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Abstract—1In additive manufacturing (AM), final product
geometries are often deformed or distorted. The deviations of
three-dimensional (3D) shapes from their intended designs can
be represented as 2D surfaces in a R® space, which constitutes
a complicated set of data for learning and predicting geometric
quality. Patterns of deviation surfaces vary with shape geometries,
sizes/volumes, materials, and AM processes. Our previous work
has established an engineering-informed convolution framework
to learn shape deviation from a small set of training products
built with the same material and process. It incorporates the
characteristics of the layer-wise shape forming process through
a convolution formulation and the size factor for a category
of smooth 3D shapes such as domes or cylinders. This study
extends this fabrication-aware learning framework to a larger
class of products including both smooth and non-smooth surfaces
(polyhedral shapes). The key idea of learning heterogeneous
deviation surface data under a unified model is to establish the
association between the deviation profiles of smooth base shapes
and those of non-smooth polyhedral shapes. The association,
which is characterized by a novel 3D cookie-cutter function, views
polyhedral shapes as being carved out from smooth base shapes.
In essence, the AM process of building non-smooth shapes is
mathematically decomposed into two steps: additively fabricate
smooth base shapes using a convolution learning framework,
and then subtract extra materials using a cookie-cutter function.
The proposed joint learning framework of shape deviation data
reflects this decomposition by adopting a sequential model estima-
tion procedure. The model learning procedure first establishes the
convolution model to capture the effects of layer-wise fabrication
and sizes, and then estimates the 3D cookie-cutter function to
realize geometric differences between smooth and non-smooth
shapes. A new Gaussian process model is proposed to consider
the spatial correlation among neighboring regions within a 3D
shape and across different shapes. The case study demonstrates
the feasibility and prospects of prescriptive learning of complex
3D shape deviations in AM and extension to broader engineering
surface data.
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Note to Practitioners—Engineering processes such as 3D print-
ing generate complex shape data in the form of 3D point clouds.
Qualification and verification of 3D shapes involves modeling
and learning of heterogeneous shape deviation data that are
affected by both product geometries and process physics. This
study develops an engineering-informed, small-sample machine
learning methodology to learn and predict deviations of smooth
and non-smooth 3D shapes in a unified modeling framework.
The fabrication of a non-smooth 3D shape is mathematically
decomposed into the smooth base shape formation and shape dif-
ference realization. Both process knowledge and shape geometries
are captured in the learning framework. It provides a new data
analytical tool for shape engineering in additive manufacturing
and beyond.

Index Terms—Shape engineering, shape deviation model-
ing, convolution, process decomposition, Gaussian process,
fabrication-aware machine learning.

I. INTRODUCTION

DDITIVE manufacturing (AM) or three-dimensional

(3D) printing enables the direct fabrication of compli-
cated geometries and a wide range of structures using various
materials [1]-[3]. Due to materials phase changes and high
thermal gradients in the layer-wise fabrication processes, final
product geometries are often deformed or distorted [4]-[9].
The deviations of 3D shapes from their intended designs
can be represented as 2D surfaces in a R3 space [10]-[12],
which constitutes a complicated set of data for learning and
predicting geometric quality. Patterns of deviation surface data
vary with shape geometries, sizes/volumes, materials, and the
AM processes [13]-[16].

As a motivating example, four domes and three thin walls
with half-cylindrical shapes were vertically printed through an
AM process using the same material (Fig. 1). After collecting
the point cloud data on the product surfaces and comparing
with the designs, we present their shape deviations as func-
tional surfaces [9] in the spherical coordinate system (SCS) as
shown in Fig. 2. The deviation profiles of the thin walls are
quite different from those of the domes. Thin walls present
sharp increments in the deviation around the corners/edges
while the deviation surfaces of domes are relatively smooth
everywhere. Furthermore, the shape deviation profiles and
their patterns can vary with the size of the same target shape.
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Fig. 1. (a) Domes with 0.5, 0.8, 1.5 and 1.8 inches radii and (b) thin walls
with 0.8, 1.5 and 2.0 inches radii.

To learn and predict surface deviations of 3D shapes,
we face several fundamental challenges:

o Heterogeneity. Deviation patterns are affected by mul-
tiple factors including geometries, sizes, materials and
process parameters. This often produces heterogeneous
data even under the same process settings of an AM
machine. As observed in Fig. 2, thin walls show distinct
deviation patterns from domes. Different sizes/volumes
would affect not only the magnitude of the deviation
surface but also the locations of sharp transitions for the
thin walls. Taking the deviation profile as the response,
there are three types of covariates: (1) location covari-
ates defined with respect to the printing and registration
center [13], [17]; (2) process parameters such as the type
of AM process, printing materials, printing temperatures,
etc. [12], [18], [19]; and (3) size-and-shape information
specified by the designs of AM products [13], [20], [21].

o Limited samples. A key advantage of AM is the easy cus-
tomization of the printed parts. This one-of-a-kind manu-
facturing approach limits the applicability of large-sample
machine learning methods and classical statistical meth-
ods for modeling shape deviations. With a limited number
of training samples and various covariates, it is challeng-
ing to establish a prescriptive model, estimate its parame-
ters, and validate assumptions on model specification and
parameters, especially for non-parametric models such as
random forest [17] and Dirichlet process [22].

o Spatial correlation within and among shapes. In AM,
the layer-by-layer fabrication process exacerbates the
quality issues related to material phase change and heat
penetration observed in traditional manufacturing [23]—
[25], leading to stronger spatial correlation among neigh-
boring regions of a product. Joint learning of different
3D shapes presents the additional challenge of defining
spatial correlation among different geometries.

In the literature, physics-based and data-driven approaches
have been extensively reported to predict printing quality.
A common strategy in physics-based modeling is the use of
finite element analysis to simulate the printing process and
reveal the relationship among process, geometric structure,
and material properties [26], [27]. These models can achieve
voxel-level accuracy for describing 3D products during the
printing process but at a high computational cost. Extensive
expert knowledge is required to develop such models and
they are typically restricted to a specific material, geometry,
and AM process. In the data-driven AM research, regression
models [28], [29], design of experiments techniques [30], [31],
and machine learning strategies [32], [33] have been applied.
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However, most data-driven AM models suffer from lack of
interpretability and over-fitting issues.

To learn heterogeneous data with limited sample sizes,
efforts have been devoted to transfer learning across mate-
rials, manufacturing processes, and part designs. Sab-
baghi and Huang [18] proposed the effect equivalence
framework to calibrate the effects of lurking variables
in different AM processes through a base factor, which
was adopted by Francis ef al. [19] to accomplish the
model transfer from Ti-6Al-4V to 316L stainless steel.
Chen et al. [34] achieved knowledge transfer across differ-
ent shapes by first decomposing the geometric error into
shape-independent and shape-specific components and then
fixing the global shape-independent parameters and shape
features. Ferreira et al. [21] employed a Bayesian extreme
learning machine methodology to automatically predict the
shape deviation profiles of 2D freeform shapes under dif-
ferent printing processes. However, the applicability of these
transfer learning methods has not been demonstrated for
3D geometries.

Engineering-informed machine learning approaches have
been proposed to model and predict 2D shape deviation using
a limited number of training samples. Huang et al. [4] devel-
oped a prescriptive statistical modeling approach to predict
and compensate the 2D shape deviation of circular shapes
considering the size effect and lurking variables such as over-
exposure. It serves as a base model to predict the deviation
of circular shapes, regular polygons, and ultimately freeform
shapes. A key challenge to model polygonal shapes is that the
deviation pattern changes dramatically on the sharp corners
due to high residual stresses and thermal gradients [35]. To link
the circular shape deviations to those of regular polygons,
Huang et al. [13] viewed polygons as being mathematically
carved out from their circumcircles (base shapes) through
cookie-cutter functions. To predict the shape deviation profiles
of freeform shapes, Luan and Huang [14] approximated the
freeform design with a series of piece-wise circular sectors or
polygonal segments.

The modeling and control challenges faced in printing 2D
shapes are exacerbated for 3D geometries, since deviation
patterns can change from layer to layer due to complex inter-
layer interactions, residual stresses and heat dissipation profiles
[6], [16]. To incorporate the layer-by-layer fabrication mech-
anism into modeling and learning, Huang et al. [9] proposed
a convolution learning framework to describe the 3D devi-
ation patterns as the result of the 2D shape deviation of
each layer convolved with a layer interaction function that
captures inter-layer interactions. Although this framework was
validated with spherical shapes, it still requires fundamen-
tal work to predict the complex deviation patterns of both
smooth and non-smooth shapes in a consistent unified mod-
eling framework. Due to the smoothing effect of convolution
operations, this approach alone is inadequate to capture the
sharp transitions in the shape deviation profiles of non-smooth
polyhedral geometries such as in thin-wall shapes. The main
reason to study these particular shapes is that 3D freeform
shapes can be approximated as a combination of smooth
and non-smooth patches [36]. Understanding these two basic
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(a) 0.8-inch Dome (b) 1.8-inch Dome

(c) 0.8-inch Thin Wall (d) 2.0-inch Thin Wall

Fig. 2. Shape deviation measurements of two dome and two thin walls presented in the SCS (darker purple and lighter yellow color for negative and positive

deviation, respectively).

categories of 3D shapes enables 3D freeform shape deviation
prediction similar to the significant advances achieved for the
2D case [4], [13], [14].

To tackle these challenges, we mathematically decompose
the fabrication of non-smooth 3D shapes into two steps:
(1) additively building the smooth base shapes, and
(2) subtractively craving out the non-smooth polyhedral
shapes. An additive model is proposed to connect smooth and
non-smooth 3D geometries through a new 3D cookie-cutter
function with an engineering-informed sequentially model
estimation strategy. Spatial correlation among regions within
a product and across different product geometries is modeled
by a Gaussian process (GP) with a novel distance metric
integrating both geodesic and geometric information.

The remainder of this paper is organized as follows.
Sec. II introduces the model for mathematical decomposition
of shape deviation in AM and discusses its components.
An engineering-informed sequential model fitting strategy is
proposed to enable efficient and stable parameter estimation in
Sec. III. Sec. IV demonstrates the proposed framework using
printed domes and thin wall shapes. Concluding remarks are
given in Sec. V.

II. A UNIFIED SHAPE DEVIATION MODELING APPROACH
FOR BOTH SMOOTH AND NON-SMOOTH
3D GEOMETRIES IN AM

This section proposes a mathematical decomposition of
AM as a general additive model to learn and predict shape
deviation surfaces of 3D geometries. Adopting smooth shapes
as the model baseline, we propose a new class of cookie-cutter
functions to link the shape deviations of 3D smooth and
non-smooth convex shapes. Lastly, a GP is employed to
capture the spatial correlation with a novel distance metric.

A. Mathematical Decomposition of AM Through an Additive
Model for Shape Deviation Modeling

To gain insights from the heterogeneous data (Fig. 2),
domain knowledge must be incorporated in the modeling
framework. As shown in Fig. 3, the process of building
a 3D shape can be mathematically decomposed into two
steps: (1) additive step, which fabricates a smooth base shape
that bounds the target geometry, and (2) subtractive step,

(@ (b)

Fig. 3. Mathematical decomposition of AM to additively build the smooth
base shape (outer dome shape) and subtractively carve out non-smooth shapes
with sharp corners such as (a) thin wall shape and (b) cuboid shape.

which removes extra materials to form non-smooth edges and
corners. Thus, the smooth and non-smooth 3D shapes are
connected through an association or cookie-cutter function that
captures the shape deviation caused by the subtractive step.

Here, the shape smoothness is defined with respect to the
smoothness of curves on the surface of the product design.
If any curve along the shape surface is smooth, i.e., there exists
a common tangent direction at any point on the surface, then
the shape is smooth; otherwise, it is non-smooth. For example,
the curved surfaces of spherical and cylindrical shapes are
smooth, while the thin wall and cuboid shapes in Fig. 3 are
non-smooth since any curve crossing the edges would be non-
smooth. In general, non-smooth shapes contain edges and
corners, which are directly associated with sharp changes in
their deviation surfaces.

The proposed mathematical decomposition procedure leads
to an additive model. Due to the flexibility and interpretability
of additive models, they are extensively used in diverse appli-
cations such as ecology [37], health care [38], [39], machine
learning [40], and geomorphology [41]. For shape deviation
at the ith location of part j, a general additive model can be
defined as

y(xi, 8, p;) =uxi,s;,p;)+nxi,s;,p;)+e (1)

where y is the shape deviation, x are location covariates,
p; are the process parameters or part-independent covariates
such as materials and process characteristics, s ; represents the
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geometric information or part-dependent covariates, ¢ models
the mean pattern of the shape deviation, 7 is a zero-mean
random field that captures the spatial correlation, and € is the
measurement error. In the rest of this work, we drop p j for
notation simplicity since only one specific printing process is
investigated in this work.

For 2D shape deviations, Huang ef al. [13] considered the
regular polygons as being carved out from their circumscribed
circles through the additive model

uxi,s;) =fi(x;) +f2(x;, ;) +f3(x;,55), (2)

where f] describes the shape deviation of disks, f, is a
2D cookie-cutter function that links the deviation profiles of
circular and polygonal shapes, and f3 is a high-order term for
the remaining pattern.

To extend the model (2) to 3D cases, the mean pattern
1 for 3D shape deviation follows the same decomposition
formulation in Eq. (2). The main difference is that f; now
describes the deviation profile of the smooth 3D base shape,
f, is a 3D cookie-cutter function that connects smooth and
non-smooth geometries, and f3 is a high-order term. For
example, we can use f; to model the shape deviation of the
smooth base shape (e.g. domes), f, to capture the differences
between the smooth base and non-smooth geometries such
as thin walls (Fig. 3), and f3 to illustrate the high-order
pattern.

B. Convolution Framework as a Baseline for Smooth Shape
Deviation Modeling

A convolution learning framework proposed in [9] can be
used to identify the baseline function for shape deviation
modeling of convex smooth shapes as

y(x) = (f *g)(x) +n(x) +e, ©)

where ¢ = f *x g, f is the input function describing the
2D shape deviation in a horizontal layer, g is the interaction
function that models complex layer-to-layer interactions, 7 is
a zero-mean GP capturing spatial correlations in the deviation
profile, and € is the measurement error following a zero-mean
normal distribution. The variable x is the spatial location of
the points in SCS, i.e., x = (r,8, ¢), where 0 is the polar
angle and ¢ is the azimuth angle. The printed shape of a
product is treated as the functional response r (@, ¢) and the
nominal shape is denoted as r¢(0, ¢). Then shape deviation is
defined as y(x) =r(0, ) — ro(@, ¢), where 0 € [0, 2x), and
o €10, 7/2].

To specify u, the first step is to identify the input function f.
As the most common smooth geometries, spherical shape (as
shown in Fig. 1(a)) are chosen as the base geometry, where
each horizontal layer is a circular disk. Shape deviation for
a disk of radius ry can often be modeled with a few Fourier
basis functions due to its geometric simplicity, for example,
f(ro,0) = c1(rg) + c2(rp) cos(20) in an SLA process studied
by [4]. Using this formulation, Huang et al. [9] modeled the
deviation of a dome shape as

u(ro, 0, 9) = ao(ro) + ai(ro) (f * )@, ¢). 4)
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The size factors ¢ (rg) and c,(rg) can be absorbed in o (ry)
and a;(rg) in Eq. (4). Since each layer of a dome shape
has radius r( sin ¢, the input function for the domes can be
normalized, for example, as

f(@,9) =cos(20)sin . 5)

For the layer interaction function g(x), lasso regression was
adopted for model selection [42]:
2

vi— D ci(f %800 | +7llell, (©6)
J

1
min —

in 2>

i=1

where N is the number of sampled points, g;(0, ¢) is a 2D

Fourier basis, and ¢; is the coefficient of the basis function

gj- Significant terms shared among all domes were selected
resulting in the layer interaction function

80, p) = cos(nip)[1 + cos(n26 + y)]I. (N

C. Association Between Smooth and Non-Smooth
Geometries: 3D Cookie-Cutter Function

The convolution operator alone is inadequate to capture the
sharp transitions observed in the deviation profiles around the
corners of non-smooth polyhedral shapes (Fig. 2). We propose
to use a 3D cookie-cutter function to subtractively carve out
the deformation profile of a non-smooth shape from that of
a smooth baseline shape. For example, a polygon is cut out
from its minimum bounding circle for each horizontal layer
as shown in Fig. 4(a). Similar to [13] and [20], the minimum
bounding circle is employed as the smooth base shape since
the circumcircle, which passes through all vertices of the
polygon, may not exist for an arbitrary polygon.

To represent the proposed learning framework as an additive
model, we define the basis functions: i;(x) = (f * g)(x)
describing smooth base shape deviation, /,(x) being the 3D
cookie-cutter function linking the smooth and non-smooth
geometries, and a high-order term h3(x) for the remaining
pattern. Then, the learning framework can be written as

3
p(x) = ao(x) + D aj(x)h;(x) ®)
j=1
where aj, j =0, ..., 3 represent size effects /; can be learned

from smooth products as in [9], and both 4, and k3 are fully
determined by the geometries of AM-fabricated products. Note
that because we use convex smooth shapes as the bases, we can
infer the shape deviation of convex polyhedra while the shape
distortion of concave geometries (e.g., pentagram in 2D) needs
to be studied using a concave smooth geometry as the baseline.

For the 2D case, [13] applied two candidate 2D cookie-
cutter functions £, as the association function to carve out
regular polygons from their circumcircles: the square-wave
function

5q(0) = sign{cos[n(0 — ¢0)/21}, )
and the sawtooth-wave function

sw(®) = (0 — ¢o)MOD(2x /n), (10)
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where n is the number of sides and ¢y is a phase term to shift
the cutting position. These functions allow sharp transitions
on the deformation patterns near the corners.
A generalization of the sawtooth-wave function was estab-
lished in [14] as
71'((9 - ﬁjfl)MOD(ﬁj - 191',1)
2(’[9 i~ 19.]'_1)

for selected angles ¥;, j = 1,...,n. Note that such function
is only needed when the interior angle of a corner is less than
7 /6 according to their experimental studies.

For the 3D case with more complex geometries, we apply
the 2D cookie-cutter function in each horizontal layer defined
by ¢ in SCS by modifying the frequency of the square-wave
or sawtooth-wave function such that the amplitudes alternate
at the sharp corners defined by 9;(¢), j = 1, ..., n. Thus, one
candidate for h, is the 3D square-wave function

_1yj+l
sq@, ) = %[sign[sin(w)} + 1], (12)

sw(@) = (11)

9;(p)
and the other alternative is 3D sawtooth-wave function
0—19;_
(0, g) = 0~ 11®) (13)

9j(p) = 0-1(p)’
ford;_1(p) <0 <V;(p), j=1,...,n+1, where ¥;(p), j =
1, ..., n are the polar angles of sharp transitions with J¢(p) =
0 and 9,4+1(p) = 2x.

The proposed 3D cookie-cutter functions can be regarded as
the stack of 2D cookie-cutter functions over the ¢-direction,
where each layer could have sharp transitions at different
angles according to the designed geometry. As the number
of corners increases and the polyhedron approaches a sphere,
the sharp corners effectively vanish and A, is approximately
constant in both definitions.

In the motivating example, a thin wall with a half-cylindrical
shape has radius ry and thickness w ( Fig. 5), where each
horizontal layer is a rectangle with length 2r( sin ¢ and width
w. To cut out a rectangle defined by the corner points
(Ay, Ay, A3, Ay) from its circumcircle as shown in Fig. 4(a),
we first find the angles of each corner as ¥, 1,, ¥3 and ¥,
then the corresponding 2D square-wave function is shown in
Fig. 4(b) and 2D sawtooth-wave function is shown in Fig. 4(c).

Yy T O3

Oy 21 0 o U, T Oy
0 0

(©)

Yy 21

(a) A rectangle cut from its circumcircle and corresponding (b) 2D square-wave cookie-cutter function and (c) 2D sawtooth-wave cookie-cutter

/
Yy
/7 \
7 2\
i )
|4

V | [
L~

<

Fig. 5. A thin wall fabricated by stacking rectangles.

Since the rectangle sizes in each horizontal layer defined by
¢ are different, the sharp transitions for each layer happen
at different polar angles, which are purely defined by the
geometry of the product. The scatter plots of proposed 3D
square-wave and sawtooth-wave cookie-cutter functions are
shown in Fig. 6.

While the same thin-wall parts are treated as 2D shapes
in [9], they are regarded as 3D shapes in this work. Unlike
the deviation profiles y(p) for 2D cases, shape deviations of
3D non-smooth thin walls show deviation surfaces y(@, ¢) in
SCS (Fig. 2). Furthermore, to predict the shape deviation of
these thin walls on the front, back, and curved top surfaces,
each thin wall is regarded as the stack of rectangles of different
sizes (Fig. 5), which requires the 3D cookie-cutter function in
Eq. (12) and Eq. (13).

D. Spatial Correlation Modeling With a Novel Distance
Metric for Heterogeneous Shape Data

The random field # in model (1) is intended to capture the
spatial correlations among deformed regions. It is frequently

assumed to be a zero-mean GP with a squared-exponential
kernel [43]

d(x;, x;)?
k(xi,x ) = exp(—%),

where d(x;, x ;) is the distance between x; and x ;.

(14)
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Fig. 6. (a) 3D square-wave function and (b) 3D sawtooth-wave function for
the 0.8-inch thin wall.

The challenge, however, is to learn the spatial correlation
not only among regions of the same product but also across
heterogeneous shapes.

For convenience, the spatial correlation between two sample
points in the R? space is described in the Cartesian coordinate
system, i.e., X; = (x;, y;, z;) rather than the SCS. Note that it is
feasible to establish the GP in the SCS as well. The coordinates
are scaled to the current coordinate over the maximum in each
direction. Note that (0, 0, 0) corresponds to the center of the
printing bed, and the maximum height was chosen to eliminate
the effect of different scales in the z direction.

Due to the physics involved in generating and measuring
the shape deviation, Sun et al. [44] and Castillo et al. [45]
pointed out that geodesic distance, which is defined as the
shortest distance between points on a 3D surface, is a better
measure of the spatial correlation in the same additively
manufactured part rather than the Euclidean distance. A thor-
ough review of geodesic paths and distances on the surface
of triangle meshes can be found in [46]. Due to the high
computational cost of the geodesic distance, we employ the as-
rigid-as-possible parameterization to first map the surface into
a 2D plane, and then the point-to-point geodesic distance can
be approximated by the corresponding Euclidean distance [47].
However, one challenge is that there is no clear definition of
geodesic distance among different parts since such path along
the surface does not exist.

For two points x; and x ; lying on the surfaces of two shapes
s; and s;, respectively, we propose a new distance metric

1
dxi,x)) = 5[ et x)) +dy(x],x))
o, X)) + dy (), x| (15)

where x; is the projection of point x; onto shape s;, i.e., x;
and x; have the same angles (6;, ¢;), then x ; and x/ are points
on the same part with a properly defined geodesic distance
dg(x}, x ). Similarly, x’; and x; are on the line defined by the
angles (0}, ¢;) and d. is the standard Euclidean distance.
For example, considering the side view of a thin wall and
a dome shape as shown in Fig. 7, the proposed distance is
the combination of four red paths, where the solid curves
denoting the geodesic distances d, and the dashed ones are
the Euclidean distances d,. By adding the projection distance
de(x/j,xj) and d.(x}, x;), we complete a circuit from x; to

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 20, NO. 3, JULY 2023

-
-

dg(xi"xj’) g

Fig. 7.
on shape s; (in black).

Proposed distance metric between x; on shape s; (in blue) and x ;

x; and back which ensures that d is a valid distance measure.
Another advantage of Eq. (15) is that, if two shapes s; and s;
are the same, the projection distances are zero, and then the
proposed distance is the standard geodesic distance.

III. SEQUENTIAL MODEL ESTIMATION PROCEDURE FOR
THE UNIFIED MODELING FRAMEWORK

After specifying each component of the additive model,
a sequential model fitting strategy is proposed to efficiently
estimate the model parameters, mitigate over-fitting, and trans-
fer the knowledge from smooth base shape to non-smooth
polyhedral shapes.

In general, the parameter estimation procedure follows a
similar strategy to the boosted models [48] of fitting mod-
els sequentially based on the residuals of earlier models.
As specified in [9], the convolution 4, describes the shrinkage
of smooth geometries during printing caused by material
phase changes, inter-layer interactions, and gravity effects.
On the other hand, the deviation profiles of non-smooth shapes
exhibit sharp transitions introduced by uneven thermal stresses
around the corners [35]. By regarding the non-smooth shape
as being cut from a set of smooth patches, we apply the
3D cookie-cutter function %, to capture the sharp transitions
and &3 to model the difference in deviation profiles between
smooth and non-smooth geometries. Thus, the smooth shape
deviation is modeled first to build the baseline model, while
non-smooth parts are included later to assess the association
and remaining pattern.

In the final step, we use GP regression (GPR) to model
n for the following reasons: (1) estimating GP parameters is
computationally expensive; (2) the full training set is involved
since spatial correlation affects all shapes; and (3) due to the
flexibility of GP, the main effect 1 could be confounded, which
compromises the insights from the parametric model.

To be more specific, after dividing the data D = (y, x) into
DY for smooth shapes and D' for non-smooth shapes, there
are three steps to fit the model sequentially. First, we estimate
the parameters in ag, a; and h; of Eq. (8) using the data in DO,
Since only smooth shapes are involved, the model is reduced
to y = ag + ah; + €. Second, non-smooth shape deviations
in D! are used to estimate the parameters in a, and az with
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Algorithm 1 Process-Informed Sequential Model Fitting
Strategy

Split data D into D° (smooth) and D' (non-smooth)
according to design geometry;

Initialize the parameters y for hy;

Fit the parameters for the model

y(x) = ao(x) + o1 (x)h1 (x) + €, ¥(y, x) € D
Calculate residuals

¥ = y(x) = (Go(x) + 61 (x)h1 (%)), (v, x) € D;
Fit the parameters for the model

¥ = o2 (x)ha(x) + o3 (x)h3(x) + €, ¥(y, x) € D'
Calculate residuals

J =73 — (62(x)hy(x) + a3(x)h3(x)),Y(y, x) € D;
Calculate pairwise distance d(x;, x;),Vx;,x; € D
Fit a GP for model § ~ N (0, k(d(x;, x ;)))

respect to the residuals § = y — (@g+a;h,). Recall that i, and
hs are determined by the geometry, and the model is § =
oxhy 4 aszhs + € for the non-smooth shape deviations. Lastly,
to model the spatial correlation, GPR techniques are applied to
model the residuals y = 3 — (G2h2 + @3h3) from all data with
hy = 0 and h3 = 0 for smooth parts, i.e., ¥ ~ N(0, k(- -)).
By learning these three components sequentially, we can
predict the shape deviation of untried products. The proposed
parameter estimation strategy is summarized in Algorithm 1.

Furthermore, if a3,k = 0, ..., 3, have a parametric form,
the model parameters can be estimated using the profile
likelihood approach. Without loss of generality, assume that
o (x) is a basis expansion of the form o (x) = zjj-k:l gl (x)pi.
Then, the model can be expressed as

y=H@)B +n+e, (16)
where
HO) = (a0®), - @), g} M), . g (@)ha)
and

1 Ji 1 I\ T
ﬂ:(ﬁ()"ua oo’ﬁl’“'a 33) .

The maximum likelihood estimates (MLE) are obtained by
solving

1 N n
in — ||y —H 24+ ~In(e?
min 7521 1(7)B +3 n(c”)

st. B/ = (H] () Hi(»)) 'H(»)y

where y is the shape deviation of observations included in
DO, n is the total number of points in DY, H, is the matrix
of the first Jy + J; columns of H, and B’ = (B, B;). For the
parameters of a, and a3, the MLE is

B’ = (HIH,) 'HI(»)y

where y is as defined in Algorithm 1 for observations in
D', H, is the matrix of the last J, + J;3 columns of H, and

"= (ﬁ2’ ﬁ3)

A7)
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IV. CASE STUDY: SHAPE DEVIATION MODELING AND
ESTIMATION FOR DOMES AND THIN WALLS

In this section, we revisit the motivating example in Sec. I to
demonstrate the capability of the proposed learning framework
for modeling and predicting the shape deviation patterns of
a wide variety of geometries containing both smooth and
non-smooth features in AM. Seven parts (Fig. 1) were printed
through the mask image projection stereolithography (MIP-
SLA) process. After the printing process, a ROMER absolute
arm with RS4 laser scanner is used to collect the measurements
as point clouds, which are then registered using the constrained
iterative closest point algorithm [49]. The printing quality is
evaluated by the shape deviation surface of each part [9] as
illustrated in Fig. 2. We employ all domes and 0.8-inch and
2.0-inch thin walls as the training set and leave the 1.5-inch
thin wall as the validation set.

To implement the learning framework in Eq. (8), the first
step is to identify the input function f. Note that, due to
machine repair, the pattern of shape deviation of 2D circular
disks changed from what was presented in [4], i.e., the input
function f (6, ¢) should have a different pattern and we need
to fit the spherical shape model for the new data. Luan and
Huang [14] defined the new pattern as

T .
£0) = cos(ze + 3)195[0,,” — SinQ0)lpeiran.  (18)

Recall that the form of input function was changed to Eq. (5)
by multiplying it by sin¢ because the radius of each layer
is rosing for the dome shape. Similarly, we have the input
function f (0, ¢) for spherical shapes as

fO,9)= f(O)sing.

If the radius is r¢ and the thickness is w for the thin wall
shape, the circumcircle radius for each horizontal layer ¢ is

19)

2
max(ro(0, 9)} = /1 sin g + (3) ~rosing,  (20)

since w is much smaller than ry for the thin products. Then,
we can compute the convolution explicitly and regard the thin
walls as cut from the domes with the same radii, and the same
input function f (@, ¢) as in Eq. (19) can be applied. For the
layer interaction function g(@, ¢), Eq. (7) is used since the
printing mechanism is the same and only the shapes and sizes
change. Thus, & is fully specified.

Next, we need to specify the sharp transition angles ¥}; and n
used in the 3D cookie-cutter function /4, in Eq. (12). As shown
in Fig. 4, n = 4 and the angles are ¥, = arctan(w/(2ry sin ¢)),
U =7 — Uy, V3 =7 + 9, 94 = 27 — ¥ according to the
geometry of the thin walls.

To capture the arch pattern of thin walls presented in the
deviation profiles in Fig. 2, we choose h3 as

h3(0,9) = {Sin<%9)1eewl,q92)
+ sin[%(@ _ n)]leemm} sing, (21)

where n is the number of sides. For the thin walls, we have
n =4, and when n — o0, this term becomes white noise.
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Fig. 8. Measured shape deviation (in gray) and model prediction (in blue) for domes.
Due to the limited number of samples, we follow similar TABLE I

linear assumptions as in [9] to incorporate the size effect.
Denoting x = (x, y, z, o, 8, ¢), which contains the location
information of Cartesian coordinates and spherical coordi-
nates, the conjectures are

1) ni(x) =ci + caro,

2) ny and y are unknown constants,
3) ao(x) = Bo1 + Poaros

4) a1(x) = B+ Biaro,

5) 62(x) = fa + fa] 1 sin? 0 + w2/4 = r0(0, 9)]
6) a3(x) = B31 + B3.2r0.

Note that n;, n,, and w are the parameters in the layer
interaction function g as in Eq. (7), while a;,i = 0,...,3,
are the coefficients describing the size effect in Eq. (8). The
first four conjectures are for the baseline model, and the last
two would affect the 3D cookie-cutter function. For simplicity,
we assume the layer-to-layer interactions change for different
sizes mainly along the ¢-direction and are related to the
number of layers printed, thus n; deciding the period over
@ is assumed to be proportional to the size, while n, and
control the period and phase in #-direction is assumed to be
constant.

To achieve better model interpretability, a linear relationship
to the size of the product is imposed on the coefficients
of ag, 01 and az. As the coefficient of cookie-cutter term,
o, is proportional to the cutting width, i.e., the difference
between the circumcircle radius and polygonal shape at each

angle, which is ,/rZsin’ ¢ + w?/4 — ro(6, ). Under these

assumptions, at least two samples of each shape are required
to estimate the model parameters. Because a limited number
of training samples are usually provided in AM, more complex
relationships for a require knowledge of the material and
process interactions.

The MLE procedure described in Sec. III is employed to fit
the spherical shape deviation model through the mle2 function
in the R package bbmle with randomized initialization in the
parameter space, and the results are given in Table I and Fig. 8.
The mean absolute error (MAE) is 0.0048 and the root mean
square error (RMSE) is 0.0065. We plot the shape deviation
by point index due to the difficulty of comparing model
fitting performance in 3D space. The four blocks from the left

PARAMETER ESTIMATES AND STANDARD ERROR (SE)
FOR THE DEVIATION OF DOME SHAPES

Parameters  Estimate SE
ng 0.6462  0.006591
b 40793 0.019610
c1 0.0034  0.230790
o -0.0016  0.169782
Bo,1 0.0068  0.000210
Bo,2 0.0047  0.000166
B1,1 0.0063  0.000601
B1,2 0.0158  0.000476
o 0.0065  0.000046

correspond to the 0.5-inch, 0.8-inch, 1.5-inch, and 1.8-inch
domes, respectively. The predictions are close to the actual
deviation measurements, except at the upper right corner. Note
that the results are different from [9] since the input function
f (0, ¢) is changed to Eq. (19). The estimates of ¢; and ¢ are
not statistically different from zero and the layer interaction
function can be simplified as g(@, ) = 1 4+ cos(n26 + w).

Next, the thin walls with radii of 0.8 inch and 2.0 inches
are used as the training set, and the 1.5-inch thin wall is left as
the validation set. The estimated model parameters for a, and
a3 are shown in Table II, and the measured deviations versus
model predictions are presented in Fig. 9 for both square-wave
and sawtooth-wave cookie-cutter functions. The model per-
formance metrics are summarized in Table III. From both
figures and performance metrics, the square wave function
is better than the sawtooth-wave function for modeling the
shape deviation of thin walls. Thus, we use the square-wave
function for the remainder of the paper. Since both f,, and
p32 are positive, we can infer that the effects of the sharp
transition and arch pattern on the deviation profile increase
with the part’s size. However, there are some remaining spatial
patterns to be captured, so the residuals are fitted through GPR
with squared-exponential kernel in Eq. (14) using Euclidean
distance between points through the gam function in the R
package mgcv.

The measurements and model predictions are presented in
Fig. 10 and Table IV. For the dome parts, not only the upper
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Fig. 10. Measured shape deviation (in gray), training set prediction (in blue) and validation set prediction (in red) after GPR with Euclidean distance.
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TABLE II

PARAMETER ESTIMATES AND STANDARD ERROR (SE)
FOR COOKIE-CUTTER AND HIGH-ORDER TERMS

Square Wave Sawtooth Wave
Parameters | Estimate SE Estimate SE
B2,1 -0.0387  0.00106 -0.0041  0.00123
B2,2 0.0002  0.00004 -0.0003  0.00004
B3,1 0.0124  0.00175 -0.0040  0.00184
B3,2 0.0139  0.00074 0.0137  0.00093
TABLE III

THIN WALL MODEL PERFORMANCE APPLYING
DIFFERENT COOKIE-CUTTER FUNCTIONS

Training Validation
Cookie-Cutter MAE RMSE | MAE RMSE
Square Wave 0.0122  0.0160 | 0.0120 0.0158
Sawtooth Wave | 0.0156  0.0200 | 0.0164  0.0205

right corners in Fig. 8 have been offset by GP, the expansion
of the larger domes are correctly predicted. Predictions for
thin walls are improved from the results in Fig. 9, and the
performance metrics (MAE and RMSE) are reduced for both
training and validation sets.

Since the GP combines the location information of all
shapes together, and points on the smaller domes are closer

TABLE IV
MODEL PERFORMANCE COMPARISON

Training Validation
Model MAE RMSE | MAE RMSE
Parametric 0.0122  0.0160 | 0.0120 0.0158
Parametric + Euclidean Distance | 0.0050 0.0093 | 0.0107 0.0148
Parametric + Proposed Distance | 0.0060 0.0095 | 0.0087  0.0124

to those on the thin walls, their deviation predictions are
greatly affected by the deviation pattern of thin walls. Thus,
the 0.5-inch and 0.8-inch domes show a wider variation
of the deviation prediction compared with the 1.5-inch and
1.8-inch domes. This suggests that the spatial correlation
among different shapes is overestimated, and we can improve
the spatial correlation modeling by modifying the distance
metric in the squared-exponential kernel as specified in
Sec. 1I-D.

After computing the proposed geodesic distance among all
shapes and estimating the spatial correlation with the mKrig
function in the R package fields, the updated model prediction
and performance are shown in Fig. 11 and Table IV. With
the proposed distance metric considering both geographic and
geometric information, the GP accurately captures the spatial
correlation. Though the deviations of the first few points in
domes are overestimated, predictions cover most of the actual
deviation measurements in the training set. With slightly worse
training set performance, the performance on the validation
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set improved around 20% using the proposed distance metric.
The measured shape deviation, predicted deviation surface,
and residuals of the final model with GPR using the proposed
distance metric are presented in Fig. 12.

V. CONCLUSION

This work establishes a unified learning framework for
shape deviation modeling and learning of smooth and non-
smooth 3D geometries in AM. It is accomplished by mathe-
matically decomposing the AM process into an additive step
to build a smooth base shape, and a subtractive step to carve
out non-smooth shapes from the base shape. The unified shape
accuracy model contains the baseline deviation of smooth base
shapes, sharp transitions caused by the subtractive step, spatial
correlation, and residual term. The previously proposed con-
volution framework serves as the baseline model for smooth
shapes. The proposed 3D cookie-cutter function effectively
captures the unique shape deviation pattern of sharp corners
of non-smooth convex shapes and enables joint learning of
heterogeneous deviation patterns on smooth and non-smooth
geometries. A novel distance measure is proposed to model the
spatial correlation among heterogeneous shapes by combining
the local geodesic distance between points in the same 3D
object and the Euclidean distance between projected points
across 3D objects.

A case study shows that the unified model can successfully
predict the shape deviation of convex smooth (domes) and
non-smooth (thin walls) shapes. Since 3D freeform shapes
can be approximated as a combination of smooth patches
and sharp corners, the proposed learning framework builds a
foundation to further extend this modeling approach to predict
the quality of 3D freeform shapes. Furthermore, the strategy
of connecting engineering surface data through decomposition
of data generation processes can be adopted in other domains
for engineering-informed learning of heterogeneous data.
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