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Oscillons, i.e., immobile spatially localized but temporally oscillating structures, are the subject of intense

study since their discovery in Faraday wave experiments. However, oscillons can also disappear and reappear

at a shifted spatial location, becoming jumping oscillons (JOs). We explain here the origin of this behavior in

a three-variable reaction-diffusion system via numerical continuation and bifurcation theory, and show that JOs

are created via a modulational instability of excitable traveling pulses (TPs). We also reveal the presence of

bound states of JOs and TPs and patches of such states (including jumping periodic patterns) and determine their

stability. This rich multiplicity of spatiotemporal states lends itself to information and storage handling.

DOI: 10.1103/PhysRevE.104.L062201

Time-dependent spatially localized states in dissipative

systems, such as action potentials in physiology [1–4] and

oscillons in Faraday wave experiments [5–7], have attracted

considerable interest in the past half-century [8,9]. Work in

these fields not only provided insights into the original model

(e.g., neural and cardiac) systems but also stimulated un-

derstanding of pattern formation mechanisms, which in turn

proved applicable in other settings, such as chemical reac-

tions [10], nonlinear optics [11–13], fluid convection [14–17],

and even sound discrimination in the inner ear [18]. Im-

portantly, advances in pattern formation theory require the

development of nonlinear methodologies and, specifically,

numerical (continuation) methods for differential equations

[9], exemplified by the packages AUTO [19], MATCONT [20],

and PDE2PATH [21]. These assist in revealing complex pattern

selection mechanisms via computation of both stable and

unstable solutions upon variation of control parameters, and

so provide insights that are impossible to uncover otherwise.

Thus, continuation methods are essential means of analysis

for spatially extended complex systems regardless of the na-

ture of the model equations.

In 2006, Yang et al. [22] reported a hitherto unseen spa-

tially localized state they called a jumping oscillon (JO).

Related behavior, a jumping target wave, was subsequently

observed in the Belousov-Zhabotinsky reaction in a mi-

croemulsion [23]. JOs resemble the oscillons observed in

parametrically driven systems [5,6] but translate at the same

time, whereby they disappear and then reappear at a shifted

location. The process repeats, generating a time-periodic state

in a frame moving with the average translation speed, as
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shown in Fig. 1(a). Yang et al. [22] discovered these JOs

in direct numerical simulations (DNSs) of a three-variable

FitzHugh-Nagumo (FHN) reaction-diffusion (RD) equation

but provided little explanation of the origin of these states and

the plethora of states associated with them. The simulations

also show that these states can collide and either annihilate

or combine in a uniformly translating localized pulse and

that they can organize themselves into traveling rafts with a

spatially periodic or crystalline structure. Similar structures

have also been recently found in an active phase-field crystal

model [24] and in nonlinear optics [25], implying broader

applicability. Tailored patterns with spatiotemporal modula-

tion, some of which are exhibited in Fig. 1, can be envisioned

as building blocks for information and storage handling [26]

especially in the context of chemo-liquid computers [27–30].

In this Letter, we focus on the origin and the bifurcation

structure of stable and unstable JO branches, as well as trav-

eling wave (TW) and traveling pulse (TP) branches. In view

of the abundance of solutions of each type (Fig. 1), numerical

continuation must overcome possible branch jumping (unde-

tected switching to a nearby branch in the predictor-corrector

continuation setup). Nevertheless, the method enables us to

identify the origin of the JOs through a modulational (Hopf)

instability of already unstable TPs, and to obtain the bifur-

cation structure of accompanying multi-JOs [Fig. 1(b)] and

jumping periodic patterns (JPP) [Fig. 1(c)] as well as the

multitude of mixed JO and TP states [Figs. 1(d)–1(f)]. In the

following, we use the labels nJO and mTP to refer to states

consisting of n JOs and m TPs, respectively, and nJOmTP to

refer to bound states of the two.

Model equations and wave instability. We employ the

Purwins system originally developed [31] as a phenomeno-

logical model of an electrical discharge system exhibiting

multiple stationary and moving localized states [32]. The sys-

tem is a three-variable FHN system with one activator and
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FIG. 1. Space-time plots showing a selection of states obtained

through DNS of (1) with periodic boundary conditions. (a) JO at

k1 = −8.25, (b) bound state of two JOs at k1 = −9, (c) 3JPP state at

k1 = −8.5, (d) bound 1JO1TP state at k1 = −7.8, (e) 2JO1TP bound

state at k1 = −8.52, and (f) 1JO2TP bound state at k1 = −8.26.

Other parameters are as in (2). All plots show u(x, t ), with a color

scale −1.7 to 1.5.

two inhibitors acting on distinct timescales, and has broad

applicability in studies of dissipative solitons in excitable RD

systems in both one (1D) and two (2D) spatial dimensions

(pulse interactions in 1D [33–37] and time-dependent spots

in 2D [31,38–40]). The closely related models studied in

Refs. [41–46] exhibit similarly rich dynamics.

The Purwins system in 1D reads

∂t u = Du∂
2
x u + k1 + k2u − u3 − k3v − k4w,

τ∂tv = Dv∂
2
x v + u − v,

ϑ∂tw = Dw∂2
x w + u − w, (1)

where τ , ϑ , and the ki are parameters, and Du, Dv , Dw

are diffusion coefficients. The JOs in Ref. [22] were ob-

tained near k1 = −8.5 when (k2, k3, k4, τ, ϑ, Du, Dv, Dw ) =
(2, 10, 2, 50, 1, 1, 50, 60). Here, we consider a similar param-

eter regime but with

(ϑ, Du, Dv, Dw ) = (0.5, 2, 25, 100) (2)

in order to separate out the branches in the bifurcation

diagrams, and also employ k1 as a control parameter.

We supplement (1) with periodic boundary conditions on

the 1D domain x ∈ [−L/2, L/2], where L = 80, and let

U ≡ (u, v,w). In our parameter regime, (1) has a unique

spatially homogeneous steady state U∗ = (u∗, u∗, u∗) [see

Supplemental Material (SM) S1 [47]], which loses stability

to a wave (finite wave number Hopf) instability at k1 = k1c ≈
−7.6 with a critical wave number q = qc associated with the

critical wavelength λc = 2π/qc ≈ 20; the dispersion relation

at the onset is shown in SM S1.

The primary wave instability generates branches of spa-

tially periodic traveling and standing waves [48], hereafter

4TW and 4SW, with four wavelengths in the domain (see SM

S1). Subsequent primary bifurcations generate 3TW, 5TW,

6TW, and eventually 2TW. In what follows, we focus on

traveling solutions that coexist with stable U∗, i.e., on the ex-

citable regime, and show that the JOs are related to a temporal

modulation of traveling solutions.

Continuation methodology. To compute solutions that are

steady in a comoving frame (TW or TP), we rewrite (1) in

a reference frame moving with speed s to the right, i.e., we

add −s∂x(u, v,w) to the right-hand side of (1), set the time

derivatives to zero, and solve the resulting nonlinear eigen-

value problem for (U, s) using the phase condition

〈∂xUold,U 〉 != 0, (3)

where Uold is the solution from the last continuation step, and

〈 f , g〉 ≡
∫ L/2

−L/2
f (x)g(x) dx. This minimizes the L2 distance

of the current step to translates of the previous step [49].

The continuation is thus orthogonal to the group orbit of

translations u(x−ξ ), with ∂x as generator of the associated

Lie algebra. We represent the traveling solutions using the

norm ||U ||2 ≡
√

L−1
∫

[u(x) − u∗]2 dx (see the TW branches

in Fig. 2).

For solutions of JO type or more generally modulated TW

(mTW), we retain the time derivatives and solve for both the

(mean) frame speed s and the oscillation period T . To do so,

we extend the phase condition to

qH (U ) :=
m−1
∑

i=1

〈∂xU∗,U (ti )〉
!= 0, (4)

where U∗ = U∗(x) is a reference profile [usually UH (x), the

spatial profile at the Hopf point] and t1, t2, . . . , T are the grid

points of the time discretization. Consequently, for mTW we

have the three unknowns (U, s, T ) and solve the two equa-

tions (1) and (4) together with the additional temporal phase

condition
∫ T

0

〈

d

dt
Uold(t ′),U (t ′)

〉

dt
!= 0, (5)

to make the continuation orthogonal to the group orbit of time

translates. We also modify the norm ‖ · ‖2 to

‖U‖2 =

√

1

T L

∫ T

0

∫ L/2

−L/2

[u(x, t )−u∗]2 dx dt . (6)

For the TW (TP) branches we thus have nu + 2 unknowns

(including k1, see Ref. [49]) and nu + 1 equations, where nu =
3np and np is the number of spatial discretization points, while

for the mTW (and JO) branches we have mnu + 3 unknowns

(again including k1) and mnu + 2 equations, where m is the

number of temporal discretization points. For our domain,

we typically use np ≈ 1000 discretization points in space and

m = 50 in time (for mTW), yielding ≈150 000 degrees of
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FIG. 2. Partial bifurcation diagram showing ||U ||2 as a function of k1 for the uniform branch (black line), traveling waves (blue), traveling

1-pulse (dark green), time-modulated (including JO, orange) pulses, and further TW branches as indicated, with stability indicated by solid

lines. The branch of modulated traveling pulses becoming JOs bifurcates from a Hopf point near k1 = k
fp1

1 (dark green bullet) and the JOs

are stable for k
fp2

1 < k1 � k1c; the locations k
fp j

1 indicate other folds. Selected traveling (right) and time-modulated (top) solutions at different

locations are also shown. The black bullet labeled (a) on the orange branch corresponds to the JO shown in Fig. 1(a). Other parameters are as

in (2).

freedom. The predictor/corrector continuation method uses a

corrector based on Newton’s method and carries the danger

of branch jumping when many solutions are close together.

To mitigate this, we monitor the convergence speed of the

Newton loops (cf. Sec. 3.6 in Ref. [21]). We also monitor

selected eigenvalues of the linearizations to check the stability

and detect possible branch points, which are then localized,

for subsequent branch switching [50].

Modulational instability of excitable pulses. Our first aim

is to understand the origin of the JO states. Figure 2 illustrates

our results. The primary 4TW (blue) branch bifurcates sub-

critically from the primary Hopf point. Additional TW states

are also shown: primary branches of 3TW (brown) and 6TW

(gray), and two secondary TW branches that arise from period

doubling, namely the 3TW (light green, from 6TW) and 2TW

(pink, from 4TW). The dark green branch corresponds to TP

states obtained by continuation from a stable 1TP state found

in DNSs starting from an initial condition obtained by cutting

out a part of the 4TW solution (dark green square). The 1TP

states are stable until the leftmost fold at k1 = k
fp1

1 ≈ −9.9

where they lose stability. Beyond the second fold, near k1 =
k1c, the branch begins to snake [9], forming 2TP and then 3TP

states. The latter fail to connect to a 3TW state and begin

to snake downwards until they connect at the pink bullet to

the 2TW branch. In the opposite direction the 1TP undergo

complex behavior before terminating back on the same 2TW

branch (SM S2). Thus, both the 1TP branch and the 2TW

branch represent branches that start and end on the same

branch in secondary bifurcations.

The properties of the JOs are closely related to these back-

ground states. We find that the JO branch (orange) emerges

from the first Hopf bifurcation located on the unstable portion

of the 1TP branch (dark green bullet in Fig. 2). Consequently,

the JOs start out as an unstable small amplitude modulation

of the 1TP state, and turn into stable, fully developed JOs

(orange triangle in Fig. 2) only after the fold near k1 = k1c,

before losing stability again at the next fold at k1 = k
fp2

1 ; the

time t = 0 state at the black bullet (Fig. 2) was used as the

initial condition for the DNS in Fig. 1(a). The stable JOs have

the highest travel speed s and shortest oscillation period T

along the whole orange branch (SM S3).

As the branch snakes below the fold at k1 = k
fp2

1 , the

solutions become unstable (orange diamond in Fig. 2), be-

fore turning into a (smaller-amplitude) 2JO bound state (at

k1 ≈ k
fp4

1 , orange square in Fig. 2), and then into a (yet

smaller-amplitude) 3JO bound state (orange down-triangle

in Fig. 2). Beyond this point, the continuation becomes un-

reliable in the sense that different numerical settings (finer
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FIG. 3. Partial bifurcation diagram showing ||U ||2 for the 3TW

branch (green), the associated 3JPP branch (red), and branches of

bound states 1JO1TP (brown) and 1JO2TP (purple), with the JO

branch kept in the background in gray; solid lines indicate stability.

The 3JPP branch bifurcates from the Hopf point near k1 = k
fp3

1 ; other

k
fp j

1 points mark folds designating the limits of stability. Selected

time-modulated solutions at different locations are shown in the top

panels (square/diamond symbols) and labeled bullets correspond to

states shown in Fig. 1. Other parameters are as in (2).

discretizations/tolerances) may lead to different behavior, but

the branch continues.

Bound states and mixed states. In Fig. 3, we plot sev-

eral branches that are associated with multi-JO solutions and

mixed JO/TP states. The starting point for finding these states

is a domain-filling 3JPP state (red branch in Fig. 3). These

extended 3JPP states are characterized by a pronounced phase

gradient and bifurcate from a 3TW (light green) branch via a

Hopf bifurcation just above k1 = k
fp3

1 ≈ −9.5 and are initially

unstable. Stable states are found on the segment between the

first two folds, k
fp8

1 < k1 < k
fp7

1 . Stability is again checked us-

ing DNS, yielding for instance Fig. 1(c). There are many other

Hopf points along the 1TP branch, along the 3TW branch,

and along similar branches, which give rise to further mTP

branches. Many of these are pairwise connected via small-

amplitude mTW branches. We show one example of such a

branch in SM S4.

The overall picture of localized and extended JO states

is quite robust with respect to parameter changes, although

details of the connections between branches depend sensi-

tively on parameters, as shown in SM S4 for Dv < 25. One

quantitative effect of decreasing Dv is the loss of the first

two Hopf points on the 1TP branch (see SM S4 for details),

resulting in a shift of the Hopf point from which the JO branch

originates.

Figure 3 demonstrates that the continuation method can

also be used to identify the bifurcation structure of more

complex states, including mixed JO/TP states. Starting from

(stable) bound states of JO and TP obtained from DNS, e.g.,

1JO1TP [Fig. 1(d)] and 1JO2TP [Fig. 1(f)], and identifying

the period T and frame speed s we can use continuation to

compute both stable and unstable regimes associated with

such solutions. Stable 1JO1TP (brown branch) states exist

for k1 > k
fp9

1 while stable 1JO2TP (purple branch) are present

between k
fp11

1 < k1 < k
fp10

1 . Moreover, unstable states (see the

square and diamond symbols in Fig. 3) provide initial condi-

tions that converge, via DNS, to stable 2JOs [Fig. 1(b)] and

2JO1TP [Fig. 1(e)], respectively. The continuation of these

states (not shown) follows the same procedure as used for

single JOs.

Discussion. We have shown that a successful understand-

ing of the origin of the 1JO and associated states, such

as the 2JO and 1JO1TP bound states or the JPP state dis-

covered in Ref. [22], can be achieved within a careful

continuation/bifurcation setting—the only currently existing

technique for such purposes. For the three-variable FHN

model (1), the continuation of excitable states turned out to

hold significant challenges: While for the TW and TP we only

have spatial degrees of freedom to deal with, for the mTP and

mTW, as relative time-periodic orbits, we need a fine tempo-

ral resolution as well, leading to 105 (and more) necessary

degrees of freedom, even on the small domain used here. We

have checked that our results persist to larger domains with

more turns on the 1TP branch as it snakes (not shown), and

similar behavior of the JO state, although some differences are

inevitably present. The numerical difficulties mount, however,

due to the abundance of states and possible branch jumping,

issues that (mostly) do not arise on smaller domains or in

DNS. We showed here that the origin of stable JOs is highly

subtle, requiring first and foremost an understanding of the

underlying 1TP states and their stability, but that our approach

is up to the task. Moreover, 2D DNSs in the corresponding

parameter range yield targetlike jumping waves similar to

those observed experimentally in the Belousov-Zhabotinsky

reaction in a microemulsion [23], as shown in SM S5. Thus

our approach yields useful insight into the extremely rich so-

lution structure of (1) in the excitable regime, and in particular

into the origin of JOs and their subsequent snaking forming

2JOs, 3JOs, ..., and ultimately domain-filling JPP arrays.

In view of the wide interest stimulated by the discovery

of oscillons [5–7], we expect that the methodology developed

here for JOs will also lead to challenging theoretical ques-

tions as well as potential applications in other multivariable

excitable RD media. The rich yet programmable JO patterns

strengthen the suggestion in Ref. [26] that localized states

could be useful for data storage in computers with RD kinetics

[27–30].

Acknowledgments. We thank Svetlana Gurevich (Münster)

for helpful discussions. This work was supported in part by the

National Science Foundation under Grant No. DMS-1908891

(E.K.).

L062201-4



ORIGIN OF JUMPING OSCILLONS IN AN EXCITABLE .. PHYSICAL REVIEW E 104, L062201 (2021)

[1] E. M. Izhikevich, Dynamical Systems in Neuroscience: The

Geometry of Excitability and Bursting (MIT Press, Cambridge,

MA, 2007).

[2] J. D. Murray, Mathematical Biology: I. An Introduction, Vol. 17

(Springer, New York, 2007).

[3] J. P. Keener and J. Sneyd, Mathematical Physiology. Part II:

Systems Physiology (Springer, New York, 2008).

[4] J. Allard and A. Mogilner, Curr. Opin. Cell Biol. 25, 107 (2013).

[5] P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature

(London) 382, 793 (1996).

[6] O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and J.

Fineberg, Phys. Rev. Lett. 83, 3190 (1999).

[7] D. Blair, I. S. Aranson, G. W. Crabtree, V. Vinokur, L. S.

Tsimring, and C. Josserand, Phys. Rev. E 61, 5600 (2000).

[8] A. Ankiewicz and N. Akhmediev, Dissipative Solitons: From

Optics to Biology and Medicine, Lecture Notes in Physics

Vol. 751 (Springer, Berlin, 2008).

[9] E. Knobloch, Annu. Rev. Condens. Matter Phys. 6, 325 (2015).

[10] V. K. Vanag and I. R. Epstein, Chaos 17, 037110 (2007).

[11] W. Firth, L. Columbo, and T. Maggipinto, Chaos 17, 037115

(2007).

[12] S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz,

Phys. Rev. Lett. 101, 253902 (2008).

[13] W. Firth, A. Scroggie, A. Yao, S. Barbay, T. Elsass, D. Gomila,

and L. Columbo, in Nonlinear Photonics (Optical Society of

America, Washington, D.C., 2007), p. JWA23.

[14] D. Lo Jacono, A. Bergeon, and E. Knobloch, J. Fluid Mech.

687, 595 (2011).

[15] A. Alonso, O. Batiste, E. Knobloch, and I. Mercader, in Local-

ized States in Physics: Solitons and Patterns (Springer, Berlin,

2011), pp. 109–125.

[16] I. Mercader, O. Batiste, A. Alonso, and E. Knobloch, J. Fluid

Mech. 667, 586 (2011).

[17] T. Watanabe, M. Iima, and Y. Nishiura, J. Fluid Mech. 712, 219

(2012).

[18] Y. Edri, D. Bozovic, E. Meron, and A. Yochelis, Phys. Rev. E

98, 020202(R) (2018).

[19] E. J. Doedel, A. R. Champneys, T. Fairgrieve, Y. Kuznetsov,

B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, and C.

Zhang, AUTO07p: Continuation and bifurcation software for

ordinary differential equations, Concordia University, http://

indy.cs.concordia.ca/auto (2012).

[20] D. Bindel, M. Friedman, W. Govaerts, J. Hughes, and Y.

Kuznetsov, J. Comput. Appl. Math. 261, 232 (2014).

[21] H. Uecker, Numerical Continuation and Bifurcation in Nonlin-

ear PDEs (SIAM, Philadelphia, 2021).

[22] L. Yang, A. M. Zhabotinsky, and I. R. Epstein, Phys. Chem.

Chem. Phys. 8, 4647 (2006).

[23] A. A. Cherkashin, V. K. Vanag, and I. R. Epstein, J. Chem. Phys.

128, 204508 (2008).

[24] L. Ophaus, E. Knobloch, S. V. Gurevich, and U. Thiele, Phys.

Rev. E 103, 032601 (2021).

[25] C. Schelte, D. Hessel, J. Javaloyes, and S. V. Gurevich, Phys.

Rev. Appl. 13, 054050 (2020).

[26] P. Coullet, C. Riera, and C. Tresser, Phys. Rev. Lett. 84, 3069

(2000).

[27] J. Borresen and S. Lynch, Nonlinear Anal.: Theory, Methods

Appl. 71, e2372 (2009).

[28] M. Hiratsuka, K. Ito, T. Aoki, and T. Higuchi, Int. J.

Nanotechnol. Mol. Comput. 1, 17 (2009).

[29] A. Adamatzky, J. Comput. Theor. Nanosci. 8, 295 (2011).

[30] J. Gorecki, K. Gizynski, J. Guzowski, J. Gorecka, P. Garstecki,

G. Gruenert, and P. Dittrich, Philos. Trans. R. Soc. A 373,

20140219 (2015).

[31] C. P. Schenk, M. Or-Guil, M. Bode, and H.-G. Purwins, Phys.

Rev. Lett. 78, 3781 (1997).

[32] H.-G. Purwins, H. Bödeker, and S. Amiranashvili, Adv. Phys.

59, 485 (2010).

[33] A. Doelman, P. van Heijster, and T. J. Kaper, J. Dyn. Differ.

Equations 21, 73 (2009).

[34] P. van Heijster and B. Sandstede, J. Nonlinear Sci. 21, 705

(2011).

[35] P. van Heijster and B. Sandstede, Physica D 275, 19 (2014).

[36] T. Teramoto and P. van Heijster, SIAM J. Appl. Dyn. Syst. 20,

371 (2021).

[37] Y. Nishiura and H. Suzuki, arXiv:2101.03311; Y. Nishiura and

T. Watanabe, arXiv:2111.03836.

[38] M. Or-Guil, M. Bode, C. P. Schenk, and H.-G. Purwins, Phys.

Rev. E 57, 6432 (1998).

[39] M. Bode, A. W. Liehr, C. P. Schenk, and H.-G. Purwins, Physica

D 161, 45 (2002).

[40] S. V. Gurevich, S. Amiranashvili, and H.-G. Purwins, Phys.

Rev. E 74, 066201 (2006).

[41] V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 92, 128301

(2004).

[42] Y. Nishiura, T. Teramoto, and K.-I. Ueda, Chaos 15, 047509

(2005).

[43] A. Yochelis, E. Knobloch, Y. Xie, Z. Qu, and A. Garfinkel,

Europhys. Lett. 83, 64005 (2008).

[44] M. Stich, A. S. Mikhailov, and Y. Kuramoto, Phys. Rev. E 79,

026110 (2009).

[45] A. Marasco, A. Iuorio, F. Cartení, G. Bonanomi, D. M.

Tartakovsky, S. Mazzoleni, and F. Giannino, Bull. Math. Biol.

76, 2866 (2014).

[46] A. Yochelis, E. Knobloch, and M. H. Köpf, Phys. Rev. E 91,

032924 (2015).

[47] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.104.L062201 for additional numerical re-

sults and discussion.

[48] E. Knobloch, Phys. Rev. A 34, 1538 (1986).

[49] Additionally, k1 is solved for in an arclength continuation

setting, where the independent parameter is the arclength

along a branch; this setting allows one to follow branches

that oscillate back and forth in k1, and in particular to pass

folds.

[50] For (relative) time-periodic orbits (PO), the role of eigenvalues

(for stability, bifurcation detection, and branch switching) is

played by Floquet multipliers. These multipliers [in particular

for partial differential equations (PDE) discretizations] may

differ by many orders of magnitude and their (stable) numerical

computation therefore requires advanced methods such as peri-

odic Schur decomposition and hence is numerically expensive

(see Sec. 3.5 of Ref. [21]). Moreover, for some points on our

PO branches the multiplier computations do not converge. We

therefore refrain from computing bifurcations from POs, and

instead check their stability a posteriori via DNS. See Ref. [51]

for a review of the numerical methods related to POs in the

presence of symmetry.

[51] N. B. Budanur, D. Borrero-Echeverry, and P. Cvitanović, Chaos
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