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Abstract—Determining the maximum cut of large graphs may
require impractically long time, necessitating approximate algo-
rithms and/or specialized computing platforms. A heuristic by
Burer, Monteiro and Zhang for max-cut has not only been shown
to be advantageous in many respects, but is also applicable to
other NP-complete problems. From the perspective of accelerated
computing, the heuristic’s implementational challenge lies in its
gradient-descent dynamics, which could be reduced to several
sinusoidal kernel operations applied to each edge of the graph.
We had previously established the theoretical underpinnings of a
relaxed dynamical heuristic for max-cut similar to the one proposed
by Burer et al. but suited for accelerated computing on custom
analog CMOS. In this work, we present the first fully custom analog
integrated circuit implementing the dynamics of our heuristic on
130-nm CMOS technology. In an era of increasing specificity of
computing machines, our algorithm-circuit co-design, originally
for max-cut, introduces a versatile approach applicable to a diverse
set of practical large-scale NP-complete problems.

Index Terms—Application-specific integrated circuits, burer-
monteiro-zhang heuristics, CMOS, combinatorial optimization,
goemans-williamson’s algorithm, maximal cut, NP-complete,
quadratic unconstrained binary optimization (QUBO), semi-
definite programming.

I. INTRODUCTION

C
OMBINATORIAL optimization finds its application in

a vast majority of fields, such as commerce, resource

allocation, semiconductor chip-design [1], and medicine [2]. A

large proportion of these problems requires computing resources

that exponentially scale with the number of variables, meaning

that a solvable problem may become practically unsolvable by

just doubling its size [3], [4]. This has motivated (1) specialized

algorithms that provide the solution for either simplified prob-

lems, or answers with various degrees of approximation [5], [6],

and (2) application-specific accelerators aimed at reducing the

time-to-solution for large problems [7], [8], [9], [10].

Finding the maximum cut of a generic graph, or the max-cut

problem, is a well-studied problem in the context of the design

Manuscript received 5 July 2022; revised 14 February 2023; accepted 23 April
2023. Date of publication 19 July 2023; date of current version 6 September
2023. The work has been supported by the US National Science Foundation
under Grant 1710940 and by the Air Force Office of Scientific Research
(AFOSR) under Grant FA9550-16-1-0363. Recommended for acceptance by
A. Rubio. (Corresponding author: Aditya Shukla.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48104 USA (e-mail:
aditshuk@umich.edu; merement@umich.edu; mazum@umich.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TC.2023.3272278, provided by the authors.

Digital Object Identifier 10.1109/TC.2023.3272278

of approximate algorithms for NP-hard problems. To tackle

a general max-cut problem’s exponential complexity, several

polynomial-time approximate algorithms exist that guarantee

bound on the approximate solution [11], [12]. So far, the al-

gorithms providing the tightest bounds are based on the semi-

definite programming (SDP) relaxation [13]. However, these

may become impractical for graphs with a large number of

vertices as these involve operations on vectors with an equally

large number of elements.

The heuristic by Burer, Monteiro and Zhang [14] (henceforth

called BMZ heuristic) uses rank-2 SDP. Thanks to the greatly

reduced dimensionality, this heuristic is much faster than the

rank-N SDP. For max-cut, this heuristic has been shown to be

one of the best performing ones [11]. Although the rank-2 SDP

is not guaranteed to perform like the full-rank SDP (see [15] for

some recent results in this direction), the BMZ heuristic provides

good quality solutions with a more manageable computational

resource scaling. Circut, which performs very well in compari-

son to other max-cut solvers, is based this heuristic [11].

For accelerated solving of combinatorial optimization prob-

lems, several dedicated efficient CMOS-based accelerators, sim-

ulating Ising (binary) spin-models, have been proposed in [16],

[17], [18], [19] (review in [8]). While the matrix-vector multipli-

cation heavy annealing algorithms have greatly benefited from

hardware-related schemes, acceleration techniques for the BMZ

heuristic have been limited. This originates from a relatively

complex dynamics of the heuristic, which comprises a system

of pair-wise non-linearly coupled real variables.

In [20], we proposed an almost linear dynamical model for

solving max-cut that works on similar underlying principles as

that of the BMZ heuristic, but adapted for the CMOS-based

computing. We empirically demonstrated its performance as a

max-cut solver in polynomial time and discussed the accompa-

nying hardware requirements.

In this work, we present a fully custom CMOS accelerator

for the relaxed rank-2 SDP dynamics, designed using 130 nm

commercial technology. We co-design all levels of the system

– algorithm, architecture and circuit. At the algorithm-level,

rank-2 SDP dynamics is relaxed from the sinusoidal to trian-

gular coupling, causing the kernel operation to be realizable

using analog computing methodologies, with only a slight com-

promise in the solution quality. Computer architecture-wise,

continuous variables are represented by analog voltages while

an array of analog vertices supports all-to-all connectivity of

graphs, and extends to post-SDP operations. The coupling

arithmetic is conducted on a shared arithmetic unit while the
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Fig. 1. This work vis-à-vis other approximate algorithms.

switch-capacitor-based accumulation mechanism updates the

states. At the circuit/transistor-level, our design ensures that each

vertex comprises the bare minimum transistors to save area.

The capacitor is realized using upper metal-layers to serve as

the analog memory, while a transconductance cell (henceforth

called a gM -cell) beneath enables its reading.

As the first prototype, we design an integrated circuit com-

prising 64 nodes – each with a pitch of 45 µm and an area 38 µm

× 27 µm – and the power dominated by its static component at

40 µW per vertex. It replicates the gradient-descent dynamics

of the relaxed rank-2 SDP, while the fully digital post-dynamics

stages are outsourced to a general-purpose computer. Fig. 1 puts

into perspective our heuristic versus the others, and also shows

the constituent sub-steps.

This article is organized as follows. In Section II, we provide

the necessary background for this work. In Section III, we give

the description of the architecture and the pseudo-code that trans-

late the original heuristics for implementation on the proposed

hardware. In Section IV, we provide circuit-level details of all

components of the system. Post-layout simulations are presented

in Section V and conclusion in Section VI.

II. BACKGROUND

A. Ising Models and Maximum Cut

Ising model is a set of coupled binary variables (commonly

represented by ±1) or spins (symbolically by ↑↓). Each spin is

coupled to a subset of other spins which makes one spins-state

more energetically favorable than the other. Let the coupling

between the spins of Ising model be represented by a undi-

rected graph G with N vertices, M edges and adjacency matrix

A = {Aij}. For spin-state σ = {σi} with σ ∈ {−1,+1}, the

corresponding Hamiltonian H is

H(σ) =
1

2

∑

i,j

Aijσiσj . (1)

The ground state of the Ising model is the spin-state yielding the

minimum value of H(σ).
For generic graphs, finding the ground state is an NP-complete

problem [21], [22]. For example, all of Karp’s NP-complete

problems can be re-formulated as the ground state search prob-

lem of a specially constructed Ising models [23].

Finding the ground state of the Ising model based on G
is equivalent to determining the max-cut of G. Indeed, any

spin-state partitions the vertices into two sub-sets: one with

only positive spins and another with only negative spins. The

corresponding cut-size is defined as the number (or the net

weight) of the edges from one partition to the other:

χ1(σ) =
1

4

∑

i,j

Aij(1− σiσj)

=
M

2
−

1

2
H(σ). (2)

Thus the minimum of H(σ) corresponds to the maximum of

χ1(σ) and vice-versa. Alternatively, the max-cut problem can be

presented in terms of a N ×N positive semi-definite matrix S:

CG = max
S

M

2
−

1

4
(A · S)

s.t. rank(S) = 1

diag(S) = {1}N

S � 0

, (3)

where A · S =
∑

i,j AijSij and the last condition denotes pos-

itive semi-definiteness. The spin-state σ and the positive semi-

definite matrix S are related by S = σσ
T .

B. Max-Cut Via Relaxed Burer-Monteiro-Zhang Heuristics

The NP-hardness of the max-cut problem prompted the de-

velopment of algorithms that guarantee a lower-bound on their

approximate solution in polynomial time [24], [25], [26], [27].

Among these, the algorithm by Goemans and Williamson [27]

provides the tightest bound on the expected solution. Their

algorithm has two stages. The first stage replaces each of the

N spins, σi, with N -dimensional unit vector �si and the product

of spins with their dot-product. Then, an analogue of the cut χn

is defined

χn(�s) =
1

4

∑

i,j

Aij(1− �si.�sj). (4)

For S = {�si.�sj}, the following rank-N SDP is solved:

CG = argmax
S

M

2
−

1

4
(A · S)

s.t. diag(S) = {1}N

S � 0

. (5)

The solution vectors of the SDP (�si), distributed over the N -

dimensional unit sphere, are mapped to +1 or −1 by comparing

their orientation w.r.t. a random hyperplane through the origin.

The cut so obtained was shown to be within 87% of the maximum

cut for random graphs with non-negative weights.

Burer et al. [14] proposed to use rank-2 SDP, which is equiv-

alent to limiting the dimensionality of �s to two in (4). Each

two-dimensional unit vector is represented by polar coordinate

θ, s.t.�s = [cos(θ), sin(θ)]. The rank-2 cut analogueχ2 is defined

as

χ2(θ) =
1

4

∑

i,j

Aij(1− cos(θi − θj)), (6)

where θ = {θ1, θ2. . .θn}. This heuristic was implemented in

the max-cut solver Circut, where the dynamical realization of
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rank-2 SDP was followed by finding the optimal rounding and

post-processing based on 1-opt and 2-opt local search.

The dynamical realization of SDP ensures that χ2(θ)
monotonously increases with time. By updating θ according

to θ̇ = ∇χ2(θ), the equations of motion governing the gradient

descent of the system are:

θ̇i =
∑

j

Aij sin(θi − θj). (7)

It can be shown [14] that if the stable steady state θ
′ is such

that θ′i − θ′j = kijπ, where kij is an integer, then θ
′ represents

the maximum cut. However, generally the elements of θ
′ are

distributed across [0, 2π), and consequently each θi (now one-

dimensional) is rounded by comparing its orientation with a

reference coordinate. Specifically, the following equation may

be used to round θ
′ to σ

′:

σ
′(θY ) = sgn(sin(θ′ − θY )), (8)

where θY is the reference coordinate. In practice, several θY
are chosen from the range [0, 2π). For each σ

′(θY ), the corre-

sponding cut is evaluated using (2). The configuration leading

to the largest cut is selected as the solution of rounding. During

post-processing, a local search for the maximal cut is performed,

ensuring that the cut cannot be increased by inverting any single

spin or a pair of spins.

In contrast with the Goemans and Williamson’s rank-N
algorithm, rank-2 SDP-based heuristic does not have proven

approximation guarantee. The landscape described by χ2(θ) is

non-convex and the solution’s quality depends on the quality of

the minima of the Hamiltonian. Nevertheless, the algorithm was

empirically shown to obtain competitive results in polynomial

time [11].

C. Relaxing BMZ Heuristic to an Almost Linear Dynamics

The dynamical rank-2 SDP of the BMZ heuristic can be

viewed as a system of vertices with sinusoidal coupling: each

vertex i has a dynamical state θi that depends non-linearly on

states of the other vertices. An exact realization of the nodal

coupling dynamics requires computing sinusoidal function over

multiple periods. Since there is a separate sine-evaluation cor-

responding to each edge, this computational effort may greatly

shoot up for large and/or dense graphs. Instead, we consider

a triangular coupling function, as a simpler piece-wise linear

approximation of the sine. This reduces a complex non-linear

coupling function to one composed of basic arithmetic opera-

tions - pair-wise additions and sign inversions, which are directly

realizable using analog computing methods.

In (6), if the cosine cut-counting function is replaced with a

more general but periodic Φ and the state vector by v, then the

new cut χΦ is,

χΦ(v) =
1

4

∑

i,j

Aij(1− Φ(vi − vj)) (9)

and correspondingly, the new dynamical equations are

v̇i =
∑

j

Aijφ(vi − vj), (10)

Fig. 2. Comparison of (a) the Hamiltonian kernel Φ(v) for the rank-2 relax-
ation (solid line) and the triangular model (dashed line) (b) the dynamic coupling
function φ(v).

Algorithm 1: Nodal Coupling Dynamics (Input:A; Output:

x).

1: for i ∈ {1, 2. . .N} do

2: xi ← N (0, γP ) � Normally distributed

3: end for

4: while t < Tmax do

5: for i ∈ {1, 2. . .N} do

6: S ←
∑

j Ai,jφ(xi − xj)
7: xi(t+ 1) ← xi(t) + ηS � η is time-discretization

factor

8: end for

9: t ← t+ 1
10: end while

where φ(v) = − 1
2
Φ(v)
dv . For a piece-wise linear coupling func-

tion, Φ is a periodic function with period P and Φ(kP/2) =
(−1)k:

Φ(v) =

{

1− v2, v ∈
(

−P
4 ,

P
4

]

(

|v| − P
2

)2
− 1, |v| ∈

(

P
4 ,

P
2

] , (11)

so that

φ(v) =

{

−v, v ∈
(

−P
4 ,

P
4

]

v − P
2 , v ∈

(

P
4 ,

3P
4

] . (12)

Fig. 2 compares Φ and φ with the original ones for P = 4 (a.u.).

We addressed the questions regarding the capability of the

proposed heuristics to approximately solve the intended problem

in polynomial time in [20]. The integrality gap [27] due to the

random rounding following the new dynamics was shown to be

about 85%, versus 87% for the full rank SDP.

The detailed steps of the proposed heuristic are provided

in Algorithms 1-3. In Algorithm 1, the N analog spins are

first initialized to normally distributed values after which the

states are let to evolve for Tmax time-steps. In Algorithm 2,

K uniformly distributed rounding centers are chosen. For each

choice, the analog spins are rounded to±1 and the cut evaluated.

The algorithms then finds the the largest cut and corresponding

spin-state. In Algorithm 3, the spin-state is updated according

to the 1-opt local search rule.

In Fig. 3, we demonstrate our heuristic on an example graph

with 25 vertices, shown in Fig. 3(a). Fig. 3(b) plots the states of

vertices as they evolve following (10) with the period of φ set

to 2. Fig. 3(c) and (d) plot the initial and final states as phasors
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Algorithm 2: Randomized Rounding (Input: x,K; Output:

σ).

1: for i ∈ {1, 2. . .K} do

2: yi ← U(−P/2, P/2)
3: end for

4: Cmax ← 0
5: ymax ← y1
6: for i ∈ {1, 2. . .K} do

7: for j ∈ {1, 2. . .N} do

8: σj ← sgn(φ(xj − yi))
9: end for

10: C ← M
2 −

∑

m

∑

n Am,n
σmσn

4
11: if C > Cmax then

12: Cmax ← C
13: ymax ← yi
14: end if

15: for j ∈ {1, 2. . .N} do

16: σj ← sgn(φ(xj − ymax))
17: end for

18: end for

Algorithm 3: Local Search (Input: σ; Output: σ).

1: while I < Imax do

2: for i ∈ {1, 2, . . .N} do

3: S ←
∑

j Ai,jσiσj

4: if S < 0 then

5: σi ← −σi

6: end if

7: end for

8: I ← I + 1
9: end while

with period of 2. The solid black diameter at angle α rounds

continuous states to binary spins, ±1. The mapping clearly

depends on α and this dependence is plotted in Fig. 3(e) and (f)

for the initial and final states. Fig. 3(f) shows the cut evolution

over time. It is divided into two stages: the first shows a coarse

optimization from the relaxed heuristics and the second shows

a finer increment in the cut from the local search procedure.

III. ISING MACHINE BASED ON THE BMZ HEURISTIC

A. Motivation

Significant progress has been made towards accelerating the

ground-state search problem of Ising models and more gener-

ally, solving combinatorial optimization problems via dynamical

Ising-like models [8]. Binary Ising machines, in most cases, are

designed to parallelize the thermal annealing of a large number

of semi-independent Ising models. Most binary spin annealing

systems are directly challenged by the need for an extremely

large samples of the spin-states. On the other hand, analog

models are hard to implement in a continuous time fashion

due to sensitivity to analog parameters, difficulty in replicating

Fig. 3. Illustration of the relaxed BMZ heuristic on an example graph. (a)
The example graph with 25 vertices. (b) State evolution based on the relaxed
dynamics with period of φ to 2 for 50 time-steps. (c) and (d) Polar plot of the
states at T = 0 and T = 50. (e) and (f) Cut versus polar angle at T = 0 and
T = 50, and dashed line indicating the max-cut. (g) Average cut evolution from
20 random initial conditions as obtained using the relaxed heuristic and the local
search procedure.

their complex dynamics exactly using analog components, and

dependence on alternatives to the widely-used CMOS devices.

The BMZ heurisitic was shown to give competitive max-

cut results for artificially constructed graphs among 26 other

heurisitcs in [11]. So far, to the best our knowledge, no hardware

Ising machines (or generally, hardware combinatorial optimiz-

ers) based on the heuristic have been reported. The polynomial

scaling and an overall reduced run-time of the relaxed heuristic

due to the triangular approximation was demonstrated on a

general-purpose computer in [20]. There, the max-cut values

for graphs in G-set were found to be only slightly (about 2%)

reduced than the max-cut obtained from Circut. With higher

level of customization, one expects better scaling performance

than achievable by a general-purpose computer.
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TABLE I
RELAXED HEURISTIC’S CONSTITUENT OPERATIONS

B. Kernel Operations of the Heuristic

Table I summarizes the key computational operations in the

algorithm presented in Section II-C and identifies the corre-

sponding input and output types. The table reveals two key

composite operations that need to be efficiently conducted by

an accelerator. The first operation is the modulo, defined for any

real a and b ( 	= 0) as mod(a, b) = a− |b|
a/|b|�, where 
x� is

the largest integer less than, or equal to x. The function φ in (12)

may be expressed as the modulo with respect to φ’s period P ,

followed by conditional sign-inversions. Binarization of analog

spins requires a modulo of the analog state with respect to P ,

followed by 1-bit quantization.

The second operation is the multiplication-and-accumulation

(MAC). Both cut-evaluation and local search steps involve the

product of spin-vector with the adjacency matrix. The vector

output determines a binary spin vector either for the binarization

or for Hamiltonian reducing spin-flips.

C. Analog-Digital Mixed-Mode Computation

In this work, we base operations discussed above around a

mix of analog-digital computing methodologies for two reasons.

First, MAC is efficiently accelerated through a simultaneous

multi-element product and sum [28], where the sub-operations

of the MAC (usually a product of time-variant vector with time-

invariant ones) are spatially unfolded and simultaneously con-

ducted. Each analog/digital variable input of the MAC supplies

a proportional current signal onto an accumulating wire/bus and

thus physical movement of data is avoided. Higher the number

of simultaneous summations, more efficient is the accumulation

operation via unfolding. Such methods have been extensively

studied for applications involving artificial neural networks and

signal-processing [29].

Second, the proposed heuristic involves the evolution of

analog variables via a series of accumulations conducted over

time. Charge, as an analog variable, can be stored and naturally

accumulated on a capacitor, within the limits of supply voltage

and leakage [30]. Hence a capacitor can serve as a stationary

analog memory element to store the spin-state. Whereas, in a

purely digital memory, updating states without the movement of

data would require adders in each vertex. A comparative study

of digital versus analog approach (and the study other potential

architectures for this heuristic), however, is beyond the scope of

this paper.

Fig. 4. Illustration of the organization of operations on 3× 3 vertex array.
(a) Evaluating modulo for computing φ(vi − vj). (b) Temporally multiplexed
multiply-accumulate. Vertices’ being read simultaneously have the same color.

D. Organization of Operations

In this work, analog memory cells are in one-to-one corre-

spondence with vertices of the graph. Each cell comprises a

capacitor-based memory and means to communicate with the

computing element of the system. A shared current-bus enables

a multi-vertex read via superposition of individual currents and

establishes connection with the φ computing unit. Such sharing

of the bus, on the one hand limits the speed of the nodal coupling

dynamics, on the other, enhances the speeds of the more compu-

tationally linear cut-evaluation and local search. Fig. 4(a) depicts

the modulo operation on a pair of vertices i and j selected from

array of vertices. Fig. 4(b) shows the time-multiplexed MAC

operation, divided into multiple column-wise simpler accumu-

lations due to restrictions on the selectability of the vertices.

Fig. 5 illustrates the organization of the N vertex array along

with a read-write signal modulator to read and update vertex

states, an external adjacency list/memory and global controller

that manages the operations occurring in all the other blocks in

the system.

E. Implementing Nodal Coupling Dynamics on the Proposed

System

Fig. 5 shows the implemented computational system of ver-

tices and the read-write modulator in the architectural schematic.

The entire system of equations in (10) is realized by processing

one vertex, one edge at a time. Each such processing is essen-

tially divided into two phases: reading and writing. During the
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Fig. 5. High-level organization comprising the vertex memory array, compu-
tational unit, global controller and graph’s adjacency memory with internals of
the vertex-array and computational unit. SELR,W are the vertex selection bits,
nDAC is the DAC’s digital input, C+/− is the comparator’s output, ΠR,W are
read/write switch’s controlling signals, and S is read-bus inversion input.

reading phase vertices are simultaneously read by superposing

multiple read currents onto a voltage-pinned current carrying

bus. The net current is stepped up/down by superposing digi-

tized current from a digital-to-analog converter (DAC). This is

followed by sign-inversions from a 2-input and 2-output (2:2)

multiplexer, to get a current proportional toφ. During the writing

phase, a voltage proportional to φ is buffered onto capacitor CB .

The charge so stored is sent up to the updated vertex, through

a separate write-bus, leading to the evolution of the state by

long-term accumulation.

Consider the array of vertices in Fig. 5. Let vertex i be

chosen for updating, based on an adjacent vertex j. It’s up-

dated by first selecting the vertices via the row and column

selection multiplexers and closing the read-switch R or assert-

ing ΠR, while keeping the common-mode bus voltage pinned.

This gives an output differential current through the read bus

Fig. 6. Vertex block-diagram; Key: ΠW – write-switch control signal, ΠR –
read-switch control signal, S – sign-inversion signal.

equal to

Ii − Ij = gMvc,i − gMvc,j = gM (vc,i − vc,j) (13)

The sign of differential current Ij above is reversed using 2:2

multiplexer local to the vertex, which reverses the current di-

rection by exchanging the differential components. If the DAC

output is represented by nDACI0, then it is adjusted so that the

net current lies within the peak values of φ:

−
I0
2

< Ii − Ij − nDACI0 <
I0
2
. (14)

Finally, the input to the multiplexer S is set to nDAC to give a

net modulated current

φ(vi − vj) = (−1)nDAC (gM (vi − vj)− nDACI0) . (15)

For writing, the moment ΠW is asserted, the voltage on the

read-bus stored inCB is pushed to the vertex being updated, akin

to the standard switched-capacitor accumulator. The change in

vc,i is given by

δvc,i =
CB

C
ARφ(vc,i − vc,j), (16)

where C is vertex’s capacitance (Fig. 6), A is the voltage gain

from read current to CB and R is the net resistance seen the by

the read-current bus (latter two shown in Fig. 5). Similarly, the

other vertices are updated in sequence. Each such cycle of state

updates, for all vertices, constitutes a time-step.

Algorithms 4–6 (listed in Appendix A, which can

be found on the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TC.2023.3272278)

provide detailed steps for realizing the proposed heuristics

on the system depicted in Fig. 5. The algorithms are suited

for sequential code-blocks in a hardware-description language

(e.g., Verilog), as these involve reading and asserting real-time

signals. All key input and output signals, referenced in the

Algorithms 4–6 are depicted in Fig. 5. Two key sub-routines

are repeatedly used through the algorithms – COMPUTE-φ and

READ-WRITE, the exact sequence of steps of which are provided

in Appendix A.1, available in the online supplemental material.

The algorithm for the nodal coupling dynamics is provided

in Algorithm 4. The execution time for the nodal coupling

dynamics scales as O(M), where M is the number of edges.

Though a vertex-stationary array realizes the dynamics of (12),

a shared bus restricts the number of state updates in a given

period of time, as only one edge is processed at a time.
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Fig. 7. Vertex schematic; logic transistors are not shown.

F. Extending the System to Incorporate Binarization and

Local Search

As the binarization and local search components are primarily

composed of binary variables and have relaxed circuit-related

requirements than the purely analog nodal coupling dynam-

ics, these will be incorporated in the future designs. Detailed

algorithms for binarization with K rounding centers and cut-

evaluation are provided in Algorithms 5 and 6, respectively

in Appendices A.3 and A.4. We skip the description of the

local search step as it essentially involves the same steps as

cut-evaluation. The additional step is that the sum
∑

Aijσj is

evaluated for each vertex i. Depending upon the relation of the

sign of net charge thus accumulated in CB with the spin of the

vertex i, the spin is flipped or preserved.

IV. CIRCUIT-LEVEL DETAILS

A. Vertex

The vertex is primarily a capacitor-based analog memory with

a differential gM -cell that converts the capacitor’s voltage to a

proportional current as the output of a read. Additionally, the

vertex has a 2:2 multiplexer to invert the sign of the current,

and a minimal logic to select itself for read/write. Fig. 6 depicts

the block diagram of the proposed vertex, with the capacitor

C, and the other components accordingly labelled. The detailed

schematic is shown in Fig. 7.

The analog memory is implemented using metal-insulator-

metal (MIM) capacitor with a capacitance of 100 fF. This allows

us to place the capacitor above the substrate containing the

actual transistors, thus saving area. The capacitor’s minimum

allowed size depends on (1) ability to undergo writing cycles

without loosing substantial existing charge, and (2) the size of

the CMOS components below, which it should not significantly

exceed. To set the common mode of the state voltages to a

pre-determined value, we split the capacitor in a series of two

identicalCP andCN , and assert their common node during every

read-cycle.

The gM -cell (Figs. 6 and 7 converts the capacitor’s analog

charge to a proportional current. A differential amplifier with a

tail current-source ensures that the transconductance is largely

independent of input common-mode voltage. Larger transistors

lead to less variability in transistor threshold, and a more uniform

gM spatially across the array. The gM -cell’s size also determines

the minimum time needed to read the states. A faster cell would

mean faster reads, and a faster overall chip operation. Therefore,

we used big transistors for the gM -cell (W = L = 15λ). Despite

the static power consumption, the gM -cell is maintained in its

DC conducting state as the vertex read-time was found to be

smaller than its turn-on time.

All the analog switches of the cell are implemented using

transmission gates. The design requires that all the bus voltages

be between 0 and the VDD, even when writing. Read-enable

switches turn on the gM -cell’s current output to the current bus.

Write-enable switches enable charge from the write bus to pass

through. A 2:2 multiplexer serves as an output sign-selection

switch for inverting the output differential current.

A minimally sized logic determines the following local sig-

nals from the global row and column signals: (1) select-enable

of the vertex, (2) gM -cell’s one-bit weight, (3) sign of the output

current, and (4) binary spin-state.

The layout of the vertex’ integrated circuit with all the dis-

cussed components is shown in Fig. 8(a). The majority of the

substrate’s area is occupied by the gM -cell, followed by the logic

gates and then write-enable switches. An equal area is assigned

to the MIM capacitor, as shown in the orthographic view of a

separated upper metal layers and the lower layers in Fig. 8(b).

B. Read-Write Amplifier

The read-write amplifier buffers the net read-bus voltage onto

the buffer capacitor CB and pushes the charge thus stored to

the updated vertex. This block may be divided into two compo-

nents: read-buffer and write-buffer (Fig. 9). The read-buffer is a

differential amplifier with a current-mirror load [30] and has a

small but linear gain. Extra sinking loads are used for operating
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Fig. 8. Vertex layout. (a) Occupancy by various portions of the vertex.
(b) Layout visualized in 3D to differentiate the state capacitors from the lower
layers.

point’s adjustment, setting it closer to VDD/2. CB stores the

read-bus voltage and supplies its charge to the capacitor of the

vertex being written onto. Since the peak increment in the state is

generally smaller than the maximum state voltage,CB is smaller

than CP and CN . For this reason, we use lower metals layers

for CB .

The write-stage is essentially a high gain amplifier with

differential input and single-ended output (Figs. 5 and 9). Its

primary gain stage is a current-mirror loaded differential am-

plifier [30]. We design its gain to be large enough so that the

amplifier can push charges reliably over the long write-bus,

but not so much as to cause any oscillatory side-reaction due

to positive feedback. Its secondary/output stage is an inverting

amplifier with resistive load to limit the gain, provide high

voltage swing, and predictably set the output operating point.

Ideally, the charge increments provided by write-stage must be

homogeneous with respect to the read-bus voltage and must

cause zero increments for zero inputs. This trend may be easily

disrupted post-fabrication due to the single-endedness of its in-

put (the voltage acrossCB). To limit any such non-homogeneity,

we balance the output amplifier with respect to its input. This

is done using a three-step process once during the entire IC’s

operation. First, we remove any differential input to the read

bus, or effectively ensuring Vi,N = Vi,P (Fig. 9). Then we store

the voltage across CB onto C ′ by asserting Πo. Lastly, all the

vertex capacitors (C) are simultaneously preset to the output of

the write stage, Vo,N − Vo,P .

C. Other Components

The DAC plays a critical role in the realization of the heuristics

by digitally stepping up/down the read-bus current. It is used in

modulo/φ realization, random initialization of vertices and in-

crementally shifting the rounding center during binarization. We

used a 5-bit DAC, which provides enough separation between

the zeroes assuming a full (0 toVDD) input range forφ. To realize

DAC, we re-use the gM -cell of the vertex with the multiplicities

1,2,4,8 and 16. This allows a direct control over the zeros of φ,

e.g., if the first zero is to be placed at 0.1 V, one could set the

input to the DAC’s gM cell to 0.1 V. By tuning the input voltage

of the gM -cell, one may also scale the current-step of the DAC,

and alter the number of bits.

The comparator was implemented using a 5-stage high gain

differential amplifier, with an absolute voltage gain of about

103. Thus, it could compare small but frequently occurring dif-

ferential voltages of 1 mV. Read-bus pinning circuit (schematic

in Appendix B, available in the online supplemental material),

pins the common mode read-bus voltage to VDD/2. It uses the

principle of common-mode feedback, i.e., it feeds back current

into the bus depending on the separation from its desired value of

VDD/2. Lastly, the sign-inverter is essentially a 2:2 multiplexer,

similar to the one discussed in Section IV-A. The layout of the

integrated circuit with 64 vertices is shown in Fig. 10.

V. VALIDATION AND RESULTS

A. Realization of φ

The nodal coupling dynamics is fully analog and in compari-

son to other parts of the heuristics – rounding, cut-evaluation

and local-search – it is most susceptible to non-idealities of

analog computation. The computational errors may primarily

stem from time-invariant causes such as parasitic impedances,

non-linearity of components, devices mismatches, and time-

variant ones such as noise.

The dynamical part comprises reads in proportion to the

dynamical variables and writes in proportion to φ. Extent of

accuracy, with which φ is realized, depends on how accurate

the reading, DAC’s application and writing processes are on the

vertex array. Hence, we quantitatively analyze the implemen-

tation accuracy of φ by simulating several dummy writes on

the post-parasitic extraction model of the layout of the circuit.

The validation procedure may be split into two sub-parts -

φ-computation and the proportional writing-process. The φ-

computation involves the state-reads and the DAC application.

The latter involves sensing the read-bus voltage and sending the

charge to the vertex. To establish the validity of the overall φ,

we separately test the two sub-processes.

Fig. 11(a) plots the φ-computation characteristics as obtained

on the layout simulations. We sweep the state voltage (X-axis)

and observe the final differential read-bus voltage (Y -axis) once

the DAC stops counting. We see that unlike the intended φ of

(12), peaks systematically decrease away from zero or equiva-

lently, the zeros are non-uniformly positioned. Also segments

after the fourth zero have observable curvature. The coupling
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Fig. 9. Read-write amplifier’s schematic.

Fig. 10. Layout of the integrated circuit with 64 nodes.

Fig. 11. (a)φ-realization. (b) Write-test; inset plots the histogram of∆X with
the mean-line as the reference.

function has a constant vertical shift, which is represented by an

offset φ0 along the Y -axis.

This systematic error is caused by the non-linearity of the gM -

cells, which affects the φ computation via inaccurate placement

of the levels of the DAC and hence, the zeros of φ. Non-linearity

of the gM -cell also leads to curvature in the individual φ seg-

ments. This is apparent once we move away from the origin,

i.e., for a large difference between the state charges. Both non-

idealities arise from small output resistance of the transistors that

makes it difficult to draw large current from them. Though this

may be avoided by the use of buffered DACs, but as previously

mentioned, we avoided this for an ease of design by re-using the

same gM -cells and hence directly controlling the zeros of φ.

Fig. 11(b) plots the charge-update characteristics, i.e., net

change in the state-voltage for the corresponding read-bus volt-

age. This is obtained from the layout simulations of the nodal

coupling dynamics of randomly connected graphs. We observe a

random distribution of the net change around the mean line, with

a standard deviation of 4 mV. A vertical offset at the zero-input is

also observed, which would cause a collective temporal drooping

of the state-voltages.

The real writing process may be modelled as:

φn(vi − vj) = φ(vi − vj) + wnN (0, 1) + φ(0), (17)

where, wn is standard deviation of the noise in V .

Write-bus impedance is one of the major causes for these

errors in writing, because the differential voltage across the

write-bus deviates from the actual write-amplifier’s output. The

bus may be modelled as a long wire with a distributed (often

time-variant) line impedance, leading to a distribution in the

charge increments. Other parasitic phenomena in the read-write

amplifier, such as capacitive feed-through, lead to an offset in

φ. Removal of this offset constitutes future work and a possible

solution is discussed in Section VI.

B. Modelling Process-Related Variations

The process-related variations are expected to affect only the

analog components of a vertex: the capacitor and the gM -cell.

Another (partly) analog component, the DAC is shared and

tunable while in operation.

Let the actual vertex state-capacitance be C ′
i and output

conductance be g′M

C ′
i = C +∆Ci

g′M,i = gM +∆gM,i (18)
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Fig. 12. Circuit simulations for illustration. (a) Three randomly connected {0, 1}-weighted graphs with the number of nodes, edge-count and the max-cut tabulated
in (b). (c) and (d) Outputs of the three components of the heuristics, for each of the three graphs in (a). The temporal plot depicts the nodal coupling dynamics, in
which each colored continuous curve represents the state-voltage of the correspondingly colored node. In the polar plot, each point angularly represents the phasor
(w.r.t. P = 140 mV) of final state-voltage. Next, the cut is obtained using (2) for several rounding centers/angles and plotted to obtain the cut value.

Any deviation in the overall capacitance from the targeted man-

ifests as a proportional scaling of the charge-increments. Any

variation of the gM -cell translates to a proportional change in

the output current while reading. Expressing (15) with process

variation effects incorporated, we obtain

δvi =
CB

C ′
i

AR(−1)nDAC

(

g′M,ivi − g′M,jvj − nDACI0
)

.

(19)

Introducing:

v′i =
g′M,i

gM
vi,

leads to:

δv′i =
g′M,i

gM

CB

C ′
i

AR(−1)nDAC

(

gM (v′i − v′j)− nDACI0
)

.

(20)

Comparing this with the original dynamics of (10), we see that

the even though the charge-increment has the same relationship

with the vertex’ state as intended, each vertex’ state gets updated

at different rates. The new dynamics, modelling the PV, is:

v̇′i = γi
∑

j

Aijφ(v
′
i − v′j). (21)

Hence, the process variations can be modelled by a non-

uniform state-update factor. It should be noted that at the steady

state, one has v̇ = 0, and therefore, the critical point of the

system is independent ofγ. Consequently, the system is expected

to converge to the same set of stationary points, which diminishes

the impact of process-related variations.

C. Max-Cut Results

To demonstrate the efficacy of the BMZ heuristic based

max-cut solver, we simulate the dynamics at the transistor-level

model of the integrated circuit. We limit our study to random

{0, 1}-weighted graphs with upto 35 nodes. Fig. 12(a) shows

the randomly connected graphs we considered for simulation on

the proposed machine and the state of the system during/after

each of supported sub-processes are shown in Fig. 12(c)–(e). For
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TABLE II
MAX-CUT RESULTS WITH MAJOR NON-IDEALITIES

each of the graphs, we see an increase in the value of the cut at

the end of the dynamics. Note that the global maximum for the

cut expected to be found only through multiple such runs. For

instance, the probability of finding the global maximum for the

graph with 25 nodes in Fig. 3(a), over 100 trials of 20 time-steps

each, is about 20%.

In Sections V-A and V-B we identified write-noise and process

variation as main sources of non-idealities that may affect the

performance of the proposed machine for larger graphs. To study

the effect of these factors we simulate the dynamics under three

conditions. For the first set, we assume a non-uniform rate of

increments, with a Gaussian distribution of γi, i.e.,

γi = 1 + εN (0, 1), (22)

where ε is the effective magnitude of variations of the param-

eters. In the second set of simulations, we add Gaussian noise

during each increment of the state, given by (17). Finally, we

add both effects to enable the most realistic simulation of the

machine practically possible for large graphs.

Table II lists the mean max-cut values for G-set obtained from

100 runs of the relaxed dynamics through 100 discrete time-

steps with a high-level scripting language. We used identical

set of initial conditions across the columns for each trial of the

heuristic. For simulating the effect of PV at practical levels, we

used ε = 0.3 in (22), and for the write-noise we added a random

Gaussian noisy component during each write:

δxi = φ(vi − vj) + wnN (0, 1), (23)

with wn = 4 mV. We see that mean final cut in the presence of

process variations slightly decreases, which could be attributed

to termination of the dynamics before the steady state was

reached. In the case of the noisy writes (with or without P-V),

we see a moderate decrease in the mean final cut.

VI. DISCUSSION

The offset φ(0) in (17) causes a write-frequency dependent

drooping of the state voltage over time. It can be shown that

such offsets, if not checked, lead to deviations large enough

to disassociate the dynamics from the intended computational

model. The effect of the offset may be eliminated by supplying

an additional steady current to the read bus. First, dummy writes

(with Vi,P = Vi,N ) are performed on a free vertex. The offset

causes non-zero write charges to accumulate over a period of

time. Negatively feeding back this accumulation signal as a

steady component to the read bus current in effect will remove

any offset.

The presented computing device is designed to accommodate

a fully connected graphs and can be directly employed for a more

general class of problems. Some graph topologies, such as the

planar, are relatively easily accelerated using alternative Ising

machines. Many area efficient accelerators have been proposed

that support planar spin lattices [8]. However, assuming planarity

of problems limits the applicability of the machine and requires

embedding methods [31] that increase the effective number of

nodes.

Many problems of practical importance demand weights to

possess multiple bits. This can be achieved by modulating the

capacitance that sends back the charge to the state capacitor

(CB). For multi-bits of weights, the charge increments can be

scaled up by using larger CB .

VII. CONCLUSION

A computing system replicating the relaxed BMZ heuris-

tic is presented. It determines the maximal cut by using the

heuristic, but adapted for CMOS analog-digital mixed-signal

mode acceleration, with theoretically-backed performance. The

key computing operations of the employed heuristic are the

pairwise modulo and multiply-and-accumulate. The heuristic’s

dynamical component, which concerns this paper, consists of

nodes (of a graph) corresponding to the vertices, and coupled,

depending on their adjacency, to contribute to evolution of oth-

ers’ states. Computing the periodic coupling function requires

several transistors, thus limiting the acceleration/parallelization

schemes applicable to the heuristic.

The implemented application-specific computing system

comprises an array of custom designed nodes/vertex corre-

sponding to each vertex of the problem graph. Each such node

implements analog memory cells with read, write-enables and

selection logic. Non-linear state-increment signals are computed

in the (analog) current domain using a successively approx-

imating modulo-calculator, external to the vertex array. The

area of the integrated circuit of the vertex is dominated by the

state-capacitor. The entire integrated circuit with 64 nodes, when

laid out, occupies an area of 0.45 mm× 0.43 mm, and consumes

power of about 40 µW per vertex at 1.2 V. Our post-parasitic

extraction model of layout shows that the circuit is able to

determine the max-cut for small graphs. The key challenge in the

design lies in precisely incrementing the states, which involves

pushing often small charges through long wires.
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