Shortest Path to Boundary for Self-Intersecting Meshes

HE CHEN, University of Utah, USA
ELIE DIAZ, University of Utah, USA
CEM YUKSEL, University of Utah & Roblox, USA

«6'7\"' y‘

Fig. 1. Example simulation results involving complex self-collision scenarios, generated using our method with XPBD [Macklin et al. 2016].

We introduce a method for efficiently computing the exact shortest path
to the boundary of a mesh from a given internal point in the presence
of self-intersections. We provide a formal definition of shortest boundary
paths for self-intersecting objects and present a robust algorithm for com-
puting the actual shortest boundary path. The resulting method offers an
effective solution for collision and self-collision handling while simulating
deformable volumetric objects, using fast simulation techniques that pro-
vide no guarantees on collision resolution. Our evaluation includes complex
self-collision scenarios with a large number of active contacts, showing that
our method can successfully handle them by introducing a relatively minor
computational overhead.

CCS Concepts: « Computing methodologies — Collision detection;
Physical simulation.

Additional Key Words and Phrases: Collision response, Computational ge-
ometry, geodesics, shortest path

ACM Reference Format:

He Chen, Elie Diaz, and Cem Yuksel. 2023. Shortest Path to Boundary for
Self-Intersecting Meshes. ACM Trans. Graph. 42, 4 (August 2023), 15 pages.
https://doi.org/10.1145/3592136

Authors’ addresses: He Chen, ankachan92@gmail.com, University of Utah, Salt Lake
City, UT, USA; Elie Diaz, elie.diaz@utah.edu, University of Utah, Salt Lake City, UT,
USA; Cem Yuksel, cem@cemyuksel.com, University of Utah & Roblox, Salt Lake City,
UT, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART $15.00

https://doi.org/10.1145/3592136

1 INTRODUCTION

Self-intersecting meshes, though they are often highly undesirable,
are commonplace in computer graphics. They can appear due to
the limitations of modeling techniques, animation methods, or man-
ual editing operations. Even physics-based simulations with self-
collision handling are not immune to self-intersections, as most of
them cannot guarantee an intersection-free state.

Notwithstanding the amount of work on self-intersection han-
dling within physics-based simulations, it still remains a challenge
in most cases. Continuous collision detection techniques [Li et al.
2020] require starting with and maintaining an intersection-free
state; therefore, they must be used with computationally-expensive
methods that can always resolve all self-intersections and they fail
when combined with cheaper techniques that are unable to do so.
Methods that split an object into pieces [Macklin et al. 2020] turn
the self-intersection problem into intersections of these separate
pieces, entirely avoiding the self-intersection problem, and they
fail to resolve self-intersections within a piece. Methods that solve
self-intersections using an intersection-free pose [McAdams et al.
2011] not only require such a pose, but also become inaccurate as
the objects deform and fail with sufficiently large deformations and
deep penetrations. Therefore, none of these methods provides a
robust and general solution for self-intersections.

In this paper, we present a method that robustly and efficiently
finds the exact shortest internal path of a point inside a mesh to its
boundary, even in the presence of self-intersections and some in-
verted elements. We achieve this by introducing a precise definition
of the shortest path to the mesh boundary, including points that
are both on the boundary and inside the mesh at the same time, an
unavoidable condition with self-intersections. Our approach works
with tetrahedral meshes in 3D (with boundaries forming triangular
meshes) and triangular meshes in 2D (with polyline boundaries).

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0002-5819-3453
HTTPS://ORCID.ORG/0009-0002-9493-1684
HTTPS://ORCID.ORG/0000-0002-0122-4159
https://doi.org/10.1145/3592136
https://orcid.org/0000-0002-5819-3453
https://orcid.org/0009-0002-9493-1684
https://orcid.org/0000-0002-0122-4159
https://doi.org/10.1145/3592136

2 « He Chen, Elie Diaz, and Cem Yuksel

We demonstrate that one important application of our method is
solving arbitrary self-intersections after they appear in deformable
simulations, allowing the use of cheaper integration techniques that
do not guarantee complete collision resolution.

Our method is based on the realizations that (1) the shortest path
must be fully contained within the geodesic embedding of the mesh
and (2) it must be a line segment under Euclidean metrics. Based
on these, given a candidate boundary point, our method quickly
checks if the line segment to this point is contained within the mesh.
Combined with a spatial acceleration structure, we can efficiently
find and test the candidate closest boundary points until the shortest
path is determined. We also describe a fast and robust tetrahedral
traversal algorithm that avoids infinite loops, needed for checking
if a path is within the mesh. Furthermore, we propose an additional
acceleration that can quickly eliminate candidate boundary points
based on local geometry without the need for checking their paths.

One application of our method is resolving intersections between
separate objects and self-intersections alike within a fast physics-
based simulation system that cannot guarantee intersection-free
states. It can be used alone or as a backup for continuous collision
detection to handle cases when the simulation system fails to re-
solve a previously-detected collision. In either case, we achieve a
robust collision handling method that can solve extremely chal-
lenging cases, involving numerous deep self-intersections, using a
fast simulation system that does not provide any guarantees about
collision resolution. As a result, we can simulate highly complex
scenarios with a large number of self-collisions and rest-in-contact
conditions, as shown in Figure 1.

2 RELATED WORK

One important application of our method is collision handling (Sec-
tion 2.1), though we actually introduce a method for certain types
of geodesic distances and paths (Section 2.2). A core part of our
method is tetrahedral ray traversal (Section 2.3). In this section,
we overview the prior in these areas and briefly present how our
approach compares to them.

2.1 Collision Handling

Collision handling is directly related to how they are detected, which
can be done using either continuous collision detection (CCD) or
discrete collision detection (DCD).

Starting with an intersection-free state, CCD can detect the first
time of contact between elements [Canny 1986], but requires main-
taining an intersection-free state. Through the use of a strong barrier
function, incremental potential contact (IPC) [Li et al. 2020] provides
guaranteed collision resolution combined with a CCD-aware line
search. This idea was later extended to rigid [Ferguson et al. 2021]
and almost rigid bodies [Lan et al. 2022a]. Incorporating projec-
tive dynamics into IPC offers performance improvement [Lan et al.
2022b], but resolving all collisions still remains expensive. Even
when the simulation system is able to resolve all collisions, CCD
itself can fail due to numerical issues, in which case, it can no longer
help with resolving the collision, resulting in objects linking to-
gether [Wang et al. 2021].

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

In contrast, DCD allows the simulation framework to start and
recover from a state with existing intersections. DCD detects colli-
sions at a single point in time, after they happen. That is why, extra
computation is needed to determine how to resolve the collisions.

Collisions can be resolved by minimizing the penetration vol-
ume [Allard et al. 2010; Wang et al. 2012] or by applying constraints
[Bouaziz et al. 2014; Macklin et al. 2016; Miiller et al. 2007; Verschoor
and Jalba 2019], penalty forces [Belytschko and Neal 1991; Ding
and Schroeder 2019; Drumwright 2007; Hunék 1993], or impulses
[Kavan 2003; Mirtich and Canny 1995; O’Sullivan and Dingliana
1999] that involve computing the penetration depth, the minimum
translational distance to resolve the penetration [Hirota et al. 2000;
Platt and Barr 1988; Terzopoulos et al. 1987]. The exact penetration
depth can be computed using analytical methods based on geomet-
ric information of polygonal meshes [Baraff 1994; Cameron 1997;
Hahn 1988; Moore and Wilhelms 1988], or it can be approximated
using a volumetric mesh [Fisher and Lin 2001a], mesh partitioning
[Redon and Lin 2006], tracing rays [Hermann et al. 2008], or solving
an optimization problem [Je et al. 2012]. Heidelberger et al. [2004]
proposed a consistent penetration depth by propagating penetration
depth through the volumetric mesh. These methods, however, strug-
gle with handling self-intersections. Starting with a self-intersecting
shape, Li and Barbi¢ [2018] proposed a method to separate the over-
lapping parts and create a bounding case mesh that represents the
underlying geometry to allow "un-glued" simulation.

Using a signed distance fields (SDF) is a more popular alternative
for recent methods. They can be defined either on a volumetric mesh
[Fisher and Lin 2001a] or a regular grid [Gascuel 1993; Koschier et al.
2017; Macklin et al. 2020]. Once built, both the penetration depth
and the shortest path to the surface can be directly queried from
the volumetric data structure. This provides an efficient solution
at run time as long as the SDF does not need updating, though the
returned penetration depth and shortest path are approximations
(formed by interpolating pre-computed values). Also, the SDF is
not well defined when there are self-intersections, as they cannot
represent immersion, so it must be built using an intersection-free
pose.

For handling self-intersections, SDFs of an intersection-free pose
can be used [McAdams et al. 2011]. This can provide sufficient
accuracy for handling minor deformations, but quickly becomes
inaccurate with large deformations and deep penetrations. Using
a deformable embedding helps [Macklin et al. 2020], but requires
splitting the object into pieces [Fisher and Lin 2001a,b; Macklin
et al. 2020; McAdams et al. 2011; Teng et al. 2014]. An alternative
approach is bifurcating the SDF nodes during construction when
a volumetric overlap, which can be formed by self-intersection, is
detected [Mitchell et al. 2015]. These solutions entirely circumvent
the self-intersection problem by only considering intersections of
separate pieces and self-intersections within a piece are ignored.
Such approaches are particularly problematic with complex models
and in cases when determining where to split is unclear ahead of
time, since the splitting or bifurcation is usually pre-computed and
expensive to update at run time. Also, the closest boundary point
found within a piece is not necessarily the actual one for the entire
mesh, as it might be contained in a separate piece. Even for cases

they can handle with sufficient accuracy, SDFs have a significant
pre-computation and storage cost.

In comparison, our solution can find the exact penetration depth
for models with arbitrary complexity and the accurate shortest
path to the boundary regardless of the type or severity of self-
intersections. In addition, we do not require costly pre-computations
or volumetric storage.

2.2 Geodesic Path and Distances

Following the categorization of Crane et al. [2020], our method
falls into the category of multiple source geodesic distance/shortest
path (MSGD/MSSP) problems. Actually, the problem we solve is a
special case of MSSP, where the set of sources is the collection of all
the boundary points of the mesh. Also, ours is an exact polygonal
method that can compute global geodesic paths. MMP algorithm
[Mitchell et al. 1987] is the first practical algorithm that can com-
pute geodesic path between any two points on a polygonal surface.
Succeeding methods [Chen and Han 1990; Liu 2013; Surazhsky et al.
2005; Xin and Wang 2009] focus on optimizing its computation time
and memory requirements. Yet, all of these method only aim at
solving the single source geodesic distance/shortest path (SSGD/SSSP)
problems. For solving the all-pairs geodesic distances/shortest paths
(APGD/APSP) problem, a vertex graph that encodes the minimal
geodesic distances between all pairs of vertices on the mesh can
be built [Balasubramanian et al. 2008]. These methods are general
enough for handling 2D manifolds in 3D, but they do not offer an
efficient solution for our MSSP problem. Our solution for MSSP,
however, is limited to planar (2D, triangular) or volumetric (3D,
tetrahedral) meshes, where we can rely on Euclidean metrics.

2.3 Tetrahedral Ray Traversal

For handling tetrahedral meshes in 3D, our method uses a topologi-
cal ray traversal. Tetrahedral ray traversal has been used in volu-
metric rendering [Marmitt and Slusallek 2006; Parker et al. 2005;
Sahistan et al. 2021]. Methods that improve their computational
cost include using scalar triple products [Lagae and Dutré 2008] and
Plucker coordinates [Maria et al. 2017]. More recently, Aman et al.
[2022] introduced a highly-efficient dimension reduction approach.

A common problem with tetrahedral ray traversal is that numeri-
cal inaccuracies can lead to infinite loops when a ray passes near
an edge or vertex. Many rendering problems can safely terminate
when an infinite loop is detected. In our case, however, we must
detect and resolve such cases, because failing to do so would result
in returning an incorrect shortest path, which can have catastrophic
effects in simulation. Therefore, we introduce a robust variant of
tetrahedral ray traversal.

3 SHORTEST PATH TO BOUNDARY

A typical solution for resolving intersections (detected via DCD)
is finding the closest boundary point for each intersecting point
and then applying corresponding forces/constraints along the line
segment toward this point, i.e. the shortest path to boundary. The
length of this path is the penetration depth.

When two separate objects intersect, finding the closest boundary
point is a trivial problem: it is the closest boundary point on the

Shortest Path to Boundary for Self-Intersecting Meshes « 3

oM Y(OM)
v (CN
<>
M M

(a) (b)

Fig. 2. Illustrations of the notations. (a) Notations on the undeformed
pose. (b) Notations on the deformed model. The image of the unde-
formed pose boundary ¥ (0M) is marked as the red curve.

other object. In the case of self-intersections, however, even the
definition of the shortest path to boundary is somewhat ambiguous.

Consider a point on the boundary and also inside the object due to
self-intersections. Since this point is already on the boundary, its Eu-
clidean closest boundary point would be itself. Yet, this information
is not helpful for resolving the self-intersection.

In this section, we provide a formal definition of the shortest path
to boundary based on the geodesic path of the object in the pres-
ence of self-intersections (Section 3.1). Then, we present an efficient
algorithm to compute it for triangular/tetrahedral meshes in 2D/3D,
respectively, (Section 3.2). We also describe how to handle meshes
that contain some inverted elements, (Section 3.5). The resulting
method provides a robust solution for handling self-collisions that
can be used with various simulation methods and collision resolu-
tion techniques (using forces or constraints).

3.1 Shortest Path to Boundary

Consider a self-intersecting model M, such that a boundary point s
coincides with an internal point p. Figure 2b shows a 2D illustration,
though the concepts we describe here apply to 3D (and higher
dimensions) as well. In this case, s and p have the same geometric
positions, but topologically they are different points. In fact, to fix
the self-intersection, we need to apply a force/constraint that would
move s along p’s geodesic shortest path to boundary.

To provide a formal definition of this geodesic shortest path, we
consider a self-intersection-free form of this model as M which we
call undeformed pose, and a deformation ¥ that maps all points in M
to its current shape M, such that M = ¥ (M). Note that our algorithm
(explained in Section 3.2) does not actually need computing M or
Y. For any point p in M, we represent its image under ¥ as p € M,
such that p = ¥(p). In the following, we assume that M is a path-
connected (i.e. a single piece) manifold, though the concepts below
can be trivially extended to models with multiple separate pieces.

To cause self-intersection, ¥ should not be injective. In this case,
¥ is an immersion of M but not embedding, meaning multiple points
from M are mapped to the same position p inside M. To differentiate
such points that coincide in M, we label them using their unique

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

4 + He Chen, Elie Diaz, and Cem Yuksel

— as p
P, 4 =
x P s %
% b I xs
X P=p1/P2 P x5
p, 1 a ax
as p,
M M M M

(a) (b)

(c) (d) (e)

Fig. 3. (a) An intersection-free pose of the deformable model M. p,,p, € M. (b) M’s image under ¥, where p,, p, are mapped to the same point
p. (c) Treated as different pre-image, p has different shortest paths to the boundary (blue line). (d) Two paths are contained by M. (c) Only ps’ is a

valid path.

positions in M. For simplicity, we say p as p, when we are referring
p as the image of p.

For simplicity, let us consider non-degenerate ¥ that forms no
inversion, i.e. det(V¥) > 0. We discuss inversions later in Section 3.5.
Note that under this ¥, the boundary of the undeformed model oM
does not completely overlap with the boundary of the deformed
model oM, i.e. ¥(aM) # oM, see Figure 2b. We use M’ to denote
the set of interior points of M, such that M = oM U M.

Let s as be a point on the boundary, i.e. s € ¥(aM) and we refer
to it as an undeformed pose boundary point s. For a given point p
(as p), we can construct a path c(¢) : [0,1] +— M as a continuous
curve that connects p = ¢(0) to s = ¢(1).

DEFINITION 1 (VALID PATH). The path c(t) fromp (asp) tos (as
s) is a valid path if there exists a continuous curve c(t) : [0,1] — M
such that c(t) = ¥(c(t)),c(0) =p,c(1) =s.

Based on this definition, a valid path must be the image of a path
that is fully contained within M, which connects the two points
on the undeformed pose we are referring to. Any path that moves
outside of M is considered an invalid path, see Figure 3de. Our goal
is to find the shortest valid path from a given point p (as p) to the
boundary.

DEFINITION 2 (SHORTEST PATH TO BOUNDARY). For an interior
point p (as p), the shortest path to boundary is the shortest curve c(t)
in M that connects p to a boundary point s (as's) that is a valid path
between p and s.

DEFINITION 3 (CLOSEST BOUNDARY POINT). For an interior point
p (as p), the closest boundary point is the boundary point s (as's) at
the other end of p’s shortest path to boundary c(t) = ¥(c(t)), such
thats = c(1) ands = ¢(1).

Here we must emphasize that the definition of the shortest path
is dependent on the pre-image point we are referring to. For a point
located at the overlapping part of M, referring to it as a different
point on the undeformed pose may lead to a different shortest path
to the boundary (see Figure 3c). Also, this definition is equivalent to
the image of p’s global geodesic path to boundary in M evaluated
under the metrics pulled back by ¥. Thus the shortest path we
defined is a special class of geodesics.

To construct an efficient algorithm for finding the shortest path,
we rely on two properties:

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

o First, by definition, the shortest path must be a continuous
curve that is fully contained inside undeformed model M.

e Second, the shortest path (under the Euclidean distance met-
rics) that connects two points in the deformed model M must
be a line segment.

Based on these properties, we can construct and prove the funda-
mental theorem of our algorithm:

THEOREM 1. For any point p € M (as (p), its shortest path to the
boundary is the shortest line segment from p to a boundary point
s € Y(9M) (ass), that is a valid path.

Here we verbally prove the theorem, we also provide a formal
proof in the supplementary document. If the shortest path is not a
line segment, we can continuously deform it into a line segment,
while keeping the end points fixed. This procedure can induce a
deformation on the undeformed pose, which continuously deforms
the pre-image of that curve to the pre-image of the line segment,
while keeping the end points fixed. This is always achievable because
the curve cannot touch the boundary of the undeformed pose during
the deformation, otherwise, we will form an even shorter path to
the boundary. Thus the line segment is also a valid path.

Based on these properties, our algorithm investigates a set of
candidate boundary points s and checks if the line segment from
the interior point p to s is a valid path. This is accomplished without
having to construct M or determine the deformation ¥ by relying
on the topological connections of the given discretized model.

3.2 Shortest Path to Boundary for Meshes

In practice, models we are interested in are discretized in a piece-
wise linear form. These are triangular meshes in 2D and tetrahedral
meshes in 3D. We refer to each piecewise linear component as an
element (i.e. a triangle in 2D and a tetrahedron in 3D) and the one-
dimension-lower-simplex shared by two topologically-connected
elements as a face (i.e. an edge between two triangles in 2D and a
triangular face between two tetrahedra in 3D). This discretization
makes it easy to test the validity of a given path, without construct-
ing a self-intersection-free M or the related deformation ¥.

We propose the concept of element traversal for meshes, as a
sequence of topologically connected elements:

DEFINITION 4 (ELEMENT TRAVERSAL). For a mesh M, and two-
pointa € ey, b € ey, we define a element traversal from a tob as a list
of elements T (a,b) = (ep, e1, €2, . .., ex), where e; is a element of M,
ep = ea, e = ey, and e; N ejy1 must be a face.

Specifically, we call it tetrahedral traversal for 3D meshes, and
triangular traversal for 2D meshes.

Let c(t) be a line segment from a point p inside an element ep to
a boundary point s of a boundary element eg (with a boundary face
that contains s). If ¢(t) is a valid path, there must be a corresponding
piecewise linear path €(¢) in M from p to § that passes through an
element traversal of M. Actually, an element traversal containing
c(t) is the sufficient and necessary condition for c(¢) being a valid
path. Please see the supplementary material for a rigorous proof.

Thus, evaluating whether c(t) is a valid path, is equivalent to
searching for an element traversal from s to p, and a piece-wise linear
curve () : I — M defined on it, such that c(t) = ¥(c(t)). Such
an element traversal and piece-wise linear curve can be efficiently
constructed in M.

Going through the element traversal, ¢(t) must pass through
faces shared by neighoring elements at points r; € e; N €11, where
i=0,12,...,k— 1. When ¥ forms no inversion, corresponding
face points r; must be along the line segment c(¢), i.e. r; = c(t;)
for some t; € [0, 1], see Figure 4a. If we can form such an element
traversal using the topological connections of the model, we can
safely conclude that the path is valid.

This gives us an efficient mechanism for testing the validity of
the shortest path from p to s. Starting from ep, we trace a ray from p
towards s and find the first face point ry. If ry is not on the boundary,
this face must connect ep to a neighboring element e;. Then, we
enter e; from ry and trace the same ray to find the exit point r; on
another face. We continue traversing until we reach eg, in which
case we can conclude that this is a valid path, see Figure 4a. This
also includes the case ep = es. If we reach a face point r; that is on
the boundary (see Figure 4b) or we pass-through s without entering
es, s cannot be the closest boundary point to p.

This process allows us to efficiently test the validity of a path to
a given boundary point, but we have infinitely many points on the
boundary to test. Fortunately, we are only interested in the shortest
path and we can use the theorem below to test only a single point
per boundary face.

THEOREM 2. For each interior point p (asp), if its closest boundary
point s (as's) is on the boundary face f, s must also be the Euclidean
closest point top on f.

The proof is similar to Theorem 1, which is included in the sup-
plementary document. Based on Theorem 2, we only need to check
a single point (the Euclidean closest point) on each boundary face
to find the closest boundary point. If we test these boundary points
in the order of increasing distance from the interior point p, as soon
as we find a valid path to one of them, we can terminate the search
by returning it as the closest boundary point. In practice, we use a
BVH (bounding volume hierarchy) to test these points, which al-
lows testing them approximately (though not strictly) in the order of
increasing distance and, once a valid path is found, quickly skipping
the further away bounding boxes.

Shortest Path to Boundary for Self-Intersecting Meshes « 5

(@) (b)
Fig. 4. (a) An example of a triangular traversal, marked by red trian-
gles. A line segment connecting p and s is included in this triangular
traversal. (b) An example of a line segment being an invalid path when
there are self-intersections, the triangular traversal (marked by the
red triangles) stops at the boundary of the mesh but the line segment
penetrates the boundary and continues going.

3.3 Robust Topological Ray Traversal

The process we describe above for testing the validity of the linear
path to a candidate boundary point involves traversing a ray through
the mesh. This ray traversal is significantly simpler than typical ray
traversal algorithms used for rendering with ray tracing. This is
because it directly follows the topological connections of the mesh.

At each step, the ray enters an element through one of its faces
and must exit from one of its other faces. Therefore, we do not need
to rely on an acceleration structure to quickly determine which
faces to test ray intersections, as they are directly known from the
mesh topology. In fact, we do not need to check each one of the
other faces individually, since the ray exits from exactly one of them.
Therefore, we can quickly test all possible exit faces together.

For example, Aman et al. [2022] present such a tetrahedral traver-
sal algorithm in 3D. Yet, due to limited numerical precision, this algo-
rithm is prone to forming infinite loops. Such infinite loops are easy
to detect and terminate (e.g. using a maximum iteration count), but
such premature terminations are entirely unacceptable in our case.
This is because incorrectly deciding on the validity of a path would
force our algorithm to pick an incorrect shortest path to boundary,
which can be arbitrarily far from the correct one. Therefore, the
simulation system that relies on this shortest path to boundary can
place strong and arbitrarily incorrect forces/constrains in an attempt
to resolve the self-intersection.

Our solution for properly resolving such cases that arise from
limited numerical precision is three fold:

(1) We allow ray intersections with more than one face by effec-
tively extending the faces using a small tolerance parameter
€; in the intersection test. This forms branching paths when
a ray passes between multiple faces and, therefore, intersects
(within €;) with more than one of them.

(2) We keep a list of traversed elements and terminate a branch
when the ray enters an element that was previously entered.

(3) We keep a stack containing all the candidate intersecting
faces from the intersection test. After a loop is detected, we
pick the latest element from it and continue the process.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

6 « He Chen, Elie Diaz, and Cem Yuksel

Fig. 5. An object My intersects with a self-intersecting object M. A
surface point of My is overlapping with an interior point p; € Mj. s
ands’ are py’s closest boundary point by our definition and Euclidean
closest boundary point, respectively.

Please see our supplementary material for the pseudo-code and
more detailed explanations of our algorithm.

In practice such branching happens rarely, but solution ensures
that we never incorrectly terminate the ray traversal. Note that ¢;
is a conservative parameter for extending the ray traversal through
branching to prevent problems of numerical accuracy issues. It does
not introduce any error to the final shortest paths we find. Using
an unnecessarily large €; would only have negative, though mostly
imperceptible, performance consequences. We verified this by mak-
ing the €; ten times larger, which did not result in a measurable
performance difference.

One corner case is when the internal point p (as p) and the bound-
ary point s (as s) coincide, such that p = s (within numerical pre-
cision). This forms a line segment with zero length and, therefore,
does not provide a direction for us to traversal. This happens when
testing self-intersections of boundary points, which pick themselves
as their first candidate for the closest boundary point. This zero-
length line segment cannot be a valid path. Fortunately, since we
know we are testing self-intersection for s, when the BVH query
returns the boundary face includes s, we can directly reject it.

3.4 Intersections of Different Objects

Although our method is mainly designed for solving self-
intersections, it is still needed for handling intersections of different
objects when they may have self-intersections as well. As shown in
Figure 5, an object M, intersects with a self-intersecting object M,
where a surface point of M is overlapping with an interior point
p1 € M. Simply querying for p1’s Euclidean closest boundary point
in M; will give us s’, which does not help resolve the penetration.
This is because pys’ is not a valid path between p; (as p; € M(l)) and
spas (3’ € oM). What is actually needed is p1’s shortest path to
boundary as p;, which is the same problem as the self-intersection
case, a surface point of M; is overlapping with an interior point
P1 € M.

3.5 Inverted Elements

Our derivations in Section 3.1 assume that det(V¥) > 0 everywhere.
For a discrete mesh, this would mean no inverted or degenerate

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

elements. Unfortunately, though inverted elements are often highly
undesirable, they are not always unavoidable. Fortunately, the al-
gorithm we describe above can be slightly modified to work in the
presence of certain types of inverted elements.

If the inverted elements are not a part of the mesh boundary, we
can still test the validity of paths by allowing the ray traversal to
go backward along the ray. This is because the ray would need to
traverse backward within inverted elements. In addition, we cannot
simply terminate the traversal once the ray passes through the
target point, because an inverted element further down the path
may cause backward traversal to reach (or pass through) the target
point, see Figure 6b. Therefore, ray traversal must continue until
a boundary point is reached. We also need to allow the ray to go
behind the starting point, see Figure 6c.

A consequence of this simple modification to our algorithm is
that, when we begin from an internal point p toward a boundary
point s, it is unclear if we would reach s by beginning the traversal
toward s or in the opposite direction. While one may be more likely,
both are theoretically possible.

To avoid this decision, in our implementation we start the tra-
versal from the target boundary point s. In this case, there is no
ambiguity, since there is only one direction we can traverse along
the ray. This also allows using the same traversal routine for the first
element and the other elements along the path by always entering
an element from a face. Therefore, it is advisable even in the absence
of inverted elements.

Nonetheless, our algorithm is not able to handle all possible in-
verted elements. For example, if the inverted element is on the
boundary, as shown in Figure 7, the inversion itself can cause self-
intersection. In such a case, a surface point s is overlapping with
an interior point p (as p). Our algorithm will not be able to try to
construct a tetrahedral traversal between those two points because
we cannot determine a ray direction for a zero-length line segment.
Actually, in this case, the very definition of the closest boundary
point can be ambiguous.

Our solution is to skip the self-intersection detection of inverted
boundary elements. As a result, the only way for us to solve such
self-intersections caused by inverted boundary elements is to resolve
the inversion itself. Fortunately, inverted elements are undesirable
for most simulation scenarios, and they are often easier to fix for
boundary elements. Unfortunately, if the inverted boundary ele-
ments have global self-intersections with other parts of the mesh,
our solution ignores them. Though this does not form a complete
solution, because the inverted boundary elements are rare, the other
boundary elements surrounding the inverted elements are often
enough to solve the global self-intersection.

3.6 Infeasible Region Culling

In a lot of cases, it is possible to determine that a given candidate
boundary point s cannot be the closest boundary point to an interior
point p, purely based on the local information about the mesh around
s, without performing any ray traversal. For this test we construct
a particular region of space, i.e. the feasible region, around s. When
p is outside of this region of s, thus in its infeasible region, we can
safely conclude that s is not the closest boundary point.

Shortest Path to Boundary for Self-Intersecting Meshes « 7

°
/ h
\\ ///
\\ // % ~—
\\ / S
.
V4 . ty e
® [e]
Yy(oM) (©)

Fig. 6. (a) A part of the undeformed pose of a triangular mesh M, which is inversion free. p € M, € dM. A surface edge is marked with red color.
(b) The image of M under ¥, the tetrahedron t3 (colored with gray), is inverted by Y. The green line illustrates p’s global geodesics to the surface, it
has a self-overlapping part, which is marked by the two-sided arrow. (c) An interior tetrahedron is inverted and got out of the surface. In this case,

the global geodesics to the surface path can go backward.

Fig. 7. (a) A part of the undeformed pose of a triangular mesh M,
which is inversion free. The surface edges are marked with red color.
(b) After deformation, a triangle (marked by gray color), is inverted
and folded into the interior of the mesh. A deformed surfaces point s
overlaps with the interior point p.

The construction of this feasible region depends on whether s is
on a vertex, edge, or face.

Vertex Feasible Region. In 2D, when s is on a vertex, the feasible
region is bounded by the two lines passing through the vertex and
perpendicular to its two boundary edges, as shown in Figure 8a.
For a neighboring boundary edge of s and its perpendicular line
that passes through s, if p is on the same side of the line as the
edge, based on Theorem 2, there must be a closer boundary point
on the face. More specifically, for any neighboring boundary vertex
v; connected to s by a edge, if the following inequality is true, p is
in the infeasible region:

(p-9)-(s—vi) <0 1)

The same inequality holds in 3D for all neighboring boundary ver-
tices v; connected to s by an edge (Figure 8b). The 3D version of the
vertex feasible region is actually the space bounded by a group of
planes perpendicular to its neighboring edges.

. 4
V1 S V2
(a) (b)

Fig. 8. The feasible region, shaded in blue, for (a) a boundary vertex
in 2D, (b) a boundary vertex in 3D, and (c) a boundary edge in 3D.
Note that the 3D meshes in (b) and (c) are observed from the inside.

Edge Feasible Region. In 3D, when s is on the edge of a triangle,
its feasible region is the intersection of 4 half-spaces defined by four
planes: two planes that contain the edge and perpendicular to its
two adjacent faces, and two others that are perpendicular to the
edge and pass through its two vertices, as shown in Figure 8c. Let
v and v; be the two vertices of the edge and ng and n; be the two
neighboring face normals (pointing to the interior of the mesh). p is
in the infeasible region if any of the following is true:

(p-vo) - (vi—vp) <0 @)
(p—v1)-(vo—vy) <0 ®3)
(p—s)-(ngXx(vi—vp)) <0 4)
(p-s)(n1 X (vo-vy)) <0 ©)

note that ng is from the face whose orientation accords to vo — v7.

Face Feasible Region. We can similarly construct the feasible re-
gion when s in on the interior of a face as well. Nonetheless, this
particular feasible region test is unnecessary, because when s is the
closest point on the face to p, which is how we pick our candidate
boundary points (based on Theorem 2), p is guaranteed to be in the
feasible region.

Our infeasible region culling technique performs the tests above
and skips the ray traversal if p is determined to be in the infeasible
region, quickly determining that s cannot be the closest boundary
point. Due to numerical precision, the feasible region check can
return false results when p is close to the boundary of the feasible
region. There are two types of errors: false positives and false neg-

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

8 « He Chen, Elie Diaz, and Cem Yuksel

Be &

ié
B
* W

(a) CCD only (b) DCD only

(¢) CCD and DCD

Fig. 9. Dropping 8 octopi to a box simulated with (a) CCD only,
(b) DCD with our shortest path query only, and (c) CCD and DCD
with our shortest path query. The bottom row shows the bottom view
of the final state. The blue tint highlights the intersecting geometry.
The octopus model is from Zhou and Jacobson [2016].

atives. A false positive is not a big problem: it will only result in
an extra traversal. But if a false negative happens, there is a risk of
discarding the actual closest surface point. In practice, however, we
replace the zeros on the right-hand-sides of the inequalities above
with a small negative number €, to avoid false-positives due to
numerical precision limits. In our tests, we have observed that infea-
sible region culling can provide more than an order of magnitude
faster shortest path query.

4 COLLISION HANDLING APPLICATION

As mentioned above, an important application of our method is
collision handling with DCD. When DCD finds a penetration, we
can use our method to find the closest point on the boundary and
apply forces or constraints that would move the penetrating point
towards this boundary point.

In our tests with tetrahedral meshes, we use two types of
DCD: vertex-tetrahedron and edge-tetrahedron collisions. For
vertex-tetrahedron collisions, we find the closest surface point for
the colliding vertex. For edge-tetrahedron collisions, we find the
center of the part of the edge that intersects with the tetrahedron
and then use our method to find the closest surface point to that

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Fig. 10. Dropping 6 octopi into a box simulated using implicit Euler.
This simulation contains 30K vertices and 88K tetrahedra and it takes
an average of 15s to simulate each frame. Please see the supplementary
material for the details of our implicit Euler framework.

center point. If an edge intersects with multiple tetrahedra, we
choose the intersection center that is closest to the center of the
edge. The idea is by keep pushing the center of the edge-tetrahedron
intersection towards the surface, which eventually resolves the
intersection.

This provides an effective collision handling method with XPBD
[Macklin et al. 2016]. Once we find the penetrating point x we use
the standard PBD collision constraint [Miiller et al. 2007]

c(x,8) =(x—s)-n 6)

where s is the closest surface point computed by our method when
this collision is from DCD, or the colliding point when it is from
CCD, and n is the surface normal at s. If s is on a surface edge or
vertex, we use the area-weighted average of its neighboring face
normals. The XPBD integrator applies projections on each collision
constraint ¢ to satisfy c(x,s) > 0. We also apply friction, following
Bender et al. [2015]. Please see the supplementary material for the
pseudocode of our XPBD framework.

Unlike CCD alone, DCD with our method significantly improves
the robustness of collision handling when using a simulation system
like XPBD that does not guarantee resolving all collision constraints.
This is demonstrated in Figure 9, comparing different collision de-
tection approaches with XPBD. Using only CCD leads to missed
collisions when XPBD fails to resolve the collisions detected in pre-
vious steps, because CCD can no longer detect them. This quickly
results in objects completely penetrating through each other (Fig-
ure 9a). Our method with only DCD effectively resolves the majority
of collisions (Figure 9b), but it inherits the limitations of DCD. More
specifically, using only DCD with sufficiently large time steps and
fast enough motion, some collisions can be missed and deep pene-
trations can resolve the collisions by moving the objects in incorrect
directions, again resulting in object parts passing through each
other. Furthermore, our method only provides the closest path to
the boundary and properly resolving the collisions is left to the
simulation system. Unfortunately, XPBD cannot provide any guar-
antees in collision resolution, so detected penetrations may remain
unresolved.

We recommend a hybrid solution that uses both CCD and DCD
with our method. This hybrid solution performs DCD in the be-
ginning of the time step to identify the preexisting penetrations or
collisions that were not properly resolved in the previous time step.

Shortest Path to Boundary for Self-Intersecting Meshes « 9

(2) (b)

(d) (e

Fig. 11. Flattening a squishy ball (774K vertices, 2.81M tetrahedra) using two planes. (a-c) the flattening process, (d) Side view of the flattened ball

to to 1/20 of its radius, and (e) the other side of the flattened squishy ball.

Fig. 12. Simulation of two squishy balls in head-on collision that come to contact at a relative speed of 50m/s. Both self-collisions and collisions
between the two squishy balls are handled using our method.

The rest of the collisions are detected by CCD without requiring our
method to find the closest surface point. The same simulation with
this hybrid approach is shown in Figure 9c. Since all penetrations are
first detected by CCD and proper collision constraints are applied
immediately, deep penetrations become much less likely even with
large time steps and fast motion. Yet, this provides no theoretical
guarantees. The addition of CCD allows the simulation system to
apply collision constraints immediately, before the penetrations be-
come deep, and DCD with our method allows it to continue applying
collision constraints when it fails to resolve the initial collision con-
straints. Note that, while this significantly reduces the likelihood of
failed collisions, they can still occur if the simulation system keeps
failing to resolve the detected collisions.

The collision handling application of our method is not exclusive
to PBD. Our method can also be used with force-based simulation
techniques for defining a penalty force with penetration potential
energy

Ee=k((p-9))’)

where k is the collision stiffness. An example of this is shown in
Figure 10.

5 RESULTS

We use XPBD [Macklin et al. 2016] to evaluate our method, because
it is one of the fastest simulation methods for deformable objects,
providing a good baseline for demonstrating the minor computa-
tion overhead introduced by our method. We use mass-spring or
NeoHookean [Macklin and Muller 2021] material constraints imple-
mented on the GPU. We handle the collision detection and handling
part on the CPU, including the position updates of the collision
constraints. We use the hybrid collision detection approach that
combines CCD and DCD, as explained above.

We implement both collision detection and closest point query
on CPU using Intel’s Embree framework [Wald et al. 2014] to create
BVH. We generate our timing results on a computer with an AMD
Ryzen 5950X CPU, an NVIDIA RTX 3080 Ti GPU, and 64GB of
RAM. We acknowledge that our timings are affected by the fact
that we copy memory from GPU to CPU every iteration in order
to do collision detection and handling, and the whole framework
can be further accelerated by implementing the collision detection
and shortest path querying on the GPU. As to the parameters of the
algorithm, we set €, to —0.01. ¢; is related to the scale and unit of

the object, when the object is at a scale of a few meters, we set €; to
1710,

5.1 Stress Tests

Figure 11 shows a squishy ball with thin tentacles compressed on
two sides and flattened to a thickness that is only 1/20 of its original
radius. Notice that all collisions, including self-intersections of ten-
tacles, are properly resolved even under such extreme compression.
Also. the model was able to revert to its original state after the the
two planes compressing it were removed.

Figure 12 shows a high-speed head-on collision of two squishy
balls. Though the tentacles initially get tangled with frictional-
contact right after the collision, all collisions are properly resolved
and the two squishy balls bounce back, as expected.

Figure 13 shows two challenging examples of self-collisions
caused by twisting a thin beam and two elastic rods. Both instances
have shown notable buckling after the twisting. A different
frame for the same thin beam is also included in Figure 1. Such
self-collisions are particularly challenging for prior self-collision
handling methods that pre-split the model into pieces, since it is
unclear where the self-collisions might occur before the simulation.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

10 « He Chen, Elie Diaz, and Cem Yuksel

>,xaumh.,cccaw ze X

Fig. 13. Twisting (top-middle) a thin beam with 400K vertices & 1.9M
tetrahedra, and (bottom) two elastic rods with 281K vertices & 1.3M
tetrahedra, demonstrating unpredictable self-collisions and buckling.

Fig. 14. Simulation of a nested knot starting from (left) the initial
state to (right) the final knot.

Another challenging self-collision case is shown in Figure 14,
where nested knots were formed by pulling an elastic rod from both
sides. In this case, there is a significant amount of sliding frictional
self-contact, changing pairs of elements that collide with each other.
Though a substantial amount of force is applied near the end, the
simulation is able to form a stable knot.

Figure 15a shows the same experiment using naive closest bound-
ary point computation for the collisions between the two squishy
balls (by picking the closest boundary point on the other object
purely based on Euclidean distances), only handling self-collisions
with our method. Notice that it includes (temporarily) entangled ten-
tacles between the two squishy balls and visibly more deformations
of tentacles elsewhere, as compared to using our method (Figure 15b).
This is because, in the presence of self-collisions, naively handling
closest boundary point queries between different objects is prone to
picking incorrect boundary points that do not resolve the collision,
resulting in prolonged contact and inter-locking.

5.2 Solving Existing Intersections

Our method can successfully resolve existing self collisions. A
demonstration of this is provided in Figure 17. In this example, the
initial state (Figure 17a) is generated by dropping a noodle model
without handling self-collisions. When we turn on self-collisions, all
existing self-intersections are quickly resolved within 10 substeps
(Figure 17b), resulting in numerous inverted elements due to
strong collision constraints. Then, the simulation resolves them
(Figure 17¢) and finally the model comes to a rest with self-contact

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

(a) Naive collisions between objects (b) Our inter-object collisions

Fig. 15. Two squishy balls in head-on collision comparing collision
handling between two different objects (a) by naively accepting the
Euclidean closest point as the closest boundary point and (b) with our
method. All self-collisions are handled using our method in both cases.

(a) Self-collisions off (b) Self-collisions turned on

Fig. 16. Simulation of a squishy ball compressed from either side, as
in Figure 11, (a) with self-collisions turned off to produce a state with
many complex self-collisions, where the blue tint highlights deeper
penetrations caused by subsurface scattering artifacts due to intersect-
ing geometry, and (b) a few frames after self-collisions are turned on,
showing that our method with XPBD quickly recovers them.

(Figure 17d). In this experiment, we perform collision projections
for all vertices (not only for surface vertices) and all tetrahedra’s
centroids to resolve the intersection in the completely overlapping
parts. Note that we do not provide a theoretical guarantee to resolve
all the existing intersections. In practice, however, in all our tests
all collisions are resolved after just a few iterations/substeps.

Another example is shown in Figure 16, generated by compressing
a squishy ball with two planes on either side, similar to Figure 11 but
without handling self-collisions. This results in a significant number
of complex unresolved self-collisions (Figure 16a), which are quickly
resolved within a few substeps when self-collision handling is turned
on (Figure 16b).

5.3 Large-Scale Experiments

An important advantage of our method is that, by providing a robust
collision handling solution, we can use fast simulation techniques
for scenarios involving a large number of objects and complex col-
lisions. An example of this is demonstrated in Figure 18, showing
600 deformable octopus models forming a pile. Due to its complex
geometry, the octopus model can cause numerous self-collisions

Shortest Path to Boundary for Self-Intersecting Meshes « 11

(a) Initial state (b) Collisions enabled (c) Collisions resolved (d) Final state

Fig. 17. Solving existing collisions. Starting from (a) an initial state with many self-collisions, (b) after collision handling is enabled, (c) our
method can quickly resolve them, and (d) achieve a self-collision-free final state.

Fig. 18. 600 deformable octopus models (3.1M vertices and 8.88M tetrahedra in total) dropped into a container, forming a pile with collisions.

R

O AN A

Fig. 19. Simulation of 16 squishy balls (a total of 11.2 million tetrahedra) dropped into a bowl, forming a stable pile with active collisions.

7

Fig. 20. Simulation of a long noodle (a) presenting unpredictable complex self-collisions and (b) forming a large pile with self-collisions.

and inter-object collisions. Both collision types are handled using Figure 19 shows another large-scale experiment involving 16
our method. At the end of the simulation, a stable pile is formed squishy balls. Another frame from this simulation is also included in
with 185K active collisions per time step. Figure 1. At the end of the simulation, the squishy balls form a stable

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

12« He Chen, Elie Diaz, and Cem Yuksel

Computation Time Statistics

14000 { Without Infeasible s DCD
Region Culling = CCD
12000 A Bm Material Solve
g mmm Shortest Path Search
Z 10000 A
S
2
£ 8000 1
3
(%}
S 6000 A
(9]
g
£ 40001
2000 A

0

14000 { With Infeasible mm DCD
Region Culling Emm CCD
_. 12000 B Material Solve
g B Shortest Path Search
Z 10000 -
r]
o
2 8000 -
3
(%)
§ 6000 -
(v
g
E 4000 A
2000 A
04

0 25 50 75 100 125 150 175 200
Frame

Fig.21. The computation time statistics of each simulation component
on stacked bar charts: (top) without infeasible region culling and
(bottom) with infeasible region culling. The middle row shows the
simulation at frames 0, 75, 125, 175 respectively.

pile and remain in rest-in-contact with active self-collisions (12K)
and inter-object collisions (125K) between neighboring squishy
balls.

We also include an experiment with a single long noodle piece
in Figure 20 that is dropped into a bowl. This simulation forms

numerous complex and unpredictable self-collisions (Figure 20a).

At the end of the simulation, we achieve a stable pile with 104K
active self-collisions per time step in this example. Figure 1 includes
a rendering of this final pile without the bowl and a cross-section

view, showing that the interior self-collisions are properly resolved.

5.4 Performance

We provide the performance numbers for the experiments above
in Table 1. Notice that, even though we are using a highly efficient
material solver that is parallelized on the GPU, our method provides

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

(a) Rest shape

(c) Collisions using rest shape

(d) Collisions using deformed shape

incorrect shortest path

(using the rest shape) . % °1 shortest path

(e) The incorrect shortest path using the rest shape vs. ours

Fig. 22. Comparison between the rest pose closest boundary point
and our closest boundary point. (a) The rest pose the cuboid model. (b)
We deform the cuboid to a certain shape, then drop a cube on top of
it. (¢) In the simulation using the rest pose closest boundary point, the
cube got incorrectly pulled up. (d) Using our exact closest point, the
cube successfully slides down. (e) The shortest path to the surface for
an example point, showing that using the closest surface point queried
from the rest shape results in an incorrect and longer path.

a relatively small overhead. This includes some highly-challenging
experiments, involving a large number of complex collisions. The
highest overhead of our method is in experiments in which delib-
erately disabled self-collisions to form a large number of complex
self-collisions. Note that all collision detection and handling com-
putations are performed on the CPU, and a GPU implementation
would likely result in a smaller overhead.

We demonstrate the effect of our infeasible region culling by
simulating a squishy ball dropped to the ground with and without
this acceleration. The computation time breakdown of all frames are
visualized in Figure 21. In this example, using our infeasible region
culling, the shortest path query gains a speed-up of 10-30x for some
frames, providing identical results. Additionally, the accelerated
shortest path query results in a more uniform computation time,
avoiding the peaks visible in the graph.

5.5 Comparisons to Rest Shape Shortest Paths

A popular approach in prior work for handling self-collisions is us-
ing the rest shape of the model that does not contain self-collisions
for performing the shortest path queries. This makes the computa-
tion much simpler, but obviously results in incorrect shortest bound-
ary paths. With sufficient deformations, these incorrect boundary
paths can lead to large enough errors and instabilities.

Shortest Path to Boundary for Self-Intersecting Meshes « 13

Table 1. Performance results. Time step size and frame times are given in seconds, where frame times are measured at 60 FPS. Operations Q., Tr.,
and Tet. represent the number of BVH queries, traversals, and total tetrahedra visited on average per time step, respectively.

Number of Avrg. Collisions || Avrg. Operations || Time Step || Frame Time Average Time %

Vert. Tet. CCD | DCD Q. | Tr | Tet. || Size xIter. || Avrg. | Max. || XPBD | CCD | DCD | Ours
Flattened Squishy Ball (Fig. 11) 774K | 281 M 168K | 71K 56 6.6 5.2 3.3e-4x3 || 10.89 | 18.04 || 309% | 29.0% | 31.7 % 83 %
Twisted Thin Beam (Fig. 13) 400 K 19M 83K 31K 45 5.7 7.2 33e-4%x3 8.16 | 1592 || 29.7% | 31.3% | 321 % 6.9%
Twisted Rods (Fig. 13) 281K 13 M 48K 26K 33 5.3 4.7 33e-4Xx3 525 | 1117 || 421 % | 269% | 27.0 % 4.0 %
Nested Knots (Fig. 14) || 38.1K | 103K 31K | 06K 31 4.2 4.4 5.5e-4 X 3 0.25| 032 || 61.8% | 23.3% 9.5% 52%
2 Squishy Balls (Fig. 12) 418 K 14 M 224K 13K 36 9.6 | 11.3 33e-4Xx3 1.96 2.87 || 52.2% | 284 % | 185% | 10.9 %
Pre-Intersect. Noodle (Fig. 17) 40K | 110K N/A | 152K 65 | 12.0 | 13.6 8.3e-4 X3 0.21 | 045 | 51.6% | 17.6% | 184 % | 124 %
Pre-Intersect. Squishy Ball ~ (Fig. 16) 219K | 704K N/A | 458K 89 | 12.0 | 14.0 33e-4x3 1.54 263 || 443% | 182% | 191% | 18.4 %
600 Octopi (Fig. 18) 31M | 888 M || 104.0K 6.4 K 12 3.6 4.1 8.3e-4 X3 16.40 | 17.90 || 683 % | 154 % | 134 % 29%
16 Squishy Balls (Fig. 19) 35M | 11.2M || 1185K | 85K 29 4.5 6.6 3.3e-4 X3 || 1850 | 20.20 || 493 % | 250% | 21.8 % 39%
Long Noodle (Fig. 20) 860K | 229 M || 102.6 K 6.1K 11 3.6 3.2 8.3e-4 X3 4.10 450 || 67.6% | 148% | 149 % 2.7%
8 Octopi CCD Only (Fig. 9a) 40K 118 K 21K N/A || N/A | N/A | N/A 3.3e-3X5 0.028 | 0.036 || 86.6 % | 134 % N/A N/A
8 Octopi DCD Only (Fig. 9b) 40K | 118K N/A | 24K 13 3.7 4.1 3.3e-3 X5 || 0.038 | 0.045 || 79.2% N/A | 10.7 % | 10.1%
8 Octopi hybrid (Fig. 9¢) 40K 118 K 23K 0.2K 11 3.3 3.9 3.3e-3X5 0.035 | 0.038 || 793 % | 10.1% 9.6 % 1.0%

(b)

Fig. 23. Simulation of twisting a thin beam, shown in Figure 13, soon
after replacing our method with using the rest pose for finding the
closest boundary point: (a) instabilities caused by incorrect closest
boundary points found using this approach, and (b) exploded simula-
tion after a few frames.

Figure 22 shows a simple example, where a small cube is dropped
onto a deformed object. Notice that the rest shape of the object
(Figure 22a) is sufficiently different from the deformed shape (Fig-
ure 22b). With collision handling using this rest shape, the cube
moves against gravity and eventually bounces back (Figure 22c),
instead of sliding down the surface, as simulated using our method
(Figure 22d). Figure 22e shows a 2D illustration of example shortest
paths generated by both methods. Notice that using the rest shape
results in a longer path to the surface that corresponds to higher
collision energy. In contrast, our method minimizes the collision
energy by using the actual shortest path to the boundary.

Figure 23 shows a more complex example with self-collisions that
is initially simulated using our method (Figure 13) until complex

self-collisions are formed. When we switch to using the rest shape
to find the boundary paths, the simulation explodes following a
number of incorrectly-handled self-collisions.

In general, using the rest shape not only generates incorrect
shortest boundary paths, but also injects energy into the simulation.
This is because an incorrect shortest boundary path is, by definition,
longer than the actual shortest boundary path, thereby corresponds
to higher potential energy.

6 DISCUSSION

An important advantage of our method is that it can work with
simulation systems that do not provide any guarantees about re-
solving collisions. Therefore, we can use fast simulation techniques
like XPBD to handle complex scenarios involving numerous self-
collisions, as demonstrated above.

Yet, our method cannot handle all types of self-collisions and it
requires a volumetric mesh. We cannot handle collisions of codi-
mensional objects, such as cloth or strands. Our method would also
have difficulties handling meshes with thin volumes or no interior
elements.

Our method is essentially a shortest boundary path computation
method. It is based on the fact that an interior point’s shortest path
to the boundary is always a line segment. This assumption always
holds for objects like tetrahedral meshes in 3D or triangular mesh in
2D Euclidean space. Therefore, our method cannot handle shortest
boundary paths in non-Euclidean spaces, such as geodesic paths on
surfaces in 3D.

Using our method for collision handling with DCD inherits the
limitations of DCD. For example, when with large time steps and
sufficiently fast motion, penetration can get too deep, and the short-
est boundary path may be on the other side of the penetrated model,
causing undesirable collision handling. In practice, this problem can
be efficiently solved by coupling CCD and DCD, as we demonstrate
with our results above.

7 CONCLUSION

We have presented a formal definition of the shortest path to bound-
ary in the context of self-intersections and introduced an efficient
and robust algorithm for finding the exact shortest boundary paths

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

14 «+ He Chen, Elie Diaz, and Cem Yuksel

for meshes. We have shown that this approach provides an effective
solution for handling both self-collisions and inter-object collisions
using DCD in combination with CCD, using a simulation system
that does not provide any guarantees about resolving the collision
constraints. Our results show highly complex simulation scenarios
involving collisions and rest-in-contact conditions that are properly
handled with our method with a relatively small computational
overhead.

ACKNOWLEDGMENTS

We thank Alper Sahistan, Yin Yang, and Kui Wu for their help-
ful comments and suggestions. We also thank Alec Jacobson and
Tiantian Liu for providing online volumetric mesh datasets. This
project was supported in part by NSF grant #1764071.

REFERENCES

Jérémie Allard, Francois Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez,
and Paul G Kry. 2010. Volume contact constraints at arbitrary resolution. In ACM
SIGGRAPH 2010 papers. 1-10.

Aytek Aman, Serkan Demirci, and Ugur Gudiikbay. 2022. Compact tetrahedralization-
based acceleration structures for ray tracing. Journal of Visualization (2022), 1-13.

Mukund Balasubramanian, Jonathan R Polimeni, and Eric L Schwartz. 2008. Exact
geodesics and shortest paths on polyhedral surfaces. IEEE transactions on pattern
analysis and machine intelligence 31, 6 (2008), 1006-1016.

David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies.
In Proceedings of the 21st annual conference on Computer graphics and interactive
techniques. 23-34.

Ted Belytschko and Mark O Neal. 1991. Contact-impact by the pinball algorithm with
penalty and Lagrangian methods. Internat. . Numer. Methods Engrg. 31, 3 (1991),
547-572.

Jan Bender, Matthias Miiller, and Miles Macklin. 2015. Position-Based Simulation
Methods in Computer Graphics.. In Eurographics (tutorials). 8.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: Fusing constraint projections for fast simulation. ACM trans-
actions on graphics (TOG) 33, 4 (2014), 1-11.

Stephen Cameron. 1997. Enhancing GJK: Computing minimum and penetration dis-
tances between convex polyhedra. In Proceedings of international conference on
robotics and automation, Vol. 4. IEEE, 3112-3117.

John Canny. 1986. Collision detection for moving polyhedra. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2 (1986), 200-209.

Jindong Chen and Yijie Han. 1990. Shortest paths on a polyhedron. In Proceedings of
the sixth annual symposium on Computational geometry. 360-369.

Keenan Crane, Marco Livesu, Enrico Puppo, and Yipeng Qin. 2020. A Survey of
Algorithms for Geodesic Paths and Distances. arXiv preprint arXiv:2007.10430
(2020).

Ounan Ding and Craig Schroeder. 2019. Penalty force for coupling materials with
Coulomb friction. IEEE transactions on visualization and computer graphics 26, 7
(2019), 2443-2455.

Evan Drumwright. 2007. A fast and stable penalty method for rigid body simulation.
IEEE transactions on visualization and computer graphics 14, 1 (2007), 231-240.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil Ureta, Timothy R Lan-
glois, Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021.
Intersection-free rigid body dynamics. ACM Trans. Graph. 40, 4 (2021), 183-1.

Susan Fisher and Ming C Lin. 2001a. Deformed distance fields for simulation of non-
penetrating flexible bodies. In Computer Animation and Simulation 2001. Springer,
99-111.

Susan Fisher and Ming C Lin. 2001b. Fast penetration depth estimation for elastic
bodies using deformed distance fields. In Proceedings 2001 IEEE/RST International
Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics
in the the Next Millennium (Cat. No. 01CH37180), Vol. 1. IEEE, 330-336.

Marie-Paule Gascuel. 1993. An implicit formulation for precise contact modeling
between flexible solids. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. 313-320.

James K Hahn. 1988. Realistic animation of rigid bodies. ACM Siggraph computer
graphics 22, 4 (1988), 299-308.

Bruno Heidelberger, Matthias Teschner, Richard Keiser, Matthias Miiller, and Markus H
Gross. 2004. Consistent penetration depth estimation for deformable collision
response.. In VMV, Vol. 4. 339-346.

Everton Hermann, Frangois Faure, and Bruno Raffin. 2008. Ray-traced collision detection
for deformable bodies. In GRAPP 2008-3rd International Conference on Computer

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Graphics Theory and Applications. INSTICC, 293-299.

Gentaro Hirota, Susan Fisher, and Ming Lin. 2000. Simulation of non-penetrating elastic
bodies using distance fields. University of North Carolina at Chapel Hill Technical
Report: TR00-018. Spring (2000).

I Hunék. 1993. On a penalty formulation for contact-impact problems. Computers &
structures 48, 2 (1993), 193-203.

Changsoo Je, Min Tang, Youngeun Lee, Minkyoung Lee, and Young J Kim. 2012. Poly-
Depth: Real-time penetration depth computation using iterative contact-space pro-
jection. ACM Transactions on Graphics (TOG) 31, 1 (2012), 1-14.

Ladislav Kavan. 2003. Rigid body collision response. Vectors 1000, 2 (2003).

Dan Koschier, Crispin Deul, Magnus Brand, and Jan Bender. 2017. An hp-adaptive
discretization algorithm for signed distance field generation. IEEE transactions on
visualization and computer graphics 23, 10 (2017), 2208-2221.

Ares Lagae and Philip Dutré. 2008. Accelerating ray tracing using constrained tetrahe-
dralizations. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1303-1312.

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine
Body Dynamics: Fast, Stable and Intersection-Free Simulation of Stiff Materials.
ACM Trans. Graph. 41, 4, Article 67 (jul 2022), 14 pages. https://doi.org/10.1145/
3528223.3530064

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022b. Penetration-free projective dynamics on the GPU. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1-16.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential con-
tact: Intersection-and inversion-free, large-deformation dynamics. ACM transactions
on graphics (2020).

Yijing Li and Jernej Barbi¢. 2018. Immersion of self-intersecting solids and surfaces.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1-14.

Yong-Jin Liu. 2013. Exact geodesic metric in 2-manifold triangle meshes using edge-
based data structures. Computer-Aided Design 45, 3 (2013), 695-704.

Miles Macklin, Kenny Erleben, Matthias Miiller, Nuttapong Chentanez, Stefan Jeschke,
and Zach Corse. 2020. Local optimization for robust signed distance field collision.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 3, 1 (2020),
1-17.

Miles Macklin and Matthias Muller. 2021. A Constraint-based Formulation of Stable
Neo-Hookean Materials. In Motion, Interaction and Games. 1-7.

Miles Macklin, Matthias Miiller, and Nuttapong Chentanez. 2016. XPBD: position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49-54.

Maxime Maria, Sébastien Horna, and Lilian Aveneau. 2017. Efficient ray traversal of
constrained Delaunay tetrahedralization. In 12th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISI-
GRAPP 2017), Vol. 1. 236-243.

Gerd Marmitt and Philipp Slusallek. 2006. Fast ray traversal of tetrahedral and hex-
ahedral meshes for direct volume rendering. In Proceedings of the Eighth Joint
Eurographics/IEEE VGTC conference on Visualization. 235-242.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with
contact and collisions. In ACM SIGGRAPH 2011 papers. 1-12.

Brian Mirtich and John Canny. 1995. Impulse-based simulation of rigid bodies. In
Proceedings of the 1995 symposium on Interactive 3D graphics. 181-ff.

Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete
geodesic problem. SIAM J. Comput. 16, 4 (1987), 647-668.

Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. 2015. Non-
manifold level sets: A multivalued implicit surface representation with applications
to self-collision processing. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1-9.

Matthew Moore and Jane Wilhelms. 1988. Collision detection and response for computer
animation. In Proceedings of the 15th annual conference on Computer graphics and
interactive techniques. 289-298.

Matthias Miiller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109-118.

Carol O’Sullivan and John Dingliana. 1999. Real-time collision detection and response
using sphere-trees. (1999).

Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen, and
Peter Shirley. 2005. Interactive ray tracing for volume visualization. In ACM
SIGGRAPH 2005 Courses. 15-es.

John C Platt and Alan H Barr. 1988. Constraints methods for flexible models. In
Proceedings of the 15th annual conference on Computer graphics and interactive
techniques. 279-288.

Stéphane Redon and Ming C. Lin. 2006. A Fast Method for Local Penetration Depth
Computation. Journal of Graphics Tools 11 (2006), 37 — 50.

Alper Sahistan, Serkan Demirci, Nathan Morrical, Stefan Zellmann, Aytek Aman, Ingo
Wald, and Ugur Giidiikbay. 2021. Ray-traced shell traversal of tetrahedral meshes
for direct volume visualization. In 2021 IEEE Visualization Conference (VIS). IEEE,
91-95.

https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3528223.3530064

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J Gortler, and Hugues
Hoppe. 2005. Fast exact and approximate geodesics on meshes. ACM transactions
on graphics (TOG) 24, 3 (2005), 553-560.

Yun Teng, Miguel A Otaduy, and Theodore Kim. 2014. Simulating articulated subspace
self-contact. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1-9.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques. 205-214.

Mickeal Verschoor and Andrei C Jalba. 2019. Efficient and accurate collision response
for elastically deformable models. ACM Transactions on Graphics (TOG) 38, 2 (2019),
1-20.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.
Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on

Shortest Path to Boundary for Self-Intersecting Meshes « 15

Graphics (TOG) 33, 4 (2014), 1-8.

Bin Wang, Francois Faure, and Dinesh K Pai. 2012. Adaptive image-based intersection
volume. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1-9.

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele
Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for
Continuous Collision Detection. ACM Transactions on Graphics (TOG) 40, 5 (2021),
1-16.

Shi-Qing Xin and Guo-Jin Wang. 2009. Improving Chen and Han’s algorithm on the
discrete geodesic problem. ACM Transactions on Graphics (TOG) 28, 4 (2009), 1-8.

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Collision Handling
	2.2 Geodesic Path and Distances
	2.3 Tetrahedral Ray Traversal

	3 Shortest Path to Boundary
	3.1 Shortest Path to Boundary
	3.2 Shortest Path to Boundary for Meshes
	3.3 Robust Topological Ray Traversal
	3.4 Intersections of Different Objects
	3.5 Inverted Elements
	3.6 Infeasible Region Culling

	4 Collision Handling Application
	5 Results
	5.1 Stress Tests
	5.2 Solving Existing Intersections
	5.3 Large-Scale Experiments
	5.4 Performance
	5.5 Comparisons to Rest Shape Shortest Paths

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

