4: After taken at, rt can be obtained as illustrated in

Section III.D.
5: if UAV has not arrived the destination and no constraint

violation has occurred, then
6: UAV moves to the next location and obtain st+1

according to Section III.B.
7: else
8: Break.
9: Record (st, at, rt).

10: end if
11: end for

V. NUMERICAL RESULTS AND ANALYSIS

A. Simulation Setup

TABLE I
EXPERIMENTAL PARAMETERS

Noise Power (σ2) 10−6

Size of Serving Area (L× L) 80m× 80m

Path Loss Exponent (Γ) 4

Communication Power (P g) 0.1W

Length of Data-collecting UAV Step 10m

Length of other UAV Step 5m

Size of UAVs (ru) 0.5m

Data-collecting UAV Sensing Range (rA) 10m

Length of ID (M ) 3

Meta-batch Size (K) 20

Episode Length (T ) 50

Number of Inner Updates 20

Adaptation (Inner) Learning Rate (α) 0.02

Meta (Outer) Learning Rate (β) 0.03

Joint-learning Learning Rate (α2) 0.00001

Discount Factor (γ) 0.9

Hyperparameters of the proposed meta-DRL framework are
listed in Table I. We first generate 100 different tasks for
training MAML initialization. In each task, we first randomly
select 2 to 6 GNs and randomly place their cluster center in
the serving area. There also exist three other UAVs for testing
the ability of collision avoidance of the proposed framework,
each of them starting from a random location and performing
random walk within the serving area. Once the environment
is generated, it will remain unchanged in a task. With the help
of the proposed MAML framework, the goal of the UAV is
to find a trajectory from the origin to the area in the top-right
corner, while maximizing the data collected during the flight
and avoiding collisions.

We randomly select a meta-batch of 20 tasks from a total
of 100 tasks for each meta-DRL iteration, and then perform
FOMAML according to Algorithm 1. For each inner update
and adaptation update, we average the gradients obtained from
20 sampled episodes. It is critical to evaluate each gradient
with multiple episodes to ensure the accuracy of each update.

For meta-DRL and the two benchmark algorithms, we
use DNN with the same structure for fair comparison. The



DNN has two hidden layers consisting of 50 and 20 neurons
respectively. We use ReLU as the activation function and
Adam optimizer as the optimizer during the inner updates.

B. Numerical Results

0 200 400 600 800 1000 1200 1400
Training time

-100

-50

0

50

100

150

200

250

R
ew

ar
d

Reward over 100 Unseen Tasks during Training

MAML
Joint-Learning
Joint-Learning knowLoc

Fig. 2. Validation on 50 Unseen Tasks During Meta-DRL Training.

In order to track the performance of φ during the training of
meta-DRL, we utilize φ in 100 unseen tasks with different GN
positions and different trajectories of other UAVs (following
a random walk) every 100 iterations. Utilizing φ in a task
means that φ is used as the initialization of DNN and 20
gradient descents are performed in each task for adaptation.
We depict the total reward of an episode after 20 gradient
descents (averaged over 50 unseen tasks) in Fig. 2, which
shows the efficiency of the initialization φ. It can be seen that
at the beginning of the training, φ is inefficient and 20 updates
can only lead to a negative reward. As the training proceeds,
the proposed framework can learn an efficient φ that shows
strong performance after adaptation in each task.

Meta-DRL and joint learning are compared in Fig. 2. The
goal of joint-learning is to find a global model φ

′
that is

capable of handling all the tasks. We directly apply φ
′

in the
same 100 unseen tasks and depict its performance in Fig. 2.
As shown in the figure, the DNN learned by joint-learning
cannot perform as well as meta-DRL. This observation is
expected since there does not exist a global model that can
handle different environments with limited information. We
then include the location information of the cluster center into
the state, and joint learning now achieves comparable perfor-
mance to the proposed MAML algorithm but only with this
additional information. This observation does not contradict
with our expectation. There can exist a global model when
the available information increases and all the dynamics of
the environment are known to the learning algorithm. We note
that the proposed meta-learning algorithm does not require the
knowledge of the cluster center location. Hence, in scenarios
in which the location information of GNs is either required to
be kept confidential or difficult to obtain, MAML algorithm
can operate effectively and adapt to different tasks with limited
training data.

Next, we compare the performances in two specific tasks
with different numbers and distributions of the GNs. The
trajectories of the other UAVs (with which collision should
be avoided) are also different between the tasks. After the
convergence of the three algorithms, we have a MAML
initialization φ in the meta-DRL framework, a global model φ

′

in joint-learning, and a task-specific model θ in vanilla DRL.
Vanilla DRL is trained under Task I until convergence. Then,
we assign φ, φ

′
and θ to the DNN and let the DNN adapt in

the two tasks.
Fig. 3(a) plots the total reward of each episode during 20

updates in Task I. It can be seen that vanilla DRL achieves the

best performance in Task I since it is trained under this task
and θ is already converged before the adaptation. Meta-DRL
initialization φ does not perform well before the adaptation
but it quickly increases to a reward level that is comparable
to vanilla DRL. φ

′
obtained from joint-learning has poor

performance without adaptation (learning rate lr=0), indicating
that there does not exist a global model that can handle all
the tasks. Finally, we let φ

′
adapt with the same learning

rate (0.02) as meta-DRL, its performance starts increasing but
its learning is much slower compared to meta-DRL, and its
reward remains low.

The same experiment is performed in Task II and the
reward during adaptation can be seen in Fig. 4(a). In this
task, meta-DRL again starts from a low performance level
but quickly adapts to the environment and achieves the highest
performance. On the other hand, both joint-learning and vanilla
DRL fail in Task II. It can be concluded that vanilla DRL
cannot handle an unseen task as it is specifically trained for
Task 1. On the other hand, meta-DRL is trained for obtaining
an initialization, from which the performance can dramatically
improve after a few updates.

In Figs. 3(b), 3(c), 3(d) and 4(b), 4(c), 4(d), we plot
the trajectories of the UAV after 20 gradient descents (400
episodes) from the corresponding initialization. It can be seen
that meta-DRL can learn different trajectories after adaptation
in different tasks. On the other hand, joint-learning and vanilla
DRL fail to adapt to a different environment. Specifically, they
fail to capture the distribution of the GNs, resulting in similar
trajectories as those in Task I.

Another observation is that all three algorithms can avoid
collision during the flights in different tasks. In this work, we
include the information of the surrounding environment (obs in
st), which is already sufficient for avoiding collisions. We can
conclude that the initialization φ obtained from the proposed
meta-DRL framework is not only an efficient initialization
for maximizing the collected data but also a global model
for avoiding obstacles. Therefore, if the available information
for solving the problem is sufficient, meta-DRL may result
in a global model that can handle different environments. If
the information is insufficient and further trial and error are
required in different environments, meta-DRL will result in a
good initialization.

After the algorithms converge, we utilize different initial-
izations in 200 newly generated tasks and compare their
average performances on data collection in Table II, in terms
of success rate, and reward. A trajectory is a success if the
UAV reaches the final region within the time limit and without
either collision or flying out of the map. And reward provides
a measurement for the overall performance of the UAV.

From Table II, we have the following observations:

1) Comparing MAML with joint learning (no update), we
can see that joint learning tries to obtain a global model
which can handle different distributions of GNs, but it
leads to a “diagonal-like” trajectory as shown in Fig.
3(c) and Fig. 4(c). Over the 200 unseen tasks, it collects
less data compared to meta-DRL, but achieves a much
higher success rate. Intuitively, joint-learning focuses
on reaching the goal rather than collecting data, which
results in a safer policy which is away from the edges
of the serving area.

2) Adaptation from the global model leads to a better
overall performance compared to directly applying the
global mode to the tasks. But the performance is not
comparable to meta-DRL. We can conclude that meta-
DRL learns a more efficient initialization.

3) If the joint-learning algorithm takes into account enough
information (i.e, knows the locations of the GNs), it



0 50 100 150 200 250 300 350 400
Adaptation time (episodes of 20 updates)

-50

0

50

100

150

200

250

300

350

400

450
R

ew
ar

d

MAML lr=0.02
Joint-Learning lr=0
Joint-Learning lr=0.02
Vanilla DRL lr=0

(a) Total Reward of Each Episode

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Trajectory
GU
UAV1
UAV2
UAV3
Goal

(b) Meta-DRL Trajectory

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Trajectory
GU
UAV1
UAV2
UAV3
Goal

(c) Joint Learning Trajectory

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Trajectory
GU
UAV1
UAV2
UAV3
Goal

(d) Vanilla DRL Trajectory

Fig. 3. UAV Trajectory with different algorithms in Task I

0 50 100 150 200 250 300 350 400
Adaptation time (episodes of 20 updates)

-50

0

50

100

150

200

250

300

350

400

R
ew

ar
d

MAML lr=0.02
Joint-Learning lr=0
Joint-Learning lr=0.02
Vanilla DRL lr=0

(a) Total Reward of Each Episode

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Trajectory
GU
UAV1
UAV2
UAV3
Goal

(b) Meta-DRL Trajectory

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Trajectory
GU
UAV1
UAV2
UAV3
Goal

(c) Joint Learning Trajectory

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Trajectory
GU
UAV1
UAV2
UAV3
Goal

(d) Vanilla DRL Trajectory

Fig. 4. UAV Trajectory with different algorithms in Task II

TABLE II
AVERAGE PERFORMANCE OF DIFFERENT ALGORITHMS

Objectives Avg Data Collected Avg Success Rate Avg Reward
meta-DRL(adapt with lr=0.02) 2.14 83.60% 173.36
Joint Learning (no update) 1.11 96.57% 93.42
Joint Learning(adapt with lr=0.02) 1.81 80.13% 139.50
Joint Learning knows cluster center
(no update)

2.13 89.55% 178.69

Vanilla DRL 0.78 18.75% -0.54

can learn a global model that can handle different GN
distributions and achieve the maximum reward among
all the algorithms.

4) Finally, the model obtained from vanilla DRL in a
specific task cannot handle other unseen tasks, leading
to the worst performance among all the algorithms.

VI. CONCLUSIONS

In this work, a meta-DRL framework is proposed for UAV
trajectory design and we have compared its performance with
joint-learning and vanilla DRL. Simulation results demonstrate
that the proposed framework can learn an efficient initializa-
tion, from which only a few gradient descents and limited data
is required to adapt to an unseen task. On the other hand, joint-
learning cannot learn a global model that can handle different
environments and vanilla DRL can only perform well in the
environment for which it is trained.

It is worth noting that, if there is enough information about
the environment, there may exist a global model that can
handle different environments, and hence either joint-learning
or vanilla DRL may work in different environments. However,
the cost of the information can dramatically increase when the
environment is complex or large-scale. When available infor-
mation is limited, meta-DRL can outperform these benchmarks
as shown in this work.

REFERENCES

[1] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial
on UAV communications for 5g and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, 2019.

[2] Y. Tang, M. H. Cheung, and T.-M. Lok, “Trajectory design for multiple-
UAV assisted wireless networks,” arXiv preprint arXiv:1912.12802,
2019.

[3] J. Qiu, J. Lyu, and L. Fu, “Placement optimization of aerial base
stations with deep reinforcement learning,” in ICC 2020-2020 IEEE
International Conference on Communications (ICC). IEEE, 2020, pp.
1–6.

[4] H. Bayerlein, P. De Kerret, and D. Gesbert, “Trajectory optimization
for autonomous flying base station via reinforcement learning,” in 2018
IEEE 19th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC). IEEE, 2018, pp. 1–5.

[5] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning. PMLR, 2017, pp. 1126–1135.

[6] A. Antoniou, H. Edwards, and A. Storkey, “How to train your MAML,”
arXiv preprint arXiv:1810.09502, 2018.

[7] A. Nichol and J. Schulman, “Reptile: a scalable metalearning algorithm,”
arXiv preprint arXiv:1803.02999, vol. 2, no. 3, p. 4, 2018.

[8] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory
of gradient-based model-agnostic meta-learning algorithms,” in Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, 2020,
pp. 1082–1092.

[9] X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and Y. Tang,
“ES-MAML: Simple hessian-free meta learning,” in International Con-
ference on Learning Representations, 2019.

[10] X. Wang, M. C. Gursoy, T. Erpek, and Y. E. Sagduyu, “Learning-
based UAV path planning for data collection with integrated collision
avoidance,” IEEE Internet of Things Journal, pp. 1–1, 2022.


