
Shortest Path to Boundary for Self-Intersecting Meshes
HE CHEN, University of Utah, USA
ELIE DIAZ, University of Utah, USA
CEM YUKSEL, University of Utah & Roblox, USA

Fig. 1. Example simulation results involving complex self-collision scenarios, generated using our method with XPBD [Macklin et al. 2016].

We introduce a method for efficiently computing the exact shortest path

to the boundary of a mesh from a given internal point in the presence

of self-intersections. We provide a formal definition of shortest boundary

paths for self-intersecting objects and present a robust algorithm for com-

puting the actual shortest boundary path. The resulting method offers an

effective solution for collision and self-collision handling while simulating

deformable volumetric objects, using fast simulation techniques that pro-

vide no guarantees on collision resolution. Our evaluation includes complex

self-collision scenarios with a large number of active contacts, showing that

our method can successfully handle them by introducing a relatively minor

computational overhead.

CCS Concepts: • Computing methodologies → Collision detection;
Physical simulation.

Additional Key Words and Phrases: Collision response, Computational ge-

ometry, geodesics, shortest path

ACM Reference Format:
He Chen, Elie Diaz, and Cem Yuksel. 2023. Shortest Path to Boundary for

Self-Intersecting Meshes. ACM Trans. Graph. 42, 4 (August 2023), 15 pages.
https://doi.org/10.1145/3592136

Authors’ addresses: He Chen, ankachan92@gmail.com, University of Utah, Salt Lake

City, UT, USA; Elie Diaz, elie.diaz@utah.edu, University of Utah, Salt Lake City, UT,

USA; Cem Yuksel, cem@cemyuksel.com, University of Utah & Roblox, Salt Lake City,

UT, USA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2023/8-ART $15.00

https://doi.org/10.1145/3592136

1 INTRODUCTION
Self-intersecting meshes, though they are often highly undesirable,

are commonplace in computer graphics. They can appear due to

the limitations of modeling techniques, animation methods, or man-

ual editing operations. Even physics-based simulations with self-

collision handling are not immune to self-intersections, as most of

them cannot guarantee an intersection-free state.

Notwithstanding the amount of work on self-intersection han-

dling within physics-based simulations, it still remains a challenge

in most cases. Continuous collision detection techniques [Li et al.

2020] require starting with and maintaining an intersection-free

state; therefore, they must be used with computationally-expensive

methods that can always resolve all self-intersections and they fail

when combined with cheaper techniques that are unable to do so.

Methods that split an object into pieces [Macklin et al. 2020] turn

the self-intersection problem into intersections of these separate

pieces, entirely avoiding the self-intersection problem, and they

fail to resolve self-intersections within a piece. Methods that solve

self-intersections using an intersection-free pose [McAdams et al.

2011] not only require such a pose, but also become inaccurate as

the objects deform and fail with sufficiently large deformations and

deep penetrations. Therefore, none of these methods provides a

robust and general solution for self-intersections.

In this paper, we present a method that robustly and efficiently

finds the exact shortest internal path of a point inside a mesh to its

boundary, even in the presence of self-intersections and some in-

verted elements. We achieve this by introducing a precise definition

of the shortest path to the mesh boundary, including points that

are both on the boundary and inside the mesh at the same time, an

unavoidable condition with self-intersections. Our approach works

with tetrahedral meshes in 3D (with boundaries forming triangular

meshes) and triangular meshes in 2D (with polyline boundaries).

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0002-5819-3453
HTTPS://ORCID.ORG/0009-0002-9493-1684
HTTPS://ORCID.ORG/0000-0002-0122-4159
https://doi.org/10.1145/3592136
https://orcid.org/0000-0002-5819-3453
https://orcid.org/0009-0002-9493-1684
https://orcid.org/0000-0002-0122-4159
https://doi.org/10.1145/3592136

2 • He Chen, Elie Diaz, and Cem Yuksel

We demonstrate that one important application of our method is

solving arbitrary self-intersections after they appear in deformable

simulations, allowing the use of cheaper integration techniques that

do not guarantee complete collision resolution.

Our method is based on the realizations that (1) the shortest path

must be fully contained within the geodesic embedding of the mesh

and (2) it must be a line segment under Euclidean metrics. Based

on these, given a candidate boundary point, our method quickly

checks if the line segment to this point is contained within the mesh.

Combined with a spatial acceleration structure, we can efficiently

find and test the candidate closest boundary points until the shortest

path is determined. We also describe a fast and robust tetrahedral

traversal algorithm that avoids infinite loops, needed for checking

if a path is within the mesh. Furthermore, we propose an additional

acceleration that can quickly eliminate candidate boundary points

based on local geometry without the need for checking their paths.

One application of our method is resolving intersections between

separate objects and self-intersections alike within a fast physics-

based simulation system that cannot guarantee intersection-free

states. It can be used alone or as a backup for continuous collision

detection to handle cases when the simulation system fails to re-

solve a previously-detected collision. In either case, we achieve a

robust collision handling method that can solve extremely chal-

lenging cases, involving numerous deep self-intersections, using a

fast simulation system that does not provide any guarantees about

collision resolution. As a result, we can simulate highly complex

scenarios with a large number of self-collisions and rest-in-contact

conditions, as shown in Figure 1.

2 RELATED WORK
One important application of our method is collision handling (Sec-

tion 2.1), though we actually introduce a method for certain types

of geodesic distances and paths (Section 2.2). A core part of our

method is tetrahedral ray traversal (Section 2.3). In this section,

we overview the prior in these areas and briefly present how our

approach compares to them.

2.1 Collision Handling
Collision handling is directly related to how they are detected, which

can be done using either continuous collision detection (CCD) or

discrete collision detection (DCD).

Starting with an intersection-free state, CCD can detect the first

time of contact between elements [Canny 1986], but requires main-

taining an intersection-free state. Through the use of a strong barrier

function, incremental potential contact (IPC) [Li et al. 2020] provides
guaranteed collision resolution combined with a CCD-aware line

search. This idea was later extended to rigid [Ferguson et al. 2021]

and almost rigid bodies [Lan et al. 2022a]. Incorporating projec-

tive dynamics into IPC offers performance improvement [Lan et al.

2022b], but resolving all collisions still remains expensive. Even

when the simulation system is able to resolve all collisions, CCD

itself can fail due to numerical issues, in which case, it can no longer

help with resolving the collision, resulting in objects linking to-

gether [Wang et al. 2021].

In contrast, DCD allows the simulation framework to start and

recover from a state with existing intersections. DCD detects colli-

sions at a single point in time, after they happen. That is why, extra

computation is needed to determine how to resolve the collisions.

Collisions can be resolved by minimizing the penetration vol-

ume [Allard et al. 2010; Wang et al. 2012] or by applying constraints

[Bouaziz et al. 2014; Macklin et al. 2016; Müller et al. 2007; Verschoor

and Jalba 2019], penalty forces [Belytschko and Neal 1991; Ding

and Schroeder 2019; Drumwright 2007; Huněk 1993], or impulses

[Kavan 2003; Mirtich and Canny 1995; O’Sullivan and Dingliana

1999] that involve computing the penetration depth, the minimum

translational distance to resolve the penetration [Hirota et al. 2000;

Platt and Barr 1988; Terzopoulos et al. 1987]. The exact penetration

depth can be computed using analytical methods based on geomet-

ric information of polygonal meshes [Baraff 1994; Cameron 1997;

Hahn 1988; Moore and Wilhelms 1988], or it can be approximated

using a volumetric mesh [Fisher and Lin 2001a], mesh partitioning

[Redon and Lin 2006], tracing rays [Hermann et al. 2008], or solving

an optimization problem [Je et al. 2012]. Heidelberger et al. [2004]

proposed a consistent penetration depth by propagating penetration

depth through the volumetric mesh. These methods, however, strug-

gle with handling self-intersections. Starting with a self-intersecting

shape, Li and Barbič [2018] proposed a method to separate the over-

lapping parts and create a bounding case mesh that represents the

underlying geometry to allow "un-glued" simulation.

Using a signed distance fields (SDF) is a more popular alternative

for recent methods. They can be defined either on a volumetric mesh

[Fisher and Lin 2001a] or a regular grid [Gascuel 1993; Koschier et al.

2017; Macklin et al. 2020]. Once built, both the penetration depth

and the shortest path to the surface can be directly queried from

the volumetric data structure. This provides an efficient solution

at run time as long as the SDF does not need updating, though the

returned penetration depth and shortest path are approximations

(formed by interpolating pre-computed values). Also, the SDF is

not well defined when there are self-intersections, as they cannot

represent immersion, so it must be built using an intersection-free

pose.

For handling self-intersections, SDFs of an intersection-free pose

can be used [McAdams et al. 2011]. This can provide sufficient

accuracy for handling minor deformations, but quickly becomes

inaccurate with large deformations and deep penetrations. Using

a deformable embedding helps [Macklin et al. 2020], but requires

splitting the object into pieces [Fisher and Lin 2001a,b; Macklin

et al. 2020; McAdams et al. 2011; Teng et al. 2014]. An alternative

approach is bifurcating the SDF nodes during construction when

a volumetric overlap, which can be formed by self-intersection, is

detected [Mitchell et al. 2015]. These solutions entirely circumvent

the self-intersection problem by only considering intersections of

separate pieces and self-intersections within a piece are ignored.

Such approaches are particularly problematic with complex models

and in cases when determining where to split is unclear ahead of

time, since the splitting or bifurcation is usually pre-computed and

expensive to update at run time. Also, the closest boundary point

found within a piece is not necessarily the actual one for the entire

mesh, as it might be contained in a separate piece. Even for cases

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Shortest Path to Boundary for Self-Intersecting Meshes • 3

they can handle with sufficient accuracy, SDFs have a significant

pre-computation and storage cost.

In comparison, our solution can find the exact penetration depth

for models with arbitrary complexity and the accurate shortest

path to the boundary regardless of the type or severity of self-

intersections. In addition, we do not require costly pre-computations

or volumetric storage.

2.2 Geodesic Path and Distances
Following the categorization of Crane et al. [2020], our method

falls into the category of multiple source geodesic distance/shortest
path (MSGD/MSSP) problems. Actually, the problem we solve is a

special case of MSSP, where the set of sources is the collection of all

the boundary points of the mesh. Also, ours is an exact polygonal

method that can compute global geodesic paths. MMP algorithm

[Mitchell et al. 1987] is the first practical algorithm that can com-

pute geodesic path between any two points on a polygonal surface.

Succeeding methods [Chen and Han 1990; Liu 2013; Surazhsky et al.

2005; Xin and Wang 2009] focus on optimizing its computation time

and memory requirements. Yet, all of these method only aim at

solving the single source geodesic distance/shortest path (SSGD/SSSP)

problems. For solving the all-pairs geodesic distances/shortest paths
(APGD/APSP) problem, a vertex graph that encodes the minimal

geodesic distances between all pairs of vertices on the mesh can

be built [Balasubramanian et al. 2008]. These methods are general

enough for handling 2D manifolds in 3D, but they do not offer an

efficient solution for our MSSP problem. Our solution for MSSP,

however, is limited to planar (2D, triangular) or volumetric (3D,

tetrahedral) meshes, where we can rely on Euclidean metrics.

2.3 Tetrahedral Ray Traversal
For handling tetrahedral meshes in 3D, our method uses a topologi-

cal ray traversal. Tetrahedral ray traversal has been used in volu-

metric rendering [Marmitt and Slusallek 2006; Parker et al. 2005;

Şahıstan et al. 2021]. Methods that improve their computational

cost include using scalar triple products [Lagae and Dutré 2008] and

Plucker coordinates [Maria et al. 2017]. More recently, Aman et al.

[2022] introduced a highly-efficient dimension reduction approach.

A common problem with tetrahedral ray traversal is that numeri-

cal inaccuracies can lead to infinite loops when a ray passes near

an edge or vertex. Many rendering problems can safely terminate

when an infinite loop is detected. In our case, however, we must

detect and resolve such cases, because failing to do so would result

in returning an incorrect shortest path, which can have catastrophic

effects in simulation. Therefore, we introduce a robust variant of

tetrahedral ray traversal.

3 SHORTEST PATH TO BOUNDARY
A typical solution for resolving intersections (detected via DCD)

is finding the closest boundary point for each intersecting point

and then applying corresponding forces/constraints along the line

segment toward this point, i.e. the shortest path to boundary. The

length of this path is the penetration depth.

When two separate objects intersect, finding the closest boundary

point is a trivial problem: it is the closest boundary point on the

𝒔𝒔

(b)
𝑀𝑀

𝒑𝒑

𝒔𝒔 ψ

(a)
𝑀𝑀

𝒔𝒔/𝒑𝒑

𝜕𝜕𝑀𝑀 Ψ(𝜕𝜕𝑀𝑀)

𝑀𝑀
∘ 𝑀𝑀∘

Fig. 2. Illustrations of the notations. (a) Notations on the undeformed
pose. (b) Notations on the deformed model. The image of the unde-
formed pose boundary Ψ(𝜕𝑀) is marked as the red curve.

other object. In the case of self-intersections, however, even the

definition of the shortest path to boundary is somewhat ambiguous.

Consider a point on the boundary and also inside the object due to

self-intersections. Since this point is already on the boundary, its Eu-

clidean closest boundary point would be itself. Yet, this information

is not helpful for resolving the self-intersection.

In this section, we provide a formal definition of the shortest path

to boundary based on the geodesic path of the object in the pres-

ence of self-intersections (Section 3.1). Then, we present an efficient

algorithm to compute it for triangular/tetrahedral meshes in 2D/3D,

respectively, (Section 3.2). We also describe how to handle meshes

that contain some inverted elements, (Section 3.5). The resulting

method provides a robust solution for handling self-collisions that

can be used with various simulation methods and collision resolu-

tion techniques (using forces or constraints).

3.1 Shortest Path to Boundary
Consider a self-intersecting model𝑀 , such that a boundary point s
coincides with an internal point p. Figure 2b shows a 2D illustration,

though the concepts we describe here apply to 3D (and higher

dimensions) as well. In this case, s and p have the same geometric

positions, but topologically they are different points. In fact, to fix

the self-intersection, we need to apply a force/constraint that would

move s along p’s geodesic shortest path to boundary.

To provide a formal definition of this geodesic shortest path, we

consider a self-intersection-free form of this model as𝑀 which we

call undeformed pose, and a deformation Ψ that maps all points in𝑀

to its current shape𝑀 , such that𝑀 = Ψ(𝑀). Note that our algorithm
(explained in Section 3.2) does not actually need computing 𝑀 or

Ψ. For any point p in𝑀 , we represent its image under Ψ as p ∈ 𝑀 ,

such that p = Ψ(p). In the following, we assume that 𝑀 is a path-

connected (i.e. a single piece) manifold, though the concepts below

can be trivially extended to models with multiple separate pieces.

To cause self-intersection, Ψ should not be injective. In this case,

Ψ is an immersion of𝑀 but not embedding, meaning multiple points

from𝑀 are mapped to the same position p inside𝑀 . To differentiate

such points that coincide in 𝑀 , we label them using their unique

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

4 • He Chen, Elie Diaz, and Cem Yuksel

𝒔𝒔
𝒔𝒔

𝒑𝒑

𝒔𝒔𝒔
𝒔𝒔

𝒑𝒑 =𝒑𝒑1/𝒑𝒑2

(b) (c) (d)

𝒃𝒃

𝒂𝒂

𝑀𝑀

𝒑𝒑𝟐𝟐

ψ

(a)
𝑀𝑀 𝑀𝑀

𝒑𝒑

𝑀𝑀
(e)

𝒔𝒔𝒔
𝒃𝒃

𝒂𝒂

𝒑𝒑𝟏𝟏

Fig. 3. (a) An intersection-free pose of the deformable model𝑀 . p
1
, p

2
∈ 𝑀

◦
. (b)𝑀 ’s image under Ψ, where p

1
, p

2
are mapped to the same point

p. (c) Treated as different pre-image, p has different shortest paths to the boundary (blue line). (d) Two paths are contained by 𝑀 . (c) Only ps′ is a
valid path.

positions in𝑀 . For simplicity, we say p as p, when we are referring

p as the image of p.
For simplicity, let us consider non-degenerate Ψ that forms no

inversion, i.e. det(∇Ψ) > 0.We discuss inversions later in Section 3.5.

Note that under this Ψ, the boundary of the undeformed model 𝜕𝑀

does not completely overlap with the boundary of the deformed

model 𝜕𝑀 , i.e. Ψ(𝜕𝑀) ≠ 𝜕𝑀 , see Figure 2b. We use 𝑀
◦
to denote

the set of interior points of𝑀 , such that𝑀 = 𝜕𝑀 ∪𝑀
◦
.

Let s as be a point on the boundary, i.e. s ∈ Ψ(𝜕𝑀) and we refer

to it as an undeformed pose boundary point s. For a given point p
(as p), we can construct a path c(𝑡) : [0, 1] ↦→ 𝑀 as a continuous

curve that connects p = c(0) to s = c(1).
Definition 1 (Valid path). The path c(𝑡) from p (as p) to s (as

s) is a valid path if there exists a continuous curve c(𝑡) : [0, 1] ↦→ 𝑀

such that c(𝑡) = Ψ(c(𝑡)), c(0) = p, c(1) = s.

Based on this definition, a valid path must be the image of a path

that is fully contained within 𝑀 , which connects the two points

on the undeformed pose we are referring to. Any path that moves

outside of𝑀 is considered an invalid path, see Figure 3de. Our goal
is to find the shortest valid path from a given point p (as p) to the
boundary.

Definition 2 (Shortest path to boundary). For an interior
point p (as p), the shortest path to boundary is the shortest curve c(𝑡)
in𝑀 that connects p to a boundary point s (as s) that is a valid path
between p and s.

Definition 3 (Closest boundary point). For an interior point
p (as p), the closest boundary point is the boundary point s (as s) at
the other end of p’s shortest path to boundary c(𝑡) = Ψ(c(𝑡)), such
that s = c(1) and s = c(1).

Here we must emphasize that the definition of the shortest path

is dependent on the pre-image point we are referring to. For a point

located at the overlapping part of 𝑀 , referring to it as a different

point on the undeformed pose may lead to a different shortest path

to the boundary (see Figure 3c). Also, this definition is equivalent to

the image of p’s global geodesic path to boundary in𝑀 evaluated

under the metrics pulled back by Ψ. Thus the shortest path we

defined is a special class of geodesics.

To construct an efficient algorithm for finding the shortest path,

we rely on two properties:

• First, by definition, the shortest path must be a continuous

curve that is fully contained inside undeformed model𝑀 .

• Second, the shortest path (under the Euclidean distance met-

rics) that connects two points in the deformed model𝑀 must

be a line segment.

Based on these properties, we can construct and prove the funda-

mental theorem of our algorithm:

Theorem 1. For any point p ∈ 𝑀 (as (p), its shortest path to the
boundary is the shortest line segment from p to a boundary point
s ∈ Ψ(𝜕𝑀) (as s), that is a valid path.

Here we verbally prove the theorem, we also provide a formal

proof in the supplementary document. If the shortest path is not a

line segment, we can continuously deform it into a line segment,

while keeping the end points fixed. This procedure can induce a

deformation on the undeformed pose, which continuously deforms

the pre-image of that curve to the pre-image of the line segment,

while keeping the end points fixed. This is always achievable because

the curve cannot touch the boundary of the undeformed pose during

the deformation, otherwise, we will form an even shorter path to

the boundary. Thus the line segment is also a valid path.

Based on these properties, our algorithm investigates a set of

candidate boundary points s and checks if the line segment from

the interior point p to s is a valid path. This is accomplished without

having to construct𝑀 or determine the deformation Ψ by relying

on the topological connections of the given discretized model.

3.2 Shortest Path to Boundary for Meshes
In practice, models we are interested in are discretized in a piece-

wise linear form. These are triangular meshes in 2D and tetrahedral

meshes in 3D. We refer to each piecewise linear component as an

element (i.e. a triangle in 2D and a tetrahedron in 3D) and the one-

dimension-lower-simplex shared by two topologically-connected

elements as a face (i.e. an edge between two triangles in 2D and a

triangular face between two tetrahedra in 3D). This discretization

makes it easy to test the validity of a given path, without construct-

ing a self-intersection-free𝑀 or the related deformation Ψ.
We propose the concept of element traversal for meshes, as a

sequence of topologically connected elements:

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Shortest Path to Boundary for Self-Intersecting Meshes • 5

Definition 4 (Element traversal). For a mesh 𝑀 , and two-
point a ∈ 𝑒a, b ∈ 𝑒b, we define a element traversal from a to b as a list
of elements T (a, b) = (𝑒0, 𝑒1, 𝑒2, . . . , 𝑒𝑘), where 𝑒𝑖 is a element of𝑀 ,
𝑒0 = 𝑒a, 𝑒𝑘 = 𝑒b, and 𝑒𝑖 ∩ 𝑒𝑖+1 must be a face.

Specifically, we call it tetrahedral traversal for 3D meshes, and

triangular traversal for 2D meshes.

Let c(𝑡) be a line segment from a point p inside an element 𝑒p to

a boundary point s of a boundary element 𝑒s (with a boundary face

that contains s). If c(𝑡) is a valid path, there must be a corresponding

piecewise linear path c(𝑡) in𝑀 from p to s that passes through an

element traversal of 𝑀 . Actually, an element traversal containing

c(𝑡) is the sufficient and necessary condition for c(𝑡) being a valid
path. Please see the supplementary material for a rigorous proof.

Thus, evaluating whether c(𝑡) is a valid path, is equivalent to

searching for an element traversal from s to p, and a piece-wise linear
curve c(𝑡) : 𝐼 ↦→ 𝑀 defined on it, such that c(𝑡) = Ψ(c(𝑡)). Such
an element traversal and piece-wise linear curve can be efficiently

constructed in𝑀 .

Going through the element traversal, c(𝑡) must pass through

faces shared by neighoring elements at points r𝑖 ∈ 𝑒𝑖 ∩ 𝑒𝑖+1, where
𝑖 = 0, 1, 2, . . . , 𝑘 − 1. When Ψ forms no inversion, corresponding

face points r𝑖 must be along the line segment c(𝑡), i.e. r𝑖 = c(𝑡𝑖)
for some 𝑡𝑖 ∈ [0, 1], see Figure 4a. If we can form such an element

traversal using the topological connections of the model, we can

safely conclude that the path is valid.

This gives us an efficient mechanism for testing the validity of

the shortest path from p to s. Starting from 𝑒p, we trace a ray from p
towards s and find the first face point r0. If r0 is not on the boundary,

this face must connect 𝑒p to a neighboring element 𝑒1. Then, we

enter 𝑒1 from r0 and trace the same ray to find the exit point r1 on
another face. We continue traversing until we reach 𝑒s, in which

case we can conclude that this is a valid path, see Figure 4a. This

also includes the case 𝑒p = 𝑒s. If we reach a face point r𝑖 that is on
the boundary (see Figure 4b) or we pass-through s without entering
𝑒s, s cannot be the closest boundary point to p.

This process allows us to efficiently test the validity of a path to

a given boundary point, but we have infinitely many points on the

boundary to test. Fortunately, we are only interested in the shortest

path and we can use the theorem below to test only a single point

per boundary face.

Theorem 2. For each interior point p (as p), if its closest boundary
point s (as s) is on the boundary face 𝑓 , s must also be the Euclidean
closest point to p on 𝑓 .

The proof is similar to Theorem 1, which is included in the sup-

plementary document. Based on Theorem 2, we only need to check

a single point (the Euclidean closest point) on each boundary face

to find the closest boundary point. If we test these boundary points

in the order of increasing distance from the interior point p, as soon
as we find a valid path to one of them, we can terminate the search

by returning it as the closest boundary point. In practice, we use a

BVH (bounding volume hierarchy) to test these points, which al-

lows testing them approximately (though not strictly) in the order of

increasing distance and, once a valid path is found, quickly skipping

the further away bounding boxes.

𝒔𝒔

𝒑𝒑

𝒑𝒑

𝒔𝒔

(a) (b)

𝒓𝒓𝟎𝟎
𝒓𝒓𝟏𝟏

Fig. 4. (a) An example of a triangular traversal, marked by red trian-
gles. A line segment connecting p and s is included in this triangular
traversal. (b) An example of a line segment being an invalid path when
there are self-intersections, the triangular traversal (marked by the
red triangles) stops at the boundary of the mesh but the line segment
penetrates the boundary and continues going.

3.3 Robust Topological Ray Traversal
The process we describe above for testing the validity of the linear

path to a candidate boundary point involves traversing a ray through

the mesh. This ray traversal is significantly simpler than typical ray

traversal algorithms used for rendering with ray tracing. This is

because it directly follows the topological connections of the mesh.

At each step, the ray enters an element through one of its faces

and must exit from one of its other faces. Therefore, we do not need

to rely on an acceleration structure to quickly determine which

faces to test ray intersections, as they are directly known from the

mesh topology. In fact, we do not need to check each one of the

other faces individually, since the ray exits from exactly one of them.

Therefore, we can quickly test all possible exit faces together.

For example, Aman et al. [2022] present such a tetrahedral traver-

sal algorithm in 3D. Yet, due to limited numerical precision, this algo-

rithm is prone to forming infinite loops. Such infinite loops are easy

to detect and terminate (e.g. using a maximum iteration count), but

such premature terminations are entirely unacceptable in our case.

This is because incorrectly deciding on the validity of a path would

force our algorithm to pick an incorrect shortest path to boundary,

which can be arbitrarily far from the correct one. Therefore, the

simulation system that relies on this shortest path to boundary can

place strong and arbitrarily incorrect forces/constrains in an attempt

to resolve the self-intersection.

Our solution for properly resolving such cases that arise from

limited numerical precision is three fold:

(1) We allow ray intersections with more than one face by effec-

tively extending the faces using a small tolerance parameter

𝜖𝑖 in the intersection test. This forms branching paths when

a ray passes between multiple faces and, therefore, intersects

(within 𝜖𝑖) with more than one of them.

(2) We keep a list of traversed elements and terminate a branch

when the ray enters an element that was previously entered.

(3) We keep a stack containing all the candidate intersecting

faces from the intersection test. After a loop is detected, we

pick the latest element from it and continue the process.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

6 • He Chen, Elie Diaz, and Cem Yuksel

𝑀𝑀1

𝑀𝑀2

𝒑𝒑1
𝒔𝒔

𝒔𝒔′

Fig. 5. An object𝑀2 intersects with a self-intersecting object 𝑀1. A
surface point of𝑀2 is overlapping with an interior point p1 ∈ 𝑀1. s
and s′ are p1’s closest boundary point by our definition and Euclidean
closest boundary point, respectively.

Please see our supplementary material for the pseudo-code and

more detailed explanations of our algorithm.

In practice such branching happens rarely, but solution ensures

that we never incorrectly terminate the ray traversal. Note that 𝜖𝑖
is a conservative parameter for extending the ray traversal through

branching to prevent problems of numerical accuracy issues. It does

not introduce any error to the final shortest paths we find. Using

an unnecessarily large 𝜖𝑖 would only have negative, though mostly

imperceptible, performance consequences. We verified this by mak-

ing the 𝜖𝑖 ten times larger, which did not result in a measurable

performance difference.

One corner case is when the internal point p (as p) and the bound-
ary point s (as s) coincide, such that p = s (within numerical pre-

cision). This forms a line segment with zero length and, therefore,

does not provide a direction for us to traversal. This happens when

testing self-intersections of boundary points, which pick themselves

as their first candidate for the closest boundary point. This zero-

length line segment cannot be a valid path. Fortunately, since we

know we are testing self-intersection for s, when the BVH query

returns the boundary face includes s, we can directly reject it.

3.4 Intersections of Different Objects
Although our method is mainly designed for solving self-

intersections, it is still needed for handling intersections of different

objects when they may have self-intersections as well. As shown in

Figure 5, an object𝑀2 intersects with a self-intersecting object 𝑀1,

where a surface point of 𝑀2 is overlapping with an interior point

p1 ∈ 𝑀1. Simply querying for p1’s Euclidean closest boundary point

in𝑀1 will give us s′, which does not help resolve the penetration.

This is because p1s′ is not a valid path between p1 (as p1 ∈ 𝑀
◦
1
) and

s′
1
as (s′ ∈ 𝜕𝑀1). What is actually needed is p1’s shortest path to

boundary as p
1
, which is the same problem as the self-intersection

case, a surface point of 𝑀1 is overlapping with an interior point

p1 ∈ 𝑀1.

3.5 Inverted Elements
Our derivations in Section 3.1 assume that𝑑𝑒𝑡 (∇Ψ) > 0 everywhere.

For a discrete mesh, this would mean no inverted or degenerate

elements. Unfortunately, though inverted elements are often highly

undesirable, they are not always unavoidable. Fortunately, the al-

gorithm we describe above can be slightly modified to work in the

presence of certain types of inverted elements.

If the inverted elements are not a part of the mesh boundary, we

can still test the validity of paths by allowing the ray traversal to

go backward along the ray. This is because the ray would need to

traverse backward within inverted elements. In addition, we cannot

simply terminate the traversal once the ray passes through the

target point, because an inverted element further down the path

may cause backward traversal to reach (or pass through) the target

point, see Figure 6b. Therefore, ray traversal must continue until

a boundary point is reached. We also need to allow the ray to go

behind the starting point, see Figure 6c.

A consequence of this simple modification to our algorithm is

that, when we begin from an internal point p toward a boundary

point s, it is unclear if we would reach s by beginning the traversal

toward s or in the opposite direction. While one may be more likely,

both are theoretically possible.

To avoid this decision, in our implementation we start the tra-

versal from the target boundary point s. In this case, there is no

ambiguity, since there is only one direction we can traverse along

the ray. This also allows using the same traversal routine for the first

element and the other elements along the path by always entering

an element from a face. Therefore, it is advisable even in the absence

of inverted elements.

Nonetheless, our algorithm is not able to handle all possible in-

verted elements. For example, if the inverted element is on the

boundary, as shown in Figure 7, the inversion itself can cause self-

intersection. In such a case, a surface point s is overlapping with

an interior point p (as p). Our algorithm will not be able to try to

construct a tetrahedral traversal between those two points because

we cannot determine a ray direction for a zero-length line segment.

Actually, in this case, the very definition of the closest boundary

point can be ambiguous.

Our solution is to skip the self-intersection detection of inverted

boundary elements. As a result, the only way for us to solve such

self-intersections caused by inverted boundary elements is to resolve

the inversion itself. Fortunately, inverted elements are undesirable

for most simulation scenarios, and they are often easier to fix for

boundary elements. Unfortunately, if the inverted boundary ele-

ments have global self-intersections with other parts of the mesh,

our solution ignores them. Though this does not form a complete

solution, because the inverted boundary elements are rare, the other

boundary elements surrounding the inverted elements are often

enough to solve the global self-intersection.

3.6 Infeasible Region Culling
In a lot of cases, it is possible to determine that a given candidate

boundary point s cannot be the closest boundary point to an interior

point p, purely based on the local information about themesh around

s, without performing any ray traversal. For this test we construct

a particular region of space, i.e. the feasible region, around s. When

p is outside of this region of s, thus in its infeasible region, we can
safely conclude that s is not the closest boundary point.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Shortest Path to Boundary for Self-Intersecting Meshes • 7

𝒑𝒑 𝒔𝒔
𝒑𝒑 𝒔𝒔

𝑡𝑡0

𝑡𝑡1

𝑡𝑡2 𝑡𝑡0

𝑡𝑡1

𝑡𝑡2

ψ

ψ(𝜕𝜕𝑀𝑀)𝜕𝜕𝑀𝑀(a) (b)

𝑡𝑡0

𝑡𝑡1

𝑡𝑡2

(c)

𝒔𝒔

Fig. 6. (a) A part of the undeformed pose of a triangular mesh𝑀 , which is inversion free. p ∈ 𝑀 , s ∈ 𝜕𝑀 . A surface edge is marked with red color.
(b) The image of𝑀 under Ψ, the tetrahedron 𝑡2 (colored with gray), is inverted by Ψ. The green line illustrates p’s global geodesics to the surface, it
has a self-overlapping part, which is marked by the two-sided arrow. (c) An interior tetrahedron is inverted and got out of the surface. In this case,
the global geodesics to the surface path can go backward.

ψ

�𝒔𝒔
𝒔𝒔/p

(a) (b)
ψ(𝜕𝜕𝑀𝑀)𝜕𝜕𝑀𝑀

Fig. 7. (a) A part of the undeformed pose of a triangular mesh 𝑀 ,
which is inversion free. The surface edges are marked with red color.
(b) After deformation, a triangle (marked by gray color), is inverted
and folded into the interior of the mesh. A deformed surfaces point s
overlaps with the interior point p.

The construction of this feasible region depends on whether s is
on a vertex, edge, or face.

Vertex Feasible Region. In 2D, when s is on a vertex, the feasible

region is bounded by the two lines passing through the vertex and

perpendicular to its two boundary edges, as shown in Figure 8a.

For a neighboring boundary edge of s and its perpendicular line

that passes through s, if p is on the same side of the line as the

edge, based on Theorem 2, there must be a closer boundary point

on the face. More specifically, for any neighboring boundary vertex

v𝑖 connected to s by a edge, if the following inequality is true, p is

in the infeasible region:

(p − s) · (s − v𝑖) < 0 (1)

The same inequality holds in 3D for all neighboring boundary ver-

tices v𝑖 connected to s by an edge (Figure 8b). The 3D version of the

vertex feasible region is actually the space bounded by a group of

planes perpendicular to its neighboring edges.

(b)

v1 v2s
(a) (c)

Fig. 8. The feasible region, shaded in blue, for (a) a boundary vertex
in 2D, (b) a boundary vertex in 3D, and (c) a boundary edge in 3D.
Note that the 3D meshes in (b) and (c) are observed from the inside.

Edge Feasible Region. In 3D, when s is on the edge of a triangle,

its feasible region is the intersection of 4 half-spaces defined by four

planes: two planes that contain the edge and perpendicular to its

two adjacent faces, and two others that are perpendicular to the

edge and pass through its two vertices, as shown in Figure 8c. Let

v0 and v1 be the two vertices of the edge and n0 and n1 be the two
neighboring face normals (pointing to the interior of the mesh). p is

in the infeasible region if any of the following is true:

(p − v0) · (v1 − v0) < 0 (2)

(p − v1) · (v0 − v1) < 0 (3)

(p − s) · (n0 × (v1 − v0)) < 0 (4)

(p − s) · (n1 × (v0 − v1)) < 0 (5)

note that n0 is from the face whose orientation accords to v0 → v1.

Face Feasible Region. We can similarly construct the feasible re-

gion when s in on the interior of a face as well. Nonetheless, this

particular feasible region test is unnecessary, because when s is the
closest point on the face to p, which is how we pick our candidate

boundary points (based on Theorem 2), p is guaranteed to be in the

feasible region.

Our infeasible region culling technique performs the tests above

and skips the ray traversal if p is determined to be in the infeasible

region, quickly determining that s cannot be the closest boundary
point. Due to numerical precision, the feasible region check can

return false results when p is close to the boundary of the feasible

region. There are two types of errors: false positives and false neg-

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

8 • He Chen, Elie Diaz, and Cem Yuksel

(a) CCD only (b) DCD only (c) CCD and DCD

Fig. 9. Dropping 8 octopi to a box simulated with (a) CCD only,
(b) DCD with our shortest path query only, and (c) CCD and DCD
with our shortest path query. The bottom row shows the bottom view
of the final state. The blue tint highlights the intersecting geometry.
The octopus model is from Zhou and Jacobson [2016].

atives. A false positive is not a big problem: it will only result in

an extra traversal. But if a false negative happens, there is a risk of

discarding the actual closest surface point. In practice, however, we

replace the zeros on the right-hand-sides of the inequalities above

with a small negative number 𝜖𝑟 to avoid false-positives due to

numerical precision limits. In our tests, we have observed that infea-

sible region culling can provide more than an order of magnitude

faster shortest path query.

4 COLLISION HANDLING APPLICATION
As mentioned above, an important application of our method is

collision handling with DCD. When DCD finds a penetration, we

can use our method to find the closest point on the boundary and

apply forces or constraints that would move the penetrating point

towards this boundary point.

In our tests with tetrahedral meshes, we use two types of

DCD: vertex-tetrahedron and edge-tetrahedron collisions. For

vertex-tetrahedron collisions, we find the closest surface point for

the colliding vertex. For edge-tetrahedron collisions, we find the

center of the part of the edge that intersects with the tetrahedron

and then use our method to find the closest surface point to that

Fig. 10. Dropping 6 octopi into a box simulated using implicit Euler.
This simulation contains 30K vertices and 88K tetrahedra and it takes
an average of 15s to simulate each frame. Please see the supplementary
material for the details of our implicit Euler framework.

center point. If an edge intersects with multiple tetrahedra, we

choose the intersection center that is closest to the center of the

edge. The idea is by keep pushing the center of the edge-tetrahedron

intersection towards the surface, which eventually resolves the

intersection.

This provides an effective collision handling method with XPBD

[Macklin et al. 2016]. Once we find the penetrating point x we use

the standard PBD collision constraint [Müller et al. 2007]

𝑐 (x, s) = (x − s) · n (6)

where s is the closest surface point computed by our method when

this collision is from DCD, or the colliding point when it is from

CCD, and n is the surface normal at s. If s is on a surface edge or

vertex, we use the area-weighted average of its neighboring face

normals. The XPBD integrator applies projections on each collision

constraint 𝑐 to satisfy 𝑐 (x, s) ≥ 0. We also apply friction, following

Bender et al. [2015]. Please see the supplementary material for the

pseudocode of our XPBD framework.

Unlike CCD alone, DCD with our method significantly improves

the robustness of collision handling when using a simulation system

like XPBD that does not guarantee resolving all collision constraints.

This is demonstrated in Figure 9, comparing different collision de-

tection approaches with XPBD. Using only CCD leads to missed

collisions when XPBD fails to resolve the collisions detected in pre-

vious steps, because CCD can no longer detect them. This quickly

results in objects completely penetrating through each other (Fig-

ure 9a). Our method with only DCD effectively resolves the majority

of collisions (Figure 9b), but it inherits the limitations of DCD. More

specifically, using only DCD with sufficiently large time steps and

fast enough motion, some collisions can be missed and deep pene-

trations can resolve the collisions by moving the objects in incorrect

directions, again resulting in object parts passing through each

other. Furthermore, our method only provides the closest path to

the boundary and properly resolving the collisions is left to the

simulation system. Unfortunately, XPBD cannot provide any guar-

antees in collision resolution, so detected penetrations may remain

unresolved.

We recommend a hybrid solution that uses both CCD and DCD

with our method. This hybrid solution performs DCD in the be-

ginning of the time step to identify the preexisting penetrations or

collisions that were not properly resolved in the previous time step.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Shortest Path to Boundary for Self-Intersecting Meshes • 9

(a) (b) (c) (d) (e)

Fig. 11. Flattening a squishy ball (774K vertices, 2.81M tetrahedra) using two planes. (a-c) the flattening process, (d) Side view of the flattened ball
to to 1/20 of its radius, and (e) the other side of the flattened squishy ball.

Fig. 12. Simulation of two squishy balls in head-on collision that come to contact at a relative speed of 50𝑚/𝑠 . Both self-collisions and collisions
between the two squishy balls are handled using our method.

The rest of the collisions are detected by CCD without requiring our

method to find the closest surface point. The same simulation with

this hybrid approach is shown in Figure 9c. Since all penetrations are

first detected by CCD and proper collision constraints are applied

immediately, deep penetrations become much less likely even with

large time steps and fast motion. Yet, this provides no theoretical

guarantees. The addition of CCD allows the simulation system to

apply collision constraints immediately, before the penetrations be-

come deep, and DCDwith our method allows it to continue applying

collision constraints when it fails to resolve the initial collision con-

straints. Note that, while this significantly reduces the likelihood of

failed collisions, they can still occur if the simulation system keeps

failing to resolve the detected collisions.

The collision handling application of our method is not exclusive

to PBD. Our method can also be used with force-based simulation

techniques for defining a penalty force with penetration potential

energy

𝐸𝑐 =
1

2

𝑘
(
(p − s) · n

)
2

(7)

where 𝑘 is the collision stiffness. An example of this is shown in

Figure 10.

5 RESULTS
We use XPBD [Macklin et al. 2016] to evaluate our method, because

it is one of the fastest simulation methods for deformable objects,

providing a good baseline for demonstrating the minor computa-

tion overhead introduced by our method. We use mass-spring or

NeoHookean [Macklin and Muller 2021] material constraints imple-

mented on the GPU. We handle the collision detection and handling

part on the CPU, including the position updates of the collision

constraints. We use the hybrid collision detection approach that

combines CCD and DCD, as explained above.

We implement both collision detection and closest point query

on CPU using Intel’s Embree framework [Wald et al. 2014] to create

BVH. We generate our timing results on a computer with an AMD

Ryzen 5950X CPU, an NVIDIA RTX 3080 Ti GPU, and 64GB of

RAM. We acknowledge that our timings are affected by the fact

that we copy memory from GPU to CPU every iteration in order

to do collision detection and handling, and the whole framework

can be further accelerated by implementing the collision detection

and shortest path querying on the GPU. As to the parameters of the

algorithm, we set 𝜖𝑟 to −0.01. 𝜖𝑖 is related to the scale and unit of

the object, when the object is at a scale of a few meters, we set 𝜖𝑖 to

1
−10

.

5.1 Stress Tests
Figure 11 shows a squishy ball with thin tentacles compressed on

two sides and flattened to a thickness that is only 1/20 of its original
radius. Notice that all collisions, including self-intersections of ten-

tacles, are properly resolved even under such extreme compression.

Also. the model was able to revert to its original state after the the

two planes compressing it were removed.

Figure 12 shows a high-speed head-on collision of two squishy

balls. Though the tentacles initially get tangled with frictional-

contact right after the collision, all collisions are properly resolved

and the two squishy balls bounce back, as expected.

Figure 13 shows two challenging examples of self-collisions

caused by twisting a thin beam and two elastic rods. Both instances

have shown notable buckling after the twisting. A different

frame for the same thin beam is also included in Figure 1. Such

self-collisions are particularly challenging for prior self-collision

handling methods that pre-split the model into pieces, since it is

unclear where the self-collisions might occur before the simulation.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

10 • He Chen, Elie Diaz, and Cem Yuksel

Fig. 13. Twisting (top-middle) a thin beam with 400K vertices & 1.9M
tetrahedra, and (bottom) two elastic rods with 281K vertices & 1.3M
tetrahedra, demonstrating unpredictable self-collisions and buckling.

Fig. 14. Simulation of a nested knot starting from (left) the initial
state to (right) the final knot.

Another challenging self-collision case is shown in Figure 14,

where nested knots were formed by pulling an elastic rod from both

sides. In this case, there is a significant amount of sliding frictional

self-contact, changing pairs of elements that collide with each other.

Though a substantial amount of force is applied near the end, the

simulation is able to form a stable knot.

Figure 15a shows the same experiment using naive closest bound-

ary point computation for the collisions between the two squishy

balls (by picking the closest boundary point on the other object

purely based on Euclidean distances), only handling self-collisions

with our method. Notice that it includes (temporarily) entangled ten-

tacles between the two squishy balls and visibly more deformations

of tentacles elsewhere, as compared to using ourmethod (Figure 15b).

This is because, in the presence of self-collisions, naively handling

closest boundary point queries between different objects is prone to

picking incorrect boundary points that do not resolve the collision,

resulting in prolonged contact and inter-locking.

5.2 Solving Existing Intersections
Our method can successfully resolve existing self collisions. A

demonstration of this is provided in Figure 17. In this example, the

initial state (Figure 17a) is generated by dropping a noodle model

without handling self-collisions. When we turn on self-collisions, all

existing self-intersections are quickly resolved within 10 substeps

(Figure 17b), resulting in numerous inverted elements due to

strong collision constraints. Then, the simulation resolves them

(Figure 17c) and finally the model comes to a rest with self-contact

(a) Naive collisions between objects (b) Our inter-object collisions

Fig. 15. Two squishy balls in head-on collision comparing collision
handling between two different objects (a) by naively accepting the
Euclidean closest point as the closest boundary point and (b) with our
method. All self-collisions are handled using our method in both cases.

(a) Self-collisions off (b) Self-collisions turned on

Fig. 16. Simulation of a squishy ball compressed from either side, as
in Figure 11, (a) with self-collisions turned off to produce a state with
many complex self-collisions, where the blue tint highlights deeper
penetrations caused by subsurface scattering artifacts due to intersect-
ing geometry, and (b) a few frames after self-collisions are turned on,
showing that our method with XPBD quickly recovers them.

(Figure 17d). In this experiment, we perform collision projections

for all vertices (not only for surface vertices) and all tetrahedra’s

centroids to resolve the intersection in the completely overlapping

parts. Note that we do not provide a theoretical guarantee to resolve

all the existing intersections. In practice, however, in all our tests

all collisions are resolved after just a few iterations/substeps.

Another example is shown in Figure 16, generated by compressing

a squishy ball with two planes on either side, similar to Figure 11 but

without handling self-collisions. This results in a significant number

of complex unresolved self-collisions (Figure 16a), which are quickly

resolvedwithin a few substepswhen self-collision handling is turned

on (Figure 16b).

5.3 Large-Scale Experiments
An important advantage of our method is that, by providing a robust

collision handling solution, we can use fast simulation techniques

for scenarios involving a large number of objects and complex col-

lisions. An example of this is demonstrated in Figure 18, showing

600 deformable octopus models forming a pile. Due to its complex

geometry, the octopus model can cause numerous self-collisions

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Shortest Path to Boundary for Self-Intersecting Meshes • 11

(a) Initial state (b) Collisions enabled (c) Collisions resolved (d) Final state

Fig. 17. Solving existing collisions. Starting from (a) an initial state with many self-collisions, (b) after collision handling is enabled, (c) our
method can quickly resolve them, and (d) achieve a self-collision-free final state.

Fig. 18. 600 deformable octopus models (3.1M vertices and 8.88M tetrahedra in total) dropped into a container, forming a pile with collisions.

Fig. 19. Simulation of 16 squishy balls (a total of 11.2 million tetrahedra) dropped into a bowl, forming a stable pile with active collisions.

(a) (b)

Fig. 20. Simulation of a long noodle (a) presenting unpredictable complex self-collisions and (b) forming a large pile with self-collisions.

and inter-object collisions. Both collision types are handled using

our method. At the end of the simulation, a stable pile is formed

with 185K active collisions per time step.

Figure 19 shows another large-scale experiment involving 16

squishy balls. Another frame from this simulation is also included in

Figure 1. At the end of the simulation, the squishy balls form a stable

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

12 • He Chen, Elie Diaz, and Cem Yuksel

Without Infeasible
Region Culling

Computation Time Statistics

With Infeasible
Region Culling

Fig. 21. The computation time statistics of each simulation component
on stacked bar charts: (top) without infeasible region culling and
(bottom) with infeasible region culling. The middle row shows the
simulation at frames 0, 75, 125, 175 respectively.

pile and remain in rest-in-contact with active self-collisions (12K)

and inter-object collisions (125K) between neighboring squishy

balls.

We also include an experiment with a single long noodle piece

in Figure 20 that is dropped into a bowl. This simulation forms

numerous complex and unpredictable self-collisions (Figure 20a).

At the end of the simulation, we achieve a stable pile with 104K

active self-collisions per time step in this example. Figure 1 includes

a rendering of this final pile without the bowl and a cross-section

view, showing that the interior self-collisions are properly resolved.

5.4 Performance
We provide the performance numbers for the experiments above

in Table 1. Notice that, even though we are using a highly efficient

material solver that is parallelized on the GPU, our method provides

(a) Rest shape (b) Deformed shape

(c) Collisions using rest shape (d) Collisions using deformed shape

our shortest path
incorrect shortest path

(using the rest shape)

(e) The incorrect shortest path using the rest shape vs. ours

Fig. 22. Comparison between the rest pose closest boundary point
and our closest boundary point. (a) The rest pose the cuboid model. (b)
We deform the cuboid to a certain shape, then drop a cube on top of
it. (c) In the simulation using the rest pose closest boundary point, the
cube got incorrectly pulled up. (d) Using our exact closest point, the
cube successfully slides down. (e) The shortest path to the surface for
an example point, showing that using the closest surface point queried
from the rest shape results in an incorrect and longer path.

a relatively small overhead. This includes some highly-challenging

experiments, involving a large number of complex collisions. The

highest overhead of our method is in experiments in which delib-

erately disabled self-collisions to form a large number of complex

self-collisions. Note that all collision detection and handling com-

putations are performed on the CPU, and a GPU implementation

would likely result in a smaller overhead.

We demonstrate the effect of our infeasible region culling by

simulating a squishy ball dropped to the ground with and without

this acceleration. The computation time breakdown of all frames are

visualized in Figure 21. In this example, using our infeasible region

culling, the shortest path query gains a speed-up of 10-30× for some

frames, providing identical results. Additionally, the accelerated

shortest path query results in a more uniform computation time,

avoiding the peaks visible in the graph.

5.5 Comparisons to Rest Shape Shortest Paths
A popular approach in prior work for handling self-collisions is us-

ing the rest shape of the model that does not contain self-collisions

for performing the shortest path queries. This makes the computa-

tion much simpler, but obviously results in incorrect shortest bound-

ary paths. With sufficient deformations, these incorrect boundary

paths can lead to large enough errors and instabilities.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Shortest Path to Boundary for Self-Intersecting Meshes • 13

Table 1. Performance results. Time step size and frame times are given in seconds, where frame times are measured at 60 FPS. Operations Q., Tr.,
and Tet. represent the number of BVH queries, traversals, and total tetrahedra visited on average per time step, respectively.

Number of Avrg. Collisions Avrg. Operations Time Step Frame Time Average Time %

Vert. Tet. CCD DCD Q. Tr. Tet. Size × Iter. Avrg. Max. XPBD CCD DCD Ours
Flattened Squishy Ball (Fig. 11) 774 K 2.81 M 16.8 K 7.1 K 56 6.6 5.2 3.3e-4 × 3 10.89 18.04 30.9 % 29.0 % 31.7 % 8.3 %
Twisted Thin Beam (Fig. 13) 400 K 1.9 M 8.3 K 3.1 K 45 5.7 7.2 3.3e-4 × 3 8.16 15.92 29.7 % 31.3 % 32.1 % 6.9 %
Twisted Rods (Fig. 13) 281 K 1.3 M 4.8 K 2.6 K 33 5.3 4.7 3.3e-4 × 3 5.25 11.17 42.1 % 26.9 % 27.0 % 4.0 %
Nested Knots (Fig. 14) 38.1 K 103 K 3.1 K 0.6 K 31 4.2 4.4 5.5e-4 × 3 0.25 0.32 61.8 % 23.3 % 9.5 % 5.2 %
2 Squishy Balls (Fig. 12) 418 K 1.4 M 22.4 K 1.3 K 36 9.6 11.3 3.3e-4 × 3 1.96 2.87 52.2 % 28.4 % 18.5 % 10.9 %
Pre-Intersect. Noodle (Fig. 17) 40 K 110 K N/A 15.2 K 65 12.0 13.6 8.3e-4 × 3 0.21 0.45 51.6 % 17.6 % 18.4 % 12.4 %
Pre-Intersect. Squishy Ball (Fig. 16) 219 K 704 K N/A 45.8 K 89 12.0 14.0 3.3e-4 × 3 1.54 2.63 44.3 % 18.2 % 19.1 % 18.4 %
600 Octopi (Fig. 18) 3.1 M 8.88 M 104.0 K 6.4 K 12 3.6 4.1 8.3e-4 × 3 16.40 17.90 68.3 % 15.4 % 13.4 % 2.9 %
16 Squishy Balls (Fig. 19) 3.5 M 11.2 M 118.5 K 8.5 K 29 4.5 6.6 3.3e-4 × 3 18.50 20.20 49.3 % 25.0 % 21.8 % 3.9 %
Long Noodle (Fig. 20) 860 K 2.29 M 102.6 K 6.1 K 11 3.6 3.2 8.3e-4 × 3 4.10 4.50 67.6 % 14.8 % 14.9 % 2.7 %
8 Octopi CCD Only (Fig. 9a) 40 K 118 K 2.1 K N/A N/A N/A N/A 3.3e-3 × 5 0.028 0.036 86.6 % 13.4 % N/A N/A

8 Octopi DCD Only (Fig. 9b) 40 K 118 K N/A 2.4 K 13 3.7 4.1 3.3e-3 × 5 0.038 0.045 79.2 % N/A 10.7 % 10.1 %
8 Octopi hybrid (Fig. 9c) 40 K 118 K 2.3 K 0.2 K 11 3.3 3.9 3.3e-3 × 5 0.035 0.038 79.3 % 10.1 % 9.6 % 1.0 %

(a)

(b)

Fig. 23. Simulation of twisting a thin beam, shown in Figure 13, soon
after replacing our method with using the rest pose for finding the
closest boundary point: (a) instabilities caused by incorrect closest
boundary points found using this approach, and (b) exploded simula-
tion after a few frames.

Figure 22 shows a simple example, where a small cube is dropped

onto a deformed object. Notice that the rest shape of the object

(Figure 22a) is sufficiently different from the deformed shape (Fig-

ure 22b). With collision handling using this rest shape, the cube

moves against gravity and eventually bounces back (Figure 22c),

instead of sliding down the surface, as simulated using our method

(Figure 22d). Figure 22e shows a 2D illustration of example shortest

paths generated by both methods. Notice that using the rest shape

results in a longer path to the surface that corresponds to higher

collision energy. In contrast, our method minimizes the collision

energy by using the actual shortest path to the boundary.

Figure 23 shows a more complex example with self-collisions that

is initially simulated using our method (Figure 13) until complex

self-collisions are formed. When we switch to using the rest shape

to find the boundary paths, the simulation explodes following a

number of incorrectly-handled self-collisions.

In general, using the rest shape not only generates incorrect

shortest boundary paths, but also injects energy into the simulation.

This is because an incorrect shortest boundary path is, by definition,

longer than the actual shortest boundary path, thereby corresponds

to higher potential energy.

6 DISCUSSION
An important advantage of our method is that it can work with

simulation systems that do not provide any guarantees about re-

solving collisions. Therefore, we can use fast simulation techniques

like XPBD to handle complex scenarios involving numerous self-

collisions, as demonstrated above.

Yet, our method cannot handle all types of self-collisions and it

requires a volumetric mesh. We cannot handle collisions of codi-

mensional objects, such as cloth or strands. Our method would also

have difficulties handling meshes with thin volumes or no interior

elements.

Our method is essentially a shortest boundary path computation

method. It is based on the fact that an interior point’s shortest path

to the boundary is always a line segment. This assumption always

holds for objects like tetrahedral meshes in 3D or triangular mesh in

2D Euclidean space. Therefore, our method cannot handle shortest

boundary paths in non-Euclidean spaces, such as geodesic paths on

surfaces in 3D.

Using our method for collision handling with DCD inherits the

limitations of DCD. For example, when with large time steps and

sufficiently fast motion, penetration can get too deep, and the short-

est boundary path may be on the other side of the penetrated model,

causing undesirable collision handling. In practice, this problem can

be efficiently solved by coupling CCD and DCD, as we demonstrate

with our results above.

7 CONCLUSION
We have presented a formal definition of the shortest path to bound-

ary in the context of self-intersections and introduced an efficient

and robust algorithm for finding the exact shortest boundary paths

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

14 • He Chen, Elie Diaz, and Cem Yuksel

for meshes. We have shown that this approach provides an effective

solution for handling both self-collisions and inter-object collisions

using DCD in combination with CCD, using a simulation system

that does not provide any guarantees about resolving the collision

constraints. Our results show highly complex simulation scenarios

involving collisions and rest-in-contact conditions that are properly

handled with our method with a relatively small computational

overhead.

ACKNOWLEDGMENTS
We thank Alper Sahistan, Yin Yang, and Kui Wu for their help-

ful comments and suggestions. We also thank Alec Jacobson and

Tiantian Liu for providing online volumetric mesh datasets. This

project was supported in part by NSF grant #1764071.

REFERENCES
Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez,

and Paul G Kry. 2010. Volume contact constraints at arbitrary resolution. In ACM
SIGGRAPH 2010 papers. 1–10.

Aytek Aman, Serkan Demirci, and Uğur Güdükbay. 2022. Compact tetrahedralization-

based acceleration structures for ray tracing. Journal of Visualization (2022), 1–13.

Mukund Balasubramanian, Jonathan R Polimeni, and Eric L Schwartz. 2008. Exact

geodesics and shortest paths on polyhedral surfaces. IEEE transactions on pattern
analysis and machine intelligence 31, 6 (2008), 1006–1016.

David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies.

In Proceedings of the 21st annual conference on Computer graphics and interactive
techniques. 23–34.

Ted Belytschko and Mark O Neal. 1991. Contact-impact by the pinball algorithm with

penalty and Lagrangian methods. Internat. J. Numer. Methods Engrg. 31, 3 (1991),
547–572.

Jan Bender, Matthias Müller, and Miles Macklin. 2015. Position-Based Simulation

Methods in Computer Graphics.. In Eurographics (tutorials). 8.
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.

Projective dynamics: Fusing constraint projections for fast simulation. ACM trans-
actions on graphics (TOG) 33, 4 (2014), 1–11.

Stephen Cameron. 1997. Enhancing GJK: Computing minimum and penetration dis-

tances between convex polyhedra. In Proceedings of international conference on
robotics and automation, Vol. 4. IEEE, 3112–3117.

John Canny. 1986. Collision detection for moving polyhedra. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2 (1986), 200–209.

Jindong Chen and Yijie Han. 1990. Shortest paths on a polyhedron. In Proceedings of
the sixth annual symposium on Computational geometry. 360–369.

Keenan Crane, Marco Livesu, Enrico Puppo, and Yipeng Qin. 2020. A Survey of

Algorithms for Geodesic Paths and Distances. arXiv preprint arXiv:2007.10430
(2020).

Ounan Ding and Craig Schroeder. 2019. Penalty force for coupling materials with

Coulomb friction. IEEE transactions on visualization and computer graphics 26, 7
(2019), 2443–2455.

Evan Drumwright. 2007. A fast and stable penalty method for rigid body simulation.

IEEE transactions on visualization and computer graphics 14, 1 (2007), 231–240.
Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil Ureta, Timothy R Lan-

glois, Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021.

Intersection-free rigid body dynamics. ACM Trans. Graph. 40, 4 (2021), 183–1.
Susan Fisher and Ming C Lin. 2001a. Deformed distance fields for simulation of non-

penetrating flexible bodies. In Computer Animation and Simulation 2001. Springer,
99–111.

Susan Fisher and Ming C Lin. 2001b. Fast penetration depth estimation for elastic

bodies using deformed distance fields. In Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics
in the the Next Millennium (Cat. No. 01CH37180), Vol. 1. IEEE, 330–336.

Marie-Paule Gascuel. 1993. An implicit formulation for precise contact modeling

between flexible solids. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. 313–320.

James K Hahn. 1988. Realistic animation of rigid bodies. ACM Siggraph computer
graphics 22, 4 (1988), 299–308.

Bruno Heidelberger, Matthias Teschner, Richard Keiser, Matthias Müller, and Markus H

Gross. 2004. Consistent penetration depth estimation for deformable collision

response.. In VMV, Vol. 4. 339–346.
EvertonHermann, François Faure, and Bruno Raffin. 2008. Ray-traced collision detection

for deformable bodies. In GRAPP 2008-3rd International Conference on Computer

Graphics Theory and Applications. INSTICC, 293–299.
Gentaro Hirota, Susan Fisher, and Ming Lin. 2000. Simulation of non-penetrating elastic

bodies using distance fields. University of North Carolina at Chapel Hill Technical
Report: TR00-018. Spring (2000).

I Huněk. 1993. On a penalty formulation for contact-impact problems. Computers &
structures 48, 2 (1993), 193–203.

Changsoo Je, Min Tang, Youngeun Lee, Minkyoung Lee, and Young J Kim. 2012. Poly-

Depth: Real-time penetration depth computation using iterative contact-space pro-

jection. ACM Transactions on Graphics (TOG) 31, 1 (2012), 1–14.
Ladislav Kavan. 2003. Rigid body collision response. Vectors 1000, 2 (2003).
Dan Koschier, Crispin Deul, Magnus Brand, and Jan Bender. 2017. An hp-adaptive

discretization algorithm for signed distance field generation. IEEE transactions on
visualization and computer graphics 23, 10 (2017), 2208–2221.

Ares Lagae and Philip Dutré. 2008. Accelerating ray tracing using constrained tetrahe-

dralizations. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1303–1312.

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine

Body Dynamics: Fast, Stable and Intersection-Free Simulation of Stiff Materials.

ACM Trans. Graph. 41, 4, Article 67 (jul 2022), 14 pages. https://doi.org/10.1145/

3528223.3530064

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.

2022b. Penetration-free projective dynamics on the GPU. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–16.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential con-

tact: Intersection-and inversion-free, large-deformation dynamics. ACM transactions
on graphics (2020).

Yijing Li and Jernej Barbič. 2018. Immersion of self-intersecting solids and surfaces.

ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14.
Yong-Jin Liu. 2013. Exact geodesic metric in 2-manifold triangle meshes using edge-

based data structures. Computer-Aided Design 45, 3 (2013), 695–704.

Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke,

and Zach Corse. 2020. Local optimization for robust signed distance field collision.

Proceedings of the ACM on Computer Graphics and Interactive Techniques 3, 1 (2020),
1–17.

Miles Macklin and Matthias Muller. 2021. A Constraint-based Formulation of Stable

Neo-Hookean Materials. In Motion, Interaction and Games. 1–7.
Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based

simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Maxime Maria, Sébastien Horna, and Lilian Aveneau. 2017. Efficient ray traversal of

constrained Delaunay tetrahedralization. In 12th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISI-
GRAPP 2017), Vol. 1. 236–243.

Gerd Marmitt and Philipp Slusallek. 2006. Fast ray traversal of tetrahedral and hex-

ahedral meshes for direct volume rendering. In Proceedings of the Eighth Joint
Eurographics/IEEE VGTC conference on Visualization. 235–242.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph

Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with

contact and collisions. In ACM SIGGRAPH 2011 papers. 1–12.
Brian Mirtich and John Canny. 1995. Impulse-based simulation of rigid bodies. In

Proceedings of the 1995 symposium on Interactive 3D graphics. 181–ff.
Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete

geodesic problem. SIAM J. Comput. 16, 4 (1987), 647–668.
NathanMitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. 2015. Non-

manifold level sets: A multivalued implicit surface representation with applications

to self-collision processing. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–9.
MatthewMoore and JaneWilhelms. 1988. Collision detection and response for computer

animation. In Proceedings of the 15th annual conference on Computer graphics and
interactive techniques. 289–298.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position

based dynamics. Journal of Visual Communication and Image Representation 18, 2

(2007), 109–118.

Carol O’Sullivan and John Dingliana. 1999. Real-time collision detection and response

using sphere-trees. (1999).

Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen, and

Peter Shirley. 2005. Interactive ray tracing for volume visualization. In ACM
SIGGRAPH 2005 Courses. 15–es.

John C Platt and Alan H Barr. 1988. Constraints methods for flexible models. In

Proceedings of the 15th annual conference on Computer graphics and interactive
techniques. 279–288.

Stéphane Redon and Ming C. Lin. 2006. A Fast Method for Local Penetration Depth

Computation. Journal of Graphics Tools 11 (2006), 37 – 50.

Alper Şahıstan, Serkan Demirci, Nathan Morrical, Stefan Zellmann, Aytek Aman, Ingo

Wald, and Uğur Güdükbay. 2021. Ray-traced shell traversal of tetrahedral meshes

for direct volume visualization. In 2021 IEEE Visualization Conference (VIS). IEEE,
91–95.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3528223.3530064

Shortest Path to Boundary for Self-Intersecting Meshes • 15

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J Gortler, and Hugues

Hoppe. 2005. Fast exact and approximate geodesics on meshes. ACM transactions
on graphics (TOG) 24, 3 (2005), 553–560.

Yun Teng, Miguel A Otaduy, and Theodore Kim. 2014. Simulating articulated subspace

self-contact. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–9.
Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-

formable models. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques. 205–214.

Mickeal Verschoor and Andrei C Jalba. 2019. Efficient and accurate collision response

for elastically deformable models. ACM Transactions on Graphics (TOG) 38, 2 (2019),
1–20.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.

Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on

Graphics (TOG) 33, 4 (2014), 1–8.
Bin Wang, François Faure, and Dinesh K Pai. 2012. Adaptive image-based intersection

volume. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–9.
Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele

Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for

Continuous Collision Detection. ACM Transactions on Graphics (TOG) 40, 5 (2021),
1–16.

Shi-Qing Xin and Guo-Jin Wang. 2009. Improving Chen and Han’s algorithm on the

discrete geodesic problem. ACM Transactions on Graphics (TOG) 28, 4 (2009), 1–8.
Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Collision Handling
	2.2 Geodesic Path and Distances
	2.3 Tetrahedral Ray Traversal

	3 Shortest Path to Boundary
	3.1 Shortest Path to Boundary
	3.2 Shortest Path to Boundary for Meshes
	3.3 Robust Topological Ray Traversal
	3.4 Intersections of Different Objects
	3.5 Inverted Elements
	3.6 Infeasible Region Culling

	4 Collision Handling Application
	5 Results
	5.1 Stress Tests
	5.2 Solving Existing Intersections
	5.3 Large-Scale Experiments
	5.4 Performance
	5.5 Comparisons to Rest Shape Shortest Paths

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

