scitation.org/journalicha

Instability mechanisms of repelling peak solutions
in @ multi-variable activator-inhibitor system

Cite as: Chaos 32, 123129 (2022); doi: 10.1063/5.0125535
Submitted: 12 September 2022 - Accepted: 15 November 2022 - @
Published Online: 9 December 2022

hh ®

View Online Export Citation CrossMark

Edgar Knobloch' (& and Arik Yochelis?*

AFFILIATIONS

"Department of Physics, University of California, Berkeley, California 94720, USA

2Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research,
Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boger Campus, Midreshet Ben-Gurion
8499000, Israel

3Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel

@) Author to whom correspondence should be addressed: yochelis@bgu.acil

ABSTRACT

We study the linear stability properties of spatially localized single- and multi-peak states generated in a subcritical Turing bifurcation in the
Meinhardt model of branching. In one spatial dimension, these states are organized in a foliated snaking structure owing to peak-peak repul-
sion but are shown to be all linearly unstable, with the number of unstable modes increasing with the number of peaks present. Despite this,
in two spatial dimensions, direct numerical simulations reveal the presence of stable single- and multi-spot states whose properties depend
on the repulsion from nearby spots as well as the shape of the domain and the boundary conditions imposed thereon. Front propagation is
shown to trigger the growth of new spots while destabilizing others. The results indicate that multi-variable models may support new types of

behavior that are absent from typical two-variable models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125535

Spatially localized states are a subject of intense research in
many natural systems, ranging from nonlinear optics to vegeta-
tion patterns. Different formation mechanisms have been iden-
tified using simple models in one and two spatial dimensions
(1D and 2D, respectively), all broadly attributed to the phe-
nomenon of homoclinic snaking. Here, we focus on the stability
properties of repulsive multi-peak states in a multi-variable acti-
vator-inhibitor (AI) model and show that their stability proper-
ties in 1D differ significantly from those in 2D. Specifically, we
emphasize that while in 1D peaks are unstable, they stabilize in
2D. These insights provide essential evidence that multi-variable
models do not merely add to computational complexity but may
support new types of behavior that is not accessible in two-
variable models. This new behavior may play a significant role in
studies of biological, chemical, and ecological models comprising
positive feedback loops.

I. INTRODUCTION

In his pioneering 1952 work,' Alan Turing described a simple
but general mechanism whereby a spatially homogeneous state can

become unstable to spatially periodic perturbations with an intrinsic
length scale. While Turing used a two-variable parabolic partial dif-
ferential equation (PDE) with fast local autocatalytic kinetics and a
rapidly diffusing antagonistic agent, i.e., an activator-inhibitor (AI)
system, the mechanism is general and is today also known as a finite
wavenumber instability.” The instability is broadly instrumental in
pattern formation phenomena and occurs in both nonvariational
systems, such as reaction-diffusion (RD) equations, and variational
systems, such as those described by phase field crystal (PFC) models.

When the Turing states bifurcate subcritically, i.e., in systems
exhibiting bistability between a homogeneous and a pattern state,
spatially localized structures embedded in a homogeneous back-
ground or holes in an otherwise periodic state, can also emerge
(Ref. 3, and references therein). These localized solutions range
from an isolated peak to groups of peaks organized in a “snakes-
and-ladders” structure,’ a consequence of so-called homoclinic
snaking.*

In a recent paper,” we showed that a subcritical Turing
instability in Meinhardt’s multi-variable AI system’ can give
rise to repelling localized states organized within a bifurcation
structure called foliated homoclinic snaking. Meinhardt’s model
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comprises four fields A, H, S, and Y that represent, respectively, the
concentrations of an activator, an inhibitor, the substrate, and a
marker for differentiation,®
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System (1) was suggested by Meinhardt” as a prototypical Al frame-
work for studying branching. Branched filaments correspond to
cells that went through irreversible differentiation (associated with
the Y field), such as occurs in the epithelial to mesenchymal tran-
sition. Therefore, by definition, branching requires a bistable (or
binary) medium, where one of the states is in an undifferentiated
state while the second state is either post-differentiation or is com-
mitted to differentiate. There are many approaches to the empir-
ically observed branching dichotomy”’~'* and while the explicit pat-
tern formation mechanisms behind branching remain unclear, there
is strong evidence that Al signaling dominates sidebranching,*”*’-**
linking it back to Turing’s morphogenesis, i.e., to an interaction
between activatory and inhibitory agents.

The motivation here stems from experiments demonstrating
that the growth of side-branches in the pulmonary vascular sys-
tem is suppressed by excess matrix GLA protein (the H field),
which is an inhibitor of the bone morphogenetic protein (the A
field). In (1), excess matrix GLA protein corresponds to higher val-
ues of the parameter py. Following Ref. 29, we therefore employ
pu as the key control parameter while keeping all other param-
eters fixed and within the range of previous studies: ¢ = 0.002,
n=0.16, pp =0.005 v=0.04, ¢ =0.02, y =002, ¢=0.1,
d =0.008, e = 0.1, f= 10, Dy = 0.001, Dy; = 0.02, Ds = 0.01, and
Dy = 1077, We also note that in the original formulation of Mein-
hardt Dy = 0 while in Ref. 6 and likewise here Dy is taken as finite
albeit much smaller than the smallest diffusion coefficient among all
other fields, i.e., Dy << Djy.

For the above parameter choice, system (1) is bistable above
the Turing onset, py > pr = 1.0 x 107>, with two competing spa-
tially uniform solutions, Py = (Ao, Hy, S, Yo) = (0,0,¢0/y,0) and
P, = (A., H,, S, Y.), both simultaneously linearly stable.”” In Fig. 1,
we show P, and P, (solid black lines) together with additional
branches of unstable uniform solutions that are also present (dashed
black lines). In addition, Fig. 1 (inset) also shows the coexist-
ing branch Pr of unstable spatially periodic Turing solutions with
wavenumber ky =~ 2.18 (dashed blue line) present for py > pr. The
results are shown in terms of the L, norm
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FIG. 1. Bifurcation diagram showing the coexistence of stable states (P, and P,,,
solid black lines) together with other unstable branches in terms of the L, norm
defined in (2), as computed from Eq. (1) with the parameters given in the text.
The inset zooms into the rectangle in the lower left, showing the uniform and the
periodic Turing states (Pr, dashed blue line) in terms of the maximum value Apax
of the variable A. The Turing instability occurs at pr ~ 1.0 x 10~° while the lower
left saddle node of P, is at p%, =~ 0.99 x 10~° (inset).

that takes into account both the solution variables and their spatial
derivatives. Here, L is the domain length.

In Ref. 6, we focused on the existence of spatially localized
peak solutions in the subcritical regime py > pr and showed that in
this regime multi-peak solutions organize in a foliated homoclinic
snaking structure (Fig. 2). In the context of system (1), such peaks
correspond to high concentrations of activator and, hence, to differ-
entiated states while the background corresponds to low activator
levels and, hence, to undifferentiated states. These bifurcating peak
solutions differ from the localized states that typically form when
a uniform state becomes unstable to a Turing state, as occurs, for
example, in the Gierer—-Meinhardt AT model.”’

Figure 2 provides a summary of the key results from Ref. 6. The
figure shows that the branch of single-peak solutions, N = 1, results
from a modulational or Eckhaus instability of a subcritical Turing
state that appears at pgy = pr. The primary N = 1 branch extends
subcritically (toward larger py) from the vicinity of the Turing insta-
bility at py = pr. Initially, the branch consists of states with one
small amplitude peak (labeled S), which undergo a fold at py = psy
on the right and continue as a single large amplitude peak (labeled L)
to the left. These L states subsequently undergo a fold close to pr in
the vicinity of which the profile of the solution adds two small ampli-
tude peaks, becoming LSS. At the same time, a branch of LS states
bifurcates from the vicinity of the left fold into py = pr. The LSS
branch subsequently extends to pgy, where it connects with a pri-
mary N = 3 branch SSS/LLL in a period-tripling bifurcation. This
bifurcation is locally transcritical® and results in a state LLS that
turns around in a nearby fold back toward smaller py. This process
repeats and the LLS connects to a fold at py =~ pr where the N = 2
state LL turns into LSSLSS (not shown); LLSS and LSLS both bifur-
cate nearby. These results capture the richness of the foliated snaking
structure and have been obtained using numerical continuation of
time-independent solutions.
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FIG. 2. (a) Bifurcation diagram showing branches of both single-peak and mul-
ti-peak solutions computed via numerical continuation on a periodic domain of
length L = 20. The labels S and L indicate small and large amplitude peaks,
shown in panels (b-i) and (b-ii), respectively; thus, LSS implies that the domain is
filled with one large and two small amplitude peaks, all well separated (b-iii). The
black curve at the bottom represents the spatially uniform solution P,,, with solid
(dashed) lines indicating stable (unstable) spatially uniform states. In this and
subsequent figures, the horizontal axis labeled oy represents 10°oy. (b) Solu-
tion profiles at oy = 2 x 105 along the N = 1 branch at locations indicated
in (a). Panel (b) with modifications to the layout is reproduced with permission
from Knobloch and Yochelis, IMA J. Appl. Math. 86, 1066 (2021). Copyright 2021
Oxford University Press.
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In Ref. 6, we conjectured that this foliated snaking structure is
the result of repulsive interactions between peak solutions and that
it is, in fact, universal. However, we also reported that time-stepping
simulations appeared to indicate that all the 1D solutions are lin-
early unstable. In order to understand why this might be the case,
we first discuss (Sec. II) the linear stability properties of the peak
solutions along the N =1 branch (Fig. 2) determined by solving
numerically the linear stability problem. We show that at each fold
additional eigenvalues become unstable, a behavior that is rooted
in the formation of additional peaks. Moreover, we show that for
the majority of the large amplitude peaks, starting with the L state,
the unstable eigenvalues are complex, indicating growing temporal
oscillations. In Sec. I11, we use direct numerical simulations to show
that, in contrast to the 1D case, spot solutions in 2D can be stable
and study the effect of spot-spot repulsion in different 2D domains.
Finally, in Sec. IV, we discuss the implications of this behavior for
the nucleation and growth of side-branches in 2D.

II. THE INSTABILITY MECHANISM FOR SINGLE-PEAK
SOLUTIONS

In this section, we focus on the stability properties of the single-
peak branch (N = 1) and the states connected to it, i.e., the thick line
in Fig. 3. We recall that this branch is the result of a modulational or
Eckhaus instability of the subcritical Turing state Py that appears at
pu = pr. This secondary instability occurs already at a small ampli-
tude and results in a Turing pattern whose amplitude is modulated
in space with half-wavelength L, where L is the domain size. The
instability leads to two distinct states, in one of which the maximum
of the modulation envelope coincides with a maximum of the Tur-
ing state while in the other, it coincides with a minimum. The former
evolves into an N = 1 single-peak state, while the latter evolves into
a N = 2 two-peak state, when followed in the direction of increas-
ing py. Subsequent secondary instabilities of the Turing state lead to
modulation with a shorter wavelength and these are responsible for
branches with N = 3,4, ... peaks. These states have been obtained
via numerical continuation on periodic domains,* using the package
AUTO.”

To calculate the stability along the N = 1 branch, we solve the
linear stability problem for different peak solutions Py(x), i.e.,

oP() = T, P, 3)

where o and P = (Z,ITI,E ?) are, respectively, the temporal eigen-
value and the corresponding eigenfunction. Here, J|py« is the
Jacobian matrix of (1) evaluated at Py(x). The states Py(x) whose
stability is of interest are all well localized in space and have been
obtained on a periodic domain of length L = 20 (for details, see
Ref. 6). The stability problem is solved on the same domain and
has an infinite number of discrete solutions (o, P(x)) for each N.
In the following, we compute the leading eigenvalues and associated
eigenfunctions with periodic boundary conditions (PBCs). Since the
problem with Neumann boundary conditions (NBCs) on a domain
of length L can be embedded in a PBC problem with period 2L, our
results also apply to the NBC problem provided perturbations with
wavelength 2L are suppressed.
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FIG. 3. Solutions along the primary N = 1 branch (left panels, yellow highlight): (a) S branch, (b) L branch, (c) LSS branch, and (d) LLS branch. Corresponding temporal
eigenvalues o are shown in the right panels. Twelve eigenvalues with the largest real parts (marked by e) are computed, with black (red) color indicating Re[o’] > 0
(Re[o] < 0); the corresponding imaginary parts are shown using blue + (orange x) symbols, respectively.
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A. Single-peak states: Eigenvalues along the S and L
branches

We start at small amplitude solutions and compute numeri-
cally the first 12 temporal eigenvalues o of P;(x) with the largest
real parts. This calculation indicates that the S states are once unsta-
ble [right panel in Fig. 3(a)], a fact consistent with the subcritical
branching direction. Note that this single unstable eigenvalue is
real (Fig. 4) and represents an amplitude mode, as revealed by
the eigenfunctions A shown in Figs. 5(a)-5(i) at py = 2.0 x 107°.
In addition, a typical neutral translation mode is also present
[Figs. 5(b)-5(i)].

As one approaches the right fold on the N = 1 branch where
the S state turns into an L state (at pgy = 2.242 x 107°), a real
negative eigenvalue approaches zero and passes through it at the
fold [right panel in Fig. 3(a)]. As a result above the right fold, the
N = 1 states now possess two real positive eigenvalues [right panel
in Fig. 3(b)]; these approach one another as the L branch is followed
to the left and collide at py =~ 2.19 x 107>, becoming complex for
smaller py. This situation extends all the way to pr. Figure 5(a-ii)
shows the real eigenfunctions at py = 2.2 x 10~ while panel (a-
iii) shows the complex eigenfunction at py = 2.18 x 1077, i.e., just
after the coalescence of the two real eigenvalues; a neutral transla-
tion mode is also present, just as for S, but is not shown. Note that
near the right fold, the L state has two distinct real positive eigen-
values, one originating in the subcritical instability and so inherited
from the instability of S and the other, smaller, eigenvalue associated
with the proximity to the fold. It is the latter that is responsible for
the transformation from S to L. The corresponding eigenfunctions

S
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A are shown in panel (a-ii), the dashed (solid) curve corresponding
to the larger (smaller) positive eigenvalue, and are of amplitude

type.

B. Multi-peak states: eigenvalues along the LSS and
LLS branches

At the left fold of the L branch, two additional real eigenval-
ues pass through zero [right panel in Fig. 3(c)], becoming unstable.
These eigenvalues increase beyond the fold, crossing the real part of
the complex eigenvalues inherited from the L branch, and become
the most unstable modes along LSS [Fig. 3(c)]. The transition from
a dominant oscillatory instability to a monotonically growing insta-
bility as one proceeds from the left fold to the next right fold appears
to coincide with a similar transition among the spatial eigenvalues
of P, that occurs at the exchange point py = pgp > 1.04 x 107 (cf.
Ref. 6). The reason for this remains unclear.

The presence of two new and nearly identical unstable eigen-
values above the left fold is associated with the bifurcation to the LS
branch that takes place very close to the left fold. The complex eigen-
values subsequently collide on the real axis [at pg >~ 2.19 x 1077,
see Fig. 3(c)] and split into two real positive eigenvalues, one of
which decreases to zero at the right fold while the other continues
to increase. Thus, near the right fold, the LSS branch has four real
positive eigenvalues (cf. Fig. 4). Figure 5(a) shows the two real and
one complex eigenfunction at py = 2 X 107> [panels (a-iv)-(a-vi)],
i.e., before the collision of the complex eigenvalues. As expected, the
profiles show that the complex eigenvalue is associated with the L

0.1

0.05

-0.05

-

200 250

FIG. 4. Temporal eigenvalues o as a function of the arc length s along the N = 1 branch showing the S, L, LSS, and LLS branches back-to-back. Integers indicate the
eigenvalue multiplicity; multiple eigenvalues indicate degeneracy arising from widely separated, exponentially localized peaks along the LSS and LLS branches. The labeled
red diamonds indicate the locations corresponding to the eigenfunctions shown in Fig. 5. See Fig. 3 for additional details.
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FIG. 5. (a) The A component of the normalized eigenfunction P(x) computed on a periodic domain with period L = 20 by solving the eigenvalue problem (3) for the
eigenvalues at locations indicated in the right panels (a)-(d) in Fig. 3, where (i) and (iv)—(ix) are at py = 2.0 x 10~5 while (i) and (iii) are at py = 2.2 x 10~° and
o = 2.18 x 1075, respectively; see also Fig. 4. The dashed (solid) lines in (ii) indicate eigenfunctions that are associated with the largest (next largest) eigenvalues. The
red lines in (iii), (vi), (viii), and (ix) correspond to the imaginary parts of complex eigenfunctions whose real part is indicated in black. (b) Neutral eigenfunctions corresponding
to translation modes in (a). Each eigenfunction is defined to within a sign. The computations were done using the MATLAB function eigs with Euclidean norm.

peak, just as it is along the L branch. In contrast, the real eigen-
functions are associated with the real positive eigenvalues generated
at the left fold, and these are, in turn, responsible for the creation
of the two smaller peaks SS on the LSS branch. We see that these
eigenfunctions correspond to odd and even modes, eigenfunction
(a-iv) tending to increase the amplitude of one of the S peaks while
suppressing the amplitude of the other S peak, while (a-v) enhances
(or suppresses) both. Moreover, since the SS peaks are identical and
exponentially localized whenever py > pgp, the two eigenfunctions
can be combined into two new eigenfunctions, one of which is local-
ized at the first S peak while the other is localized at the second S

peak. Thus, the stability problem generates three distinct eigenfunc-
tions each of which is associated with one of the peaks in the LSS
solution. As one approaches the right fold, all three peaks approach
the same height and become equispaced, and the LSS/LLS branch
connects to the N = 3 branch just above its own fold and very close
to the fold on the LSS/LLS branch (Fig. 2). As already mentioned,
this bifurcation is locally transcritical.®

Along LSS, there are, in addition, three vanishing eigenvalues;
the corresponding eigenfunctions are shown in Fig. 5(b), panels
(iv)-(vi). These are readily seen to be associated with, effectively
independent, translations of the three peaks LSS. This is because
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the translation modes are given by d(9ie A) /dx. We refer to the for-
mer two as “double” modes and to the latter as a “single” mode. In
fact, there is only one exact translation mode, with an eigenvalue
that is exactly zero, corresponding to the simultaneous translation
of all three peaks by the same amount. The two “double” modes are
phase modes associated with the SS peaks, with (b-v) associated with
the translation of SS in the same direction while L remains at rest,
and (b-iv) associated with the translation of SS in opposite direc-
tions while L again remains at rest [Fig. 5(b)]. Once again, we can
add and subtract (b-iv) and (b-v) obtaining, to exponential accu-
racy, pure translation modes for one or other S peak. Thus, there
are, in effect, three independent translation modes, a consequence
again of the exponential localization of each peak in the solution [cf.
Fig. 5(b)].

At the right fold, two new positive eigenvalues appear, at the
same time as the small LSS eigenvalue passes through zero and
becomes stable [py >~ 2.19 x 107, see Fig. 3(d)]. The former are
almost identical because they are associated with symmetric and
antisymmetric eigenfunctions localized at the two S peaks that are
well separated, while the latter is associated with an eigenfunction
that is localized at L. Of the former, the antisymmetric eigenfunction
is associated with the LSS/LLS fold while the symmetric eigenfunc-
tion is associated with the connection to the N = 3 branch. At the
same time, the intermediate real positive LSS eigenvalue crosses the
pair of large positive eigenvalues [the kink in the eigenvalue curves
associated with this crossing (Fig. 4) is a consequence of resonance],
resulting in one large and positive eigenvalue along LLS together
with two pairs of smaller real positive eigenvalues. Thus, the pres-
ence of the fold between LSS and LLS is associated with a net increase
of one unstable mode. Following the two pairs of almost identical
eigenvalues, we see that they too collide on the real positive axis, and
subsequently split, forming two pairs of almost identical complex
eigenvalues. The real part of these eigenvalues remains almost con-
stant, much as was the case for the first complex eigenvalue along
the L branch.

Following the LLS branch further, we see that the single large
positive eigenvalue starts to decrease, eventually crossing the real
part of the complex eigenvalues, thereby heralding a transition
from a dominant monotonic instability to a dominant oscillatory
instability. The real eigenvalue subsequently stabilizes at the LLS
left fold, simultaneously with the appearance of additional unstable
eigenvalues, just as before. As shown in Fig. 5(b), panels (vii)-(ix),
the three approximately independent translation modes persist
along LLS, as expected from the fact that the LLS branch also consists
of three exponentially localized peaks.

C. Subsequent behavior

Observe that the behavior along the LSS branch reported above
resembles that along the S branch. Except for multiplicity, the (large)
real eigenvalues behave in almost the same way. In each case, they
collide with new unstable eigenvalues that arise at the respective
right folds and form a pair of complex eigenvalues, again up to mul-
tiplicity. The real parts of these complex eigenvalues are likewise
similar and almost independent of the location. As a result, the main
difference between the behavior along the L and LLS branches is the
presence of the large eigenvalue inherited from the splitting of the

ARTICLE scitation.org/journalicha

complex eigenvalues along L/LSS. We conjecture that this behavior
repeats in the same fashion as one follows the N = 1 branch higher
and higher along the foliated snaking structure, and, moreover, that
similar behavior takes place along the N > 1 branches in Fig. 2.

This observation is significant because there are currently two
generic bifurcation structures that are known to organize spatially
localized structures on the line. In standard snaking, exemplified by
the Swift-Hohenberg equation with quadratic-cubic nonlinearity,
the localized solutions grow by adding new wavelengths symmetri-
cally on either side. Thus, the growth of the structure is associated
with the instability of the fronts at either end, and such growth is
independent of the length of the structure. As a result, when one
computes the linear stability of the different solutions one finds that
it is always determined by the same two leading eigenvalues, one
corresponding to a symmetric mode and the other to an antisym-
metric mode. As shown in Ref. 32, these eigenvalues oscillate around
zero, asymptotically in phase, passing together through zero at every
fold. Thus, the stability of a localized solution switches periodically,
from unstable to stable to unstable, etc., as one passes up the snaking
structure. Multiple coexisting stable structures are the result.

There is, however, a second possibility, first identified in
Ref. 33. In this mechanism, the presence of a fold is always asso-
ciated with a new instability mode. Thus as one proceeds up the
snaking structure, the solutions acquire more and more unstable
modes, and these new modes of instability arise as a consequence of
the growth in length or equivalently the number of units within the
structure.

In the present case, the localized structures are organized in a
foliated snaking structure, but the stability of the solutions resem-
bles the situation identified in Ref. 33. In other words, as a solution
acquires new degrees of freedom via the nucleation of new peaks in
the domain, it also acquires every time a new mode of instability,
leading to increasingly unstable states as the number of peaks in the
solution increases.

We have checked the above results using direct numerical
integration (DNS). These confirm that both single-peak and multi-
peak solutions are indeed unstable to small perturbations and
that the instability always results in decay to the stable P, state.
This absence of stability of the peak states is a consequence of
amplitude instability. In Sec. I1], we show that in two spatial dimen-
sions (2D) the stability situation is quite different.

I1l. STABILITY IN TWO SPATIAL DIMENSIONS

In two dimensions, we do not have the corresponding bifur-
cation diagrams, and, moreover, a linear stability analysis of the
type performed in Sec. II becomes much more involved. Conse-
quently, we turn to DNS of system (1). We solve the equations
in a rectangular domain 0 < x <20, 0 <y <40 with periodic
boundary conditions (PBCs) or Neumann boundary conditions
(NBCs) and employ the same parameter values as used earlier. These
computations demonstrate that in 2D single-peak states can be
stable and confirm the conjectured peak-peak repulsion.

In 2D, we may simply extend the existing 1D states in the y
direction, generating stripe-like localized structures. Such structures
inherit the instability properties from the 1D analysis, although they
may also be unstable to modes with a nonzero wavenumber k, in the
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y-direction resulting in transverse (zigzag) and varicose (breakup)
instabilities.”*~*® Thus, such 2D stripes are at least as unstable as in
1D and it is, therefore, no surprise that these states also decay into
the P, state. However, in 2D, we can also find peak states in the form
of a two-dimensional axisymmetric structure that may properly be
called a spot. Such spot-like states are common in Al systems in the
plane and have been widely studied as an example of particle-like
interactions.”’ "

Our computations show that in 2D, spots may be stable and
that they can exist even above the foliated snaking region, i.e., for
pr < pu < 5.0 x 107°. Like the corresponding 1D structures, the
spots are embedded in a P, background and exhibit a profile P(r)
that decays monotonically to P, (i.e., without any spatial oscilla-
tions), as shown in Fig. 6. Moreover, such spots exhibit repulsive
interaction, once two or more of them are placed in adjacent loca-
tions, as shown for different sets of three and four spots in Fig. 7.
We emphasize that Fig. 7 represents snapshots of the spot configura-
tions that continue to evolve albeit ever more slowly as the inter-spot
separation increases.

Figure 6 shows the early time evolution of three different ini-
tial conditions consisting of three and four identical stable peaks,
forming (a) an isosceles triangle with the base parallel to the x = 20
boundary, (b) a right-angle triangle with one side parallel to the
x = 0 boundary, and (c) a rectangle with sides parallel to the bound-
aries. In Fig. 7, we show the corresponding longtime evolution of
these states obtained via DNS with various combinations of PBCs
and NBCs along the domain boundary. In general, with PBCs in
both x and y directions, the boundaries do not exert any additional
forces on the configuration and the spots repel one another with a
repulsive force that depends on their separation, as shown best in
Fig. 7(a). In contrast, if the boundary conditions at x = 0 and x = 20
are replaced by NBCs (x-NBC), an isolated spot will interact with
image spots, leading to an additional force on the spot repelling it
from the boundary [as best shown in Figs. 7(b) and 7(c)]; under the
action of this force, an isolated spot would move to the center of
the rectangular domain at x = 10 where this force vanishes. Thus,
the imposed boundary conditions play a key role. A similar force is
present if the boundary conditions at y = 0 and y = 40 are replaced
by NBCs (y-NBC), but in this case, these forces are much weaker.

While the effect of the boundary conditions is not so promi-
nent in the case of the isosceles configuration [Fig. 7(a)], it becomes
evident for an initial condition in the form of a right-angled trian-
gle [Fig. 7(b)]. In this case, the forces are dominated by repulsion
between the pair of spots parallel to x = 0 regardless of the bound-
ary conditions since these peaks are closer to one another than to
any image peak; with NBCs along y = 0,40 (y-NBC), we expect that
the peaks will come to rest at y = 10, 30, where the y-force vanishes,
but the force driving the system to this state is so weak that this
state is effectively unreachable. Moreover, before this happens, the
y-force is superseded by a stronger x-force, due to the third spot
(red), although this force is so weak that this spot barely moves. Like-
wise, with NBCs at x = 0,20 (x-NBC), the pair of spots nearest to
x = 0 first separate in the y direction, but eventually the x-force from
both the red spot and from the interaction of these spots with their
image spots under reflection, primarily in x = 0, begins to dominate.
Both x- and y-forces progressively deform the triangle, resulting
over time in a slight reduction in the right angle. The qualitative
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©

FIG. 6. Three different configurations of stable spots or pulses at early times:
(a) an isosceles triangle, (b) a right-angle triangle, and (c) a rectangle. All
configurations were obtained from a direct numerical simulation of (1) at
on = 2.0 x 10~5 with periodic boundary conditions (PBCs) in x [0, 20] and
Neumann boundary conditions (NBCs) in y € [0, 40]. The A field is shown on top
with the Y field shown below and the red contours marking the peak locations;
dark colors indicate higher values of the field. Figure 7 shows the result of evolv-
ing these states over long timescales and with different combinations of boundary
conditions.

impact of the boundary conditions persists for the rectangular
arrangement of four spots [Fig. 7(c)]. In the case of PBCs, the spots
parallel to the x = 0, 20 boundaries drift apart, mostly in the y direc-
tion, since their separation in this direction is the least. In contrast,
with NBCs at y = 0,40 (y-NBC), this expansion is reduced by the
presence of image spots in the y-direction (second panel). These
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FIG. 7. (a)-(c) Repulsive dynamics of three different configurations of stable spots in the (x, y) plane, obtained from direct numerical simulation of (1) at oy = 2.0 x 10-°
with various combinations of periodic boundary conditions (PBCs) and Neumann boundary conditions (NBCs) along the domain boundary as indicated in the panels, starting
from the three configurations shown in Figs. 6(a)-6(c), indicated here by the black dots. The snapshots are taken at times t = 2 x 10,5 x 10%, 1 x 10%,and 3 x 106, with

other parameters as in Fig. 6. Only a portion of the (x, y) € [0,20] x [0, 40] domain is shown in each case.
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FIG. 8. Snapshots showing the evolution of an initial spot embedded in the background of A, as obtained from a direct numerical simulation of (1) at oy = 2.0 x 10~°, on
a quarter of a circular domain of radius R = 4 and Neumann boundary conditions everywhere on the boundary. The A field is shown on top with the Y field shown below
and the red contours marking the peak locations; dark colors indicate higher values of the field.

image spots are absent when x-NBC are imposed instead, allowing
for faster expansion in this direction (third panel).

The stability of isolated 2D spots required for the above study
only holds when the spots are embedded in the uniform background
A,. However, as has been already mentioned here and in Ref. 29, in
this range of parameters, front solutions connecting A, and A, can
also exist (see the bistability region in Fig. 1). These fronts always
propagate such that A, invades A, (not shown); in the biological
context, this observation corresponds to preparation toward dif-
ferentiation. In Fig. 8, we show that an isolated spot at r =0, in
a circular domain, embedded initially in the stable homogeneous
state A initiates the formation of a circular propagating front that
flips the background state from A, to A,. After a further transient
(t ~ 3000), the radially propagating front breaks up,” triggering a
new spot at the location of the front. The formation of this new spot
destabilizes the original spot at r = 0, which decays to A,. Note that
this behavior takes place in a parameter regime in which an isolated
spot embedded in a A, background is normally stable. The nucle-
ation of a new spot at the location of the front is of considerable
interest as it may be associated with the process of sidebranching;**
our simulations indicate that such spots remain attached to the front
and so continue to propagate at the front speed.

Some properties of spots supported by the spatial inhomogene-
ity associated with a propagating front have been discussed in Refs. 6
and 29; a more detailed analysis of such fronts and their stability
properties will be discussed elsewhere.

IV. DISCUSSION

Periodic spot patterns are known to emerge naturally in
spatially extended reaction-diffusion models and, in many cases,
the patterns self-organize in the vicinity of a Turing instability
onset.”">"" However, reaction-diffusion spots can also coexist as
isolated states, resembling particles embedded in a homogeneous
background.”*** The latter can be attributed to mutual repulsion
between neighboring spots whenever they exhibit monotonic decay
toward the rest state.” In Ref. 6, we have shown that in this case,
single- and multi-peak states in 1D are organized in an intricate
bifurcation diagram referred to as foliated snaking. The foliated
snaking scenario is generic but for applications, it is also necessary to

understand the stability properties of the resulting states and, in par-
ticular, the DNS-based observation that in 1D all such states decay
to the background state A..

We have carried out a systematic linear stability analysis of
localized peak and multi-peak states in 1D. Owing to the cum-
bersome form of the model (1), the bifurcation analysis relies on
numerical continuation using the AUTO package’ to compute the
solution profiles and on numerical eigenvalue computation to deter-
mine stability. We demonstrated, via the solution of a linear eigen-
value problem, that the localized peak solutions along the primary
N = 1 branch are all unstable, with the number of unstable modes
gradually increasing with the number of peaks comprising the solu-
tion. Specifically, we showed that the bifurcating small amplitude
solutions are once unstable with one real eigenvalue with additional
eigenvalues becoming unstable at each subsequent fold. Near the
right folds, all unstable eigenvalues are real, but complex eigenvalues
result from collisions of some of these eigenvalues along the solution
branches above each fold. The resulting oscillatory modes represent
the dominant instability mechanism along substantial portions of
the foliated snaking structure of these states (Fig. 4). This behavior
resembles that found earlier in a binary fluid convection problem™
but differs markedly from the stability properties of standard homo-
clinic snaking in which the same pair of eigenvalues is responsible
for the repeated gain and loss of stability.’

In 2D, we do not have a detailed bifurcation diagram orga-
nizing single-spot and multi-spot states, and neither do we have
a detailed linear stability analysis of these states. The main reason
is that model (1) is rather complicated and, therefore, not readily
amenable to analytical investigations, in contrast to two-variable Al
systems with polynomial structure, such as the FitzHugh-Nagumo,
Gray-Scott, and Lugiato-Lefever systems,”>""~*>*"* as is already
evident from the computation of the uniform states. However, based
on the DNS, we can say with confidence that both single- and multi-
spot states can be stable and indeed are stable over a substantial
range of values of the control parameter py. This conclusion is based
on long time integration of multi-spot configurations with different
boundary conditions. Our computations demonstrate the stability
of these configurations in both amplitude and phase and confirm
the spot-spot repulsion expected on the basis of earlier results.®
These results resemble those obtained in Ref. 40 for the Gray-Scott
model in the weak interaction regime in which spots interact only via
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their exponential tails, and in the semi-strong regime in which the
dynamics of a particular spot is coupled to the instantaneous loca-
tion of the other spots as well as the shape of the domain boundary
via an explicitly constructed Green’s function. In our multi-variable
case, such an explicit construction is not possible and our spot
computations span both distinguished regimes.

In addition, we identified an intriguing and distinct transition
in which a spot embedded in the competing but metastable homo-
geneous state A, emits a circular front which flips the background
state from Ay to A, and subsequently triggers the growth of a new
spot at the location of the front. Transitions of this type require the
coexistence of two simultaneously stable homogeneous states and
so are excluded in many simpler AI models. The growth of this new
spot destabilizes the original spot and leads to a localized state that
ultimately propagates with a constant speed, implying not only that
the sidebranching model (1) is able to capture robust spots but also
its potential applicability to other chemical reactions involving inor-
ganic developmental-like morphogenesis.”” On the other hand, in
1D, our computations reveal that peaks located at a front connect-
ing two stable homogeneous states may be stabilized by the presence
of the front, albeit with a superposed large amplitude oscillation.”
This oscillation manifests itself as a strong oscillation both in the
spot amplitude and in the front propagation speed, a phenomenon
that has been reported in the context of somite formation.”’ Except
for the role played by the front in catalyzing this surfing behavior
the resulting state resembles the state of jumping oscillons studied
in Refs. 52-54.

In summary, we have shown that while multi-variable acti-
vator—-inhibitor (a.k.a. reaction-diffusion) models may bear some
similarity to the two-variable models often used to scrutinize bio-
logical and chemical phenomena, they may also support new
types of behavior that are absent from simpler models. Although
multi-variable models inevitably complicate analytical approaches,
insights derived from such approaches remain indispensable for
understanding the more complex biological systems they seek to
model. We hope, therefore, that the results reported here may stimu-
late further studies of multi-variable reaction-diffusion models, not
only in the context of modeling but also to substantiate the role of
new pattern formation mechanisms they support in two or more
spatial dimensions.
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