

1 **Role of *in situ* (in contact with biomass) and *ex situ* (in contact with pyrolysis vapors)**
2 **transition metal catalysts on pyrolysis of cherry pits**

3 Andrew H. Hubble^a, Bridget A. Childs^a, Matteo Pecchi^a, Hanifrahmawan Sudibyo^b, Jefferson W. Tester^b,
4 Jillian L. Goldfarb^{a*}

5 ^a Department of Biological & Environmental Engineering, Cornell University, Ithaca NY 14853, USA

6 ^b Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca NY 14853, USA

7 **Prepared for Submission to: *Fuel***

8 **Abstract**

9 While energy dense liquid biofuels can be produced from sustainable waste feedstocks via
10 thermochemical conversion techniques, these biofuels are plagued by high acidity and low stability,
11 largely due to the presence of oxygenated functional groups. By utilizing transition metal catalysts during
12 pyrolysis either *in situ* within the biomass, or *ex situ* (directly downstream supported on an alumina
13 substrate) acting on the pyrolysis vapors, the quality of the bio-oil can be improved via deoxygenation.
14 Four transition metals (Cu, Mn, Ni, Zn) were either wet impregnated on cherry pit biomass, or by
15 impregnated on alumina wool fibers placed downstream of the biomass to act on the devolatilized gases.
16 The *in situ* catalysts Cu, Mn and Zn increase the pyrolysis bio-oil yield. The Mn, Ni and Zn used as *ex*
17 *situ* catalysts increase the total non-condensable gas produced, suggesting that these downstream catalysts
18 crack the pyrolyzed molecules into smaller organics and water. The *ex situ* catalysts result in larger
19 quantities of especially oxygen-containing gases like CO₂, which in turn lowered the bio-oil's O/C ratio.
20 However, such reactions also increase the water content of the resulting bio-oil. Both Mn and Zn used in
21 either location enhance the concentration of alcohols relative to aromatic carbons, and when used *ex situ*,
22 Mn shows a decrease in the ratio of aromatic to aliphatic carbon content.

23 **Keywords:** Pyrolysis, Catalysts, Transition metals, Cherry pits, Bio-oil

24
25
26
27
28
29

* To whom correspondence should be addressed: goldfarb@cornell.edu, 607.255.5789

30 **1. Introduction**

31 The widespread adoption of liquid biofuels is critical for climate change mitigation in sectors
32 that require high-density combustible liquid fuels for the foreseeable future [1]. In September
33 2021, the Biden administration set a production goal of three billion gallons of sustainable
34 aviation fuel by 2030, and a completely carbon neutral aviation sector by 2050 [2]. Using liquid
35 biofuels from pyrolysis of lignocellulosic feedstocks in the current fossil fuel infrastructure is
36 hindered by complex and costly upgrading of as-produced bio-oils. One of the largest inhibiting
37 factors of pyrolysis bio-oil utilization is its high oxygen content [3,4] which increases fuel
38 acidity [5] and viscosity [6] (further increasing viscosity during storage [7]), and lowers energy
39 density [8,9]. Pyrolysis bio-oils are upgraded via multiple unit operations, including distillation
40 [10], steam reformation [11] and hydrodeoxygenation [12]. However, the cost of cascading
41 numerous upgrading processes limits the economic viability of biomass to biofuel conversions.
42 Instead, *in situ* catalytic upgrading has gained traction over the years, whereby the catalyst and
43 feedstock are co-mingled into a single-step thermochemical conversion to reduce the need for
44 intensive downstream upgrading [13–15].

45

46 A growing body of literature explores the use of transition metals (TMs) [16–18] as inexpensive
47 alternatives to precious metal catalysts such as platinum-group metals [19–21]. TMs are often
48 scaffolded onto frameworks like zeolites. For example, Dyer et al. examined the effects of
49 zeolite-metal catalysts on bio-oil and gas composition of co-pyrolyzed biomass-polystyrene [22],
50 and Li et al. paired transition metals with zeolites to improve the hydrodeoxygenation (HDO) of
51 guaiacol [23]. Copper-zeolite catalysts can achieve upwards of 96% conversion of glucose to
52 hydroxymethylfurfural, and 92% of xylose could be converted to furfural over a copper-

53 mesoporous silica catalyst [24]. While these and other works show improved yields and identify
54 key mechanisms for various pyrolytic biomass transformations, there is little discussion in the
55 literature about the combined effects of the TM-scaffold catalysts' components.

56

57 In addition to bespoke TM-scaffold catalysts, naturally occurring heterogeneous catalysts (such
58 as clay minerals) and process wastes (e.g. spent drilling mud and adsorbents) that contain TMs
59 are often used to upgrade pyrolysis bio-oils either *in situ* or downstream. For example, Chen et
60 al. demonstrated how copper slag can accelerate the devolatilization of sewage sludge [25]. Our
61 group previously demonstrated how *in situ* addition of clays such as montmorillonite can
62 enhance deoxygenation reactions, whereas attapulgite increases alkylation, ketonization, and
63 aldol condensation reactions [26]. While important additions to the field, many of these works
64 cannot speak to the impact of the TM contained within the clay or waste on the pyrolysis
65 reactions. Recently, Praserttaweepron et al. demonstrated how Ni-doping of dolomite clay
66 promoted decarboxylation, decarbonylation and secondary tar cracking reactions to enhance
67 hydrocarbon yields [27]. As the Ni concentration increased, the non-condensable gas yield
68 increased. As there was no Ni-only run performed, we cannot determine if this effect is due only
69 to the presence of Ni, or synergistic effects between the Ni and dolomite. Similarly, TMs
70 supported on activated biochar (AB) show greater deoxygenation potential than alkali metal
71 oxides on biochar [28]. However, as ABs themselves show catalytic activity during biomass
72 pyrolysis [29], the TM-AB complex may be responsible for the deoxygenation, rather than the
73 TM itself. Synergistic effects between co-catalysts exist across many areas of catalysis, from
74 dichloromethane oxidation [30], to base-free oxidation of glycerol [31], to hydrogen production

75 by steam reforming of ethanol [32]. As such, one goal of this paper is to understand the potential
76 role of single TMs in biomass pyrolysis by decoupling the TM and scaffold/mixture effects.

77

78 TM pyrolysis catalyst studies in the literature often investigate specific compound and
79 conversion pathways rather than actual mixtures of biomass pyrolysis products. For example,
80 Resasco et al. used platinum to upgrade m-cresol, an important bio-oil component and
81 intermediary, but one that is not necessarily representative of heterogeneous pyrolysis bio-oils
82 [33]. Bodachivskyi et al. started with the representative biomass feedstock (cellulose) and
83 tracked ethyl levulinate production over metal triflate catalysts. While achieving yields and
84 selectivity of over 70% and 80% respectively [34], pyrolysis of heterogeneous biomass generates
85 hundreds of compounds [6,35] of which ethyl levulinate represents but one potential mixture
86 component. The effects of the transition metals on “real” (heterogeneous) biomass
87 thermochemical conversions are a nascent area of research.

88

89 During pyrolysis, a TM catalyst could act on vapor phase reactions (i.e. devolatilized gases), and
90 (or) on reactions at the solid-vapor interface (i.e. devolatilization, primary decomposition, or the
91 formation of biochar). Recondensation at the solid-vapor phase boundary causes (re)deposition
92 of tar onto the biochar, which alters biochar yield, quality and potential further pyrolytic
93 reactions, whereas tar-forming compounds that enter the pyrolysis vapor phase could drastically
94 alter the composition of the bio-oil once it condenses [36]. A catalyst placed *in situ* – that is,
95 within the pyrolyzing biomass – could impact both interfacial and vapor phase reactions.

96 A catalyst placed downstream of the devolatilization zone (termed here *ex situ* catalysis) will
97 only contact the devolatilized gases.¹ The catalyst position can lead to vastly different bio-oil
98 compound distributions, depending on the feedstocks. For example, the concentration of fatty
99 acids in pyrolysis bio-oil were halved when CaO was used as a downstream catalyst versus *in*
100 *situ* positioning [37], likely due to decarboxylation and decarbonylation reactions in the vapor
101 phase. A commercial HZSM-5 zeolite was used by Wang et al. to study the catalytic pyrolysis of
102 hybrid poplar. In this instance, *in situ* pyrolysis yield more aromatic compounds, whereas *ex situ*
103 saw three times as many olefins; aromatics that did form from *ex situ* pyrolysis were
104 predominantly monocyclic aromatics, whereas *in situ* favored polycyclic aromatics [38].

105

106 Iisa et al. made a compelling techno-economic argument that partial deoxygenation via *ex situ*
107 upgrading could mitigate bio-oil instability, which would facilitate transportation and produce a
108 distillable bio-oil. In turn, this would reduce hydrogen requirements (and therefore costs) for
109 downstream hydrotreating [39]. As such, a second goal of this work is to explore the impact of
110 TMs on deoxygenation when placed in contact with biomass (*in situ*) and in contact with
111 uncondensed pyrolysis vapors (*ex situ*).

112

113 **2. Materials and methods**

114 Cherry pits were used as a model biomass feedstock given their reasonably uniform composition
115 [40–42] and large untapped potential resource with nearly four million tons produced globally in
116 2020 [43]. In the U.S. cherry pit production reached 400,000 tons annually (2020) [44] with the

¹ We note that *ex situ* pyrolysis is also used to describe downstream upgrading of condensed pyrolysis vapors in a separate unit operation. Such a definition is used in the review of *in situ* versus *ex situ* deoxygenation of pyrolysis products by Saraeian et al. [72]. The exploration of TM on this form of *ex situ* upgrading is beyond the scope of this work.

117 majority processed by a single facility in the Great Lakes region, concentrating the cherry pits in
118 one location [42]. American tart cherry pits (*prunus cerasus*) were supplied by the Great Lakes
119 Packing Company in Kewadin, MI, where they are dried onsite at 120 °C for one hour and stored
120 in bulk in grain silos. Upon arrival at Cornell University, the cherry pits were washed with
121 deionized water, dried at room temperature, and ground and sieved to 1-2 mm (with brass ASTM
122 sieves). While it would be somewhat impractical to wash dry biomass prior to pyrolysis, samples
123 were washed to ensure samples were as homogeneous as possible to enhance reproducibility.
124 From prior work with this feedstock, the cherry pits contain between 77.7 – 80.7 wt% volatile
125 matter, 16.0 - 22.3 wt% fixed carbon and 0 – 3.3 wt% non-oxidizable inorganic matter [42].
126

127 *2.1 Catalyst preparation*

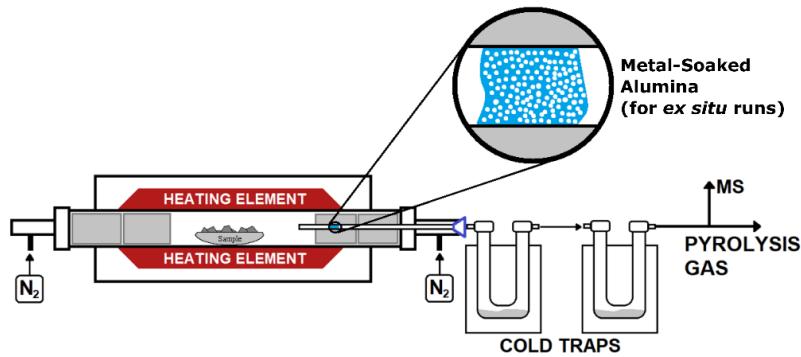
128 Four metal acetate compounds were sourced from Sigma Aldrich: copper(II) [Cat:341746, 98%],
129 manganese(II) [Cat:221007, ≥99%], nickel(II) [Cat:244066, 98%], and zinc [Cat:383058, ≥98%]
130 and were used as received. A wet impregnation method, similar to those detailed by Haukka et
131 al. and Sietsma et al. [45,46], was used for this work.
132

133 For the *in situ* experiments, biomass was directly contacted with the TMs. 0.05 M solutions of
134 each metal acetate were prepared using Milli-Q water (18.2 mΩ·cm/25 °C). Six grams of cherry
135 pits were soaked in 50.0 mL of each metal acetate solution for one hour. After this soak time, the
136 samples were vacuum filtered through a Buchner funnel over cellulose filter paper (Whatman, 47
137 µm). The filtered samples were dried at ambient conditions for 48 hours. As an experimental
138 control for *in situ* experiments, and to provide biomass samples for *ex situ* experiments, cherry
139 pits were soaked in pure Milli-q water in the same 6 g: 50 mL water ratio, then filtered and dried.

140

141 To synthesize the *ex situ* catalysts, 0.3 grams of alumina oxide wool fibers (Merck 142844-00-6)
142 were soaked in 50 mL of the 0.05 M metal acetate solutions for one hour. The alumina fibers
143 were removed from the soak solution using tweezers and dried at ambient conditions for 48
144 hours. This quantity of alumina oxide fibers provided sufficient sample for duplicate runs of each
145 metal. The final metal loading for alumina and biomass-only samples ranged between 1-2%
146 metal by weight and was calculated by the difference in mass before and after impregnation
147 (correcting for the weight of acetate).

148


149 While the alumina substrate is not chemically reactive under our pyrolysis conditions (initial
150 experiments showed alumina weight loss of around 0.2-0.3% when pyrolyzed at 600 °C for one
151 hour; the manufacturer's tolerance guarantees no more than 0.5% at 900 °C), the alumina may
152 impact pyrolysis products as the pyrolysis vapors flow over its fibers. This could lead to
153 heterogeneous reactions on the surface of the alumina (e.g. one could imagine a scenario where
154 some tarry pyrolysis products coalesce on the surface and then crack or (re)devolatilize, which
155 could alter the composition of the bio-oil and non-condensable gases. As such, a control run of
156 pure alumina fibers was included to account for any effects of the alumina.

157

158 *2.2 Pyrolysis and bio-oil generation*

159 Samples were pyrolyzed in a 5 cm diameter quartz tube furnace (MTI single heating zone GSL-
160 1100X). During pyrolysis, the furnace was purged with 100 mL/min of nitrogen ($\leq 0.1\%$
161 atmospheric O₂) supplied by a nitrogen gas generator (Parker Balston Model N2-04). Before the
162 start of each experiment, the furnace was purged with N₂ for 25 minutes to remove oxygen.

163 Samples were initially heated to 110 °C for 30 minutes to remove residual moisture, then heated
164 to 600 °C for 60 minutes. The furnace temperature was ramped at 10 °C/minute. To separate and
165 collect the bio-oil, the pyrolysis vapors exiting the system were routed through two cold traps
166 (Chemglass Schwartz drying tubes). The tubes were immersed in a mixture of dry ice and glycol.
167 Downstream of the cold traps, the non-condensable gases were analyzed in real time via a
168 residual gas analyzer (RGA; Extorr XT300M with Pfeiffer HiCube 80 Eco Vacuum), sampled
169 via a 40 μ m ID silica capillary. The RGA was tuned to detect the mass to charge (m/z) ratios of
170 four gases: hydrogen (m/z = 2), carbon dioxide (m/z = 44), methane (m/z = 15), ethane (m/z =
171 27). Note that the non-dominant m/z peaks for methane and ethane are utilized because of
172 interference. Methane's dominant peak (m/z = 16) corresponds with minor peaks for carbon
173 dioxide and oxygen, and ethane's dominant peak (m/z = 28) corresponds with the dominant
174 peaks for nitrogen and carbon monoxide. We note that the use of N₂ for pyrolysis and an RGA
175 does limit our discussion of the mechanisms responsible for catalytic activity given the inability
176 to parse out CO and N₂. However, the goal of the work was to understand the overarching
177 behavior of *in situ* versus *ex situ* TM catalysts. Depending on the degree of deoxygenation,
178 further work could involve running experiments in argon gas and using FTIR to further probe the
179 gas composition and behavior. The MS peaks were normalized to the quantity of input biomass.
180 The remaining gas outflow was vented into a fume hood.

Fig. 1. Pyrolysis flow diagram and location of transition metals

181 For *in situ* catalysis runs, approximately 1.5 grams of TM-impregnated cherry pits or water-
 182 washed cherry pits, measured on a Shimadzu semi-microbalance (± 0.1 mg) was placed in a
 183 porcelain combustion boat in the furnace. For *ex situ* catalysis, 1.5 grams of water-soaked cherry
 184 pit sample were placed in the porcelain combustion boat, with 0.15 grams of metal-soaked
 185 alumina fibers placed in a narrow vapor outlet tube downstream of the sample in the exhaust gas
 186 path. The alumina was set 5 cm back from the outlet to ensure minimal backflow after the
 187 pyrolysis gases contacted the alumina, and the alumina was stretched over a 3 cm section of the
 188 pipe to ensure the same packing density of the fibers across all runs. The alumina is still
 189 contained within the furnace, as seen in the diagram in Figure 1. The alumina experiences the
 190 same furnace temperatures as the pyrolyzing sample, as measured by a type-K thermocouple
 191 inserted into the alumina during a test (no-biomass run). The *ex situ* experiments have no direct
 192 contact between the biomass solid and catalyst. Only material volatilizing and leaving the
 193 biomass sample in the gaseous phase contacts the catalyst.

194

195 *2.3 Bio-oil extraction and characterization*

196 After pyrolysis, once the furnace cooled to below 100 °C, the purge gas was shut off and the cold
 197 traps were removed from the dry ice and glycol baths. The exterior of the cold traps was

198 immediately wiped clean of excess glycol and the traps weighed. The weight gain of the two
199 traps represents the bio-oil + water generated during the pyrolysis run. 10 mL of HPLC grade
200 ($\geq 99\%$) dichloromethane (DCM) was used to rinse the cold traps and pull as much of the oil into
201 solution as possible. Parts of the aqueous phase and other non-DCM soluble oil remained
202 adhered to the cold traps, and the weight difference before and after the DCM rinse constituted
203 the ‘non-recoverable’ oil. Before analyzing the bio-oil samples with gas chromatography mass
204 spectroscopy (GC-MS), anhydrous magnesium sulfate (AMS; Fisher Scientific) was used to
205 remove water from the bio-oil. Approximately 0.2 grams of AMS (weighed on a Shimadzu semi-
206 microbalance to the 0.1 mg) was placed into a 1.5 mL microcentrifuge tube to which
207 approximately 1.0 mL of the collected bio-oil/DCM mixture was added. The tube was capped
208 and weighed again to determine the mass of bio-oil/DCM added. The centrifuge tube was shaken
209 for 5 minutes, then spun to separate the AMS/water and bio-oil. The now dried bio-oil/DCM
210 mixture was diluted further at a ratio of 0.6 mL DCM to 0.4 mL bio-oil mixture. The solid (now
211 hydrated) magnesium sulfate was allowed to dry in the fume hood overnight to remove any
212 surface volatiles, and the hydrated magnesium sulfate was weighed to determine the amount of
213 water present in the bio-oil.

214

215 *2.4 GC-MS analysis*

216 The diluted bio-oil was analyzed with a Shimadzu QP2020 gas chromatography mass
217 spectrometer with AOC-20i autosampler on a crossbond 30 m long 0.25 mm ID silica column.
218 Samples were injected with a 15:1 split ratio at 250 °C at an initial oven temperature of 40 °C,
219 purged with 1 mL/min of helium (Airgas UHP-300). The oven was held at 40 °C for 5 minutes,
220 then ramped at 5 °C/min to 150 °C where it held for an additional 5 minutes. The oven

221 temperature was increased at 1.75 °C/min to 250 °C with a final 10-minute hold. The mass
222 spectrometer scanned between 15-400 m/z after a 6-minute solvent cut time. The resulting peaks
223 were filtered (slopes \geq 900, duration \geq 2 seconds) and identified by matching spectra with the
224 internal NIST libraries. [47–49]

225

226 The GC-MS was calibrated with 26 marker compounds in DCM (see supplemental information)
227 on a 5-point calibration curve with concentrations ranging from 10 ppm to 1500 ppm . The total
228 list of GC-MS identified compounds has over 200 entries, such that it is not possible to calibrate
229 for every compound. Instead, peaks are matched to their most similar calibrated neighbor, based
230 on Tanimoto similarity and molar mass. Similar compounds are separated and detected by GC-
231 MS similarly, so while their response is not a perfect match, this method results in an accurate
232 approximation and is similar to other approximation methods [47–49]. Identified compounds are
233 split into their functional group and their relative mass fraction. The approach of splitting
234 compounds into functional groups is more precise than attributing one functional group to each
235 compound when compounds have multiple functional groups. The aggregated results for each
236 functional group in each sample are computed by multiplying the concentration of each
237 compound by the fraction of a functional group and summing for all compounds in the sample.

238

239 *2.5 Biochar elemental analysis*

240 Biochar samples were analyzed in triplicate on a CE-440 elemental analyzer from Exeter
241 Analytical to determine carbon, hydrogen, and nitrogen content (oxygen by difference) via
242 ASTM 5373-21. The calibration of the CE-440 analyzer used 1.8 mg acetanilide (\geq 99.99%,
243 Lot# 0240-1121, Exeter Analytical) at 650 °C and 980 °C

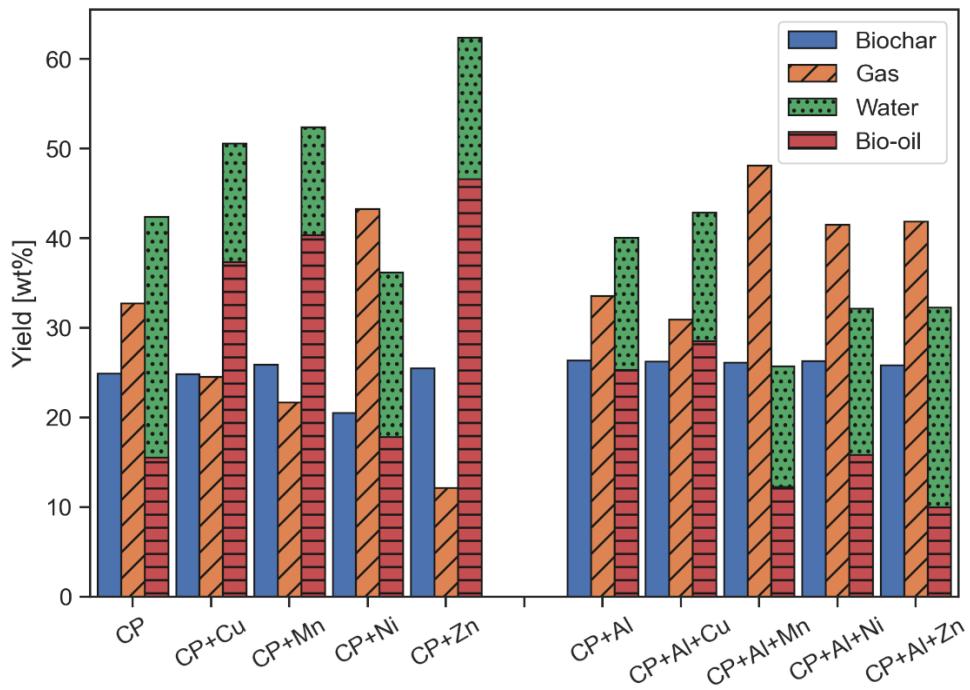
244 **3. Results and Discussion**

245 Cherry pits were pyrolyzed using either *in situ* and *ex situ* TM catalysts whose loadings are
246 described in Table 1 (average reported; replicate data available in SI).

247

248 *3.1 Product yields*

249 The effects of *in situ* and *ex situ* transition metal catalysts on product formation were
250 investigated through product yields (Table 1). The overall liquid yield results are consistent with
251 literature [50–52]. A statistically significant increase is observed for the bio-oil yield (unpaired
252 two-tailed t-test, $p < 0.05$) between the control CP and *in situ* samples for Cu, Mn, and Zn,
253 though the difference between the water contents for each of these samples is not statistically
254 significantly difference. The raw CP and *in situ* CP+Ni are roughly equivalent in terms of
255 organic bio-oil yield, and though in Figure 2 the Ni appears to have a lower water and higher
256 total liquid yield, the differences are not statistically significant, nor are the differences in
257 biochar or gas yield (including that of Ni, which does appear lower than all others). This suggests
258 that the Cu, Mn and Zn are enhancing devolatilization of the biomass matrix though not
259 necessarily reactions that would lead to fragmentation of volatiles to non-condensable gases.

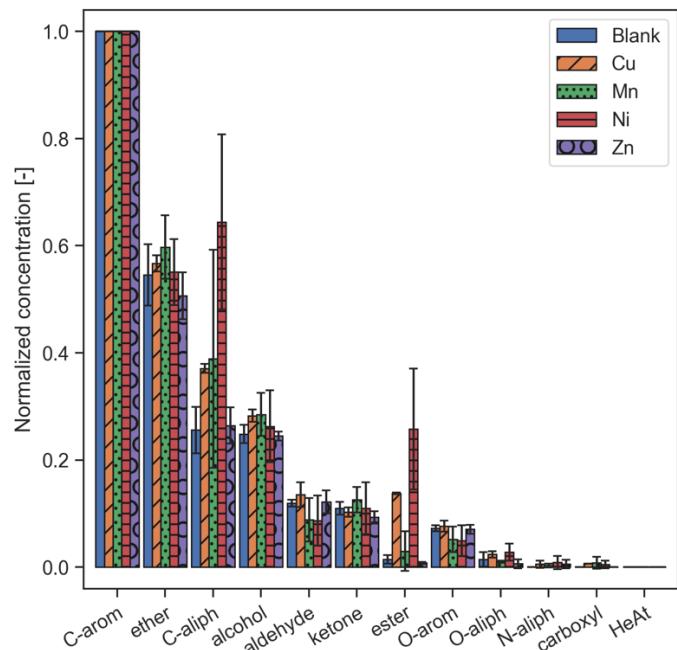

260 While the total liquid yields for the *in situ* and *ex situ* pure cherry pits are roughly equivalent, the
261 *ex situ* sample has a considerably higher bio-oil yield than that of the *in situ* run the bio-oil yield
262 (25.3 wt% versus 15.5 wt%, $p < 0.02$), such that the *in situ* run produces more water. As shown
263 in Figure 2, given that the biochar yields are quite similar (meaning that both samples
264 devolatilized roughly the same amount of volatile matter), this suggests that the inert alumina
265 support may well impact gas phase reactions (e.g. limiting recombination of water). The
266 alumina-supported Cu, Mn, and Ni runs shows similar water content to the CP+Alumina (and

267 Zn, while higher, is not statistically significantly different than the other samples). While the *ex*
 268 *situ* Cu pyrolysis yielded approximately the same amount of bio-oil as the CP+Alumina, the bio-
 269 oil yield for Mn, Ni and Zn was quite lower. As the char yields are roughly equivalent (as would
 270 be expected as the catalyst is downstream), the difference is made up with considerably higher
 271 gas yields. This suggests that the Mn, Ni and Zn are cracking the devolatilized molecules,
 272 increasing non-condensable gas formation.

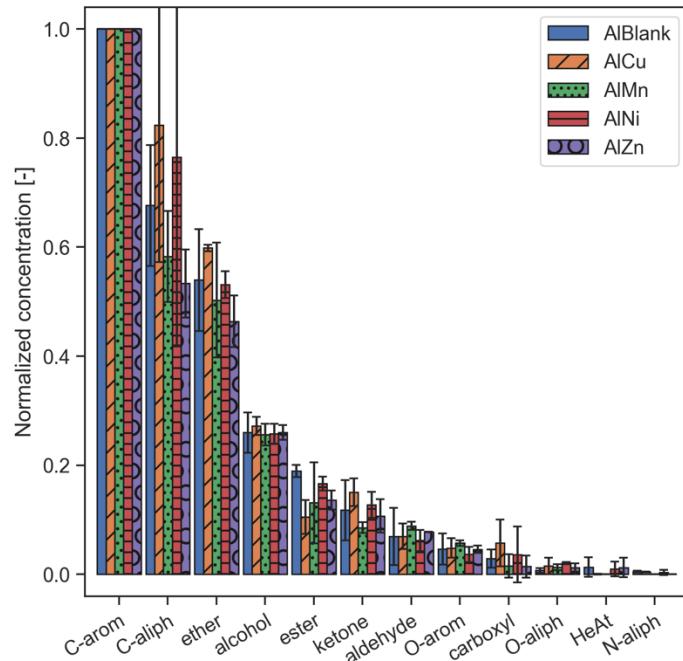
273 **Table 1.** Pyrolysis product yields and ultimate analysis as a function of metal catalyst loading;
 274 average \pm one standard deviation (*by difference)

	Pyrolysis Product Yields (wt%)								Metal Loading (wt%)										
	Bio-oil		Water		Biochar		Gas*												
<i>in situ experiments</i>																			
CP	15.5	\pm	4.4	26.9	\pm	7.1	24.9	\pm	0.3										
CP+Cu	37.4	\pm	11.6	13.2	\pm	0.8	24.9	\pm	0.1										
CP+Mn	40.4	\pm	15.4	12.0	\pm	5.2	25.9	\pm	0.3										
CP+Ni	17.8	\pm	8.5	18.4	\pm	6.3	20.5	\pm	3.7										
CP+Zn	46.6	\pm	1.8	15.8	\pm	3.4	25.5	\pm	0.3										
<i>ex situ experiments</i>																			
CP+Alumina	25.3	\pm	0.6	14.8	\pm	6.0	26.4	\pm	0.4										
CP+Alumina Cu	28.5	\pm	2.6	14.3	\pm	0.6	26.2	\pm	0.2										
CP+Alumina Mn	12.3	\pm	2.6	13.4	\pm	3.1	26.2	\pm	0.3										
CP+Alumina Ni	15.8	\pm	5.9	16.4	\pm	6.3	26.3	\pm	0.3										
CP+Alumina Zn	10.0	\pm	4.9	22.3	\pm	10.1	25.8	\pm	0.1										
Ultimate Analysis (wt% dry, ash-free basis)																			
Carbon		Hydrogen		Nitrogen		Oxygen*													
Raw CP	51.6	\pm	0.1	6.8	\pm	0.0	3.8	\pm	0.0										
<i>in situ experiments</i>																			
CP	81.4	\pm	0.1	1.9	\pm	0.1	0.6	\pm	0.0										
CP+Cu	79.3	\pm	2.3	1.8	\pm	0.1	0.6	\pm	0.0										
CP+Mn	83.4	\pm	2.2	1.8	\pm	0.0	0.6	\pm	0.0										
CP+Ni	72.8	\pm	1.7	1.7	\pm	0.0	0.6	\pm	0.4										
CP+Zn	78.6	\pm	2.8	1.8	\pm	0.0	0.7	\pm	0.0										
<i>ex situ experiments</i>																			
CP+Alumina	76.3	\pm	1.8	1.8	\pm	0.1	0.6	\pm	0.0										
CP+Alumina Cu	76.9	\pm	6.7	1.8	\pm	0.1	0.8	\pm	0.7										
CP+Alumina Mn	78.1	\pm	2.1	1.8	\pm	0.1	0.6	\pm	0.1										
CP+Alumina Ni	72.8	\pm	2.3	1.8	\pm	0.1	0.7	\pm	0.0										
CP+Alumina Zn	77.9	\pm	0.0	1.5	\pm	0.0	2.1	\pm	0.0										

275



277
278 **Figure 2.** Pyrolysis experiment yields where liquid collected is separated into water and bio-oil phase in
279 stacked bar; CP+metal data on left indicate *in situ* experiments; CP+Al+metal on right indicate *ex situ*
280 experiments


281
282
283 3.2 Pyrolysis bio-oil

284 Figure 3 reports the mass fraction of each functional group in the bio-oils, computed by
285 multiplying the concentration of each compound by the fraction of each functional group in the
286 compound and summing over all compounds in the sample. There is considerable heterogeneity
287 in the bio-oil samples themselves across the duplicate runs, in particular for the *in situ* nickel
288 samples (individual sample analysis available in SI). However, the heterogeneity in terms of raw
289 GC-MS chromatogram area data across duplicates is related to the mass of oil recovered, and not
290 the representative quality. When we investigate the relative concentration profile of the duplicate
291 samples, we see increasingly clearer trends emerge across TMs and catalyst placement. Figure 3
292 shows the average ratio of bio-oil components produced in each functional group to the aromatic
293 carbon content computed by dividing the GC area for all compounds exhibiting a particular

294 functional group by that of the aromatic carbon's area for that sample and averaged across
 295 duplicates.

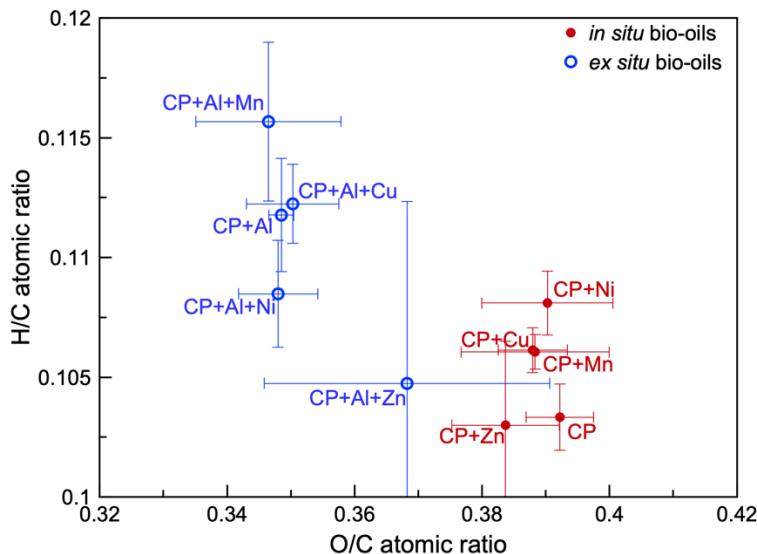
a. Bio-oil from *in situ* pyrolysis

b. Bio-oil from *ex situ* pyrolysis

296 **Figure 3.** Bio-oil broken into functional groups normalized to aromatic carbon content (C-arom
 297 = aromatic carbons; C-aliph = aliphatic carbons; O-arom/O-aliph = aromatics/aliphatics
 298 containing oxygen heteroatoms; N-aliph = aliphatics containing nitrogen heteroatoms)

299 To generate an improved bio-oil, reducing oxygen-containing functional groups is desirable,
300 with exceptions for fuel-necessary components such as alcohols [53,54]. Ethers and alcohols
301 account for the majority of oxygen-containing functional groups, with carboxylic acid and esters
302 representing an almost negligible quantity. If alcohol-containing compounds are targeted, it
303 appears that manganese and zinc, when used as *in situ* catalysts, and manganese, nickel and zinc
304 supported on alumina used as *ex situ* catalysts shifts towards higher alcohol quantities. When
305 used *in situ*, zinc may promote the formation of aldehydes ($p < 0.05$), but the effect is minimal,
306 and aldehydes represent a fairly small fraction of the overall bio-oil. The lack of significant
307 compositional differences in the bio-oils resulting from the *in situ* metal experiments, Figure 3a,
308 again point to the bio-oils role in enhancing devolatilization but of less potential to tune the bio-
309 oil composition than the downstream catalysts.

310

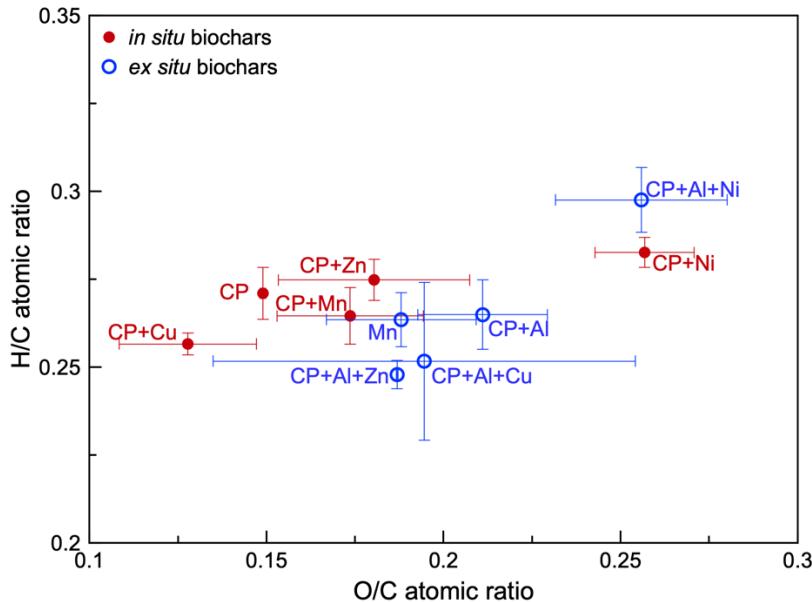

311 Across the *ex situ* experiments, the bio-oil from Cu-based runs is not statistically significantly
312 different from the alumina-only runs, though may perhaps shift some aromatic to aliphatics.
313 Whereas there is scant effect on the ratios of aromatic carbons to other compounds and of overall
314 bio-oil quality for the *in situ* runs, the *ex situ* experiments suggest a different story.
315 Mn may result in the opposite effect as overall there is a statistically significant increase in the
316 aromatic carbon content of the Mn-based bio-oils versus the alumina blank ($p < 0.05$; see SI),
317 though the ratios of C-aromatic to C-aliphatic are not statistically significantly different. Versus
318 the alumina blank, Mn enhances the ether, alcohol ketone, aldehyde and oxygen-containing
319 aromatic content of the bio-oil, with the ether and alcohol portion (relative to the aromatic carbon
320 content) seeing the greatest change (Figure 3). The relative concentrations of ethers, alcohols and
321 aldehydes increases for Ni and Zn bio-oils as well.

322

323 Oxygen concentration is calculated by multiplying each oxygen present in the oil by the
324 concentration (ppm) of the corresponding compound. Oxygens across all compounds are
325 summed to provide a total amount of oxygen present in the (dry) bio-oil. Figure 4 illustrates the
326 van Krevelen diagram for the bio-oil. The van Krevelen diagram for bio-oil was generated by
327 quantifying the compounds present, and using their total hydrogen, carbon, and oxygen counts to
328 develop the molar O/C and H/C ratios. This analysis therefore represents the entire composition
329 of the oil and is not limited to functional groups.

330

331 With the exception of the *ex situ* Zn sample, all of the alumina-supported metal bio-oils
332 (represented by the open circle data points on Figure 4) have a statistically significantly ($p <$
333 0.05) reduced O/C ratio versus the *in situ* catalyzed runs (and CP), and most have improved H/C
334 ratios. The *ex situ* Mn bio-oil has the highest H/C ratio of all the bio-oils examined, though the
335 degree of deoxygenation among all of the *ex situ* runs is not statistically significant. Interestingly,
336 we see a significant decrease in O/C and increase in H/C for even the alumina blank versus all of
337 the *in situ* samples. This suggests that the alumina is preventing condensation of oxygenated tars
338 in the bio-oil and/or cracking compounds to produce more non-condensable gases. We do note,
339 however, that the changes in these ratios are quite small (as evidenced by the scales in Figure 4)
340 though in line with other pyrolysis bio-oils.


341
342 **Figure 4.** van Krevelen diagram of bio-oils made via *in situ* versus *ex situ* pyrolysis of cherry
343 pits (error bars equal to one standard deviation)

344

345 *3.3 Biochar composition*

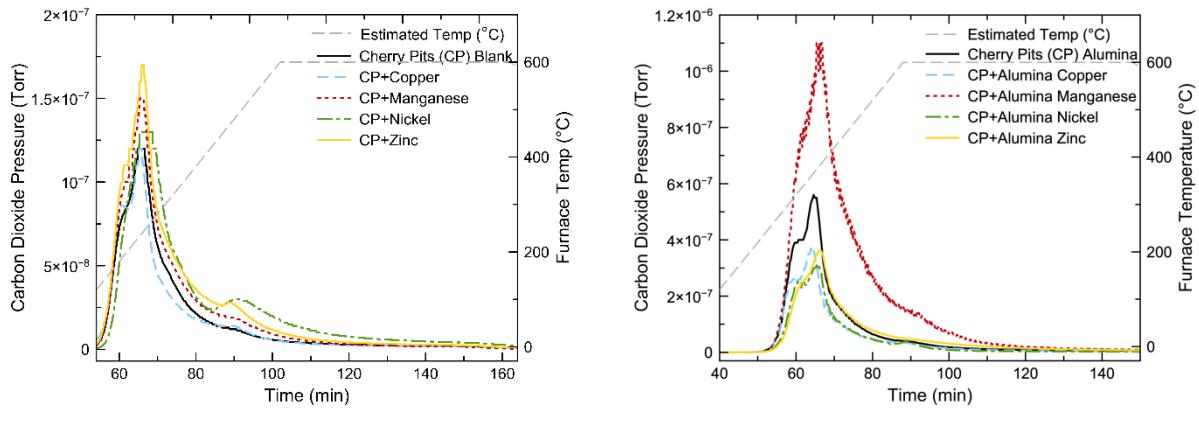
346 With decreased O/C and increased H/C ratios in the bio-oil for alumina-metal catalysts, the
347 changes in the solid biochar phase could serve as indicators of solid vs. vapor phase interactions.
348 Whereas the alumina-metal catalysts are situated downstream and are poised to catalyze the
349 vapor phase, the direct mixing of biomass and metal (in the *in situ* cases) has the potential to
350 alter the biomass to biochar conversion and composition. Figure 5 highlights the change in
351 composition of the biochar on a van Krevelen diagram. Unlike in the oil phase, the char is not
352 distributed into ‘alumina’ and ‘no-alumina’ regions, but instead we see a range of compositions
353 without a clear trend based on catalyst or its location.

354

355
 356 **Figure 5.** van Krevelen diagram of biochars made via *in situ* versus *ex situ* pyrolysis of cherry
 357 pits (error bars equal to one standard deviation)
 358

359 The lack of statistically significant differences between the *ex situ* run biochars (with the
 360 exception of the Ni) is expected considering that these cases do not allow for the alumina
 361 impregnated metal to contact the biochar. The samples with *in situ* metals can alter the
 362 composition of the biochar, however all the downstream *ex situ* metals would only act on
 363 compounds that have entered the gas phase (and should have no opportunity to recondense on
 364 the biochar). The lack of significant differences among the *in situ* samples indicates that the *in*
 365 *situ* metals may catalyze the overall devolatilization, but that their ability to chemically change
 366 the biochar and bio-oil/gas is limited when used *in situ*. The muted effects of the *in situ* metals is
 367 potentially due to coking [55], deactivation [56], or limits on heat/mass transfer [57] where the
 368 metals become unable to interact with the vapor phase.

369
 370 Throughout our analyses – despite multiple replicates – the use of Ni in both *in situ* and *ex situ*
 371 runs appears to be a bit of an outlier. The bio-oils are rather heterogeneous, negating any


372 statistically significant observations. In the solid products, both catalyst placements lead to
373 biochars with slightly higher oxygen to carbon ratios than any other sample. While for *in situ*
374 positioning this could mean that the catalyst spurs oxidation of the biochar, this is more difficult
375 to interpret for the *ex situ* samples. One plausible explanation is that the Ni-supported alumina
376 catalyzes reactions that release fairly significant amounts of oxidizing gases (CO, O₂), of which
377 some back mix near the biochar and oxidize the surface. This could be decarboxylation of the O-
378 aromatic compounds in the pyrolysis bio-oil, which are reduced for both Ni samples. Given the
379 high gas sweep rate this seems unlikely, however (to date) it is the most plausible explanation we
380 have found, and we look forward to engaging with the field further in determining the root
381 causes for these observations.

382

383 *3.4 Non-condensable gas formation*

384 Carbon dioxide is a major gaseous product of all the pyrolysis reactions (Figure 6) that provides
385 a direct measure of oxygen leaving the system. The *in situ* cases result in mixed outcomes, with
386 nickel generating an increase in CO₂ production by 44%, likely due to the added activity near the
387 reaction hold temperature of 600 °C (between 80-100 minutes). Manganese and zinc see similar
388 increases in CO₂ production (20% and 43% respectively), however copper experiences a slight
389 decrease of 7%. The *ex situ* experiments, where the evolved gas is passed over the alumina-
390 soaked catalyst downstream, yield an altogether larger quantity of CO₂ compared to the *in situ*
391 cases (note the change in axis scaling by nearly an order of magnitude).

392

a. CO₂ for *in situ* pyrolysis experimentsb. CO₂ for *ex situ* pyrolysis experiments

394 **Figure 6.** CO₂ in evolved pyrolysis gas for *in situ* and *ex situ* transition metal catalysis; pressure
 395 normalized to sample mass.

396
 397 The inclusion of the alumina oxide – without the addition of transition metals – enhances CO₂
 398 production itself. This is likely due to the improved heat transfer effects on the gas passing
 399 through a heated porous material, which can be demonstrated by the disparity in their heat
 400 capacity. While an exact figure for the heat capacity of cherry pit biochar is not known, graphite
 401 can be used as a conservative stand-in, since the biochar begins to graphitize as the temperature
 402 in the furnace rises to pyrolysis conditions. This gives a conservative estimate for C_p as high as
 403 20 J/molK (at 1000K) [58], which is still far less than the downstream alumina counterpart at
 404 120 J/molK (at 1000K) [59]. Alumina's higher heat capacity translates to smaller variations in
 405 temperature during pyrolysis as the relatively cool nitrogen gas has a smaller cooling effect on
 406 the alumina, and the alumina retains heat (and therefore energy) for a longer duration after
 407 heating. While the particles have been finely ground (1-2mm), improving the heat transfer across
 408 any given particle assists in its devolatilization by providing the energy needed to move to a
 409 lower-energy oxidized state [60]. The alumina possibly provides nucleation sites for the vapor
 410 phase to interact at high temperatures [61]. However, the effects of the inclusion of manganese

411 are magnified greatly by the *ex situ* alumina. Instead of the 20% increase in CO₂ production as
412 seen for Mn versus raw CP *in situ*, the *ex situ* manganese impregnated alumina increases CO₂
413 production by 148%, or nearly 2.5 times. These trends continue for *ex situ* hydrogen, methane,
414 and ethane, with manganese impregnated alumina generating gases far above the baseline.
415 Various forms of manganese have been used in a wide array of catalytic reactions due to the
416 numerous oxidation states, ranging from the targeting of C-H hydroxylation to assist with the
417 ‘magic methyl effect’ [62], to promoting oxidation of CO waste streams [63]. The concentrations
418 of available oxygen and operating temperature affect the form manganese oxides commonly take
419 as either MnO₂, Mn₂O₃, or Mn₃O₄ [64,65] though more states exist. This variable oxidation state
420 allows manganese to act as either an oxidizing or reducing agent. Despite the inert nature of
421 alumina oxide at temperatures below 1000 °C, some mass loss is expected (manufacturer reports
422 $\leq 5\%$). Excess oxygen present from the Al₂O₃ may interact with the manganese to form more
423 productive species than its *in situ* counterpart. Higher oxygen contents and lower temperatures
424 have shown to favor the formation of MnO₂ [63] which may account for the difference in
425 activity.

426
427 The increased generation of carbon dioxide for the manganese and alumina catalyst is a strong
428 indicator that oxygen is being removed from the bio-oil via decarboxylation, as confirmed by the
429 drop and increase in the O/C and H/C ratio for the *in situ* versus the *ex situ* experiments, in
430 Figure 4 respectively. By removing the oxygen from the liquid phase, the bio-oil can be
431 fragmented into smaller oil compounds with reduced acidity and instability [66].

432

433 The *ex situ* manganese samples outperform other *ex situ* metals (and *in situ* metals) in the
434 production of hydrogen, methane, and ethane (plots available in supplemental information).
435 Metals used *in situ* generate hydrogen to varying degrees, with copper producing nearly the same
436 amount as the baseline, and manganese, zinc, and nickel producing 50% (\pm 6%), 84% (\pm 17%),
437 192% (\pm 67%) more hydrogen gas respectively. This increase in hydrogen gas production is
438 advantageous. Hydrogen can be separated and used as its own renewable fuel, either through
439 direct combustion of H₂ gas or fuel cell use [67,68]. Furthermore, this release of hydrogen gas
440 can be indicative of increased fragmentation of the vapor phase, potentially leading to smaller,
441 more desirable, bio-oil compounds (hydrocracking) [69]. Previous studies show that
442 thermochemical reactions of lignin without a hydrogen donor tend to repolymerize intermediates
443 to form more solids via hydrogenolysis of β -O-4 and α -O-4 bonds [70,71], adversely affecting
444 bio-oil yield and quality. Additionally, hydrogen can be used in catalytic cracking reactions such
445 as hydrogenation to increase the saturation of compounds, which leads to fuels producing less
446 CO₂ when burned [69].

447

448 3.5. Summary and Future Work

449 The present work sheds insight into the relative levels of deoxygenation achievable with single
450 TM catalysts. TM are often complexed with sulfides (forming transition metal sulfides) and used
451 for hydrogenation, Fischer-Tropsch and heteroatom removal in refineries around the world. The
452 role of the S is (likely) to activate molecular hydrogen to form S-H groups and catalyze
453 hydrodeoxygenation. As reported by Ruddy *et al.*, the relative reactivities of oxygenated
454 compounds on transition metal sulfides is roughly: aliphatic alcohols > ketones > alkyl ethers >
455 carboxylic acids \approx m-/p-phenols \approx naphthol > phenol > o-ethylphenol > dibenzofuran, with

456 furans being the least reactive of the pyrolysis bio-oil oxygen species. Given the lack of a sulfur
457 site to enable such coordination and dearth of hydrogen in the cherry pit feedstock used here, it is
458 interesting to see how the relative concentrations of alcohols versus aromatic carbons increases,
459 as do ketones and ethers, supporting the hypothesized role of the S in the TM sulfides. However,
460 given the increase in the ratio of water to bio-oil produced for the *ex situ* experiments, it is
461 reasonable to assert that these catalysts are participating in some degree of hydrodeoxygenation.

462

463 As the goal of this work was to explore fundamental science surrounding the impact of these TM
464 catalysts (1) without scaffolds or bifunctionality and (2) when used *in situ* versus *ex situ*, the
465 present work explores these TMs only as single-use catalysts, which is not industrially feasible
466 or sustainable. Future work – as is ongoing in our laboratory, with our industrial collaborators,
467 and beyond our lab – should explore the reclamation and reusability of TMs when used *in situ*,
468 and coking propensity and decoking required when used for downstream upgrading of pyrolysis
469 vapors. Finally, as most industrial processes for bio-oil are adopting fast (or even flash)
470 pyrolysis, the present work is useful in understanding how *in situ* versus *ex situ* schemes can
471 alter the product balance and degree of deoxygenation during versus after pyrolysis, but further
472 work should investigate how such processes scale in terms of pyrolysis heating rates.

473

474 **4. Conclusions**

475 This study examined the effect of using transition metals as *in situ* and *ex situ* catalysts as
476 alternatives to precious metals for the upgrading of pyrolysis bio-oils. Specifically, *ex situ* metals
477 supported on alumina, acting on the pyrolysis vapor phase, lowered the O/C ratio in the bio-oil
478 when compared to *in situ* metals and increased the H/C ratio for some metals (in particular Mn),

479 without drastically altering the composition of the biochar. Manganese-impregnated alumina
480 demonstrated an ability to generate high quantities of pyrolysis gas, specifically H₂, CO₂, CH₄,
481 and C₂H₆ when placed in the *ex situ* downstream position. By moving the catalyst downstream,
482 the devolatilized compounds fragment into smaller, non-condensable gases, and increase the
483 production of water, indicating a higher degree of hydrodeoxygenation. instead of heterogeneous
484 surface-gas interactions on the biochar taking place at the solid-vapor interphase. Large, tarry
485 (viscous, unstable, and oxygenated) compounds that pyrolyze into the vapor phase (and
486 ultimately recondense in the bio-oil) can be addressed using *ex situ* downstream catalysts at
487 relatively low temperatures (e.g. the same as pyrolysis). Conversely, *in situ* catalysts result in
488 greater liquid production with lower water fractions than *ex situ* catalysts. In particular, Mn, Ni
489 and Zn boost the relative concentrations of ethers and alcohols in the resulting bio-oils as
490 compared to uncatalyzed or Cu-catalyzed biomass. However, because of coking and
491 deactivation, the use of such *in situ* catalysts in fixed bed pyrolysis may be limited.

492

493 **CRedit authorship contribution statement**

494 **Andrew H. Hubble:** Conceptualization, Methodology, Investigation, Data analysis, Writing –
495 original draft. **Bridget A. Childs:** Investigation, Initial data analysis. **Matteo Pecchi:** Data
496 analysis, Data Visualization, Writing – review and editing. **Hanifrahmawan Sudibyo:**
497 Investigation, Writing – review and editing. **Jefferson W. Tester:** Resources, Writing – review
498 and editing. **Jillian L. Goldfarb:** Conceptualization, Resources, Funding acquisition,
499 Supervision, Writing – revised draft.

500

501 **Declaration of Competing Interest**

502 The authors declare that they have no known competing financial interests or personal
503 relationships that could have influenced the work reported in this paper.

504

505 **Acknowledgements**

506 This work was supported by the National Science Foundation under CBET grant number
507 1933071. This work was partially supported by a Hatch Grant under accession number 1021398
508 from the USDA National Institute of Food and Agriculture.

509

510 **References**

511

512 [1] M.R. Allen, O.P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J.
513 Kala, N. Mahowald, Y. Mulugetta, R. Perez, M. Wairiu, K. Zickfeld, 2018: Framing and Context. In:
514 Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C
515 above pre-industrial levels and related global greenhouse gas emission pathways, in the context
516 of strengthening the global response, Australia, 2018.

517 [2] The White House Briefing Room, Biden Administration Advances the Future of Sustainable Fuels
518 in American Aviation, (2021). <https://www.whitehouse.gov/briefing-room/statements-releases/2021/09/09/fact-sheet-biden-administration-advances-the-future-of-sustainable-fuels-in-american-aviation/> (accessed January 24, 2022).

521 [3] L. Cai, F. vom Lehn, H. Pitsch, Higher Alcohol and Ether Biofuels for Compression-Ignition Engine
522 Application: A Review with Emphasis on Combustion Kinetics, *Energy & Fuels*. 35 (2021) 1890–
523 1917. <https://doi.org/10.1021/ACS.ENERGYFUELS.0C03590>.

524 [4] T.K. Phung, A.A. Casazza, P. Perego, P. Capranica, G. Busca, Catalytic pyrolysis of vegetable oils to
525 biofuels: Catalyst functionalities and the role of ketonization on the oxygenate paths, *Fuel
526 Processing Technology*. 140 (2015) 119–124. <https://doi.org/10.1016/J.FUPROC.2015.08.042>.

527 [5] X. Hu, R. Gunawan, D. Mourant, M.D.M. Hasan, L. Wu, Y. Song, C. Lievens, C.Z. Li, Upgrading of
528 bio-oil via acid-catalyzed reactions in alcohols — A mini review, *Fuel Processing Technology*. 155
529 (2017) 2–19. <https://doi.org/10.1016/J.FUPROC.2016.08.020>.

530 [6] W. Cai, R. Liu, Y. He, M. Chai, J. Cai, Bio-oil production from fast pyrolysis of rice husk in a
531 commercial-scale plant with a downdraft circulating fluidized bed reactor, *Fuel Processing
532 Technology*. 171 (2018) 308–317. <https://doi.org/10.1016/J.FUPROC.2017.12.001>.

533 [7] M. Garca-Pérez, A. Chaala, C. Roy, Vacuum pyrolysis of sugarcane bagasse, *J Anal Appl Pyrolysis*.
534 65 (2002) 111–136. [https://doi.org/10.1016/S0165-2370\(01\)00184-X](https://doi.org/10.1016/S0165-2370(01)00184-X).

535 [8] P. Li, X. Shi, X. Wang, J. Song, S. Fang, J. Bai, G. Zhang, C. Chang, S. Pang, Bio-oil from biomass fast
536 pyrolysis: Yields, related properties and energy consumption analysis of the pyrolysis system, *J
537 Clean Prod.* 328 (2021) 129613. <https://doi.org/10.1016/J.JCLEPRO.2021.129613>.

538 [9] G.V. Brigagão, O. de Queiroz Fernandes Araújo, J.L. de Medeiros, H. Mikulcic, N. Duic, A techno-
539 economic analysis of thermochemical pathways for corncob-to-energy: Fast pyrolysis to bio-oil,
540 gasification to methanol and combustion to electricity, *Fuel Processing Technology*. 193 (2019)
541 102–113. <https://doi.org/10.1016/J.FUPROC.2019.05.011>.

542 [10] H. Wang, R. Gunawan, Z. Wang, L. Zhang, Y. Liu, S. Wang, M.D.M. Hasan, C.Z. Li, High-pressure
543 reactive distillation of bio-oil for reduced polymerisation, *Fuel Processing Technology*. 211 (2021)
544 106590. <https://doi.org/10.1016/J.FUPROC.2020.106590>.

545 [11] B. Zheng, Y. Shen, P. Sun, R. Liu, J. Meng, R. Chang, T. Gao, Y. Liu, Effects of particle sizes on
546 performances of the multi-zone steam generator using waste heat in a bio-oil steam reforming
547 hydrogen production system, *Int J Hydrogen Energy*. 46 (2021) 18064–18072.
548 <https://doi.org/10.1016/J.IJHYDENE.2020.10.269>.

549 [12] T. Cordero-Lanzac, J. Rodríguez-Mirasol, T. Cordero, J. Bilbao, Advances and Challenges in the
550 Valorization of Bio-Oil: Hydrodeoxygenation Using Carbon-Supported Catalysts, *Energy & Fuels.*
551 35 (2021) 17008–17031. <https://doi.org/10.1021/ACS.ENERGYFUELS.1C01700>.

552 [13] N. Chaihad, A. Anniwaer, A. Choirun Az Zahra, Y. Kasai, P. Reubroycharoen, K. Kusakabe, A.
553 Abudula, G. Guan, In-situ catalytic upgrading of bio-oil from rapid pyrolysis of biomass over
554 hollow HZSM-5 with mesoporous shell, *Bioresour Technol.* 341 (2021) 125874.
555 <https://doi.org/10.1016/J.BIORTECH.2021.125874>.

556 [14] N. Chaihad, A. Anniwaer, S. Karnjanakom, Y. Kasai, S. Kongparakul, C. Samart, P. Reubroycharoen,
557 A. Abudula, G. Guan, In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of sunflower
558 stalk to aromatic hydrocarbons over bifunctional Cu-loaded HZSM-5, *J Anal Appl Pyrolysis.* 155
559 (2021) 105079. <https://doi.org/10.1016/J.JAAP.2021.105079>.

560 [15] L. Mo, H. Dai, L. Feng, B. Liu, X. Li, Y. Chen, S. Khan, In-situ catalytic pyrolysis upgradation of
561 microalgae into hydrocarbon rich bio-oil: Effects of nitrogen and carbon dioxide environment,
562 *Bioresour Technol.* 314 (2020) 123758. <https://doi.org/10.1016/J.BIORTECH.2020.123758>.

563 [16] C.T. Zhang, L. Zhang, Q. Li, Y. Wang, Q. Liu, T. Wei, D. Dong, S. Salavati, M. Gholizadeh, X. Hu,
564 Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors
565 with physiochemical properties of the oxides, *Biomass Bioenergy.* 124 (2019) 125–141.
566 <https://doi.org/10.1016/J.BIOMBIOE.2019.03.017>.

567 [17] Y. Han, M. Gholizadeh, C.C. Tran, S. Kaliaguine, C.Z. Li, M. Olarte, M. Garcia-Perez,
568 Hydrotreatment of pyrolysis bio-oil: A review, *Fuel Processing Technology.* 195 (2019) 106140.
569 <https://doi.org/10.1016/J.FUPROC.2019.106140>.

570 [18] W. Choi, H. Jo, J.W. Choi, D.J. Suh, H. Lee, C. Kim, K.H. Kim, K.Y. Lee, J.M. Ha, Stabilization of acid-
571 rich bio-oil by catalytic mild hydrotreating, *Environmental Pollution.* 272 (2021) 116180.
572 <https://doi.org/10.1016/J.ENVPOL.2020.116180>.

573 [19] T. Cordero-Lanzac, R. Palos, I. Hita, J.M. Arandes, J. Rodríguez-Mirasol, T. Cordero, J. Bilbao, P.
574 Castaño, Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation
575 of raw bio-oil, *Appl Catal B.* 239 (2018) 513–524. <https://doi.org/10.1016/J.APCATB.2018.07.073>.

576 [20] A.S. Amarasekara, C.D. Gutierrez Reyes, Pd/C catalyzed room-temperature, atmospheric pressure
577 hydrogenation of furanic bio-oils from acidic ionic liquid catalyzed liquefaction of biomass in
578 acetone, *Fuel Processing Technology.* 200 (2020) 106320.
579 <https://doi.org/10.1016/J.FUPROC.2019.106320>.

580 [21] Y. Zheng, J. Wang, D. Li, C. Liu, Y. Lu, X. Lin, Z. Zheng, Highly efficient catalytic pyrolysis of biomass
581 vapors upgraded into jet fuel range hydrocarbon-rich bio-oil over a bimetallic Pt–Ni/γ-Al₂O₃
582 catalyst, *Int J Hydrogen Energy.* 46 (2021) 27922–27940.
583 <https://doi.org/10.1016/J.IJHYDENE.2021.06.082>.

584 [22] A.C. Dyer, M.A. Nahil, P.T. Williams, Biomass:polystyrene co-pyrolysis coupled with metal-
585 modified zeolite catalysis for liquid fuel and chemical production, *J Mater Cycles Waste Manag.*
586 24 (2022) 477–490. <https://doi.org/10.1007/S10163-021-01334-0/FIGURES/11>.

587 [23] Z. Li, E. Jiang, X. Xu, Y. Sun, R. Tu, Hydrodeoxygenation of phenols, acids, and ketones as model
588 bio-oil for hydrocarbon fuel over Ni-based catalysts modified by Al, La and Ga, *Renew Energy*.
589 146 (2020) 1991–2007. <https://doi.org/10.1016/J.RENENE.2019.08.012>.

590 [24] Y. Feng, S. Long, X. Tang, Y. Sun, R. Luque, X. Zeng, L. Lin, Earth-abundant 3d-transition-metal
591 catalysts for lignocellulosic biomass conversion, *Chem Soc Rev.* 50 (2021) 6042–6093.
592 <https://doi.org/10.1039/D0CS01601B>.

593 [25] F. Chen, S. Yang, J. Hu, Q. Xiong, In Situ Catalytic Pyrolysis of Municipal Sewage Sludge under
594 Calcined Copper Slag: Thermokinetic Analysis and Real-Time Monitoring of Evolved Gases, *ACS*
595 *Sustain Chem Eng.* 10 (2022) 14381–14390. <https://doi.org/10.1021/acssuschemeng.2c05218>.

596 [26] M. Karod, A.H. Hubble, A.R. Maag, Z.A. Pollard, J.L. Goldfarb, Clay-catalyzed in situ pyrolysis of
597 cherry pits for upgraded biofuels and heterogeneous adsorbents as recoverable by-products,
598 *Biomass Convers Biorefin.* (2022). <https://doi.org/10.1007/s13399-022-02921-3>.

599 [27] K. Praserttaweepon, T. Vitidsant, W. Charusiri, Ni-modified dolomite for the catalytic
600 deoxygenation of pyrolyzed softwood and non-wood to produce bio-oil, *Results in Engineering*.
601 14 (2022) 100461. <https://doi.org/10.1016/j.rineng.2022.100461>.

602 [28] E. Balaghi Inaloo, M. Saidi, A. Taheri Najafabadi, Valuable Biofuel Production via Pyrolysis Process
603 of Olive Pomace over Alkali and Transition Metal Oxides Catalysts Supported on Activated
604 Biochar, *ChemistrySelect*. 7 (2022). <https://doi.org/10.1002/slct.202200789>.

605 [29] H. Yang, Z. Chen, W. Chen, Y. Chen, X. Wang, H. Chen, Role of porous structure and active O-
606 containing groups of activated biochar catalyst during biomass catalytic pyrolysis, *Energy*. 210
607 (2020) 118646. <https://doi.org/10.1016/j.energy.2020.118646>.

608 [30] Y. Su, K. Fu, Y. Zheng, N. Ji, C. Song, D. Ma, X. Lu, R. Han, Q. Liu, Catalytic oxidation of
609 dichloromethane over Pt-Co/HZSM-5 catalyst: Synergistic effect of single-atom Pt, Co₃O₄, and
610 HZSM-5, *Appl Catal B*. 288 (2021) 119980. <https://doi.org/10.1016/J.APCATB.2021.119980>.

611 [31] Z. He, G. Yang, H. Wang, F. Dai, F. Peng, H. Yu, Co-N-C-Supported Platinum Catalyst: Synergistic
612 Effect on the Aerobic Oxidation of Glycerol, *ACS Sustain Chem Eng.* 8 (2020) 19062–19071.
613 https://doi.org/10.1021/ACSSUSCHEMENG.0C07332/SUPPL_FILE/SC0C07332_SI_001.PDF.

614 [32] B. Cifuentes, M. Hernández, S. Monsalve, M. Cobo, Hydrogen production by steam reforming of
615 ethanol on a RhPt/CeO₂/SiO₂ catalyst: Synergistic effect of the Si:Ce ratio on the catalyst
616 performance, *Appl Catal A Gen.* 523 (2016) 283–293.
617 <https://doi.org/10.1016/J.APCATA.2016.06.014>.

618 [33] J. Resasco, F. Yang, T. Mou, B. Wang, P. Christopher, D.E. Resasco, Relationship between Atomic
619 Scale Structure and Reactivity of Pt Catalysts: Hydrodeoxygenation of m-Cresol over Isolated Pt
620 Cations and Clusters, *ACS Catal.* 10 (2020) 595–603.
621 https://doi.org/10.1021/ACSCATAL.9B04330/SUPPL_FILE/CS9B04330_SI_001.PDF.

622 [34] I. Bodachivskyi, U. Kuzhiumparambil, D.B.G. Williams, Metal triflates are tunable acidic catalysts
623 for high yielding conversion of cellulosic biomass into ethyl levulinate, *Fuel Processing*
624 *Technology*. 195 (2019) 106159. <https://doi.org/10.1016/J.FUPROC.2019.106159>.

625 [35] D. Zhong, K. Zeng, J. Li, Y. Qiu, G. Flamant, A. Nzhou, V.S. Vladimirovich, H. Yang, H. Chen,
626 Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose,
627 hemicellulose and lignin, *Renewable and Sustainable Energy Reviews*. 157 (2022) 111989.
628 <https://doi.org/10.1016/J.RSER.2021.111989>.

629 [36] Z. Xiong, Y. Xiong, Q. Li, H. Han, W. Deng, J. Xu, L. Jiang, S. Su, S. Hu, Y. Wang, J. Xiang, Effects of
630 vapor-/solid-phase interactions among cellulose, hemicellulose and lignin on the formation of
631 heavy components in bio-oil during pyrolysis, *Fuel Processing Technology*. 225 (2022) 107042.
632 <https://doi.org/10.1016/J.FUPROC.2021.107042>.

633 [37] H. Weldekidan, V. Strezov, T. Kan, R. Kumar, J. He, G. Town, Solar assisted catalytic pyrolysis of
634 chicken-litter waste with in-situ and ex-situ loading of CaO and char, *Fuel*. 246 (2019) 408–416.
635 <https://doi.org/10.1016/j.fuel.2019.02.135>.

636 [38] K. Wang, P.A. Johnston, R.C. Brown, Comparison of in-situ and ex-situ catalytic pyrolysis in a
637 micro-reactor system, *Bioresour Technol*. 173 (2014) 124–131.
638 <https://doi.org/10.1016/j.biortech.2014.09.097>.

639 [39] K. lisa, D.J. Robichaud, M.J. Watson, J. ten Dam, A. Dutta, C. Mukarakate, S. Kim, M.R. Nimlos,
640 R.M. Baldwin, Improving biomass pyrolysis economics by integrating vapor and liquid phase
641 upgrading, *Green Chemistry*. 20 (2018) 567–582. <https://doi.org/10.1039/C7GC02947K>.

642 [40] V. Frišták, D. Bošanská, M. Pipíška, L. Ďuriška, S.M. Bell, G. Soja, Physicochemical Characterization
643 of Cherry Pits-Derived Biochar, *Materials* 2022, Vol. 15, Page 408. 15 (2022) 408.
644 <https://doi.org/10.3390/MA15020408>.

645 [41] P. Yangali, A.M. Celaya, J.L. Goldfarb, Co-pyrolysis reaction rates and activation energies of West
646 Virginia coal and cherry pit blends, *J Anal Appl Pyrolysis*. 108 (2014) 203–211.
647 <https://doi.org/10.1016/J.JAAP.2014.04.015>.

648 [42] Z.A. Pollard, J.L. Goldfarb, Valorization of cherry pits: Great Lakes agro-industrial waste to
649 mediate Great Lakes water quality, *Environmental Pollution*. 270 (2021) 116073.
650 <https://doi.org/10.1016/J.ENVPOL.2020.116073>.

651 [43] G.M.A. Foreign Agricultural Service, Fresh Peaches and Cherries: World Markets and Trade, 2021.
652 <https://public.govdelivery.com/accounts/USDAFAS/subscriber/new> (accessed March 6, 2022).

653 [44] United States Department of Agriculture: National Statistics for Cherries, National Agricultural
654 Statistics Service, (2020).
655 https://www.nass.usda.gov/Statistics_by_Subject/result.php?4DA594EC-B4CC-333F-9B93-929A52E35D50§or=CROPS&group=FRUIT %26 TREE NUTS&comm=CHERRIES (accessed
656 January 25, 2022).

657 [45] S. Haukka, E.L. Lakomaa, T. Suntola, Adsorption controlled preparation of heterogeneous
658 catalysts, *Stud Surf Sci Catal*. 120 A (1999) 715–750. [https://doi.org/10.1016/S0167-2991\(99\)80570-9](https://doi.org/10.1016/S0167-2991(99)80570-9).

661 [46] J.R.A. Sietsma, A. Jos van Dillen, P.E. de Jongh, K.P. de Jong, Application of ordered mesoporous
662 materials as model supports to study catalyst preparation by impregnation and drying, *Stud Surf*
663 *Sci Catal.* 162 (2006) 95–102. [https://doi.org/10.1016/S0167-2991\(06\)80895-5](https://doi.org/10.1016/S0167-2991(06)80895-5).

664 [47] R. Olcese, V. Carré, Carré, F. Frédé, F. Aubriet, A. Dufour, Selectivity of Bio-oils Catalytic
665 Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis, (2013).
666 <https://doi.org/10.1021/ef302145g>.

667 [48] P.R. Patwardhan, R.C. Brown, B.H. Shanks, Understanding the Fast Pyrolysis of Lignin,
668 *ChemSusChem.* 4 (2011) 1629–1636. <https://doi.org/10.1002/CSSC.201100133>.

669 [49] J.W. Ahn, S.K. Pandey, K.H. Kim, Comparison of GC-MS Calibration Properties of Volatile Organic
670 Compounds and Relative Quantification Without Calibration Standards, *J Chromatogr Sci.* 49
671 (2011) 19–28. <https://doi.org/10.1093/CHRSCI/49.1.19>.

672 [50] S. Zhang, H. Zhang, X. Liu, S. Zhu, L. Hu, Q. Zhang, Upgrading of bio-oil from catalytic pyrolysis of
673 pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst, *Fuel Processing Technology.* 175
674 (2018) 17–25. <https://doi.org/10.1016/J.FUPROC.2018.03.002>.

675 [51] Y. Li, S. Hao, J. Shu, S. Zhang, J. Wang, C. Wang, N. Hou, Y. Li, Unraveling the role of reaction
676 environment and catalysts for pyrolysis of technical lignin into different functional bio-oil yield,
677 *Journal of the Energy Institute.* 100 (2022) 47–54. <https://doi.org/10.1016/J.JOEI.2021.09.010>.

678 [52] J. Fermoso, H. Hernando, S. Jiménez-Sánchez, A.A. Lappas, E. Heracleous, P. Pizarro, J.M.
679 Coronado, D.P. Serrano, Bio-oil production by lignocellulose fast-pyrolysis: Isolating and
680 comparing the effects of indigenous versus external catalysts, *Fuel Processing Technology.* 167
681 (2017) 563–574. <https://doi.org/10.1016/J.FUPROC.2017.08.009>.

682 [53] Y. Han, M. Gholizadeh, C.C. Tran, S. Kaliaguine, C.Z. Li, M. Olarte, M. Garcia-Perez,
683 Hydrotreatment of pyrolysis bio-oil: A review, *Fuel Processing Technology.* 195 (2019) 106140.
684 <https://doi.org/10.1016/J.FUPROC.2019.106140>.

685 [54] M.D.G. de Luna, L.A.D. Cruz, W.H. Chen, B.J. Lin, T.H. Hsieh, Improving the stability of diesel
686 emulsions with high pyrolysis bio-oil content by alcohol co-surfactants and high shear mixing
687 strategies, *Energy.* 141 (2017) 1416–1428. <https://doi.org/10.1016/J.ENERGY.2017.11.055>.

688 [55] L. Jia, C. Cao, Z. Cheng, J. Wang, J. Huang, J. Yang, Y. Pan, M. Xu, Y. Wang, Ex Situ Catalytic
689 Pyrolysis of Algal Biomass in a Double Microfixed-Bed Reactor: Catalyst Deactivation and Its
690 Coking Behavior, *Energy and Fuels.* 34 (2020) 1918–1928.
691 https://doi.org/10.1021/ACS.ENERGYFUELS.9B04024/SUPPL_FILE/EF9B04024_SI_001.PDF.

692 [56] G. Abdulkareem-Alsultan, N. Asikin-Mijan, L.K. Obeas, R. Yunus, S.Z. Razali, A. Islam, Y. Hin Taufiq-Yap, In-situ operando and ex-situ study on light hydrocarbon-like-diesel and catalyst deactivation
693 kinetic and mechanism study during deoxygenation of sludge oil, *Chemical Engineering Journal.*
694 429 (2022) 132206. <https://doi.org/10.1016/J.CEJ.2021.132206>.

696 [57] Y. Liu, F. Xu, N. Yuan, B. Lin, Y. Zhou, Revealing the Effect of Mass Transfer on Direct
697 Dehydrogenation of Ethylbenzene Catalyzed by Phosphorous-doped Boron Nitride: Comparative
698 Study, *ChemCatChem.* 14 (2022) e202101676. <https://doi.org/10.1002/CCTC.202101676>.

699 [58] A.T.D. Butland, R.J. Maddison, The specific heat of graphite: An evaluation of measurements,
700 Journal of Nuclear Materials. 49 (1973) 45–56. [https://doi.org/10.1016/0022-3115\(73\)90060-3](https://doi.org/10.1016/0022-3115(73)90060-3).

701 [59] National Institute of Standards and Technology, Aluminium Oxide, United States Department of
702 Commerce. (n.d.). <https://webbook.nist.gov/cgi/cbook.cgi?ID=C1344281&Type=JANAFS&Plot=on>
703 (accessed March 27, 2022).

704 [60] E.E. (Ele E. Stansbury, R.A. (Robert A. Buchanan, Fundamentals of electrochemical corrosion, ASM
705 International, 2000.

706 [61] J.H. Kwak, J.Z. Hu, D.H. Kim, J. Szanyi, C.H.F. Peden, Penta-coordinated Al³⁺ ions as preferential
707 nucleation sites for BaO on γ-Al₂O₃: An ultra-high-magnetic field 27Al MAS NMR study, J Catal.
708 251 (2007) 189–194. <https://doi.org/10.1016/J.JCAT.2007.06.029>.

709 [62] K. Feng, R.E. Quevedo, J.T. Kohrt, M.S. Oderinde, U. Reilly, M.C. White, Late-stage oxidative
710 C(sp₃)–H methylation, Nature 2020 580:7805. 580 (2020) 621–627.
711 <https://doi.org/10.1038/S41586-020-2137-8>.

712 [63] S. Dey, V. v. Praveen Kumar, The performance of highly active manganese oxide catalysts for
713 ambient conditions carbon monoxide oxidation, Current Research in Green and Sustainable
714 Chemistry. 3 (2020) 100012. <https://doi.org/10.1016/J.CRGSC.2020.100012>.

715 [64] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals: Simple
716 Chemistry Meets Complex Physics?, Angewandte Chemie International Edition. 48 (2009) 60–
717 103. <https://doi.org/10.1002/ANIE.200802248>.

718 [65] S. Dey, G.C. Dhal, D. Mohan, R. Prasad, The choice of precursors in the synthesizing of CuMnO_x
719 catalysts for maximizing CO oxidation, International Journal of Industrial Chemistry. 9 (2018)
720 199–214. <https://doi.org/10.1007/S40090-018-0150-7/TABLES/10>.

721 [66] Y. Mei, Q. Yang, H. Yang, J. Li, K. Zeng, Y. Chen, S. Zhang, H. Chen, Impact of cellulose
722 deoxidization temperature on the composition of liquid products obtained by subsequent
723 pyrolysis, Fuel Processing Technology. 184 (2019) 73–79.
724 <https://doi.org/10.1016/J.FUPROC.2018.11.003>.

725 [67] C. Lang, X. Sécordel, A. Kiennemann, C. Courson, Water gas shift catalysts for hydrogen
726 production from biomass steam gasification, Fuel Processing Technology. 156 (2017) 246–252.
727 <https://doi.org/10.1016/J.FUPROC.2016.09.004>.

728 [68] I. Rossetti, · Antonio Tripodi, Catalytic Production of Renewable Hydrogen for Use in Fuel Cells: A
729 Review Study, Topics in Catalysis 2022. 1 (2022) 1–20. <https://doi.org/10.1007/S11244-022-01563-Z>.

731 [69] P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic
732 upgrading of bio-oil to engine fuels, Appl Catal A Gen. 407 (2011) 1–19.
733 <https://doi.org/10.1016/J.APCATA.2011.08.046>.

734 [70] W. Schutyser, ab T. Renders, S. van den Bosch, S. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals
735 from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading, Chem.
736 Soc. Rev. 47 (2018) 852. <https://doi.org/10.1039/c7cs00566k>.

737 [71] I. Kristianto, S.O. Limarta, H. Lee, J.M. Ha, D.J. Suh, J. Jae, Effective depolymerization of
738 concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in
739 ethanol/formic acid media, *Bioresour Technol.* 234 (2017) 424–431.
740 <https://doi.org/10.1016/J.BIOTECH.2017.03.070>.

741 [72] A. Saraeian, M.W. Nolte, B.H. Shanks, Deoxygenation of biomass pyrolysis vapors: Improving
742 clarity on the fate of carbon, *Renewable and Sustainable Energy Reviews.* 104 (2019) 262–280.
743 <https://doi.org/10.1016/J.RSER.2019.01.037>.

744