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Abstract
The concept of intellectual need, which proposes that learning is the result of stu-
dents wrestling with a problem that is unsolvable by their current knowledge, has 
been used in instructional design for many years. However, prior research has not 
described a way to empirically determine whether, and to what extent, students 
experience intellectual need. In this paper, we present a methodology for identify-
ing students’ intellectual need and report the results of a study that investigated 
students’ reactions to intellectual need-provoking tasks in first-semester calculus 
classes. We also explore the relationship between intellectual need, affective need, 
and students’ learning. Although the overall percentage of students who reported 
experiencing an intellectual need was low, we found positive associations between 
intellectual need and learning.

Keywords  Intellectual need · Calculus · Instructional videos · Flipped pedagogy

Problem solving has long been viewed as both an essential source and product of 
mathematical learning. However, as Schoenfeld (e.g., 1992) observed, instructors 
tend to engage students in routine exercises more than complex problems. Strate-
gies to increase students’ engagement and participation in the learning process are 
infrequently used in U.S. university mathematics and science classes (Walczyk & 
Ramsey, 2003; Ellis et al., 2014; Sonnet et al., 2014). Students’ opportunities to rea-
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son about novel problems is further hindered by the predominantly procedural nature 
of mathematics textbook exercises (Lithner, 2004; Fuller et al., 2011) characterized 
much of students’ activity as “problem-free” and noted that, even when the task may 
superficially appear to be a complex problem, students often “do not have a clear 
mental image of the problem that is being solved, or indeed an understanding that 
any intellectual problem is being solved” (p. 83). In contrast, “problem-laden” activ-
ity is grounded in and sustained by students’ experience of intellectual need (Fuller 
et al., 2011).

The theory of intellectual need has been widely applied to analyze classroom 
instruction (e.g., Rabin et al., 2013; Zazkis & Kontorovich, 2016); guide professional 
development (e.g., Meyer, 2015); design effective “openings” and “hooks” for les-
sons (e.g., Abrahamson et al., 2011; Leatham et al., 2015); and create instructional 
tasks for use in both classroom (e.g., Koichu 2012; Caglayan, 2015; Foster & de 
Villers, 2015) and clinical contexts (e.g., Harel 2013b). Although these efforts share 
a common goal of necessitating particular mathematical skills and understandings, 
researchers’ discernment of intellectual need has relied on their interpretations of indi-
rect evidence, rather than empirically identifying students’ experiences of intellectual 
need and relating these experiences to their mathematical activity and learning.

The goal of this paper is to introduce a methodology for explicitly identifying 
students’ experiences of intellectual need through their engagement with a series 
of instructional videos and mathematical tasks, and to statistically examine factors 
that might be associated with these experiences. In addition, we employ quantitative 
methods to investigate the implications of students’ experiences of intellectual need 
for their learning.

Literature Review

Students’ engagement with problematic situations has long been considered essential 
to support their mathematical learning, even as far back as Dewey’s (1938) theory 
of inquiry. In Brousseau’s Theory of Didactical Situations, mathematical problems 
are an essential aspect of didactical situations, which “constitute means to challenge 
the pupils’ initial conceptions and to initiate their evolution” (Brousseau, 1997, p. 
260). Chevallard’s Anthropological Theory of the Didactic similarly postulates that 
any praxeology (i.e., human activity (praxis) that necessarily entails an implicit or 
explicit rationalization (logos)) is motivated by one’s desire to resolve a problem or 
difficulty experienced within an institutional context (Bosch & Gascón, 2014). In 
accordance with this theoretical tradition of impasse-driven catalysts for cognitive 
development, Harel & Tall (1991) first introduced the concept of intellectual need, 
proposing that “if students do not see the rationale for an idea … the idea would seem 
to them as being evoked arbitrarily; it does not become a concept of the students” (p. 
41). This notion was later formalized by Harel (1998) as the necessity principle: “For 
students to learn what we intend to teach them, they must have a need for it, where 
‘need’ refers to intellectual need” (p. 501). From this perspective, a student experi-
ences intellectual need when they enter a state of disequilibrium and feel a sense of 
curiosity that compels them to develop tools and techniques to resolve their cognitive 
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perturbation. Although the concept of intellectual need describes a cognitive state, it 
is most often—and perhaps most effectively—provoked in social contexts.1

The concept of intellectual need has been widely applied to design and analyze 
classroom instruction. Much of this research has centered on features of mathemati-
cal tasks themselves rather than students’ interpretations of and experiences engag-
ing with them. Some researchers (e.g., Harel 2013a, 2017; Burger & Markin, 2016) 
have contrasted the features of tasks intended to provoke intellectual need from those 
unlikely to engender it. Others have described the various ways instructors or cur-
riculum developers have designed tasks to incorporate intellectual need (e.g., Zazkis 
& Kontorovich 2016). Some studies (e.g., Foster & de Villers 2016; Fuller et al., 
2011; Rabin et al., 2013) have described categories of activity or classroom episodes 
in which students appeared to not experience intellectual need, and highlighted the 
students’ resistance to standard interpretations of mathematical concepts. Still oth-
ers (e.g., Harel 2013b) have described the perturbations and resolutions associated 
with the historical development of various mathematical concepts, with the expecta-
tion that such developments might elucidate aspects of their psychogenesis within 
individuals. Evaluating the relationship between intellectual need and the obstacles 
to concept formation requires researchers to develop valid and reliable methods for 
empirically identifying students’ experiences of intellectual need.

There have been relatively few instances where researchers have attempted to 
empirically examine students’ experiences of intellectual need. In some cases (e.g., 
Harel 2010; Koichu, 2012), the researchers analyzed whole-class discussions and 
activities and inferred that students had experienced intellectual need by their col-
lective reaction to what the researcher interpreted as an obstacle. For example, Harel 
(2010) identified moments when students’ initial solution strategies failed, witnessed 
their subsequent adoption of a new strategy, and inferred that the students had expe-
rienced intellectual need. This method results in attributing a cognitive state of intel-
lectual need to a group of people rather than to individuals. Leatham et al., (2015) 
suggested leveraging in-the-moment student thinking to the generation of intellectual 
need by using student’s puzzlement and curiosity as the basis for further exploration. 
However, Leatham et al.’s (2015) discussion focused on the researchers’ perspective 
of what likely would have generated intellectual need, rather than a systematic exam-
ination of individual students’ interpretations, appraisals, and experiences. In other 
cases (e.g., Caglayan 2015), researchers interpreted students’ enactment of a solution 
strategy as indicating a prior experience of intellectual need. These types of methods 
involve drawing conclusions about a student’s psychological state (i.e., an experience 
of need or cognitive perturbation) based on indirect evidence (i.e., changes in math-
ematical activity or behavior). Although Harel’s necessity principle (2008a) offers a 
plausible explanation of the students’ psychological states during these episodes, the 
identification of students’ experiences of intellectual need have typically been left 
to the researcher’s interpretation of indirect and, sometimes, collective, rather than 
individual, evidence.

1  The theoretical premises that contextualize the concept of intellectual need within Harel’s (2008a) DNR 
instructional framework emphasize the social mediation of individual conceptual development.
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Theoretical Framework

Intellectual need is grounded in Piaget’s (1985) notion of equilibration and is situated 
within Harel’s framework, DNR-based instruction in mathematics (Harel, 2008a). 
Harel’s framework “stipulates conditions for achieving critical goals such as pro-
voking students’ intellectual need to learn mathematics, helping them acquire math-
ematical ideas and practices, and assuring that they internalize, organize, and retain 
the mathematics they learn” (Harel et al., 2017, p. 267). The DNR framework con-
sists of three categories of constructs: premises, concepts, and claims. DNR premises 
are explicit assumptions upon which the DNR concepts and claims are based. DNR 
concepts consist of constructs—consequent to the DNR premises—concerning the 
cognitive phenomena of teaching and learning mathematics. DNR claims are instruc-
tional principles that derive from DNR premises and concepts. Although the concept 
of intellectual need is situated within the instructional principles domain of the DNR 
framework, understanding this construct requires a review of the DNR premises that 
informed Harel’s conceptualization of it.

Of the eight premises of the DNR framework, the Knowing, Knowing-Knowledge 
Linkage, and Epistemophilia premises are particularly relevant to intellectual need. 
The Knowing Premise asserts, “Knowing is a developmental process that proceeds 
through a continual tension between assimilation and accommodation, directed 
toward a (temporary) equilibrium” (Harel, 2008b, p. 894). The Knowing-Knowledge 
Linkage Premise states, “Any piece of knowledge humans know is an outcome of 
their resolution of a problematic situation” (Harel, 2008b, p. 894). The Epistemo-
philia Premise asserts,

Humans—all humans—possess the capacity to develop a desire to be puzzled 
and to learn to carry out mental acts to solve the puzzles they create. Individual 
differences in this capacity, though present, do not reflect innate capacities that 
cannot be modified through adequate experience (Harel, 2008b, p. 894).

Together, the DNR premises are assertions that derive from a variety of theoretical 
orientations including Aristotelian epistemology (e.g., Patterson 2002), situated cog-
nition (Wenger, 1998), Vygotskian social constructivism (Vygotsky, 1978), Piaget’s 
genetic epistemology (Piaget, 1971), and radical constructivism (von Glasersfeld, 
1995).

Harel (2013b) described intellectual need as the perceived need to resolve “a 
perturbational state resulting from an individual’s encounter with a situation that is 
incompatible with, or presents a problem that is unsolvable by, his or her current 
knowledge” (p. 122). This perturbation is rooted in the individual’s experience within 
the discipline—in this case, mathematics—and is based on the learner’s epistemolog-
ical justification for the mathematical concept. Here, an epistemological justification 
is “the learner’s discernment of how and why a particular piece of knowledge came 
to be” (Harel, 2013a, p. 8).

Intellectual need is distinct from what Harel (2008a; 2010b) described as psycho-
logical need and, later (e.g., Harel 2013a; 2013b) affective need, as well as related 
affective factors. Affective need is the motivation a student experiences to initially 
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engage in the process of solving a problem (Harel, 2013b) and could involve a stu-
dent’s personal interest in a given topic, their perceived obligation to participate in 
school and respond in particular ways to teachers, to increase social or economic 
status, or to advance societal goals (Harel, 2013b).

Along with affective need, Morton (2010) noted that the emotions that students 
experience as they engage in problem-solving activity influence their cognitive 
engagement in the task. Tallman & Uscanga (2020) similarly argued that the con-
scious experience of an emotion affords or constrains subsequent cognitive activity. 
Pekrun (2000; 2006) proposed that individuals’ experiences of emotions in achieve-
ment settings are influenced by their perception of their control over the activity 
and their perception of the importance of the tasks and potential outcomes. Several 
researchers (e.g., Pekrun & Linnenbrink-Garcia, 2012; Pekrun & Stephens 2012) 
have highlighted the significant epistemological role of one category of emotions—
epistemic emotions, which are “emotions that arise when the object of their focus is 
on knowledge and knowing” (Muis et al., 2015, p. 173). Epistemic emotions include 
surprise, curiosity, and confusion (e.g., Fayn et al., 2019; Vogl et al., 2019). Ner-
antzaki (2021) noted that epistemic emotions are usually experienced as a result of 
“knowledge states involving discrepancy, incongruity, or conflict between cogni-
tive schemas or incoming information” (p. 2). Thus, these emotions are likely to be 
closely related to students’ experiences of disequilibrium and, consequently, intel-
lectual need.). While surprise and curiosity tend to support students’ participation 
and learning (e.g., Arguel et al., 2019), confusion can either support or hinder student 
engagement (e.g., D’Mello et al., 2014; Lodge et al., 2018).

Crucially, the primary affordance of affective need and epistemic emotions is 
that they respectively stimulate and sustain students’ mathematical activity, whereas 
intellectual need has the potential to enhance the nature and quality of that activity, 
including the meanings students are positioned to construct as a result of acting to 
satisfy their intellectual need. To a greater degree than affective need, intellectual 
need has epistemological significance; engendering it places targeted mathematical 
meanings within a student’s zone of potential construction.

Research Questions

The goal of our study is to statistically explore various factors that might be related 
to students’ experience of intellectual need (as operationalized by students’ self-
reported curiosity and wonderment). We also seek to identify relationships between 
students’ self-reported intellectual need and learning from associated instructional 
video sets. Thus, our research questions are split into two groups that respectively 
reflect these two objectives:

Factors that relate to experiences of intellectual need:

1.	 What is the extent of the variation of students’ intellectual need between sets of 
instructional videos? Are some categories of video sets associated with higher 
rates of students’ intellectual need?
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2.	 Are different instructors (and, implicitly, the ways they incorporate the tasks into 
their instruction) associated with different rates of their students’ intellectual 
need?

3.	 Is there a relationship between affective need and intellectual need?
4.	 Does a student’s background knowledge on a particular topic predict whether 

they experience intellectual need?
5.	 Does trying a task designed to provoke intellectual need and/or watching a video 

of students discussing the intellectual need-provoking task predict whether they 
experience intellectual need?

Relationship between intellectual need and learning:

1.	 Is there a relationship between students’ intellectual need and their learning from 
a set of instructional videos?

2.	 Is there a relationship between students’ affective need and their learning from a 
set of instructional videos?

3.	 Is there a relationship between experiencing an intellectual need-provoking task, 
viewing a video of students discussing the intellectual need-provoking task, and 
learning from the instructional videos?

Methodology

Addressing our research questions required developing methods to accomplish three 
key objectives: (1) provoking students’ intellectual need on an individual, rather than 
group, level; (2) identifying individual students’ experiences of intellectual and affec-
tive need; and (3) measuring students’ learning in connection with the intellectual 
need-provoking (IN-P) tasks. We leveraged the use of an online learning to imple-
ment these methods, since it would be difficult to accomplish (1) and (2) in the con-
text of classroom instruction and provided a straightforward way to implement (3).

Provoking Intellectual Need: Task Construction

To discern students’ experiences of intellectual need, we needed to engage partici-
pants in tasks with the potential to provoke that need. For each of the 30 mathemati-
cal topics we investigated (a full list is included in the Appendix)—in our case, in 
first-semester college calculus—we conducted a conceptual analysis (Thompson, 
2008) of the targeted concepts and skills, the curriculum in which the concepts were 
embedded, and the research literature about the likely background knowledge of the 
students who would be enrolled in the class. The first, third, and fourth authors were 
then part of a project (Weinberg et al., 2022) to collaboratively design IN-P tasks for 
which the targeted mathematical concept or skill was required. We intended these 
tasks to provide students with an opportunity to experience a perturbational state 
and endeavored to situate the problem within a context that might engage students’ 
interests.
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As an example, the IN-P task for the concept of instantaneous rate of change pre-
sented an image of a batter swinging at a baseball (as shown in Fig. 1) and prompted 
students to measure the speed of the ball at the instant the photograph was taken. The 
speed of a baseball is measured often during professional games, and we expected 
many students in our study to be familiar with this scenario. Although the students 
would intuitively know that the baseball was moving when the photo was taken, they 
likely would not immediately associate an interval of time (determined by the cam-
era’s shutter speed) with the picture. We anticipated that students who do not intui-
tively interpret photographs as depicting intervals of elapsed time would struggle to 
provide a reasonable value for the speed of the baseball, especially considering that 
their recent instructional experiences had focused on average rates of change, the 
quantification of which requires a multiplicative comparison of discernible changes 
in the measures of two covarying quantities. We surmised that this apparent incon-
gruity between speed at an instant of time and speed over an interval of time might 
perturb students and evoke an intellectual need to construct another method for com-
puting speed.

Provoking Individual Intellectual Need: Student Problem-Solving Videos

As described above, previous studies of students’ intellectual need have involved 
group-level observations. Furthermore, students’ engagement with IN-P tasks in 
prior research have typically taken place in settings where they could discuss the 
tasks with classmates. Although we intended our IN-P tasks to help students enter a 

Fig. 1  IN-P Task for Approximating Instantaneous Rate of Change
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perturbational state for the targeted concepts, we hypothesized that working on a task 
individually might not lead a student to experience disequilibrium. In particular, it 
might be possible for students to not recognize the limitations of their initial way of 
thinking. Researchers have demonstrated that facilitating students’ awareness of the 
complexity of the situation can improve their constructive reasoning (e.g., Sinha et 
al., 2021). Thus, to engender and identify intellectual need on the individual level, we 
built on ideas about vicarious participation in mathematical exploration (e.g., Lobato 
et al., 2019) and designed a student problem-solving video to accompany each IN-P 
task. In each video, a pair of actors posed as calculus students attempting to solve 
the IN-P task. These videos were loosely scripted so that the actors demonstrated a 
variety of plausible ways of thinking that reflected common challenges encountered 
by students learning the concept. Each student problem-solving video concluded 
without the IN-P task being resolved. These videos were designed to take the place 
of group discussion and exploration and for students to be persuaded by—or iden-
tify with—the interpretations, conceptions, and ways of thinking demonstrated by 
the actors, and then to be challenged by the confusions, counterexamples, or refuta-
tions tentatively expressed by the actors. We expected the resulting disequilibrium 
to engender students’ intellectual need by focusing their attention on the conceptual 
obstacles to learning the targeted concept or skill and, thus, provide a foundation for 
the learner’s epistemological justification for the mathematical concept.

We illustrate these design principles by describing the student problem-solving 
video for instantaneous rate of change (using the baseball task described above). 
This is a concept for which students face significant challenges (e.g., Carlson et al., 
2002; Confrey & Smith, 1994; Orton, 1983; Thompson, 1994; Zandieh, 2000). For 
example, Carlson et al., (2002) and Thompson & Carlson (2017) documented the 
importance of constructing an image of variation where the amount of change of 
one variable is coordinated with changes in another variable to conceive of average 
rate; then an instantaneous rate at a moment may be viewed as an average rate over 
an interval so small that changes in the values of these variables are essentially pro-
portional. In the student problem-solving video, the actors expressed that although 
the ball was in motion while the photo was taken, the photo does not depict the ball 
moving because “there is no time happening,” and they would need a change in 
time to quantify the ball’s speed. After a brief discussion, the actors identified the 
blur of the baseball in the photo as illustrating a change in time, but pointed out that 
this temporal duration didn’t correspond to a single moment, or instant, in time. The 
actors were ultimately unable to compute a value for the requested instantaneous rate, 
and the video concluded with the narrator summarizing the actors’ observations and 
confusions.

Identifying Intellectual and Affective Need

Intellectual need is an individual, conscious experience with the potential to influence 
students’ mathematical thinking. The educational value of a student experiencing 
intellectual need results from the strategic decisions they are positioned to engage in 
to resolve an impasse they construct. Thus, our goal was to identify students’ expe-
riences of intellectual need at the individual level and to ground this identification 
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in students’ perceptions of their experiences. There has been little discussion in the 
research literature of what might constitute evidence for students’ experiences of 
intellectual need, and prior research methods have either relied on indirect indica-
tors of intellectual need (e.g., Caglayan 2015) or ascribed intellectual need to groups 
rather than individuals (e.g., Harel 2010; Koichu, 2012).

To operationalize an empirical identification of students’ experiences of intellec-
tual need, we leveraged Pekrun et al.’s (2016) descriptions of epistemically-related 
emotions to identify emotions that would reflect internal cognitive states of disequi-
librium. Of the seven emotions Pekrun et al. distinguished (surprise, curiosity, enjoy-
ment, confusion, anxiety, frustration, and boredom) curiosity appeared to be most 
closely aligned with intellectual need. Curiosity is “the complex feeling and cogni-
tion accompanying the desire to learn what is unknown (Kang et al., 2009, p. 963); it 
is experienced when a student recognizes a gap in their knowledge (Metcalfe et al., 
2020) and can be thought of as an “appetite” for new or missing information (Shin & 
Kim, 2019).2 Thus, we operationalized intellectual need in terms of “wonderment” 
and “curiosity.” That is, we asked students the following question after they had 
worked on the IN-P task and/or watched the student problem-solving video:

When you were working on this task, were there any parts where you genuinely 
were curious or were left wondering about something? If so, please state them in the 
box below; if not, please leave the box empty.

Student interest—grounded in affective need—can prompt their engagement with 
the problem (Hidi & Renninger, 2006). Thus, we felt that it was important to distin-
guish epistemic emotions from the student’s interest in the underlying context—that 
is, an aspect of their affective need for engaging in the task. Since the focus of our 
research is on intellectual need, our measure of affective need was mainly being used 
to empirically test that our measure of intellectual need described something differ-
ent than affective need. A common strategy to construct a measure of interest is to 
explicitly ask students about their interest (e.g., Fedesco et al., 2019; Thompson et 
al., 2015; Turner & Silva, 2006). Thus, immediately before the curious/wondering 
question, we asked:

The task you just worked on dealt with the context of [context—e.g., “the 
speed of a baseball”]. In your honest opinion, how interesting/enjoyable was 
this context?

Throughout the results, when we refer to a student experiencing an intellectual need, 
we mean that they responded “yes” to the curious/wondering question; when we 
refer to a student experiencing an affective need, we mean that they responded either 
“somewhat interesting” or “very interesting” to the interesting/enjoyable question.

2  The epistemic emotion of confusion also has potential connections to intellectual need. However, some 
researchers (e.g., D’Mello & Graesser (2012)) have pointed out that students often experience confusion 
negatively, leading them to reduce their intellectual engagement in the problem-solving activity, rather 
than reacting to disequilibrium in the way envisioned in the DNR framework.
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Measuring Learning

To identify the relationship between intellectual need and learning, we sought to 
measure student learning as a direct result of the instruction. Thus, we needed to mea-
sure each student’s background knowledge prior to and immediately after instruction. 
To do this frequently—and to do so for a large enough sample of students to support 
our statistical analysis—we conducted our study in the context of an online learning 
environment.

For each topic (listed in the Appendix), we created 1–4 questions that were 
designed to assess students’ understanding. The questions were administered to the 
students in a multiple-choice format prior to attempting the IN-P task or experiencing 
any instruction. Then, after showing the instructional videos, we presented students 
with a set of questions that corresponded to the pre-video questions but substituted 
different numbers, functions, or contexts. Post-video questions that involved compu-
tations were presented in a free-response format that was automatically evaluated by 
a computer algebra system. The students were given an unlimited number of attempts 
to solve the post-instruction questions, and the system that hosted the questions indi-
cated whether each of their responses were correct. We evaluated the correctness of 
an answer to a multiple-choice question based on whether the initial response was 
correct, and on the first two attempts for free-response questions.

Materials, Participants & Methods

Materials

The first, third, and fifth authors identified 30 topics (listed in the Appendix) typically 
taught in first-semester calculus. To conduct the study in an online learning environ-
ment, we created a set of 1–3 instructional videos for each target topic; each set of 
videos (a full list of topics is included in the Appendix) included a solution to one 
of the IN-P tasks and additional explanation of the underlying concept. These vid-
eos, which are available online at https://calcvids.org, were designed using Mayer’s 
(2014a) recommendations for best practices in multimedia design and grounded in 
a conceptual analysis that focused on supporting students’ quantitative and covaria-
tional reasoning (e.g., Thompson 1994; Carlson et al., 2002). The sequence of videos 
began with the development of the concept of constant rate of change as a propor-
tional relationship between varying amounts of change in the measures of two con-
tinuously covarying quantities, and used this idea consistently to develop the ideas 
of average and instantaneous rates of change, accumulation, and the Fundamental 
Theorem of Calculus. The topics mirrored those commonly included in introductory 
Calculus textbooks, with the exception of limits, which were integrated into several 
videos rather than being presented as a stand-alone topic. In this way, we designed 
the materials to introduce and support quantitative reasoning as a way of thinking3 

3  Regarding the relationship between quantitative reasoning and mathematical ways of thinking, Tallman 
& Frank (2020) explained: “The inclination to conceptualize situations in terms of quantities and quantita-
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that would engender particular ways of understanding specific calculus concepts 
(i.e., leveraging the duality and repeated reasoning principles in Harel’s (2010) DNR 
framework).

For each topic, we created a collection of problems to be solved prior to and after 
watching the instructional videos, an IN-P task, and a student problem-solving video. 
The materials for each topic—a video set—were hosted on Ximera (ximera.osu.edu) 
(a system that hosted the sequence of pages that displayed the questions and videos 
and evaluated the students’ responses).

The experimental design is shown in Fig. 24. For each video set, each student was 
randomly assigned to be presented with the IN-P task or not and to see the student 
problem-solving video or not. In cases where students saw neither the task nor the 
video, they were not asked about affective need, and the intellectual need questions 
were phrased to ask about the pre-video questions the students had worked on.

Participants

The participants in the study were 2,733 students who were enrolled in first-semes-
ter calculus classes at one of 18 universities during the Fall 2019 and Spring 2020 
semesters. The universities included both public and private institutions, ranging in 
size from roughly 3,000 to over 35,000 students, from all regions of the United States 
and one institution in Indonesia. The institutions included small, private liberal arts 
colleges, regional colleges and universities, and large, research-focused universities. 
Individual class sizes ranged from 20 to over 200 students.

There were 28 participating instructors over the two semesters. Prior to using the 
instructional materials, each instructor participated in a professional development 
session in which they learned about the design of the videos, the idea of intellectual 
need, and the design and purpose of the student problem-solving videos.

At one institution (a large, public university in the Mid-South United States) cal-
culus classes were organized into “sections” of approximately 20–30 students each, 
with a different instructor teaching each section; there were a total of 10 instructors 
teaching these coordinated sections over the two semesters (some instructors taught 

tive relationships is one that can be productively applied to make sense of several mathematical ideas. An 
individual who maintains an orientation across a variety of mathematical domains to identify measurable 
attributes of objects and to define relationships between them possesses a cognitive characteristic of the 
mental act of interpreting and analyzing that can be called reasoning quantitatively” (p. 73).
4  The full design involved a third experimental condition to investigate a different set of research ques-
tions. This full design, which is shown in the Appendix, more clearly illustrates the percentage of students 
who were not asked the AN questions.

Fig. 2  Experimental Design
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two sections in a semester, and most instructors taught sections in both the fall and 
spring semesters). One member of the research team served as the coordinator of 
these sections by assigning a textbook, providing a schedule of topics, and assigning 
common homework and exams. The coordinator required the instructors to assign 
a common subset of the video sets to their students, but beyond this there were no 
additional requirements for instructors to incorporate the videos into their classes.

The 18 other instructors were voluntarily participating in the project research; 
within this group, two instructors were from the same institution and the 16 oth-
ers were all from different institutions. These instructors followed the instructional 
requirements of their own institution. Each instructor selected a subset of the video 
sets to assign to their students, but the research team did not otherwise specify how 
the instructors should incorporate the videos into their classes.

At the beginning of the semester, the students completed a survey in which they 
were given the opportunity to allow the research team to include their responses in 
the data corpus. Students were able to access all the video sets and we hypothesized 
that some ambitious students might access video sets independently. If an instructor 
had relatively few students submit work for the video sets, or relatively few students 
from one class complete an individual video set, then this could introduce unintended 
bias. To eliminate these instances (i.e., one student watching a video set) from the 
data, we removed data from instructors who had only a small number of participat-
ing students across the semester (specifically, when an instructor had fewer than 100 
total submitted video sets) which resulted in dropping 7 instructors with a total of 
128 video set instances. We also deleted cases where fewer than 25% of the students 
completed a particular data set from a particular instructor. This dropped a total of 
988 video set instances. An additional 4293 video set instances were dropped due to 
missing instructor data.

Categorizing Video Sets

Given the consistency in the ways of thinking and understanding the video sets 
were designed to elicit, the tasks and methods of presentation among the videos had 
numerous similarities with each other—for example, the video set about average rate 
of change had similar tasks and underlying conceptions as the video about constant 
rate of change. To account for this similarity in our statistical exploration, we identi-
fied each video set as falling into one of the following six categories:

	● Quantitative/proportional reasoning (4 video sets).
	● Graphical/(co)variational reasoning (4 video sets).
	● Computation (15 video sets).
	● Interpreting mathematical expressions (1 video set).
	● Definitions (2 video sets).
	● Applications of derivatives (4 video sets).

As we generated models in our statistical analysis of the data, the relatively small 
number of video sets in some of these categories resulted in not all the distinctions 
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between categories being significant. Thus, in our final model, we only distinguish 
between the 15 video sets that focused on computation and the 15 others.

Statistical Design

The class of statistical models we used for our analysis are called Generalized Hier-
archical Linear Models (Raudenbush & Bryk, 2002), sometimes referred to as mixed 
models. Mixed models are an extension of ordinary least-squares (OLS) regression or 
generalized linear regression models that can be used with data that do not satisfy the 
assumptions of OLS regression. Mixed models are appropriate for our data because 
we have nested and cross-nested cases: video sets are nested in students, students are 
nested in instructors, and both students and instructors are cross-nested with video 
sets. The nested and cross-nested data structure violates the OLS regression assump-
tion that each case is independent of the other cases. For example, two video sets 
done by the same student are expected to be more similar than video sets done by two 
different students.

We use models with two outcomes to answer our research questions: one with 
intellectual need as the outcome, and one with score on the post-video questions as an 
outcome. Both outcomes are measured with a binary variable. In the case of intellec-
tual need, a 1 signifies that a student responded “yes” to the question, “Were there any 
parts where you genuinely were curious or were left wondering about something?”, 
and 0 signifies that they responded “no” to the same question. For the achievement 
models, the outcome is a binary variable with 1 representing any growth in the per-
centage correct from the pre-video to the post-video questions, and a 0 representing 
no growth (no change or negative change). Because most of the video sets had a very 
small number of pre- and post-video questions, we felt that a binary outcome would 
be more appropriate than using the percentage, gain score, normalized change scores 
(Marx & Cummings, 2007), or other outcome measure. Since the outcomes of both 
models are binary, the lowest level regression model (video set) was a logistic regres-
sion model, with all higher levels considered to be linear regression models with the 
basic variance assumptions as described by Raudenbush & Bryk (2002).

For each outcome we ran two models: unconditional and conditional. Uncondi-
tional models have no predictor variables but show the extent of variation at each 
level of the model. We use this model to describe the extent the outcome varies 
between students, between teachers, and between topics. The conditional model 
includes predictor variables and is used to test the relationship between the predictor 
variables and the outcome variable.

Although mixed models are neither OLS regression models nor GLM models, the 
coefficients of the models can be interpreted in the same way. Variables in the model 
are tested to see if there is a statistically significant association with the outcome vari-
able. Because the lowest-level model is a logistic regression model the coefficients 
are given in logit units, or log-odds. The size of the effects in log-odds are not easily 
interpreted due to the non-linear nature of the logistic function. However, positive 
coefficients indicate an effect that increases the probability of a student indicating 
an intellectual need (IN model) or showing evidence of learning (Learning model). 
Also, the larger the coefficient the larger effect the variable has on the outcome.
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Table1 displays a list of the variables we use in the models. We measured several 
other variables and tried many two-way interaction terms in the models, but removed 
those that were not statistically significant. The models were drawn from a data set 
with approximately 26,000 instances of students completing video sets, approxi-
mately 1,550 students, 25 instructors, 14 institutions, on 30 video sets. We were not 
able to use all data for the conditional models due to multiple attempts by the same 
student and missing data. For the IN model there were 26,056 completed video sets, 
1,559 students, 30 video sets (topics) and 25 instructors. The Learning model used 
15,588 completed video sets, 1,524 students, 29 video sets (topics) and 25 instruc-
tors. The smaller data set for the Learning model is largely explained by a greater rate 
of missing data with the pre/post scores and many students that had perfect scores on 
pre- and post-tests, which were not usable for our conditional model. Also, one video 
set was not used in the analysis because of poorly framed problems on the post-test 
that did not accurately capture students’ understanding. It was possible for a student 
to begin working on a video set multiple times. In such cases (approximately 4.3% of 
instances), we believed that the student’s last interaction with the set was most likely 
to include the student’s completion of all components in the experimental design, 
and, thus, used their last interaction in the models.

To capture effects of survey fatigue, we included as a variable the ordinal num-
ber associated with each video set, as listed in the Appendix. Although instructors 
were not required to use all the video sets or to use them in the presented order, our 
ordering matches what is commonly found in introductory Calculus textbooks, and 
this ordering generally matched the point in the semester in which the video set was 
assigned.

Due to the full experimental design (shown in the Appendix), roughly 1/3 of the 
students were neither shown the IN-P task nor the student problem-solving video. 
Therefore, models with the affective need measure were done with only about 2/3 
of the data, but results were similar across models with the full data and with the 
reduced dataset with affective need included.

Results

We begin by describing the results for the unconditional models for intellectual need 
and achievement growth. Then, we repeat these analyses using conditional models. 
Throughout the results, we use the term “experience intellectual need” to refer to the 
students responding “yes” to the question, “Were there any parts where you genuinely 
were curious or were left wondering about something?” We use the label “typical 
student,” to represent students who are represented by the intercept of the statistical 
model. Typical students become the reference group for making comparisons (e.g., 
comparing “typical students” and “students that reported intellectual need”). Which 
students are “typical” depends on the formulation of the model and can be deter-
mined by thinking about students that have a value of zero on all variables. Continu-
ous variables have been mean-centered, so a value of zero means an average value 
on that variable. “Typical instructors” or “typical lessons” represent instructors or 
lessons with the mean in the outcome of the model. For example, typical instructors 
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in the models with intellectual need as the outcome, are instructors (or a hypothetical 
instructor) whose students report experiencing intellectual need at the average rate 
of all instructors.

Intellectual Need Models

Unconditional Model

To answer the first set of research questions, we ran unconditional mixed models 
to understand how much variation there is at the student, instructor, and video set 
levels. The results of the unconditional model are displayed in Table2, which lists 
the intercept, variance, and standard deviation (square root of the variance) of each 
level. To make the results easier to interpret, we have included conversions of log-
odds to percentages in brackets. The intercept represents typical students working 
on a typical video set from a typical instructor. Thus, students would experience 

Variable Name 
and Symbol

Description

Outcome 
Variables
Intellectual Need 
(IN) (also a pre-
dictor for L)

A binary variable with 1 indicating students 
reporting an intellectual need and 0 otherwise. 
Mean = 0.12; SD = 0.32

Learning (L) A binary variable with 1 indicating students 
improved their score from pre- to post-video 
and 0 otherwise. Mean = 0.44; SD = 0.49

Predictor 
Variables
Affective Need 
(AN)

A binary variable with 1 indicating that stu-
dents find the context “somewhat” or “very” 
interesting, 0 otherwise. Mean = 0.44; SD = 0.49

Intellectual 
Need- Provoking 
Task (IT)

A binary variable with 1 indicating students 
were presented an IN-P task and 0 otherwise.

Computational 
Topic (CT)

A binary variable with 1 indicating that the 
video set topic was largely computational, 0 
otherwise. 15 of the video sets fell into this 
category

Pre-Video Score 
(Pre)

A variable that represents the score (from 0 to 
100) on the pre-video test. Mean = 36, SD = 32. 
For use in the models this variable has been 
standardized to a mean of 0 and an SD of 1

Lesson Order 
(LO)

The number of each lesson during the semester 
(5 indicates the 5th lesson). This variable 
was centered at lesson 15, the middle of the 
semester.

Problem-Solving 
Video (PSV)

A binary variable with 1 indicating that stu-
dents were shown the student problem-solving 
video, 0 otherwise

Coordinated 
Institution (SI)

A binary variable with 1 indicating an instruc-
tor was at the institution with multiple, coordi-
nated calculus sections, 0 otherwise.

Table 1  Definitions and De-
scriptions of Variables
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an intellectual need in response to the task and/or student problem-solving video in 
4.8% of the typical video sets. The two percentages next to the variance and standard 
deviation show percentage estimates of one standard deviation up and down from 
the intercept for each level. Each interval assumes that the values in the other levels 
are for a typical case (student, instructor, or lesson), which is the intercept value. For 
example, on average, students reported that they experienced an intellectual need 
in 4.8% of the video sets, but different students had different rates at which they 
reported experiencing an intellectual need. The interval [1.0%, 20.4%] means that 
students 1 SD less than the mean only reported experiencing an intellectual need on 
1.0% of the video sets and students 1 SD above the mean reported it at 20.4%. Stu-
dents, of course, could report much higher (lower) if they are in a high (low) lesson 
or a high (low) class, or further than 1 SD away from the mean. The intervals are not 
symmetric around the mean because the conversion from log-odds to percentages is 
a non-linear transformation. A move towards 50% will be a larger jump than a move 
away from 50%.

Variation of intellectual need by instructor. Although there was less variabil-
ity than between students within a classroom, there was still a reasonable amount 
of variation across instructors in the data set. The typical student (one that experi-
enced intellectual need at the average rate) in the typical lesson (one where students 
experienced intellectual need at an average rate of all lessons) reported experiencing 
an intellectual need in 2.4% of video sets in some teachers’ classes (down 1 SD) 
but 9.4% in other teachers’ classes (up 1 SD)—roughly four times the rate in some 
classes compared to others. The interval for two standard deviations from the mean 
was 0.1–17.5%. This means that at the low end, some teachers rarely had average 
students (in a typical lesson) who reported experiencing an intellectual need, while at 
the other end, some teachers had average students reporting an intellectual need on 
over a sixth of the video sets.

Because most institutions in our data set were represented by a single instructor, 
it is difficult to tease apart variation due to instructor and variation due to institu-
tion, curriculum, or pedagogy. To calculate a more accurate estimate of the variation 
due to instructors, we ran an unconditional model using only the data of the institu-
tion that had multiple coordinated sections of calculus—ostensibly, controlling for 
institutional-related student factors and curriculum. Although not quite as large as in 
the original estimate, there was still a reasonable amount of variation. The standard 
deviation at the instructor level was 0.63, which is relatively close to the 0.72 stan-
dard deviation with all instructors included. This result is evidence that the instructor 
variation in our model was due mainly to differences in instructors, rather than other 
institutional factors.

IN Outcome
Intercept -2.99 [4.8%]
Level Variance (SD) [-1 SD, 

+ 1 SD]
Student 2.64 (1.63) [1.0%, 

20.4%]
Instructor 0.52 (0.72) [2.4%, 9.4%]
Video Set 0.23 (0.48) [3.0%, 7.5%]

Table 2  Intercept and Random 
Effects of the Intellectual Need 
Unconditional Model
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Variation of intellectual need by video set. The variation across video sets was 
less than between teachers or between students in a class, but for a typical student in 
a typical teacher’s class, most lessons (about two-thirds) elicited intellectual need of 
3.0–7.5% with extreme values (up and down two standard deviations) of 1.9% and 
11.6%. These are low values in absolute terms but show some lessons were over 6 
times more likely to generate an intellectual need than others.

Conditional Model

The results of the Intellectual Need conditional mixed model are displayed in Table3. 
Each variable that was not significant was dropped from the model unless it was a 
main effect in an interaction term. The coefficients of the model are given in log-
odds. To aid in interpretation a percentage is listed next to each coefficient; these are 
marginal percentages given a unit increase in the variable from the model intercept, 
with all other variables equal to zero. The percentages are not additive like in a linear 
regression model, and the effect of a variable could be larger or smaller than the listed 
percentage depending on the values of other variables.

Intercept. The intercept in the conditional model (log-odds of -3.064 and percent-
age of 10.7%) was higher than in the unconditional model (-2.12, 4.5%). Although 
the 4.5% represents an overall rate at which all students across all institutions, instruc-
tors, and video sets reported an intellectual need, the intercept in the conditional 
model indicates the average rate at which students not at the coordinated institution 

Fixed Effects IN Outcome Marginal 
Effect in 
Percentagea

Intercept -2.12*** 10.7%
Intellectual Need-Provoking Task 
(IT)

-0.294*** -2.5%

Affective Need (AN)そ 0.382** 4.3%
Pre-Video Score (Pre) 0.768** 9.9%
Lesson Order (LO) -0.044*** -0.40%
Problem Solving Video (PSV) -0.553*** -4.2%
Coordinated Institution (SI) -1.35*** -7.7%
Intellectual Need-Provoking 
Task*Problem Solving Video 
(IT*PSV)

0.532*** 6.3%

Note: Asterisks indicate statistical significance on the following 
scale: * indicates p < .05; ** indicates p < .01; *** indicates p < .001
a Because of the study design, only about 2/3 of students were 
introduced to a context during the online lessons and thus only 
2/3 were asked the question that measures Affective Need. The 
coefficient for Affective Need was generated using a subset of 
the data with the same variables entered into the model, when 
feasible. Because there are no students in the non-treatment, non-
video option in the restricted data, we cannot introduce the IT*V 
interaction term into the IN-Outcome model. Thus, the Affective 
Need coefficients should be interpreted with caution, although the 
direction of the effect is the same as in the raw data and the size of 
the effects are similar to the raw data

Table 3  Conditional Model 
with Intellectual Need as the 
Outcome
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reported having an intellectual need on a video set during the middle of the semester, 
with a mean score on the pre-video questions, and not receiving the IN-P task or the 
student problem-solving video.

Coordinated Institution. The students in the coordinated institution reported 
having an intellectual need at a rate 7.7% points less than the 10.7% percent intercept 
(holding other variables at zero). The average rate, then, for the students in the coor-
dinated institution was about 4%. This difference may be explained by the fact that 
all calculus instructors at the coordinated institution were encouraged to use the video 
sets as part of their calculus course, whereas the other instructors were self-selecting 
to use the video sets. Alternatively, it is possible that students in particular fields of 
study were less likely to report experiencing intellectual need, and that these majors 
constituted a larger proportion at the coordinated institution than at other institutions.

Relationship between Task, Problem-Solving Video, and Intellectual Need.
The IN-P task (IT), -0.294, and watching the Problem-Solving Video (PSV). 

-0.553 had negative marginal effects of -2.5% and − 4.2%, respectively. That is, stu-
dents who saw the IN-P task were 2.5% points less likely to report experiencing an 
intellectual need, dropping from 10.7 to 8.1%. Students who watched the problem-
solving video were also less likely to report experiencing an intellectual need. Keep-
ing other variables at zero, the marginal effect of watching the problem-solving video 
dropped the average rate from 10.7 to 6.5%. However, the effects were not additive 
because there was a significant positive interaction term between the two variables. 
This means that students who both saw the IN-P task and watched the student prob-
lem-solving video were more likely to report experiencing an intellectual need than 
would be expected by the combined effects of each. One meaning of the interaction 
term is that the effect of doing the IN-P task depends on if they watched the video 
and vice-versa.

To make sense of these interacting effects, we held one variable constant and 
considered the effect of the other. Watching the problem-solving video had a large 
negative effect if not done with the IN-P task but made little difference if watched in 
conjunction with the IN-P task (the coefficients for PSV and the IT*PSV are about 
the same size and in different directions—0.553 versus 0.532). Alternatively, students 
who watched the problem-solving video actually increased their rate from 6.5% to 
about 8.1% if they watched the IN-P video as well. Table4 shows these effects in 
marginal percentages.

Relationship between Background Knowledge and Intellectual Need. Students 
with above average pre-video scores (1 SD above average), were almost twice as 
likely to report experiencing intellectual need than students represented by the inter-
cept value, with average rates of 20.6–10.7% respectively (keeping other variables at 
zero). Students scoring one standard deviation below average on the pre-video math 
problems dropped the average rate of reporting an intellectual need to 5.3%. This 

No Problem-Solving 
Video (PSV)

Problem 
Solving 
Video 
(PSV)

No IN-P Task (IT) 10.7% 6.5%
IN-P task (IT) 8.2% 8.1%

Table 4  Marginal Effects Il-
lustrating the Problem-Solving 
Video and IN-P Task Interaction 
Term
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finding suggests a strong connection between closely related content knowledge and 
the probability of experiencing intellectual need.

Relationship between Affective and Intellectual Need. There was a significant 
positive association between affective need (AN) and intellectual need. Typical stu-
dents (represented by the intercept) were about 40% more likely to report experienc-
ing intellectual need if they reported experiencing affective need, with an average 
rate of 15.0% vs. 10.7%.

Effects of Lesson Order on Intellectual Need. The rate at which students 
reported having an intellectual need decreased, on average, across the semester. This 
is illustrated with the negative coefficient of the Lesson Order variable: -0.044. This 
variable was centered at 15, about the middle of the semester, so the intercept in the 
model represented the average rate at which students reported having an intellec-
tual need at the middle of the semester. Lessons near the beginning of the semester 
(around lesson 3) had a rate of 16.9%, while lessons near the end of the semester (3 
from the end) had an average rate of 6.9%.

Learning Models

Unconditional Model

The results of the unconditional model with learning as the outcome are displayed in 
Table5. The unconditional model showed that typical students with a typical instruc-
tor would improve from their pre-video to post-video score on 42.4% of typical video 
sets. The story for the Learning model is somewhat different than that of the IN 
model. There was considerable variation across video sets and students in the Learn-
ing model, but the variation at the instructor level was not significantly different from 
zero, which implies that the effectiveness of the video sets in helping students learn 
is independent of instructor and institution. This implies that each video set tended to 
be consistently difficult (or not) for most students, but that there was variation among 
the sets. This is different than all video sets being of similar difficulty, but some stu-
dents consistently finding them easy and others consistently finding them challeng-
ing—although variation between students was still significant and meaningful, just 
not as large as the variation between video sets.

Conditional Model

The results of the conditional model that tests association with students’ learning 
are displayed in Table6. As before, the outcome variable in this model was a binary 

Learning Outcome
Intercept -0.306 [42.4%]
Level Variance (SD) [-1 SD, + 1 

SD]
Student 0.144 (0.379) [33.5%, 51.8%]
Instructor 0.004 (0.065) [40.8%, 44.0%]
Video Set 0.443 (0.666) [27.4%, 58.9%]

Table 5  Intercept and Random 
Effects of the Unconditional 
Learning Model
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variable with a 1 indicating any growth in percentage from pre-video to post-video 
questions. The level-one model, like in the previous models, was a logistic regression 
model, so coefficients are in log-odds units. To aid in interpretation we have included 
the marginal effect as a percentage based on movement from the intercept, keeping 
all other variables at zero (continuous variables were mean centered).

Intercept. The intercept is interpreted as the average rate at which certain students 
learned from the video sets as measured by a growth in percentage from pre-video to 
post-video. Students represented by the intercept are students with an average pre-
video score on a non-computational topic that reported no intellectual or affective 
need and did not see the intellectual task. The average rate for learning from a video 
set was 29.9%.

Relationship between Intellectual Need, Video Set Topic, and Learning. There 
was a significant positive association between experiencing intellectual need and 
learning. Typical students (represented by the intercept) showed evidence of learn-
ing on approximately 6.9% more lessons if they experienced an intellectual need, an 
increase of about 23% (from the average/intercept of 29.9% up to 36.8% of lessons) 
over students that did not experience an intellectual need. However, there was a sig-
nificant interaction term with the IN variable and topics coded as computational, so 
reporting an intellectual need had a different association with learning for computa-
tional topics than for non-computational topics. In non-computational topics, report-
ing an intellectual need increased the probability of showing evidence of learning by 
6.9% (for a typical student), but for computational topics the intellectual need raised 
the probability by 11.6% (for a typical student).

Relationship between Affective Need and Learning. There was a significant 
positive association between affective need and learning, but it was only about a third 
of the size of self-reported intellectual need on learning—2.5% versus 6.9%.

Relationship between the Intellectual Need Provoking Task and Learning. 
There was a significant positive effect for students who were shown the IN-P task. 

Fixed Effects Estimate Marginal 
Effect in 
Percentagea

Intercept -0.853*** 29.9%
Intellectual Need (IN) 0.311** 6.9%
Intellectual Need-Provoking Task 
(IT)

0.118** 2.5%

Affective Need (AN)† 0.119** 2.5%
Computational Topic (CT) 0.554 12.7%
Pre-Video Score (Pre) -1.18*** -18.3%
IN*CT -0.356* -6.9%
Note: Asterisks indicate statistical significance on the following 
scale: * indicates p < .05; ** indicates p < .01; *** indicates p < .001
a These percentages represent the effect of increasing the variable 
from 0 to 1, for dichotomous variables, and from the mean to one 
standard deviation above the mean, for continuous variables. All 
continuous variables were mean centered. Due to the non-linear 
model at level one, these percentages cannot be added together to 
find compounding effects

Table 6  Conditional Model with 
Learning as the Outcome
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Typical students seeing the IN-P task showed evidence of learning on 2.5% more les-
sons than students that did not see the IN-P task.

Discussion

Summary and Discussion of Results

In this first subsection, we provide and discuss answers to our research questions. We 
first discuss the factors that influence provocation of intellectual need (research ques-
tions 1–5). Then, we discuss the relationship between intellectual need and learning 
(research questions 6–8).

Factors that Relate to Intellectual Need

Extent of Variation of Students’ Intellectual Need. Overall, there was a relatively 
low rate of students reporting an experience of intellectual need: in a typical instruc-
tor’s class and for a typical video set, only 4.8% of students reported experiencing 
curiosity or wonderment. We consider this to be a surprisingly low rate given the 
directed efforts to provoke intellectual need. One potential explanation for this low 
rate could be students’ affective response in which they experience disequilibrium 
in terms of confusion rather than curiosity (e.g., Vogl et al., 2019). In particular, if 
students’ view of their role in a mathematics class does not include engaging in situ-
ations that are complex, novel, and difficult to understand, they might tend to experi-
ence confusion or frustration (Fayn et al., 2019), which can reduce their engagement 
in problem-solving (e.g., Arguel et al., 2019). Another explanation is that, as Wein-
berg & Jones (2022) suggested, provoking intellectual need requires considerable 
planning and intervention by an instructor. Students’ experience of intellectual need 
in this study was potentially limited by aspects of the experimental design, namely 
that the intellectual need-provoking tasks and videos were presented online without 
the presence of an instructor to mediate the use of the tasks/videos or to facilitate the 
creation and resolution of the students’ disequilibrium.

Students were much more likely to experience intellectual need in response to 
some video sets than others. This means that some mathematical topics, tasks, or 
problem-solving videos were more effective at helping students experience a state of 
disequilibrium. There wasn’t a relationship between the topic being computational 
and students experiencing intellectual need, so the relationship between video set 
content and intellectual need warrants further investigation, perhaps with consider-
ation of the specific category of intellectual need being supported (e.g., certainty, 
causality, computation, communication, or structure).

Association Between Instructors and Intellectual Need. Instructors—and, 
implicitly, the ways they incorporate the video sets into their instruction—are asso-
ciated with different rates of students experiencing intellectual need. The between-
instructor variation at the institution with multiple coordinated sections of calculus 
is evidence that the instructor variation in our model is due mainly to differences in 
instructors rather than other institutional factors. Not only was the between-instructor 
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variation dramatic, but this variation at the institution with multiple coordinated sec-
tions of calculus was nearly as large as the variation between institutions. All instruc-
tors at the coordinated institution were required to use the video sets as part of their 
instruction, whereas the instructors at other institutions were self-selecting to use the 
video sets. Thus, the small difference in rate between the coordinated institution and 
other institutions could possibly be explained by the way the video sets were used 
by the self-selecting instructors at other institutions or the demographics of students 
at the other institutions. With this self-selection in mind, the rate at the coordinated 
institution may be more typical of the rate at which students report an intellectual 
need in the treatment in our study. Our results add one more outcome that varies 
significantly across instructors such as effectiveness (e.g., Rivkin et al., 2005) and 
instructional quality (e.g., Bergsten 2007).

The variation between instructors is particularly surprising because the students’ 
interaction with the video sets occurred outside of regular class meetings, and we 
would expect their reaction to the tasks and problem-solving videos to be indepen-
dent of the pedagogy that was employed during class meetings. This result suggests 
that there is a complex relationship between pedagogy, curriculum, and students’ 
interaction with the out-of-class learning materials, and these relationships warrant 
further empirical investigation. It is plausible, for example, that instructors’ efforts 
to influence students’ beliefs about the nature of mathematics, their image of the 
aptitudes that define mathematical proficiency, and their identity in relation to math-
ematics might affect students’ expectations of the role the video sets might play in 
learning. Students whose instructors are purposeful about supporting their beliefs, 
mindset, and identity in these ways might be more inclined to appraise intellectual 
need-provoking tasks as a necessary catalyst to their learning, rather than a super-
fluous prelude to the instructor’s presentation of rules and demonstration of proce-
dures, which are often prioritized by students in pursuit of performance goals. The 
complex relationship between students’ experience of intellectual need and charac-
teristics of the classroom community of practice–including the social and sociomath-
ematical norms continually negotiated by students and instructor–is reflected in the 
many DNR premises and concepts intricately related to the necessity principle. Our 
findings demonstrate a need for researchers to explore the relationship between, for 
example, students’ mathematical ways of thinking, their subjective interpretation of 
instructional experiences, and their orientations to interacting with intellectual-need 
provoking stimuli.

Association Between Affective and Intellectual Need. There was a significant 
relationship between students’ experiencing intellectual and affective need. One 
explanation for this result is that there is a significant cognitive or emotional overlap 
between the factors that engender the two types of need. Thus, it may be important 
to consider both students’ affective responses to the problems (see, e.g., Arguel et al., 
2019) and the problem context when constructing an IN-P task (e.g., Mayer 2014b). 
However, in the conditional learning model (discussed later) the measure of intellec-
tual need and affective need were both significant, providing strong evidence that our 
measures for these two variables were not measuring the same construct.

Association Between Background Knowledge and Intellectual Need. Students 
who had more extensive background knowledge for a task—as measured by their 
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performance on the pre-video questions—were more likely to experience an intel-
lectual need than other students. One explanation for this result is that students need a 
certain level of knowledge about the background mathematical concepts to engage in 
the IN-P task in the intended way. Alternatively, students might need the background 
knowledge to identify their experience as one of intellectual need. Similar to previ-
ous theoretical recommendations (e.g., Harel 2008a; Weinberg & Jones, 2020; 2022), 
and consistent with Harel’s (2008a) subjectivity and interdependency premises, both 
explanations suggest that IN-P tasks need to be carefully tailored to particular student 
knowledge and characteristics in order to provoke intellectual need.

Effects of IN-P Task and Video on Intellectual Need. Beyond the students’ own 
background knowledge and other characteristics, it appears that the ways we struc-
ture the video-watching process can impact the students’ experience of intellectual 
need. Students who (only) tried the IN-P task or (only) watched the student problem-
solving video were less likely to experience intellectual need. However, for students 
who watched the problem-solving video, those who also tried IN-P task were more 
likely to experience intellectual need. This finding could be understood in terms of 
students’ epistemic emotions, in which solely watching the student problem-solving 
video left students feeling more confused or frustrated than curious, but the combina-
tion of the task and the video facilitated students’ awareness of the complexity of the 
situation (e.g., Lodge et al., 2018; Sinha et al., 2021; Vogl et al., 2020). This result 
suggests that merely provoking intellectual need is not a straightforward process, and 
that it would be useful for educators to have a framework to support the design and 
implementation of IN-P tasks (Weinberg & Jones, 2020; 2022).

We observed a significant effect of lesson order on whether students indicated 
that they experienced an intellectual need. One possible explanation for this result 
is that students experienced increasing fatigue, stress, or indifference to the calculus 
concepts over the course of the semester, and these factors influenced their potential 
for experiencing intellectual need. Alternatively, students could have reported intel-
lectual need at a lower rate due to survey fatigue. Students who indicated that they 
experienced an intellectual need were then asked to provide an explanation of what 
they were curious about. This response required more time and effort on the part of 
the students. We expect students picked up on this and became more reluctant to 
report having an intellectual need as the semester progressed.

Factors that Relate to Learning

Relationship with Intellectual Need. There is a significant, positive association 
between a student experiencing intellectual need and demonstrating learning from 
the instructional videos (as measured by their change from the pre- to the post-video 
questions). This result aligns well with the theory of intellectual need, which posits 
this relationship between need and learning (e.g., Harel 2010). It is noteworthy that 
our measures of learning and of intellectual and affective need are fairly simple, 
but even with these simple measures we found significant effects. Our measures of 
learning—a small collection of computational problems and, for conceptual ques-
tions, a multiple-choice format—were basic and only administered immediately after 
the conclusion of the instructional videos. Similarly, both intellectual and affective 
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need were captured through a single yes/no question that was administered at a single 
point in time. Errors in measuring these constructs would make it more difficult to 
detect effects in statistical models. Further research will lead to better measures and 
more accurate understanding of the relationships between these (or more refined) 
constructs.

Relationship with Affective Need. As with intellectual need, there was also a 
significant, positive association between affective need and learning. This result 
suggests that students who experience an interest in the problem context are more 
likely to learn from the associated videos. This result falls in line with other empirical 
research that finds student interest is significantly associated with learning in K-12 
schooling (Schiefele et al., 1992). However, empirical connections to student inter-
est and learning in university mathematics have been harder to find (Hailikari et al., 
2008). In addition, this result provides evidence for Harel’s (2008a) proposal that 
intellectual and affective needs are related, but separate, components in the complex 
process of learning.

Relationship Between IN-P Tasks and Problem-Solving Videos. In contrast to 
the experience of intellectual need, students who tried the IN-P task were more likely 
to learn from the instructional videos. However, watching the student problem-solv-
ing video was not associated with learning, and the interaction between the IN-P task 
and the problem-solving video was also not associated with learning. One potential 
explanation for these findings is simply that more experience with the content is bet-
ter, but this conclusion is not supported by the effect on the problem-solving video, 
which would provide more experience with the content but is not significantly associ-
ated with learning.

Methodological Contributions

In our study, we developed methods to provoke and empirically identify students’ 
experiences of intellectual need. This methodology included developing intellectual 
need-provoking tasks, videos related to each task to foster students’ experience of 
intellectual need, and survey questions—administered at the point where we thought 
students might be experiencing disequilibrium—to enable students to report feelings 
of affective and intellectual need. In the survey, we operationalized intellectual need 
using the language of curiosity and wonderment and attempted to distinguish intel-
lectual need from affective need.

Although the present study was conducted in an online learning environment, we 
hypothesize that the methodology could be adapted to in-person contexts. The pre- 
and post-instruction questions could be administered in-person. Rather than watching 
the student problem-solving video, students could engage in discussions about the 
IN-P task and the instructor could highlight the problematic conceptions that would 
have been identified in the video. From a research perspective, the only shortcoming 
would be the difficulty in collecting data from more than a handful of students.

There are several potential limitations of our methodology. First, our identification 
of students’ experiences of intellectual need were based on their perceptions of our 
use of “curiosity” and “wonderment,“ but it is possible that students interpreted these 
terms in ways that were inconsistent with our intentions. Consequently, we believe 
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that in-depth qualitative work to develop valid ways of identifying and measuring 
intellectual need is needed. These measures could help identify intellectual need 
after-the-fact, like in the survey in this study, as well as to identify intellectual need in 
“real time.” The timing of the survey means that students could have been describing 
their reactions to the pre-video questions rather than the IN-P task or video. Students 
might have been reluctant to respond affirmatively to the intellectual need question 
because doing so would require them to write additional information; in particular, 
the decreasing rate of intellectual need across the semester (illustrated by the lesson 
order variable) suggests that survey fatigue likely influenced the students’ responses. 
Finally, and perhaps most importantly, we do not know the extent to which intellec-
tual need can be provoked by a single task, even when the task is accompanied with a 
student problem-solving video. Weinberg & Jones (2022) suggest, instructor interac-
tion and intervention might be essential to moving students into the state of disequi-
librium for which the intended concept or topic would provide a resolution, and our 
methods might have been insufficient to actually provoke genuine intellectual need.

Generalizing to Other Learning Environments

The present study was conducted in an online learning environment, which raises 
questions about the extent to which our results could generalize to other learning 
environments (Bosch & Gascón, 2014). That is, if we imagine the same instruction 
occurring during class sessions, how might students’ experiences of intellectual need 
and their learning from watching the videos change if the IN-P tasks were enacted 
during class sessions and what role might be played by the student problem-solving 
videos?

We have no reason to suspect that any aspect of the kinds of IN-P experiences we 
intended to engender were specific to or in any way enhanced by the virtual format. 
In some ways the constraints that arose from the online environment probably mean 
that our experimental context might have hindered students’ experiences of intellec-
tual need—or at least their willingness to report such experiences. Furthermore, we 
hypothesize that the online implementation of the tasks is probably not as strong as 
what instructors could have done in person. That is, the online environment is likely 
an inferior mode for engaging students in thinking about the ideas in the IN-P task, 
and students might be more likely to experience curiosity or wonderment under the 
direct guidance of their instructor, provided the instructor was skilled in facilitating 
their students’ participation in collective mathematical activity or at incorporating the 
student problem-solving video into the class exploration.

Conclusion

This study makes a significant methodological contribution to the design and evalu-
ation of intellectual need-provoking tasks and materials. Our methods provide a step 
toward empirically identifying students’ experiences of intellectual need and connect-
ing those experiences to their learning. The combination of IN-P tasks and student 
problem-solving videos demonstrate some relationships with students’ experiences 
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of intellectual need and learning and provide a framework for further investigating 
the design of instructional tasks. The incorporation of the intellectual and affective 
need survey at the point in time when students are likely to experience disequilibrium 
similarly provides a starting point for continuing to investigate and understand intel-
lectual need and the circumstances that provoke it.

Our results also shed light on some of the factors that might impact students’ expe-
riences of intellectual need and how these factors influence learning. The relationship 
between intellectual need, learning, the structure of the students’ interaction with 
the video sets, the students’ background knowledge, and the instructor’s pedagogy 
is complex. Taken together, these results highlight the importance of continuing to 
study intellectual need and to create a framework for helping instructors design and 
implement intellectual need-provoking tasks.

Appendix

Calcvids Topics.
1.	 Constant Rates of Change.
2.	 Graphing Constant Rate of Change.
3.	 Varying Rates of Change.
4.	 Graphing Varying Rates of Change.
5.	 Average Rates of Change.
6.	 Approximating Instantaneous Rates of Change.
7.	 Continuity.
8.	 Differentiability and Local Linearity.
9.	 Limit Definition of Derivative.
10.	 Using the Limit Definition of Derivative.
11.	 Interpreting Derivatives.
12.	 Slopes of Secant and Tangent Lines.
13.	 Graphing Derivatives.
14.	 Basic Derivative Rules.
15.	 The Product Rule.
16.	 The Quotient Rule.
17.	 The Chain Rule.
18.	 l’Hopital’s Rule.
19.	 Mean Value Theorem.
20.	 Related Rates.
21.	 Implicit Differentiation.
22.	 Introduction to Optimization.
23.	 Optimization: Algebraic Modeling.
24.	 Introduction to Riemann Sums.
25.	 Riemann Sum Notation.
26.	 Definite Integrals.
27.	 Antiderivatives.
28.	 The Fundamental Theorem of Calculus, Part 1.
29.	 The Fundamental Theorem of Calculus, Part 2.
30.	 U-Substitution.
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Experimental Design.
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