
Sensitivity of Dynamic Network Slicing to Deep
Reinforcement Learning Based Jamming Attacks

Feng Wang, M. Cenk Gursoy, and Senem Velipasalar
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 13244

E-mail: fwang26@syr.edu, mcgursoy@syr.edu, svelipas@syr.edu

Abstract—In this paper, we consider multi-agent deep rein-
forcement learning (deep RL) based network slicing agents in a
dynamic environment with multiple base stations and multiple
users. We develop a deep RL based jammer with limited prior
information and limited power budget. The goal of the jammer
is to minimize the transmission rates achieved with network
slicing and thus degrade the network slicing agents’ performance.
We design a jammer with both listening and jamming phases
and address jamming location optimization as well as jamming
channel optimization via deep RL. We evaluate the jammer at
the optimized location, generating interference attacks in the
optimized set of channels by switching between the jamming
phase and listening phase. We show that the proposed jammer
can significantly reduce the victims’ performance without direct
feedback or prior knowledge on the network slicing policies.

Index Terms—Network slicing, dynamic channel access, deep
reinforcement learning, multi-agent actor-critic, adversarial
learning, jamming attacks.

I. INTRODUCTION

Network slicing is one of the key enablers of 5G networks
that can support novel applications with heterogeneous re-
quirements [1]–[4]. In network slicing, service flexibility is
attained by dividing the the physical resources into multiple
virtual network slices and allocating the desired subset of
network slices to the users/applications with the goal to
satisfy their quality-of-service requirements [5]. Recently, deep
reinforcement learning (deep RL) based approaches have been
considered to optimize slice selection in challenging dynamic
settings with resource interplay and user mobility [6]–[9].
In the literature, it is typically assumed that the slice state
is identical for all different slices over time, and network
slicing is reduced to just determining the number of slices to
be assigned to each request. In [10], we considered a more
practical scenario with multiple base stations and multiple
users with random mobility patters in a dynamic interference
environment, and studied dynamic network slicing. Specifi-
cally, we developed a multi-agent deep RL based learning
and decision-making framework with multiple actors and a
centralized critic (MACC) [11]–[13] that aims at maximizing
the overall performance. We introduced the pointer network
[14] to implement the actor policy to handle the varying

The work was supported by the National Science Foundation under Grant
CNS-2221875.

observations of the deep RL agents. We provided compar-
isons with independent and decentralized actor-critic multi-
agent models as well as feed-forward neural network (FNN)
based actor structures along with statistical algorithms, and
demonstrated performance improvements with the proposed
MACC framework.

Despite these advances in learning based network slicing
methods, it is important to note that due to being highly
data driven, deep neural networks are vulnerable to minor but
carefully crafted perturbations, and it is known that adversarial
samples with such perturbations can cause significant loss
in accuracy, e.g. in inference and classification problems in
computer vision [15]–[17]. Given the broadcast nature of wire-
less communications, deep learning based adversarial attacks
have also recently been attracting increasing attention in the
context of wireless security [18], [19]. Motivated by these
considerations, we in this paper consider MACC-based multi-
agent network slicing and design a deep RL based jammer
agent with jamming and listening phases. Different from most
existing works, we analyze how the jamming location and
channel selection are optimized without direct feedback on
the victims’ performance. We further analyze the performance
degradation in network slicing agents in the presence of
jamming attacks and identify their sensitivity in an adversarial
environment.

The remainder of the paper is organized as follows. In
Section II, we provide the preliminaries on the multi-agent
deep RL based network slicing agent. Subsequently, in Section
III, we devise the deep RL based jammer agent, and introduce
the two operation phases, jamming location optimization, and
jamming channel optimization. In this section, we further
provide the details of the actor-critic implementation. In
Section IV, we conduct numerical analysis and evaluate the
performance to show the effectiveness of proposed listening
measurement based on the impact factor. Finally, we conclude
the paper in Section V.

II. PRELIMINARIES – MULTI-AGENT REINFORCEMENT
LEARNING WITH POINTER NETWORKS FOR NETWORK

SLICING

For the sake of completeness, we in this section provide the
preliminaries on deep RL based network slicing. In [10], we
have presented a multi-agent deep RL framework for network

slicing in an environment with multiple base stations, multiple
mobile users, and randomly generated requests. In particular,
we have developed an MACC (multiple actor centralized
critic) based deep RL approach to optimize the performance
across all base stations instead of pursuing local optimization.
The actors are implemented as pointer networks to fit the
varying dimension of input.

In the considered setting, the features of request k includes
the minimum transmission rate mk, lifetime lk, and initial
payload pk. In time slot t, rk(t) bits of the remaining payload
of request k is transmitted with the allocated resources. If
the minimum rate constraint rk(t) ≥ mk(t) or the remaining
lifetime constraint lk(t) > 0 of request k is not met, then
this request will be terminated and be marked as failed. If
the payload is completed within the lifetime, the request k is
considered as completed and marked as success. In case of
success, the network slicing agent at the base station receives
a positive reward Rk that is equal to the initial payload pk. If a
failure occurs, the agent has a negative reward of Rk = −pk.
Subsequently, base station b records the latest transmission
rate history into a 2-dimensional matrix Hb ∈ RNu×N

≥0 , and
updates this matrix over time.

The objective of the network slicing agent at each base
station is to find a policy π that selects nc channels and assigns
them to nr requests such that the sum reward of all requests
at all base stations is maximized over time:

argmax
π

∞∑
t′=t

γ(t′−t)
NB∑
b=1

∑
k∈K′

b

Rk

, (1)

where K ′
b is the set of completed or terminated requests for

base station b at time t, and γ ∈ (0, 1) is the discount factor.

A. Multi-Agent Deep RL with Multiple Actors and Centralized
Critic (MACC)

To address network slicing and solve (1), we, as also
noted above, proposed an MACC-based multi-agent deep RL
algorithm. The goal is to attain the maximal reward across
all base stations by choosing the optimal subset of channels
to allocate to each request. We denote the full observation at
base station b as Ob, the observation over all base stations as
O = ∪NB

b=1Ob, and the channel selection at base station b as
a matrix of actions Ab ∈ {0, 1}nr×N , where each element in
Ab is an indicator whether channel c is assigned to request k.

In MACC, we have decentralized actors parameterized with
θ and policy fθ(Ob), and only one centralized critic with
parameter ϕ and policy gϕ(O). The critic aims to maximize
the sum reward by updating each decentralized actor. Via the
feedback of the single critic, agents can effectively interact
among each other and also with the environment and learn co-
ordinated strategies despite the scarcity of information sharing
in the training phase.

B. Pointer Network Architecture for the Actor

In the proposed MACC agent, the actor policy fθ is
implemented as a pointer network. Similar to sequence-to-
sequence learning, pointer network utilizes two recurrent
neural networks (RNNs) called encoder and decoder whose
output dimensions are he and hd. The former encodes the
sequence {Oe1

b ,Oe2
b , . . . ,Oenr

b } with Oek
b ⊂ Ob (where

the index k ∈ {1, 2, . . . , nr} corresponds to requests), and
produces the sequence of vectors {e1, e2, . . . , enr} with ek ∈
Rhe at the output gate in each step. The decoder inherits
the encoder’s hidden state and is fed by another sequence
{Od1

b ,Od2
b , . . . ,OdN

b },Odc
b ⊂ Ob (where the index c ∈

{1, 2, . . . , N} corresponds to channels), and produces the
sequence of vectors {d1, d2, . . . , dN}, dc ∈ Rhd .

Furthermore, pointer network computes the conditional
probability array Pc ∈ [0, 1]nr where

Pc[k] = P (Ab[k, c] = 1|Od1
b , . . . ,Odc

b ,Oe1
b , . . . ,Oenr

b) (2)

using attention mechanism as follows:

uc
k = tanh(W1ek +W2dc),

Pc = softmax([uc
1, u

c
2, . . . , u

c
nr
]T)

(3)

where softmax normalizes the vector of uc
k to be an output

distribution over the dictionary of inputs, and vectors W1 and
W2 are trainable parameters of the attention model. Thus, we
obtain the decision of Ab by picking nc maximum elements
in Pc.

III. DEEP RL BASED JAMMER

In this section, we introduce an actor-critic deep RL agent
that performs the jamming attack on the aforementioned victim
network slicing users (introduced in Section II) and aims at
minimizing the victims’ transmission rate. We assume the
jammer has the geometric map of all BSs, but it does not
have any information on the channel states, users’ locations,
requests, victim reward or the victim policy. This deep RL
jammer may jam multiple channels to reduce the transmission
rate and potentially may lead to request failures, or observe the
environment and record the interference power in each channel
to speculate the victims’ actions. We demonstrate a jammer
that can significantly degrade the aforementioned victim users’
performance even though it lacks critical information on the
victims.

A. System Model

In the considered channel model, the fading coefficient of
the link from the jammer to the user equipment (UE) u in a
certain channel c is denoted by hJ,u

c , and the fading coefficient
of the link from the base station b to the jammer in a certain
channel c is denoted by hb,J

c . We consider hb,u
c , hJ,u

c and hb,J
c

to be independent and identically distributed (i.i.d.) and vary
over time according to the Jakes fading model [20]. Once
the jammer is initialized at horizontal location {xJ , yJ} with

height hJ , it can choose in any given time slot one of the two
operational phases: jamming phase and listening phase.

1) Jamming phase: In this phase, the jammer jams nJ ≤
NJ channels simultaneously with jamming power PJ in each
channel without receiving any feedback. With the additional
interference from the jammer, we can express the transmission
rate rb,uc from base station b to UE u as

rb,uc,J = log2

(
1 +

PBL
b,u|hb,u

c |2∑
b′ ̸=b N

b,b′
c +N b,J

c + σ2

)
, (4)

N b,J
c = 1b,J

c PJL
J,u|hJ,u

c |2, (5)

where PJ is the jamming power, N b,J
c is the jamming inter-

ference in channel c, 1b,J
c is the indicator function for both

base station b and jammer choosing channel c , and LJ,u is
the path loss:

LJ,u =
(
h2
J + (xJ − xu)

2 + (yJ − yu)
2
)α/2

. (6)

In (4), PB is the transmission power of the base stations, hb,u
c

is the fading coefficient of the link between base station b and
UE u in channel c, N b,b′

c is the interference from base station
b′ in channel c (if base station b′ is also transmitting in channel
c based on the network slicing decisions), σ2 is the variance
of the additive white Gaussian noise, and Lb,u is the path loss
in the link between base station b and UE u

Lb,u =
(
h2
B + (xb − xu)

2 + (yb − yu)
2
)α/2 (7)

where hB is the height of each base station, α is the path loss
exponent, and {xb, yb} and {xu, yu} are the 2-D coordinates
of base station b and UE u, respectively.

By degrading the transmission rate rb,uc,J with the jamming
interference in channel c, the jamming attack may lead to a
number of request failures. The jammer may further amplify
the impact by intelligently choosing a preferable subset of
channels to jam. The listening phase is introduced to learn
such information from the environment.

2) Listening phase: In this phase, the jammer does not jam
any channel, but only listens the (interference) power in each
channel c among N channels:

N listen
c =

∑
b

1b
cPBL

b,J |hb,J
c |2 + σ2, (8)

where 1b
c is the indicator function which has a value of 1 if

there is a transmission at base station b to any UE in channel
c, and Lb,J is the path loss:

Lb,J =
(
(hB − hJ)

2 + (xb − xJ)
2 + (yb − yJ)

2
)α/2

. (9)

Due to the jammer’s lack of prior information, we consider
an approximation and assume that the listened power N listen

c

from all base stations transmitting in channel c is a rough
estimate of the sum of jamming interferences N b,J

c,est if jammer
were in the jamming phase and chose channel c to inject

interference, i.e.,

N listen
c ≈

∑
b

N b,J
c,est + σ2. (10)

Therefore, with this assumption, the jammer anticipates that
the higher N listen

c being observed/listened, the more likely that
jamming in channel c degrades the victim users’ performance.
Given this, we introduce how we optimize the subset of
channel to attack during jamming phase in Section III-C.

Another benefit of the listening phase is that no jamming
power is consumed in this phase, and consequently average
power consumption is reduced. In the remainder of this paper,
we assume the jammer only switches from listening phase
to jamming phase by the end of each period with TJ ∈ R+

time slots, and thus it has an average power consumption of
nJPJ/TJ .

B. Jamming Location Optimization

The jammer aims at minimizing the performance of victim
users, but it does not have any information on channel fading,
UE locations or rewards provided to different requests. There-
fore, the jamming location is optimized by minimizing the
expected sum transmission rate for given UE u integrated over
the service area when the channels for transmission coincide
with the channels being jammed. More specifically, we have
the following optimization:

{x∗
J , y

∗
J} = argmin

{xJ ,yJ}
Eh

∑
b

∑
c

∫∫
Db

h

rb,uc,Jdxudyu

, (11)

where the expectation with respect to the set of fading coef-
ficients {h} considers ∀b, u, c : hb,u

c , hJ,u
c , hb,J

c
i.i.d.∼ CN (0, 1),

Db
h is the subset of coverage area with maximal transmission

rate rb,uc,J from base station b given {hb,u
c , hJ,u

c , hb,J
c }, and

∀b, b′ : 1b,b′

c = 0,1b,J
c = 1b

c = 1. Additionally, we note that
PB , hB , |α|, and σ with arbitrary positive value will not affect
the optimized jamming location.

C. Jamming Channel Optimization

After the jammer is initialized in the true environment and
have observed/listened the interference power N listen

c (t − 1)
within the listening phase at time t − 1, it will decide the
subset of channels CJ(t) ⊂ C to jam during jamming phase at
time t, where |CJ(t)| = nJ(t) and C is the set of all channels
{1, 2, . . . , N}. According to (10), channels with higher N listen

c

are more likely to be better choices, but this information is
not available in the jamming phase at time t (since jamming
is performed rather than listening). Therefore, CJ(t) can only
be evaluated via N listen

c (t − 1) and N listen
c (t + 1). Note that

N listen
c (t + 1) is not available at time t and this challenge

will be addressed via deep RL in the next subsection (i.e., by
essentially introducing a reward to train the neural network at
time t + 1 and having that reward depend on N listen

c (t − 1)
and N listen

c (t+1). The action will depend only on observation

before time t). In the absence of information on the requests,
we assume a model in which each request arrives and is
completed independently. Thus, the state of current time slot
t can be estimated as a linear interpolation (or a weighted
average) of N listen

c (t − 1) and N listen
c (t + 1). Therefore, the

optimized subset of channels to jam can be determined from

C∗
J(t) = argmax

CJ

∑
c∈CJ

N̂ β
c (t), (12)

where

N̂ β
c (t) =

1

β(t) + 1

(
β(t)N listen

c (t− 1) +N listen
c (t+ 1)

)
,

(13)
and β(t) describes the impact from the jammer onto the
victims. Typically, a request takes multiple time slots to get
completed. When it is jammed, there are two possibilities. On
the one hand, it may fail to meet the minimum transmission
rate limit and get terminated immediately. In such a case, the
next request in queue is processed, and the network slicing
agent rearranges and distributes channels into a new set of
slices to be allocated to different requests from different users,
and thus the listened interference N listen

c (t + 1) may change
dramatically. In this case, we are likely to have β(t) > 1.
On the other hand, if the request under attack has lower
transmission rate but it still satisfies the minimum transmission
rate limit and the lifetime limit, the transmission will last
longer, and the interference N listen

c (t + 1) is less likely to
deviate from that at time t. In this case, we are likely to have
β(t) < 1. Therefore, the value of β(t) should be determined
via experience:

β(t) = max

(
2|T ′|

∑
c

∑
t′′∈T ′′ dlisten

c (t′′)

|T ′′|
∑

c

∑
t′∈T ′ dlisten

c (t′)
− 1, 0

)
, (14)

where

dlisten
c (t) =

∣∣N listen
c (t+ 1)−N listen

c (t− 1)
∣∣ , (15)

and T ′′ is a set of time points in the jamming phase where
each t′′ ∈ T ′′ is close to time t, and T ′ is a set of time
points where each t′ ∈ T ′ is in successive listening phases
without jamming attack. If TJ > 3, dlisten

c (T ′) can be the set
of successive listening phases in every period during training.
Otherwise if TJ ≤ 3, dlisten

c (T ′) has to be collected before
jamming starts.

Again, it is important to note that when the jammer agent
makes decisions at time t, N listen

c (t + 1) is not available. To
address this, we propose a deep RL agent that uses the actor-
critic algorithm to learn the policy.

D. Actor-Critic Jammer Agent

Our proposed jammer agent utilizes an actor-critic deep RL
algorithm to learn the policy that optimizes the output CJ(t) to
minimize the victims’ expected sum rate. The jammer works
with a period TJ , and only switches from listening phase to
jamming phase at the end of each period and uses the policy

to make the decision CJ(t). The actor-critic algorithm [21]
includes two neural networks, namely the actor and critic. The
two networks have separate neurons and utilize separate back-
propagation, and they may have separate hyper parameters. We
then introduce the observation, action, reward, and the actor-
critic update of this agent.

1) Observation: At each time slot, the jammer records its
instant observation as a vector OJ ∈ RN . In a listening phase,
OL

J = {N listen
1 ,N listen

2 , . . . ,N listen
N }. Otherwise, in a jamming

phase, OJ
J = {1(1 ∈ CJ),1(2 ∈ CJ) . . . ,1(N ∈ CJ)} where

1 is the indicator function. In the beginning at time slot t in
the jamming phase, the full observation OJ(t) = {OJ

J (t −
TJ), O

L
J (t− TJ +1), . . . , OL

J (t− 1)} is fed as the input state
to the actor-critic agent.

2) Action: At the beginning of time slot t in a jamming
phase, given the input state OJ(t), the actor neural network
outputs a vector of probabilities PJ(t) ∈ [0, 1]N . From the
probability vector, the decision CJ(t) is derived which is the
subset of channels to jam, and it is described as the action
AJ(t) ∈ {0, 1}N :

CJ(t) = argmax
CJ

∑
c∈CJ

PJ(t), (16)

AJ(t) = {1(1 ∈ CJ(t)),1(2 ∈ CJ(t)) . . . ,1(N ∈ CJ(t))}.
(17)

3) Reward: Following the jamming phase at time t, the
reward is received to train the critic after the next listening
phase at time t + 1. This reward aims at encouraging the
policy to produce an action that imitates N̂ β

c (t), the linear
interpolation of listened interference as in (13). Therefore, we
set the reward as the negative of mean squared error:

RJ(t) = −
∑
c

AJ(t)[c]−
N̂ β

c (t)

max
(
N̂ β

c (t)
)
2

. (18)

4) Actor-Critic Update: At the beginning of a jamming
phase at time t, the actor with parameter θJ and policy
fθJ (OJ) maps the input observation OJ to the output proba-
bility PJ , which is similar to a Q-value generator. The critic
with parameter ϕJ and policy gϕJ (OJ) maps OJ to a single
temporal difference (TD) error:

δJ(t) = RJ(t) + γJg
ϕJ (OJ(t))− gϕJ (OJ(t− TJ)), (19)

where γJ ∈ (0, 1) is the discount factor. For each training
sample, the critic is updated towards achieving the optimized
parameter ϕ∗

J to minimize the least square TD:

ϕ∗
J = argmin

ϕJ

(δ
gϕJ

J)2. (20)

The actor is updated towards the optimized parameter θ∗J to
minimize the policy gradient:

θ∗J = argmax
θJ

∇θJ

∑
c∈CJ

log fθJ (OJ)δ
gϕJ

J . (21)

−6 −4 −2 0 2 4 6

−4

−2

0

2

4
base station
coverage
user
jammer

Fig. 1. Coverage map of service area with 5 base stations, 30 users, and the
jammer.

Both networks are updated alternately to attain the optimal
actor-critic policy. Note that during each parameter update
with bootstrap method, the mini-batch of training samples (i.e.,
action-reward pairs) should be randomly drawn from a longer
history record for faster convergence.

IV. NUMERICAL RESULTS

As shown in Fig. 1, we in the experiments consider a service
area with NB = 5 base stations, Nu = 30 users, and a jammer.
The theoretically optimized location of the jammer {x∗

J , y
∗
J}

is determined according to (11) and it lies at the center {0, 0},
while the actual location is slightly moved away from the base
station tower. There are N = 16 channels available, and the
jammer picks at most NJ = 8 channels for jamming. The
jamming power in each channel equals the transmission power
in each channel: PJ = PB . The jammer has phase switching
period of TJ = 2 time slots.

In the experiments, the network slicing agent is initialized
as the well-trained MACC agent with pointer network based
actors as detailed in Section II, and time is initiated at t = 0.
The jammer’s actor and critic policies are implemented as two
feed-forward neural networks (FNNs), both of them has one
hidden layer with 16 hidden nodes. The jammer is initialized
at t = 100 and begins jamming and performs online updating.
During the training phase 100 ≤ t < 10000, the jammer
follows an ϵ-greedy policy to update the neural network
parameters θJ and ϕJ with learning rate 10−5. It starts by
fully exploring random actions, and the probability to choose
random actions linearly decreases to 0.01, thus eventually
leading the agent to mostly follow the actor policy fθJ (OJ).
This probability is fixed to 0.01 in the testing phase from
t = 10000 to t = 20000.

In Fig. 2, we compare the performance of the proposed
actor-critic jammer that approximates N̂ β

c (t) with three other

10000 12000 14000 16000 18000 20000
Time Slot

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Su
m
 R
ew

ar
d

None
Last-Interference
Next-Interference
Actor-Critic

Fig. 2. Comparison of victims’ sum reward in the testing phase achieved in
the absence of jamming attack, and also achieved under attacks by the last-
interference jammer, next-interference jammer, and the proposed actor-critic
jammer.

scenarios in terms of victim sum reward in the testing phase.
The first case is the setting with no jammer and hence the
performance is that of the original network slicing agent in
terms of the sum reward in the absence of jamming attacks.
The second scenario is with a last-interference jammer agent
that is positioned at the same location (i.e., the origin {0, 0})
with the same power budget. However, this jammer agent does
not utilize any machine learning algorithms, and chooses the
subset of channels with highest observed/listened interference
power levels in the last listening phase:

CMaxIntf
J (t) = argmax

CJ

∑
c∈CJ

N listen
c (t− 1). (22)

Consequently, the last-interference jammer which aims at the
last time slot is equivalent to the proposed jammer when
β → ∞. The third scenario is with the next-interference
jammer agent, which is also an actor-critic jammer agent but
whose reward has β = 0, so it aims at the next time slot. Both
of them are less efficient in suppressing the victim sum reward
compared to our proposed actor-critic jammer, which aims
at estimating N̂ β

c (t) and therefore has better performance.
Specifically, we observe in Fig. 2 that the proposed jammer
results in the smallest sum reward values for the network
slicing agents and has the most significant adversarial impact.

Furthermore, we show the numerical result of the same set
of experiments in Table I, where we can see the victim under
the actor-critic jamming attack completes only 73.68% of the
requests, which is much less than the other cases. Additionally,
we notice that the base station at coordinates (0, 0) in Fig.
1, which is the closest one to the jammer’s location, only
completes 67.25% of the requests under the proposed jamming

attack. In comparison, this base station under the other two
types of attack completes about 80% of the requests. This
indicates that the proposed agent is more likely to learn from
the received interference.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT JAMMING ALGORITHMS

DURING TEST PHASE

jammer average reward complete ratio
None 19.90 94.78%
Last-Interference 13.94 82.36%
Next-Interference 14.51 83.30%
Actor-Critic 10.09 73.68%

V. CONCLUSION

In this paper, we considered the network slicing agents
using MACC multi-agent deep RL with pointer network based
actors. We developed a deep RL based jammer that aims
at minimizing the network slicing agents’ (i.e., victims’)
transmission rate and thus degrades their performance without
prior knowledge of the victim policies or without receiving
any direct feedback. We introduced the jamming and listening
phases of the proposed jammer and addressed the jamming
location optimization. We also studied the jamming channel
optimization by designing an actor-critic agent that decides
on which channels to jam. We have demonstrated the ef-
fectiveness of the proposed jammer via simulation results,
and quantified the degradation in the performance of the
network slicing agents compared to the performance achieved
in the absence of any jamming attacks. We also provided
comparisons among actor-critic based jammers with different
assumptions on how to decide on which channels to jam
(e.g., based on last or estimated next interference or linear
interpolation of the two).

REFERENCES

[1] A. Ericsson, “5G systems enabling the transformation of industry and
society,” Tech. Rep., 2017.

[2] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[3] N. Alliance, “Description of network slicing concept,” NGMN 5G P,
vol. 1, no. 1, 2016.

[4] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung,
“Network slicing based 5G and future mobile networks: mobility, re-
source management, and challenges,” IEEE communications magazine,
vol. 55, no. 8, pp. 138–145, 2017.

[5] S. A. Kazmi, L. U. Khan, N. H. Tran, and C. S. Hong, Network slicing
for 5G and beyond networks. Springer, 2019, vol. 1.

[6] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[7] L. Zhang, J. Tan, Y.-C. Liang, G. Feng, and D. Niyato, “Deep re-
inforcement learning-based modulation and coding scheme selection
in cognitive heterogeneous networks,” IEEE Transactions on Wireless
Communications, vol. 18, no. 6, pp. 3281–3294, 2019.

[8] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement learning for
dynamic resource optimization in 5G radio access network slicing,” in
2020 IEEE 25th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD). IEEE,
2020, pp. 1–6.

[9] Y. Shao, R. Li, Z. Zhao, and H. Zhang, “Graph attention network-based
drl for network slicing management in dense cellular networks,” in 2021
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2021, pp. 1–6.

[10] F. Wang, M. C. Gursoy, and S. Velipasalar, “Multi-agent reinforcement
learning with pointer networks for network slicing in cellular sys-
tems,” in ICC 2022-IEEE International Conference on Communications.
IEEE, 2022, pp. 1841–1846.

[11] X. Lyu, Y. Xiao, B. Daley, and C. Amato, “Contrasting centralized
and decentralized critics in multi-agent reinforcement learning,” arXiv
preprint arXiv:2102.04402, 2021.

[12] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[13] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” arXiv preprint arXiv:1706.02275, 2017.

[14] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” arXiv
preprint arXiv:1506.03134, 2015.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[16] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 9185–9193.

[17] Y. Lu, Y. Jia, J. Wang, B. Li, W. Chai, L. Carin, and S. Velipasalar,
“Enhancing cross-task black-box transferability of adversarial examples
with dispersion reduction,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 940–949.

[18] Y. Shi, Y. E. Sagduyu, T. Erpek, K. Davaslioglu, Z. Lu, and J. H.
Li, “Adversarial deep learning for cognitive radio security: Jamming
attack and defense strategies,” in 2018 IEEE international conference
on communications workshops (ICC Workshops). IEEE, 2018, pp. 1–
6.

[19] F. Wang, C. Zhong, M. C. Gursoy, and S. Velipasalar, “Resilient dynamic
channel access via robust deep reinforcement learning,” IEEE Access,
2021.

[20] L. Liang, J. Kim, S. C. Jha, K. Sivanesan, and G. Y. Li, “Spectrum
and power allocation for vehicular communications with delayed CSI
feedback,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp.
458–461, 2017.

[21] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7-9, pp. 1180–1190, 2008.

