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Origin of jumping oscillons in an excitable reaction-diffusion system
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Oscillons, i.e., immobile spatially localized but temporally oscillating structures, are the subject of intense
study since their discovery in Faraday wave experiments. However, oscillons can also disappear and reappear
at a shifted spatial location, becoming jumping oscillons (JOs). We explain here the origin of this behavior in
a three-variable reaction-diffusion system via numerical continuation and bifurcation theory, and show that JOs
are created via a modulational instability of excitable traveling pulses (TPs). We also reveal the presence of
bound states of JOs and TPs and patches of such states (including jumping periodic patterns) and determine their
stability. This rich multiplicity of spatiotemporal states lends itself to information and storage handling.
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Time-dependent spatially localized states in dissipative
systems, such as action potentials in physiology [1-4] and
oscillons in Faraday wave experiments [5-7], have attracted
considerable interest in the past half-century [8,9]. Work in
these fields not only provided insights into the original model
(e.g., neural and cardiac) systems but also stimulated un-
derstanding of pattern formation mechanisms, which in turn
proved applicable in other settings, such as chemical reac-
tions [10], nonlinear optics [11-13], fluid convection [14-17],
and even sound discrimination in the inner ear [18]. Im-
portantly, advances in pattern formation theory require the
development of nonlinear methodologies and, specifically,
numerical (continuation) methods for differential equations
[9], exemplified by the packages AUTO [19], MATCONT [20],
and PDE2PATH [21]. These assist in revealing complex pattern
selection mechanisms via computation of both stable and
unstable solutions upon variation of control parameters, and
so provide insights that are impossible to uncover otherwise.
Thus, continuation methods are essential means of analysis
for spatially extended complex systems regardless of the na-
ture of the model equations.

In 2006, Yang et al. [22] reported a hitherto unseen spa-
tially localized state they called a jumping oscillon (JO).
Related behavior, a jumping target wave, was subsequently
observed in the Belousov-Zhabotinsky reaction in a mi-
croemulsion [23]. JOs resemble the oscillons observed in
parametrically driven systems [5,6] but translate at the same
time, whereby they disappear and then reappear at a shifted
location. The process repeats, generating a time-periodic state
in a frame moving with the average translation speed, as
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shown in Fig. 1(a). Yang et al. [22] discovered these JOs
in direct numerical simulations (DNSs) of a three-variable
FitzHugh-Nagumo (FHN) reaction-diffusion (RD) equation
but provided little explanation of the origin of these states and
the plethora of states associated with them. The simulations
also show that these states can collide and either annihilate
or combine in a uniformly translating localized pulse and
that they can organize themselves into traveling rafts with a
spatially periodic or crystalline structure. Similar structures
have also been recently found in an active phase-field crystal
model [24] and in nonlinear optics [25], implying broader
applicability. Tailored patterns with spatiotemporal modula-
tion, some of which are exhibited in Fig. 1, can be envisioned
as building blocks for information and storage handling [26]
especially in the context of chemo-liquid computers [27-30].

In this Letter, we focus on the origin and the bifurcation
structure of stable and unstable JO branches, as well as trav-
eling wave (TW) and traveling pulse (TP) branches. In view
of the abundance of solutions of each type (Fig. 1), numerical
continuation must overcome possible branch jumping (unde-
tected switching to a nearby branch in the predictor-corrector
continuation setup). Nevertheless, the method enables us to
identify the origin of the JOs through a modulational (Hopf)
instability of already unstable TPs, and to obtain the bifur-
cation structure of accompanying multi-JOs [Fig. 1(b)] and
jumping periodic patterns (JPP) [Fig. 1(c)] as well as the
multitude of mixed JO and TP states [Figs. 1(d)—-1(f)]. In the
following, we use the labels nJO and mTP to refer to states
consisting of n JOs and m TPs, respectively, and nJOmTP to
refer to bound states of the two.

Model equations and wave instability. We employ the
Purwins system originally developed [31] as a phenomeno-
logical model of an electrical discharge system exhibiting
multiple stationary and moving localized states [32]. The sys-
tem is a three-variable FHN system with one activator and
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FIG. 1. Space-time plots showing a selection of states obtained
through DNS of (1) with periodic boundary conditions. (a) JO at
k; = —8.25, (b) bound state of two JOs at k; = —9, (c) 3JPP state at
ky = —8.5, (d) bound 1JO1TP state at k; = —7.8, (e) 2JO1TP bound
state at k; = —8.52, and (f) 1JO2TP bound state at k; = —8.26.
Other parameters are as in (2). All plots show u(x, t), with a color
scale —1.7to 1.5.

two inhibitors acting on distinct timescales, and has broad
applicability in studies of dissipative solitons in excitable RD
systems in both one (1D) and two (2D) spatial dimensions
(pulse interactions in 1D [33-37] and time-dependent spots
in 2D [31,38-40]). The closely related models studied in
Refs. [41-46] exhibit similarly rich dynamics.

The Purwins system in 1D reads

du = D, d%u+ky + kou — t® — k3v — kqw,
TOV = D,,va +u-—v,
9w = Dyd*w +u — w, (1)

where 7, ¥, and the k; are parameters, and D,, D,, D,
are diffusion coefficients. The JOs in Ref. [22] were ob-
tained near k; = —8.5 when (k», k3, k4, T, ¥, D, D,, D)) =
(2,10,2,50, 1, 1, 50, 60). Here, we consider a similar param-
eter regime but with

(ﬂvDu,Dv’Dw)=(0-59 2’ 25’ 100) (2)

in order to separate out the branches in the bifurcation
diagrams, and also employ k; as a control parameter.
We supplement (1) with periodic boundary conditions on
the 1D domain x € [—L/2,L/2], where L = 80, and let
U = (u,v, w). In our parameter regime, (1) has a unique
spatially homogeneous steady state U, = (uy, Uy, u,) [see
Supplemental Material (SM) S1 [47]], which loses stability

to a wave (finite wave number Hopf) instability at k; = k. =~
—7.6 with a critical wave number g = ¢, associated with the
critical wavelength A, = 2w /g. =~ 20; the dispersion relation
at the onset is shown in SM S1.

The primary wave instability generates branches of spa-
tially periodic traveling and standing waves [48], hereafter
4TW and 4SW, with four wavelengths in the domain (see SM
S1). Subsequent primary bifurcations generate 3TW, 5STW,
6TW, and eventually 2TW. In what follows, we focus on
traveling solutions that coexist with stable U, i.e., on the ex-
citable regime, and show that the JOs are related to a temporal
modulation of traveling solutions.

Continuation methodology. To compute solutions that are
steady in a comoving frame (TW or TP), we rewrite (1) in
a reference frame moving with speed s to the right, i.e., we
add —s50,(u, v, w) to the right-hand side of (1), set the time
derivatives to zero, and solve the resulting nonlinear eigen-
value problem for (U, s) using the phase condition

(0:Uoa, U) =0, 3)

where Uyyq is the solution from the last continuation step, and
(f,g) = ffﬁz f(x)g(x)dx. This minimizes the L? distance
of the current step to translates of the previous step [49].
The continuation is thus orthogonal to the group orbit of
translations u(x—§&), with d, as generator of the associated
Lie algebra. We represent the traveling solutions using the
norm ||[U|] = VL™ [Tu(x) — u,]* dx (see the TW branches
in Fig. 2).

For solutions of JO type or more generally modulated TW
(mTW), we retain the time derivatives and solve for both the
(mean) frame speed s and the oscillation period 7. To do so,
we extend the phase condition to

m—1

auU) =Y (3:U,. Ut) =0, @)

i=1

where U, = U,(x) is a reference profile [usually Uy (x), the
spatial profile at the Hopf point] and #,, 1, ..., T are the grid
points of the time discretization. Consequently, for mTW we
have the three unknowns (U, s, T') and solve the two equa-
tions (1) and (4) together with the additional temporal phase
condition

"ld / / !
fo <5Umd<r>,0<r>>dr=o, s)

to make the continuation orthogonal to the group orbit of time
translates. We also modify the norm || - ||, to

1 T pL/2 5
Ulp=.— , ) —uy | dxdt. 6
U l2 TL/O /_m [u(x, t)—u.]" dxdt (6)

For the TW (TP) branches we thus have n, + 2 unknowns
(including k;, see Ref. [49]) and n,, + 1 equations, where n,, =
3n, and n,, is the number of spatial discretization points, while
for the mTW (and JO) branches we have mn, + 3 unknowns
(again including ki) and mn, + 2 equations, where m is the
number of temporal discretization points. For our domain,
we typically use n, ~ 1000 discretization points in space and
m =50 in time (for mTW), yielding ~150000 degrees of
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FIG. 2. Partial bifurcation diagram showing ||U ||, as a function of k; for the uniform branch (black line), traveling waves (blue), traveling
1-pulse (dark green), time-modulated (including JO, orange) pulses, and further TW branches as indicated, with stability indicated by solid
lines. The branch of modulated traveling pulses becoming JOs bifurcates from a Hopf point near k; = kfpl (dark green bullet) and the JOs

~

are stable for kfpz <k <

ki.; the locations kfpj indicate other folds. Selected traveling (right) and time-modulated (top) solutions at different

locations are also shown. The black bullet labeled (a) on the orange branch corresponds to the JO shown in Fig. 1(a). Other parameters are as

in (2).

freedom. The predictor/corrector continuation method uses a
corrector based on Newton’s method and carries the danger
of branch jumping when many solutions are close together.
To mitigate this, we monitor the convergence speed of the
Newton loops (cf. Sec. 3.6 in Ref. [21]). We also monitor
selected eigenvalues of the linearizations to check the stability
and detect possible branch points, which are then localized,
for subsequent branch switching [50].

Modulational instability of excitable pulses. Our first aim
is to understand the origin of the JO states. Figure 2 illustrates
our results. The primary 4TW (blue) branch bifurcates sub-
critically from the primary Hopf point. Additional TW states
are also shown: primary branches of 3TW (brown) and 6TW
(gray), and two secondary TW branches that arise from period
doubling, namely the 3TW (light green, from 6TW) and 2TW
(pink, from 4TW). The dark green branch corresponds to TP
states obtained by continuation from a stable 1TP state found
in DNSs starting from an initial condition obtained by cutting
out a part of the 4TW solution (dark green square). The 1TP
states are stable until the leftmost fold at k; = k{p '~ 99
where they lose stability. Beyond the second fold, near k; =
k1., the branch begins to snake [9], forming 2TP and then 3TP
states. The latter fail to connect to a 3TW state and begin
to snake downwards until they connect at the pink bullet to

the 2TW branch. In the opposite direction the 1TP undergo
complex behavior before terminating back on the same 2TW
branch (SM S2). Thus, both the 1TP branch and the 2TW
branch represent branches that start and end on the same
branch in secondary bifurcations.

The properties of the JOs are closely related to these back-
ground states. We find that the JO branch (orange) emerges
from the first Hopf bifurcation located on the unstable portion
of the 1TP branch (dark green bullet in Fig. 2). Consequently,
the JOs start out as an unstable small amplitude modulation
of the 1TP state, and turn into stable, fully developed JOs
(orange triangle in Fig. 2) only after the fold near k| = ky,
before losing stability again at the next fold at k| = kfpz; the
time ¢t = O state at the black bullet (Fig. 2) was used as the
initial condition for the DNS in Fig. 1(a). The stable JOs have
the highest travel speed s and shortest oscillation period T
along the whole orange branch (SM S3).

As the branch snakes below the fold at k; = kfpz, the
solutions become unstable (orange diamond in Fig. 2), be-
fore turning into a (smaller-amplitude) 2JO bound state (at
ky ~ k™, orange square in Fig. 2), and then into a (yet
smaller-amplitude) 3JO bound state (orange down-triangle
in Fig. 2). Beyond this point, the continuation becomes un-
reliable in the sense that different numerical settings (finer
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FIG. 3. Partial bifurcation diagram showing ||U ||, for the 3TW
branch (green), the associated 3JPP branch (red), and branches of
bound states 1JOITP (brown) and 1JO2TP (purple), with the JO
branch kept in the background in gray; solid lines indicate stability.
The 3JPP branch bifurcates from the Hopf point near k; = kfp3; other
klfpj points mark folds designating the limits of stability. Selected
time-modulated solutions at different locations are shown in the top
panels (square/diamond symbols) and labeled bullets correspond to
states shown in Fig. 1. Other parameters are as in (2).

discretizations/tolerances) may lead to different behavior, but
the branch continues.

Bound states and mixed states. In Fig. 3, we plot sev-
eral branches that are associated with multi-JO solutions and
mixed JO/TP states. The starting point for finding these states
is a domain-filling 3JPP state (red branch in Fig. 3). These
extended 3JPP states are characterized by a pronounced phase
gradient and bifurcate from a 3TW (light green) branch via a
Hopf bifurcation just above k; = kip ’~ —9.5and are initially
unstable. Stable states are found on the segment between the
first two folds, k{p 8 <k < k?ﬂ. Stability is again checked us-
ing DNS, yielding for instance Fig. 1(c). There are many other
Hopf points along the 1TP branch, along the 3TW branch,
and along similar branches, which give rise to further mTP
branches. Many of these are pairwise connected via small-
amplitude mTW branches. We show one example of such a
branch in SM S4.

The overall picture of localized and extended JO states
is quite robust with respect to parameter changes, although
details of the connections between branches depend sensi-
tively on parameters, as shown in SM S4 for D, < 25. One
quantitative effect of decreasing D, is the loss of the first

two Hopf points on the 1TP branch (see SM S4 for details),
resulting in a shift of the Hopf point from which the JO branch
originates.

Figure 3 demonstrates that the continuation method can
also be used to identify the bifurcation structure of more
complex states, including mixed JO/TP states. Starting from
(stable) bound states of JO and TP obtained from DNS, e.g.,
1JOITP [Fig. 1(d)] and 1JO2TP [Fig. 1(f)], and identifying
the period T and frame speed s we can use continuation to
compute both stable and unstable regimes associated with
such solutions. Stable 1JO1TP (brown branch) states exist
for k; > k{pg while stable 1JO2TP (purple branch) are present

between k{p“ <k < k{p 10, Moreover, unstable states (see the
square and diamond symbols in Fig. 3) provide initial condi-
tions that converge, via DNS, to stable 2JOs [Fig. 1(b)] and
2JO1TP [Fig. 1(e)], respectively. The continuation of these
states (not shown) follows the same procedure as used for
single JOs.

Discussion. We have shown that a successful understand-
ing of the origin of the 1JO and associated states, such
as the 2JO and 1JOITP bound states or the JPP state dis-
covered in Ref. [22], can be achieved within a careful
continuation/bifurcation setting—the only currently existing
technique for such purposes. For the three-variable FHN
model (1), the continuation of excitable states turned out to
hold significant challenges: While for the TW and TP we only
have spatial degrees of freedom to deal with, for the mTP and
mTW, as relative time-periodic orbits, we need a fine tempo-
ral resolution as well, leading to 10° (and more) necessary
degrees of freedom, even on the small domain used here. We
have checked that our results persist to larger domains with
more turns on the 1TP branch as it snakes (not shown), and
similar behavior of the JO state, although some differences are
inevitably present. The numerical difficulties mount, however,
due to the abundance of states and possible branch jumping,
issues that (mostly) do not arise on smaller domains or in
DNS. We showed here that the origin of stable JOs is highly
subtle, requiring first and foremost an understanding of the
underlying 1TP states and their stability, but that our approach
is up to the task. Moreover, 2D DNSs in the corresponding
parameter range yield targetlike jumping waves similar to
those observed experimentally in the Belousov-Zhabotinsky
reaction in a microemulsion [23], as shown in SM S5. Thus
our approach yields useful insight into the extremely rich so-
lution structure of (1) in the excitable regime, and in particular
into the origin of JOs and their subsequent snaking forming
2JOs, 3J0s, ..., and ultimately domain-filling JPP arrays.

In view of the wide interest stimulated by the discovery
of oscillons [5-7], we expect that the methodology developed
here for JOs will also lead to challenging theoretical ques-
tions as well as potential applications in other multivariable
excitable RD media. The rich yet programmable JO patterns
strengthen the suggestion in Ref. [26] that localized states
could be useful for data storage in computers with RD kinetics
[27-30].
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