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We propose an alternative to the standard mechanisms for the formation of rogue waves in a nonconservative,

nonlinear lattice dynamical system. We consider an ordinary differential equation (ODE) system that features

regular periodic bursting arising from forced symmetry breaking. We then connect such potentially exploding

units via a diffusive lattice coupling and investigate the resulting spatiotemporal dynamics for different types

of initial conditions (localized or extended). We find that in both cases, particular oscillators undergo extremely

fast and large amplitude excursions, resembling a rogue wave burst. Furthermore, the probability distribution

of different amplitudes exhibits bimodality, with peaks at both vanishing and very large amplitude. While

this phenomenology arises over a range of coupling strengths, for large values thereof the system eventually

synchronizes and the above phenomenology is suppressed. We use both distributed (such as a synchronization

order parameter) and individual oscillator diagnostics to monitor the dynamics and identify potential precursors

to large amplitude excursions. We also examine similar behavior with amplitude-dependent diffusive coupling.

DOI: 10.1103/PhysRevE.106.014212

I. INTRODUCTION

The formation of rogue waves or spatiotemporal bursts has

been investigated by a number of authors [1,2] and different

mechanisms leading to such waves have been identified. Rel-

evant approaches include completely linear mechanisms (e.g.,

a superposition of multiple linear waves) or fully nonlinear

mechanisms (e.g., modulational instability of a uniform wave

train) [3,4]. Some of the original observations stem from the

study of North Sea waves [5–8], but more recent work has

extended similar considerations not only to other areas of

the oceans but also to numerous other scientific areas where

controlled laboratory experiments are available. These include

studies of sloshing of water waves in large tanks [9–12]

and the realm of nonlinear optics [13–16], with some work

spanning both areas (see, e.g., [12]). Attempts to establish

rogue wave emergence as a property of a broad class of

physics-based models have been reported in ultracold atomic

Bose-Einstein condensates [17], in space plasmas [18–21] and

elsewhere [22].

Arguably, a large portion of the relevant efforts to generate

rogue waves has revolved around models of dissipationless

dispersive wave propagation, with the nonlinear Schrödinger

(NLS) equation [23,24] and its variants providing the central

model in this direction. Given that the NLS equation describes

the slow evolution of a packet of small amplitude dispersive

waves, nonlinear effects are key to the formation of large

amplitude rogue burst events. In this context, specific nonlin-

ear solutions, such as the Peregrine soliton [25], the periodic

in time Kuznetsov-Ma soliton [26,27], and the periodic in

space Akhmediev breather [28], have been central to numer-

ous investigations. However, as is well known, such exactly

integrable settings and the analytical solutions available via

the inverse scattering transform (and related approaches) are

rather rare, especially so in higher-dimensional settings.

Many of the above ideas on identifying rogue events in

integrable systems have also been extended to lattice models

such as the integrable Ablowitz-Ladik system [29], the nonin-

tegrable discrete NLS equation [30], and the Salerno system

which homotopically interpolates between the two. Rogue

events in such lattice models are a consequence of nonlinear

effects arising from modulational instability. However, con-

servation laws (if present) prohibit arbitrarily large responses

and limit the norm at any lattice node to the initial norm. Such

constraints do not play a role in the dynamics of dissipative

lattice systems such as the model considered in this work,

allowing rogue wave behavior arising from fundamentally dis-

tinct physical mechanisms. It is thus of considerable interest

to explore such alternative mechanisms given their potentially

broader applicability and straightforward extension to higher

dimensions. Indeed, the recent work of [31] captures the rele-

vant motivation well in the statement: “from the general point

of view, the identification of the necessary ingredients for the

emergence of rogue waves and extreme events in dissipative

systems remains a challenging open problem.”

Here we focus on the fundamentally spatiotemporal nature

of the localization of rogue waves and their defining property

of “appearing out of nowhere and disappearing without a

trace” [32] but employ an approach that does not rely on

the Hamiltonian nature of the problem or on its integrability
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properties. In dissipative systems sustained rogue wave for-

mation requires the presence of forcing. To capture the

essence of rogue waves this forcing must be uniform in space.

In this work we leverage the properties of a model prob-

lem studying the interaction properties of standing waves in

domains of moderate aspect ratio, following [33,34]. This dis-

sipative system satisfies the above requirement where waves

arise via a Hopf bifurcation from a trivial state. With Neu-

mann boundary conditions these waves may be of even or

odd parity under spatial reflection, and in moderately large

domains such waves are nearly degenerate with an approxi-

mate interchange symmetry between them, resulting in strong

interaction. The state of the system is described by a pair

of coupled equations for the two wave amplitudes given by

the normal form for a Hopf bifurcation with broken D4 sym-

metry. This symmetry is a consequence of spatial reflection

together with the approximate interchange symmetry between

the two modes; the symmetry is broken because the inter-

change symmetry is not exact, and sample integration of the

resulting equations reveals intermittent bursts with amplitudes

as large as 109 [35]. We refer to these solutions as bursts to

emphasize they are localized in time but not in space. The

resulting system explains successfully the presence of bursts

in experiments including those on binary fluid convection in

domains of moderate aspect ratio [33,36].

Within the above formulation the spatial degrees of free-

dom are inevitably slaved to the temporal dynamics of the

mode amplitudes. In order to activate spatial degrees of free-

dom over yet larger length scales, we consider here a ring

of identical, diffusively coupled oscillators of the above type,

each of which can generate a large spatially coherent burst

(or a sequence of such bursts), depending on parameters. We

use the ring geometry in order to generate a spatially periodic

system, i.e., to mimic a very large aspect ratio system where

local regions remain spatially coherent. The resulting model

has the advantage that the dynamics of each oscillator is well

understood. In particular, it is understood that the broken D4

symmetry permits the trajectory of each individual oscillator

to escape to infinity in finite time and to return from infinity,

also in finite time, even when the even and odd standing waves

both bifurcate supercritically. On a ring of such oscillators

the resulting excitation may be localized at one site, or a

small group of adjacent sites, resulting in the generation of a

temporally and spatially localized extreme event, i.e., a rogue

wave.

We demonstrate here, via direct numerical simulations, that

for weak coupling the above system exhibits rogue events

apparently occurring at “random” times and at “random” lo-

cations. Importantly, this is the case even when the parameters

characterizing the individual oscillators are chosen to generate

periodic oscillations only. We offer different diagnostics rang-

ing from the event amplitude distribution function to studying

the precursors to the local emergence of large amplitude

events, in an effort to obtain diverse perspectives towards

a qualitative understanding of the relevant phenomenology.

This is followed by an investigation of progressively larger

coupling, eventually leading to the synchronization of the

entire lattice, as well as couplings that vary over space

or time, depending on the site amplitude. For this purpose

we leverage various synchronization diagnostics such as the

Kuramoto order parameter [37]. Our hope is that this initial

study will provide motivation for further exploration of alter-

native mechanisms producing extreme events, and potentially

enable their identification in other nonlinear lattice systems in

one or more dimensions.

The presentation of our results is structured as follows. In

Sec. II, we describe the basic formulation of the model, its

parameters, and initial conditions at the ordinary differential

equation (ODE) level, first for a single node and subsequently

for the diffusively coupled network. In the latter setting, we

present the main phenomenology of the system, the diagnos-

tic tools of interest, and the resulting findings for different

values of the coupling parameter, as well as for amplitude-

dependent coupling. Finally, in Sec. III, we summarize our

findings and point to some directions for future study. The

Appendix presents some further details on the dynamics of

the ODEs on a single node of the lattice.

II. MODEL

A. An oscillator with approximate D4 symmetry

The dynamics near onset in a system exhibiting a Hopf

bifurcation with broken D4 symmetry, i.e., on a domain of

moderate length, is described by the truncated equations

ż± = [λ ± △λ + i(ω ± △ω)]z± + A(|z+|2 + |z−|2)z±

+ B|z±|2z± + Cz̄±z2
∓. (1)

Here z± are the complex amplitudes of the even and odd

standing wave modes, the parameters △λ and △ω measure

the differences in their linear growth rates and onset frequen-

cies, respectively, while A, B, and C are complex coefficients.

When △λ = △ω = 0 the two modes follow the same evolu-

tion equations and the interchange symmetry between them is

exact. Thus, the parameters △λ and △ω represent terms that

reflect the fact that the two competing standing modes are not

in general identical. Equations (1) assume that in a moderately

large domain this effect can be captured at linear order, i.e.,

via the inclusion of small differences in the growth rates and

frequencies of the two competing modes [33].

New variables A, θ , and φ defined in [33,34] allow us to

completely characterize the solutions of the system with exact

D4 symmetry (△λ = △ω = 0) in terms of three qualitatively

different periodic solutions, hereafter u, v, and w. Writing

z± = A
1
2 sin

(

θ +
π

4
±

π

4

)

exp

(

i
(±φ + ψ )

2

)

, (2)

the u solutions correspond to cos θ = 0 and cos 2φ = 1, the

v solutions correspond to cos θ = 0 and cos 2φ = −1, and

the w solutions correspond to sin θ = 0. A fourth solution, a

quasiperiodic state referred to as qp, is present in a restricted

parameter range. When △λ = △ω = 0 these states bifurcate

simultaneously from the trivial state at λ = 0, and the u, v,

and w states then represent invariant subspaces of the system.

This is no longer the case when the interchange symmetry is

broken, i.e., △λ �= 0, △ω �= 0. In this case the w states split

into two (the even and odd standing oscillations) and the other

states are generated only in secondary bifurcations [34]. We

mention that in contrast to the w states, the states u and v

represent traveling states [33].
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When △λ �= 0, △ω �= 0 there may be parameter regimes

in Eqs. (1) with no stable small amplitude oscillations near

onset, implying that nontrivial dynamics must take place. In

particular, it was found that the solutions in this regime can

be attracted to an invariant subspace (the u/v subspace) that

extends to infinite amplitude. Solutions following this sub-

space reach very high amplitudes, and sample integration of

the equations revealed intermittent bursts with amplitudes as

large as 109 [35]. A detailed study using a rescaled time shows

that solutions lying in this invariant subspace are attracted

to a saddle point at infinity that is, in turn, connected to a

second saddle point at infinity whose stable manifold returns

the trajectory back to small amplitude. In terms of the original

time the excursion to infinity and back takes a finite time

[33,34]. This behavior can be established using the variable

ρ = A−1: as A → ∞, i.e., as ρ → 0, the terms with △λ and

△ω drop out, and the D4 symmetry becomes exact, allowing

a complete description of the dynamics near ρ = 0.

In the following we consider a parameter combination for

which each element in a diffusively coupled ring of such

elements is described by Eqs. (1) but only displays regular

finite amplitude periodic spiking as in Fig. 3(a) of [33]. As a

result, the rogue waves we observe are a consequence of the

spatial coupling of the elements and not of their individual

behavior at the same parameter values. The corresponding

parameter values are

λ = 0.1, △λ = 0.03, ω = 1, △ω = 0.02,

A = 1 − 1.5i, B = −2.8 + 5i, C = 1 + i, (3)

and we focus on the generation of extreme events in the

resulting lattice system.

B. Diffusively coupled ring of N nodes

Our system consists of N identical oscillators on a ring

where each of the N nodes is modeled by the dynamics

described in Eqs. (1). The oscillators are coupled via nearest-

neighbor coupling with diffusion coefficient K ,

ż±,i = [λ ± △λ + i(ω + △ω)]z±,i + A(|z+,i|
2 + |z−,i|

2)z±,i

+ B|z±,i|
2z±,i + Cz̄±,iz

2
∓,i + K	2z±,i. (4)

Here, 	2 stands for the discrete Laplacian and i = 1, . . . , N .

The model allows us to explore the interplay between

regular periodic spiking (at each node, in the absence of

any diffusion) and the effects of amplitude redistribution

via diffusive coupling. In the limit of K = 0, i.e., with

no coupling, we expect to recover regular periodic spik-

ing at each node, albeit with a phase that varies randomly

from node to node. In the opposite, diffusion-dominated

limit with K ≫ 1, we expect that all nodes display syn-

chronized regular periodic spiking. Hence, as we increase

K , we expect to see progressive synchronization as re-

vealed, for example, by the Kuramoto order parameter

(see, e.g., [37]). The transition between these two regimes

and the associated dynamical phenomenologies that it en-

ables are the central topic of interest in the present work.

Our principal aim is to determine whether in some in-

termediate regime the spiking of a single node, alongside

the nearest-neighbor coupling, is able to give rise to a

FIG. 1. Three types of initial conditions showing the distribu-

tion of initial amplitudes Ai(t = 0) in a system of N = 37 coupled

oscillators. The red line with circle markers shows a single peak

initial condition, the blue line with crosses shows a sine wave initial

condition, and the black line with square markers shows a uniformly

distributed random initial condition. In all three cases the Riemann

sums pertaining to the three curves are equal.

rogue event, offering in this way a viable alternative to

the more customary Hamiltonian mechanisms discussed in

the Introduction.

We choose the number of oscillators in the ring, N , in

the range where we can define a distributed initial condition

(such as a sine wave function) with sufficient resolution over

a wavelength. All results in the rest of this paper are for

a system of N = 37 oscillators on a ring. Time simulations

evolve the system over the time interval 0 < t � 5000 and

were performed using MATLAB’s ode23s subroutine with both

relative and absolute tolerance of 1 × 10−5.

In order to explore the consequence of both localized and

extended initial conditions as well as gradients in the initial

condition, we choose three types of initial conditions for z±:

a single spike initial condition where z±,i is only nonzero at

one chosen oscillator, i = 12, a smoothly distributed initial

condition (more specifically a sine wave such that z± reaches

maximum at i = 10, 29 and minimum at i = 0, 19), and a

uniformly distributed random initial condition in (0,1). The

amplitude Ai at the ith node at any instant is related to z±,i by

Ai = |z+,i|
2 + |z−,i|

2 , (5)

and our initial conditions are such that the sum of Ai at

t = 0 over all nodes in the ring is the same. Figure 1 shows

a comparison of the three types of initial conditions when
∑

i Ai(0) = 2.55 × 10−3 in each case.

Figure 2 shows a space-time waterfall plot of the logarithm

of the amplitude at each node, log10 Ai, for the case with cou-

pling constant K = 2.1544 × 10−6 and starting from the sine

initial condition. During this evolution, the range of variation

in Ai spans eight orders of magnitude, reaching a maximum

amplitude excursion of A19 = 2.28 × 108 at t = 2827.5. The

right panel zooms in close to the maximum rogue event to

show the sharp and localized excursion in amplitude in more

detail, thereby demonstrating that the lattice system is indeed

capable of supporting rogue events. In particular we see that,

despite the initial sinusoidal variation of amplitude, this si-

nusoidal pattern is gradually disrupted, and we observe the
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FIG. 2. Left: Space-time plot showing the evolution of log10(Ai ) starting from a sine initial condition in a system of N = 37 coupled

oscillators, 1 � i � 37, with K = 2.1544 × 10−6. The diagonal arrows locate the five largest amplitude excursions in this space-time evolution.

Right: Zoom of the space-time plot to provide a close-up view of the largest amplitude event in the left panel.

emergence of multiple isolated large amplitude events, shown

as black or dark gray events in Fig. 2. The top five amplitude

events are highlighted with diagonal arrows to reinforce the

unpredictability of their occurrence.

The largest rogue event is shown in finer detail in the

zoom in the right panel of Fig. 2. The panels show that at

this value of K even immediate neighbors fail to synchronize

with the rogue event nearby, as evidenced by the sharp spatial

localization of the amplitude. Figure 3 (top panel) confirms

this impression in showing the time variation of the amplitude

of the oscillator undergoing the maximal amplitude excursion,

here i = 19 (in black), and two of its immediate neighbors,

i = 18 (in red) and i = 20 (in blue). We observe that even im-

mediate neighbors do not reflect the extremely large amplitude

excursion occurring at oscillator i = 19.

In contrast, at the larger value K = 1 × 10−4 the neigh-

bors do partially synchronize with the large amplitude event

(Fig. 4, left panel) and all evolve to absolute values that are

comparable to the maximum amplitude. This is also reflected

in Fig. 3 (bottom panel), where the maximum amplitude oc-

curs at i = 30 (again in black) but this time this event is also

reflected in the amplitude evolution of the two immediate

neighbors, i = 29 (red) and i = 31 (blue). The right panel

of Fig. 4 shows that at the yet higher value K = 2.2 × 10−3,

all the oscillators synchronize, leading to spatial coherence

among all of them.

The large amplitude excursions observed in the left panel

of Fig. 2 develop and occur over a very short interval of

time and do so irregularly in both space and time, hence

their resemblance to a rogue event. In order to understand

how frequent such excursions are, we compute the probability

density function pAthresh
, which is calculated as the ratio of

the number of instances when the amplitude falls between

two thresholds, i.e., Athresh−1 < A < Athresh, to the total num-

ber of observations over the entire space-time run shown in

Fig. 2, left panel. In Fig. 5 we plot the logarithm of the

probability density function pAthresh
using 80 bins spanning

the range of amplitudes over the entire space-time run. From

the figure we see that the occurrence of very high amplitude

events is substantially higher than what would be expected

if the distribution of events followed an exponential distribu-

tion. The emergent bimodality of the amplitude probability

distribution with a second peak corresponding to extremely

FIG. 3. Top: Evolution of large amplitude event at i = 19 (shown

as black line) as seen in the right panel of Fig. 2 along with the

amplitude evolution of its immediate neighbors at i = 18 (red line)

and i = 20 (blue line). Bottom: Evolution of large amplitude event at

i = 30 (shown as black line) as seen in the left panel of Fig. 4 along

with the amplitude evolution of its immediate neighbors at i = 29

(red line) and i = 31 (blue line).
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FIG. 4. Space-time plot showing the evolution of log10(Ai ) starting from a sine initial condition in a system of N = 37 coupled oscillators

with K = 1 × 10−4 (left panel) with maximum amplitude occurring at i = 30, and K = 2.2 × 10−3 (right panel) with maximum amplitude

occurring at i = 10. The left panel shows that the large amplitude feature is not localized at a single oscillator and that neighboring oscillators

respond coherently. In the right panel, all oscillators are synchronized and so oscillate in spatial coherence.

large amplitude events is representative of other, albeit similar,

values of the coupling coefficient K as well. It also persists

in longer runs with the maximum peak amplitude reached

gradually increasing as the run length increases.

We conclude that a diffusively coupled network formed of

elements evolving according to Eqs. (1) is capable of gener-

ating unpredictable, large amplitude excursions over a short

time scale, whose occurrence is more probable than predicted

via an exponential distribution of amplitudes. This system

is therefore able to produce rogue events. We next look at

the effect of varying the coupling coefficient K and describe

the resulting changes to the space-time evolution in each

case.

0 0.5 1 1.5 2

10
8

-16

-12

-8

-4

0

FIG. 5. Logarithm of the probability density function pAthresh
for

different amplitude thresholds Athresh from the time evolution shown

in Fig. 2. We observe an increase in the probability of extremely large

amplitudes, indicating that the occurrence of extreme events is more

probable than what is expected from an exponential distribution of

amplitudes.

C. Effect of varying K

Having observed the model phenomenology for the spe-

cial case of weak diffusive coupling (K = 2.1544 × 10−6),

we now turn to simulations over a range of diffusion coeffi-

cients, 10−10 � K � 1, to appreciate the growing role of the

coupling. The evolution resulting from the single peak initial

condition is shown in Fig. 6 as red lines with circles; that from

the sine wave initial condition is shown as blue lines with

crosses; and, lastly, the one from the random initial condition

is shown in black with square markers.

The top panel in the figure shows the maximum amplitude

rogue wave observed over the evolution time, denoted Amax,

as a function of K , on a logarithmic scale. This maximum

occurs at time t = tmax at the i = Nmax node shown in the

middle and bottom panels. We see that the maximal excitation

remains large until K ≈ 1 × 10−5 after which the maximum

amplitude abruptly decreases. Beyond this threshold, the dif-

fusion coefficient is large enough to synchronize the nodes.

For larger values of K , Amax increases again, albeit very

slowly. For large enough values of K , we recover the regular

periodic spiking behavior of a single oscillator for both the

sine wave (blue line with crosses) and the random initial

condition (black line with square markers). For the single peak

initial condition (red line with circles) and large K values,

the diffusive coupling overcomes driving at each oscillator

and the amplitude decays during subsequent evolution from

the initial amplitude Ai(t = 0) at every node i. For these

evolutions, Amax corresponds to the initial amplitude, which

is O(10−4).

The middle panel shows the time t = tmax taken to reach

the maximal excitation. For very low values of K we observe

that large amplitude excitations occur later in the case of a

sine wave initial condition (compared to the other two initial

conditions). At large values of K (in the synchronized range),

the largest amplitude excursions occur during transient evo-

lution before all the oscillators reproduce the regular periodic

oscillations expected from a single uncoupled oscillator. In the

case of a single peak initial condition (red line with circles),

tmax = 0 once we reach the range of K values where the initial
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FIG. 6. Red lines with circles show the results for the single peak

initial condition, blue lines with crosses show the results for the sine

wave initial condition, while black lines with square markers show

results for the random initial condition. The top panel shows the

variation in the maximum amplitude Amax (on logarithmic scale) as

a function of the diffusion coefficient K . The middle panel shows the

time tmax taken to reach the maximal excitation, also on logarithmic

scale, while the bottom panel shows the variation of the location

i = Nmax of that maximal event among the individual oscillators.

amplitude decays with subsequent evolution, and this scenario

is therefore not represented in the log-log plot of tmax vs K .

The bottom panel shows the location i = Nmax of the maxi-

mal excitation as a function of K . We observe that, irrespective

of the initial condition, the location of the maximum ampli-

tude is unpredictable; when K is large the synchronized nature

of the dynamics also leads to large scatter in Nmax but this

scatter is no longer meaningful.

In order to measure the effect of varying K on synchro-

nization between the nodes in this network, we compute the

Kuramoto order parameter (discussed in detail in, e.g., [37])

for the space-time evolution at each value of the coupling

parameter K . We measure the instantaneous degree of phase

coherence using the quantity r(t ) defined by

r(t ) =

∣

∣

∣

∣

∣

1

N

N
∑

j=1

eiθ j

∣

∣

∣

∣

∣

, (6)

where θ j = tan−1(Im(z+)/Re(z+)), and take the asymptotic

value of r, ra ≡ limt→∞ r(t ), as representing the level of syn-

chronization for the chosen level of diffusive coupling [r(t )

calculated with z− shows similar behavior at all K values].

Figure 7 shows the variation of ra as a function of K . As dis-

FIG. 7. Asymptotic value of the Kuramoto order parameter, ra =

limt→∞ r(t ), as a function of the coupling coefficient K for different

initial conditions: the case of a single peak initial condition (red lines

with circles), a sine wave initial condition (blue lines with crosses),

and a uniformly distributed random initial condition (black line with

square markers).

cussed in the Introduction, at very low values of the coupling

the nodes are uncoupled, leading us to expect low values of

ra. In fact, we observe three distinct values of ra, depending

on initial condition, for the following reasons. In the case of a

single peak initial condition, most of the nodes in the network

are initially “synchronized” at zero (leading to an accordingly

larger initial value of ra), while in a random initial condition

there can be some nodes that start with similar values; in

the sine wave initial condition there is a smooth variation of

amplitude instead of multiple repeated values.

In contrast, at large values of K , all nodes in the network

may be fully synchronized, leading us to expect ra ≈ 1. This

is indeed the behavior that we observe for the single-peak

and random initial conditions at large values of K . However,

for the sine initial condition with the smoothest variation of

amplitude (shown in blue line with plus markers), we observe

that at large values of K , ra falls sharply to very low values.

We explain this as follows. Individual oscillators want to un-

dergo regular periodic oscillations under the chosen parameter

conditions. However, at large K , diffusion is strong enough to

overcome such oscillations and causes the amplitude at every

location in the ring to decay with time. In the asymptotic

limit we then obtain small values for the Kuramoto order pa-

rameter ra, indicative of effectively random phases computed

from vanishingly small amplitudes. The final slight increase in

ra ≈ 0.15 is a consequence of further increase in the coupling

strength K .

Of course, the observed behavior for increasing values of

the coupling coefficient K is also related to the initial ampli-

tude distribution. In order to explore this dependence further,

we show in Fig. 8 a similar plot of the asymptotic Kuramoto

order parameter ra as a function of K for the single peak and

the sine wave initial condition starting with a larger initial

amplitude distribution. The Riemann sums of the Ai(t = 0)

for both initial conditions are again identical and the sine wave

has a maximum value of 1 × 10−2. We find that in both cases

the evolution is able to reach fully synchronized behavior,

ra ≈ 1, at large values of K . In this case, the sine wave initial
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FIG. 8. Asymptotic value of the Kuramoto order parameter, ra =

limt→∞ r(t ), as a function of the coupling coefficient K for the

single peak initial condition (red lines with dots) and the sine wave

initial condition (blue lines with crosses) starting with a larger initial

amplitude distribution.

condition is able to overcome diffusion at large K values to

retain the regular periodic oscillations at every oscillator in

the ring, resulting in large values of ra.

D. Precursors for a high amplitude excursion

As observed from the probability density function results

(Figs. 5 and 6) as well as the space-time plots (Fig. 2),

the location Nmax and the peak amplitude Amax cannot be

directly predicted during the evolution of the coupled oscil-

lator network. However, there is great interest in being able

to identify precursors that can indicate an impending large

amplitude excursion in the form of a spatiotemporal rogue

event. Previous work [38] combined statistical analysis along

with a nonlinear stability criterion for a local wave train to

quantify the probability of the occurrence of a large ampli-

tude event. These authors also identified a simpler precursor

which only tracks the energy of the wave field within an

identified critical length scale. Both these measures rely on

the assumption that the basin boundary for a rogue event is

low dimensional. A separate approach, that considers such

waves as hydrodynamic instantons that can be analyzed within

the framework of large deviation theory and computed via

suitably tailored numerical methods, is explored in [39]. Since

the dynamics of the oscillator ring is by construction related

to the dynamics of a single oscillator, we opt here to leverage

the known low-dimensional dynamics of a single oscillator

to design a qualitative diagnostic that can identify impending

large and rapid growth of amplitude at a given location in the

network.

In Fig. 9 we review the behavior during rogue events by

plotting the amplitude A(t ) of the Nmax = 19 oscillator in

a semilogarithmic plot for the evolution shown in the right

panel of Fig. 2. Each large amplitude excursion is noted in

different colors: blue (between 1 and 2), black (between 2

and 3), and red (between 3 and 4). Superimposed on this

evolution and shown as brown circles are instances when our

precursor P (see the relevant definition below) indicates that

FIG. 9. Large amplitude events at i = 19 as seen in the right

panel of Fig. 2 in the time domain shown superposed on locations

where the precursor P identifies rapid growth (brown circles) due to

the alignment of the trajectory with the stable direction of the saddle

solution u∞ (top panel) and of the v∞ solution (bottom panel) of a

single uncoupled oscillator.

the evolution is heading toward a large amplitude excursion.

We observe that the qualitative precursor is able to identify

each of the imminent large amplitude excursions well before

the amplitudes have reached large values and independent of

the amplitude at which the growth commences. In the rest of

this section we detail how we construct this precursor.

The change of variables in Eq. (2) allows us to identify the

large amplitude events as A = ρ−1, where ρ ≪ 1. The limit

of ρ = 0 corresponds to the invariant subspace 
∞, as this is

the limit for which the amplitude A → ∞. In the following

we denote the u and v solutions in 
∞ with the subscript ∞.

Figure 10 shows the trajectory (after an initial transient)

of both the single uncoupled oscillator (in green, top panel)

and the i = 19 oscillator on a ring with K = 2.1544 × 10−6

(in blue, black, and red colors, bottom panel) projected onto

the variables ρ and φ. In this figure, red markers (pluses,

circles, and triangles) in the panels indicate the locations of the

invariant solutions for an uncoupled oscillator in the (ρ, θ, φ)

variables. Circles indicate solutions of the so-called u∞ type
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FIG. 10. Top: Phase portrait in the (ρ, φ) plane during regular

periodic spiking at a single node in the network with no coupling

(green line). Bottom: Same view in the (ρ, φ) plane with superposed

evolution close to the large amplitude event at i = 19 (black line) in

the coupled network with K = 2.1544 × 10−6, for comparison with

Fig. 9.

[33,34], pluses indicate solutions of v∞ type, and triangles

indicate finite amplitude solutions that are mixed u/v states.

These three solutions represent fixed points of the (ρ, θ, φ)

system in Eqs. (A1) of the Appendix and represent traveling

states of the underlying individual oscillator dynamics de-

scribed by Eqs. (1) with the chosen level of asymmetry at the

parameters given in Eq. (3).

For this oscillator, we calculate the eigenvalues of each

solution in the 
∞ subspace [34] and find that the point u∞

at (ρ, θ, φ) = (0,π/2, 0) is a saddle (red circle in Fig. 10,

top panel), while v∞ at (ρ, θ, φ) = (0,π/2, π/2) is an un-

stable spiral (red plus in Fig. 10, top panel). Integration of

Eqs. (A1) reveals a stable periodic spiking orbit (green line

in the top panel, black arrows indicating direction of forward

time) that periodically approaches both u∞ and v∞, i.e., small

values of ρ. Both of these excursions correspond to ampli-

tude spikes, with no discernible difference between them. We

expect the dynamics of a diffusively coupled ring of such

nodes to follow this orbit at small values of diffusive coupling

K . Indeed, when all the oscillators in the ring are initialized

with this same periodic state and the same temporal phase,

the coupled evolution on the ring retains this synchronization.

This means that the rogue event-bearing state observed for

the oscillator ring coexists with the synchronized periodic

oscillation reflecting the dynamics of a single uncoupled os-

cillator.

In Fig. 10, bottom panel, we superimpose the evolution of

the i = 19 node in the diffusively coupled ring shown previ-

ously in Fig. 9 on the dynamics of the uncoupled system (top

panel, green trajectory), both projected on the (ρ, φ) plane.

The blue, black, and red parts of the trajectory match those in

Fig. 9. Between points 1 and 2 (segment shown in blue) the

solution approaches v∞ (red plus). This approach is respon-

sible for the first spike in Fig. 9. Beyond point 2 (segment

shown in black) the trajectory is able to return to extremely

small values of ρ, ρ = 4.39 × 10−9, but this time due to an

approach to u∞ (red circle). This close approach is responsible

for the very large amplitude spike in Fig. 9. Beyond point 3

(segment shown in red), the trajectory returns to u∞ but does

not reach such small values of ρ. This excursion is responsible

for the third spike in Fig. 9. Thus the evolution of the i = 19

oscillator recapitulates the dynamics of a single oscillator, but

does so irregularly and with occasional excursions close to the

ρ = 0 fixed points, resulting in a large amplitude spike, i.e., a

rogue wave. This comparison also suggests that the coupling

to nearest neighbors may occasionally lead to smaller values

of ρ (i.e., bigger spikes) as in the segment from 2 to 3, but also

to larger values of ρ, as in the segment from 3 to 4.

Given that the uncoupled dynamics has a pair of saddles in

the 
∞ subspace, we can expect a large amplitude excursion if

the evolution is aligned with the stable direction of the saddle

u∞, say, which we will call V̄1. Further, we expect the am-

plitude to continue to grow until the projection of the current

state on the fastest unstable eigendirection of the saddle u∞,

which we will call V̄2, starts to increase. We use the above

notions to design a qualitative precursor for a large amplitude

excursion as follows:

P =

⎧

⎨

⎩

1 if P (state, V̄1) > 0 and P (state, V̄2)

is decreasing in time

0 otherwise.
(7)

Here P is the projection of the current state along the respec-

tive eigendirection V̄1 or V̄2. With the above definition, we

identify instances in time where the local dynamics is aligned

close to the attracting direction of the saddle u∞ and is not

evolving along the unstable direction of u∞. We determine the

temporal variation of the projection of the current state along

V̄2 via a simple first order approximation of the derivative.

When both these conditions are satisfied and P = 1, we expect

the dynamics to continue to evolve along the stable direction

V̄1 of the saddle u∞, implying that ρ → 0 and the amplitude

therefore grows. This condition is what we identify as a qual-

itative precursor of an impending large amplitude excursion.

When these conditions are not satisfied, we have P = 0 and

we do not expect to see a large amplitude event.

As already mentioned, overlaid on the amplitude evolution

in Fig. 9, top panel, and shown in brown circles are time

instances where the above criterion predicts a precursor event

(P = 1), indicating that a large amplitude excursion is immi-

nent. We see that this diagnostic is able to identify the growth

intervals of all three amplitude excursions regardless of which

fixed point in 
∞ is approached. A similar definition of a pre-

cursor can also be created with respect to the eigendirections

of the v∞ solution (Fig. 9, bottom panel). Thus, estimating to
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what extent the current state of a node in a coupled ring of

oscillators maps on the dynamics of a single uncoupled oscil-

lator allows us to identify impending large amplitude events

in this system. We believe that this type of diagnostic could

be relevant to other systems, provided that a mathematical

characterization of the large amplitude solutions of a single

uncoupled node is available.

E. Amplitude-dependent diffusive coupling

Having examined the case of uniform coupling across the

nodes of our ring, we now wish to explore the potential impact

of heterogeneity in the lattice coupling (cf. [40–42]). Specif-

ically, we suppose that the spatial coupling depends on the

current value of z± via the amplitude A according to

Ki = K0Ai(t ) = K0(|zi+|2 + |zi−|2), (8)

with K0 being a tunable parameter.

Here we observe some qualitative differences in the behav-

ior of the system for different initial conditions. As shown in

Fig. 11, for the single peak initial condition (red lines with

circle markers) the maximal events observed are much larger,

occur much earlier in the evolution (compared to other initial

conditions), and are all concentrated at the location of the

initial peak. This is expected, as the vast majority of the lattice

nodes is initialized with near-vanishing amplitude thereby

preventing the outward propagation of the initial disturbance

even for K0 �= 0. In contrast, the random and sine distributed

initial conditions are observed to yield excitations with lower

amplitudes over the whole range of K0 considered. For the

sine wave initial condition, these mostly occur at the locations

of the peaks in the sine wave initial condition while there is

no preferential location for the random initial condition. As

expected, the single peak initial condition can only exhibit

rogue events at the location that is initialized with nonzero

amplitude.

III. CONCLUSIONS AND FUTURE CHALLENGES

In this work we have revisited a system that is known to

exhibit bursting over a coherent region of space, and reformu-

lated the problem to permit the activation of spatial degrees

of freedom. We found that the resulting system could indeed

generate extreme events that were localized in both time and

space, and that occurred more or less at random locations on a

periodic ring of such bursters and at random times. Our system

offers an intriguing alternative to more conventional studies of

rogue wave formation based on integrable Hamiltonian par-

tial differential equations, typically the nonlinear Schrödinger

equation and its variants. The latter approach has met with

considerable success, and there is good evidence that rogue

waves resembling the Peregrine soliton [25] and its periodic

and higher order generalizations do in fact occur in wave

experiments in a channel geometry (see, e.g., [10]). Our aim

has been to propose an alternative mechanism that could give

rise to such extreme events in distributed forced dissipative

lattice systems. The proposed mechanism is fundamentally

based on a strong resonance between two almost degenerate

FIG. 11. Same as Fig. 6 but for the amplitude-dependent cou-

pling (8). Red lines with circle markers show results for the single

peak initial condition while blue lines with plus markers are the

results for the sine wave initial condition. The top panel shows the

variation in the maximum amplitude of observed excitations (on

logarithmic scale) as a function of the coupling coefficient K0. The

middle panel shows the variation in the time taken to reach the

maximal excitation tmax on logarithmic scale, also as a function of K0.

Finally, the bottom panel shows the variation of the location Nmax of

the maximal amplitude among the individual oscillators as a function

of K0. Note that the single peak initial conditions were initialized at

i = 12.

modes and has the remarkable property that it permits ex-

citations of arbitrarily large amplitude. The model has the

welcome additional property that its dynamics “at infinity” is

well understood.

We considered a nonlinear dynamical lattice consisting

of diffusively coupled elements of the above type, and

demonstrated that such lattices can manifest a phenomenon

resembling rogue events, i.e., waves that “appear out of

nowhere and disappear without a trace” [32]. We showed in

particular that such events may be present even when the

individual oscillators oscillate periodically, and explained how

this behavior depends on the (weak) diffusive coupling be-

tween the oscillating elements. In addition, we demonstrated

the possibility of synchronization at larger coupling strength,

quantified the distribution of the rogue amplitudes in terms

of a bimodal probability distribution, and examined the syn-

chronization properties of the system using Kuramoto-type

order parameter diagnostics. Importantly, we also presented
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an approach that enabled us to predict reliably impending

rogue events through a quantitative understanding of (infi-

nite amplitude) solutions and their eigenvector characteristics.

We believe that this approach is suitable for implementing

machine learning techniques for lattice systems, and will ex-

plore this approach in a future publication.

As already mentioned we may think of Eqs. (1) as the

amplitude equations for nearly resonant oscillations in, for

example, binary fluid convection in a moderately large do-

main of length L0, say, where the variables z± represent

the amplitudes of odd and even standing waves. An explicit

derivation of the amplitude equations would necessarily lead

to Eqs. (1) while also recovering the parameter dependence

of the coefficients in these equations but remains to be done

(see [43] for a related steady state problem). We expect that

in larger domains, where the domain length L is inversely

linked to the amplitude parameter ǫ via L ∼ L0ǫ
−α , α > 0,

one would in addition obtain spatial derivatives describing

the large scale spatial modulation of these amplitudes as in

Eqs. (4), much as in the standard derivation of the complex

Ginzburg-Landau equation, albeit here for the case with two

nearly degenerate carrier wave numbers. In such an equation,

the coupling coefficient K would quantify the (squared) scale

ratio ǫ2α ≪ 1 which is expected to be a small quantity in

the original variables. Additional realizations of Eqs. (4) are

readily envisaged.

Our emphasis on strong resonance between nearly degener-

ate modes differs fundamentally from alternative approaches

based on the nonlinear evolution of modulational instabilities

but connects the rogue wave phenomenon to the dynamics

of systems exhibiting large amplitude sloshing [44,45], and

our system is arguably one of the simplest ones of this type.

We have leveraged the behavior of coupled oscillators with

approximate 1:1 temporal resonance [46] but incorporated

in our approach the possibility that standing oscillations are

themselves unstable to traveling modes (cf. [47]). It is ulti-

mately this destabilization of the standing mode that permits

the large amplitude bursting behavior present in our model.

This is, in fact, precisely the situation that arises in binary

fluid convection with typical binary mixture parameters [48].

The spatial coupling of our bursting elements is designed to

activate scales larger than the length scale L0 of each element

and hence captures the dynamics of large scale systems where

similar destabilization is present [49]. Other one-dimensional

lattices, consisting, for example, of Duffing oscillators with

resonant forcing [50] or optical cavity arrays [51], may also

exhibit localized structures in space-time, but without the

dynamic range admitted by the system studied in the present

work.

Naturally, there exist numerous directions for further study.

While we have given here a proof of principle of localized

dynamics in space-time, it does not escape us that the original

ODE system in Eqs. (1) possesses a substantial wealth of addi-

tional possible states as the relevant parameters vary [33,34].

In this light, a further study of the role of such additional

states, especially those in the invariant subspace at infinite

amplitude, in the dynamics of our diffusively coupled lattice

system is certainly merited, as is a study of the effect of

random coupling strengths between adjacent nodes, be these

quenched or stochastically varying in time [40–42]. Moreover,

the mechanism of extreme event production put forth herein is

not restricted to one-dimensional lattices (as is often the case

for integrable Hamiltonian systems) but generalizes naturally

to higher dimensions, a topic also worth exploring in its own

right. Such studies are currently in progress and will also be

reported in a future publication.
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APPENDIX: THE (ρ, θ, φ) SYSTEM

We consider the (ρ, θ, φ) formulation from [34] in terms

of a rescaled time dτ/dt = 1/ρ. In this formulation Eqs. (1)

become

dρ

dτ
= ρ(2AR + BR(1 + cos2 θ ) + CR sin2 θ cos 2φ)

− 2(λ + △λ cos θ )ρ2,

dθ

dτ
= sin θ (cos θ (−BR + CR cos 2φ) − CI sin 2φ)

− 2△λρ sin θ,

dφ

dτ
= cos θ (BI − CI cos 2φ) − CR sin 2φ + 2△ωρ, (A1)

where the subscripts R and I indicate real and imaginary parts.

In order to determine equilibria for this set of equations, we

recast these equations in terms of the state vector

X = (X1, X2, X3, X4, X5) = (ρ, cos θ, sin θ, cos 2φ, sin 2φ).

With this new state vector, the governing dynamics constitutes

a system with constant coefficients, which implies that its

equilibria can be determined by solving the associated set of

polynomial equations,

−X1

[

2AR + BR

(

1 + X 2
2

)

+ CRX 2
3 X4

]

− 2(λ + △λX2)X 2
1 = 0,

X3[X2(−BR + CRX4) − CI X5] − 2△λX1X3 = 0,

X2(BI − CI X4) − CRX5 + 2△ωX1 = 0,

X 2
2 + X 2

3 − 1 = 0,

X 2
4 + X 2

5 − 1 = 0.

(A2)

Here the last two equations arise from the conditions that

must be satisfied by the transformation of the sine and cosine

functions into the new variables. In this recast form, we have

a fully determined system of polynomial equations for the

five unknowns and we use homotopy methods to determine

all real, finite, and nontrivial solutions of the resulting system

using BERTINI [52].
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