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Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a
stream of � items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size
polylogarithmic in �. Given the sketch and a query item �, one should be able to approximate its rank in the stream, i.e., the
number of stream elements smaller than or equal to �.

Most works to date focused on additive �� error approximation, culminating in the KLL sketch that achieved optimal
asymptotic behavior. This paper investigates multiplicative (1 ± �)-error approximations to the rank. Practical motivation for
multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate
near extreme values.

The most space-eicient algorithms due to prior work store either � (log(�2�)/�2) or � (log3 (��)/�) universe items. We
present a randomized sketch storing � (log1.5 (��)/�) items that can (1 ± �)-approximate the rank of each universe item
with high constant probability; this space bound is within an � (

︁
log(��)) factor of optimal. Our algorithm does not require

prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing
environments.

CCS Concepts: • Theory of computation → Sketching and sampling; Streaming models; Data structures and algorithms

for data management.
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1 INTRODUCTION

Understanding the distribution of data is a fundamental task in data monitoring and analysis. In many settings, we
want to understand the cumulative distribution function (CDF) of a large number of observations, for instance, to
identify anomalies. In other words, we would like to track the median, percentiles, and more generally quantiles
of a massive input in a small space, without storing all the observations. Although memory constraints make an
exact computation of such order statistics impossible [20], most applications can be satisied with approximating
the quantiles, which also yields a compact function with a bounded distance from the true CDF.

∗A preliminary version of this work has appeared in Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS ’21). Compared to that version, in this paper we additionally present a complete proof of the full mergeability
property of our algorithm (without any restrictions on the accuracy parameters) as well as an alternative analysis which gives better space
bounds for extremely small failure probabilities.
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The problem of streaming quantile approximation captures this task in the context of massive or distributed
datasets. Let � = (�1, . . . , ��) be a stream of items, all drawn from a data universe U equipped with a total
order. For any � ∈ U, let R(�;�) =

��{� ∈ {1, . . . , �} | �� ≤ �
}�� be the rank of � in the stream. When � is clear

from context, we write R(�). The objective is to process the stream in one pass while storing a small number
of universe items and � (log�)-bit variables (e.g., counters), and then use those to approximate R(�) for any
� ∈ U. A guarantee for an approximation R̂(�) is additive if |R̂(�) − R(�) | ≤ ��, and multiplicative or relative if
|R̂(�) − R(�) | ≤ � R(�).
If the algorithm is randomized, the desired error guarantee holds for each item � with high probability that

can be speciied upfront and that afects the space bound. (On the other hand, the space bounds for all known
algorithms hold in the worst case over the inputs and random bits.) We remark that estimating ranks immediately
yields approximate quantiles, and vice versa, with a similar error guarantee. More precisely, for � ∈ [0, 1],
we deine a �-quantile as the ⌊��⌋-th smallest item in � . On quantile query � , the algorithm should return a
� ′-quantile such that |� ′ − � | ≤ � for the additive error and |� ′ − � | ≤ � · � for the multiplicative error.

We stress that we do not assume any particular data distribution or that the stream is randomly-ordered, that
is, we focus on worst-case inputs. However, we assume the input is independent of the random bits used by the
algorithm, i.e., we do not aim to achieve adversarial robustness of randomized algorithms; cf. [4].
A long line of work has focused on achieving additive error guarantees [1ś3, 11ś13, 15, 17, 21, 22]. However,

additive error is not appropriate for many applications. Indeed, often the primary purpose of computing quantiles
is to understand the tails of the data distribution. When R(�) ≪ �, a multiplicative guarantee is much more
accurate and thus harder to obtain. As pointed out by Cormode et al. [5], a solution to this problem would also
yield high accuracy when � − R(�) ≪ �, by running the same algorithm with the reversed total ordering (simply
negating the comparator).

A quintessential application that demands relative error is monitoring network latencies. In practice, one often
tracks response time percentiles 50, 90, 99, 99.9, etc. This is because latencies are heavily long-tailed. For example,
Masson et al. [19] report that for web response times, the 98.5th percentile can be as small as 2 seconds while the
99.5th percentile can be as large as 20 seconds. These unusually long response times afect network dynamics [5]
and are problematic for users. Furthermore, as argued by Tene in his talk about measuring latency [26], one needs
to look at extreme percentiles such as 99.995 to determine the latency such that only about 1% of users experience
a larger latency during a web session with several page loads. Hence, highly accurate rank approximations are
required for items � whose rank is very large (� − R(�) ≪ �); this is precisely the requirement captured by the
multiplicative error guarantee.

Achieving multiplicative guarantees is known to be strictly harder than additive ones. There are randomized
comparison-based additive error algorithms that store just Θ(�−1) items for constant failure probability [15],
which is optimal. In particular, to achieve additive error, the number of items stored may be independent of the
stream length �. In contrast, any algorithm achieving multiplicative error must store Ω(�−1 · log(��)) items (see
[5, Theorem 2] and Appendix A).1

The study of the relative-error (rank) guarantee was initiated by Gupta and Zane [14], and the best known
algorithms achieving this guarantee are as follows. Zhang et al. [28] give a randomized algorithm storing
� (�−2 · log(�2�)) universe items. This is essentially a �−1 factor away from the aforementioned lower bound.
There is also a deterministic algorithm of Cormode et al. [6] that stores� (�−1 · log(��) · log |U|) items. However,
this algorithm requires prior knowledge of the data universe U (since it builds a binary tree over U), and is
inapplicable whenU is huge or even unbounded (e.g., if the data can take arbitrary real values). Finally, Zhang

1Intuitively, the reason additive-error sketches can achieve space independent of the stream length is because they can take a subsample of
the stream of size about Θ(�−2 ) and then sketch the subsample. For any ixed item, the additive error to its rank introduced by sampling is at
most �� with high probability. When multiplicative error is required, one cannot subsample the input: for low-ranked items, the multiplicative
error introduced by sampling will, with high probability, not be bounded by any constant.
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and Wang [27] designed a deterministic algorithm requiring � (�−1 · log3 (��)) space. Recent work of Cormode
and Veselý [8] proves an Ω(�−1 · log2 (��)) lower bound for deterministic comparison-based algorithms, which is
within a log(��) factor of Zhang and Wang’s upper bound.

Despite both the practical and theoretical importance of multiplicative error (which is arguably an even more
natural goal than additive error), there has been no progress on upper bounds, i.e., no new algorithms, since 2007.

Our streaming result. In this work, we give a randomized algorithm that maintains the optimal linear dependence
on 1/� achieved by Zhang and Wang, with a signiicantly improved dependence on the stream length. Namely,
we design a one-pass streaming algorithm that given � > 0, computes a sketch consisting of �

(
�−1 · log1.5 (��)

)
universe items, from which one can derive rank or quantile estimates satisfying the relative error guarantee
with constant probability (see Theorem 1 for a more precise statement). Ours is the irst algorithm to be strictly
more space eicient than any deterministic comparison-based algorithm (owing to the Ω(�−1 log2 (��)) lower
bound in [8]) and is within an � (

︁
log(��)) factor of the known lower bound for randomized algorithms

achieving multiplicative error. Furthermore, it only accesses items through comparisons, i.e., is comparison-based,
rendering it suitable, e.g., for loating-point numbers or strings ordered lexicographically. Finally, our algorithm
processes the input stream eiciently, namely, its amortized update time is a logarithm of the space bound, i.e.,
�

(
log(�−1) + log log(�)

)
; see Section 4 for details.

Mergeability. The ability to merge sketches of diferent streams to get an accurate sketch for the concatenation
of the streams is highly signiicant both in theory [1] and in practice [23]. Such mergeable summaries enable
trivial, automatic parallelization and distribution of processing massive data sets, by splitting the data up into
pieces, summarizing each piece separately, and then merging the results in an arbitrary way. We say that a sketch
is fully mergeable if building it using any sequence of merge operations (executed on singleton items) leads to the
same guarantees as if the entire data set had been processed as a single stream (i.e., always merging the sketch
with one item). We show that our sketch satisies this strong deinition of mergeability.

The following theorem is the main result of this paper. We stress that our algorithm, which we call ReqSketch,
does not require any advance knowledge about �, the total size of the input, which indeed may not be available
in many applications.2

Theorem 1. For any parameters 0 < � ≤ 0.5 and 0 < � ≤ 1, there is a randomized, comparison-based, one-pass

streaming algorithm that, when processing a data stream consisting of � items from a totally-ordered universeU,

produces a summary � satisfying the following property. Given � , for any � ∈ U one can derive an estimate R̂(�) of
R(�) such that

Pr

[
|R̂(�) − R(�) | > � R(�)

]
< � ,

where the probability is over the internal randomness of the streaming algorithm. The size of � in memory words3 is

�

(
�−1 · log1.5 (��) ·

︂
log

1

�

)
.

Moreover, the summary produced is fully mergeable.

2A proof-of-concept Python implementation of our algorithm is available at GitHub: https://github.com/edoliberty/streaming-quantiles/
blob/master/relativeErrorSketch.py. A production-quality implementation of ReqSketch is available in the Apache DataSketches library at
https://datasketches.apache.org/.
3A memory word can store any universe item or an integer with� (log(� + |U | ) ) bits. We express all the space bounds in memory words.
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All-quantiles approximation. As a straightforward corollary of Theorem 1, we obtain a space-eicient algorithm
whose estimates are simultaneously accurate for all � ∈ U with high probability. The proof is a standard use of
the union bound combined with an epsilon-net argument; we include the proof in Appendix B.

Corollary 1 (All-uantiles Approximation). The error bound from Theorem 1 holds for all � ∈ U simulta-

neously with probability 1 − � when the size of the sketch in memory words is

�
©­«
�−1 · log1.5 (��) ·

︄
log

(
log(��)

��

)ª®¬
.

Technical overview. A starting point of the design of our algorithm is the KLL sketch [15] that achieves optimal
accuracy-space trade-of (of randomized algorithms) for the additive error guarantee. The basic building block of
the algorithm is a bufer, called a compactor, that receives an input stream of � items and outputs a stream of at
most �/2 items, meant to łapproximatež the input stream. The bufer simply stores items and once it is full, we
sort the bufer, output all items stored at either odd or even indexes (with odd vs. even selected via an unbiased
coin lip), and clear the contents of the buferÐthis is called the compaction operation. Note that a randomly
chosen half of items in the bufer is simply discarded, whereas the other half of items in the bufer is łoutputž by
the compaction operation.

The overall KLL sketch is built as a sequence of at most log2 (�) such compactors, such that the output stream of
a compactor is treated as the input stream of the next compactor. We thus think of the compactors as arranged into
levels, with the irst one at level 0. Similar compactors were already used, e.g., in [1, 16ś18], and additional ideas
are needed to get the optimal space bound for additive error, of � (1/�) items stored across all compactors [15].
The compactor building block is not directly applicable to our setting for the following reasons. A irst

observation is that to achieve the relative error guarantee, we need to always store the 1/� smallest items. This is
because the relative error guarantee demands that estimated ranks for the 1/� lowest-ranked items in the data
stream are exact. If even a single one of these items is deleted from the summary, then these estimates will not
be exact. Similarly, among the next 2/� smallest items, the summary must store essentially every other item to
achieve multiplicative error. Among the next 4/� smallest items in the order, the sketch must store roughly every
fourth item, and so on.
The following simple modiication of the compactor from the KLL sketch indeed achieves the above. Each

bufer of size � łprotectsž the �/2 smallest items stored inside, meaning that these items are not involved in any
compaction (i.e., the compaction operation only removes the �/2 largest items from the bufer). Unfortunately,
it turns out that this simple approach requires space Θ(�−2 · log(�2�)), which merely matches the space bound
achieved in [28], and in particular has a (quadratically) suboptimal dependence on 1/�.

The key technical contribution of our work is to enhance this simple approach with a more sophisticated rule
for selecting the number of protected items in each compaction. One solution that yields our upper bound is to
choose this number in each compaction at random from an appropriate exponential distribution. However, to get
a cleaner analysis and a better dependency on the failure probability � , we in fact derandomize this distribution.
While the resulting algorithm is relatively simple, analyzing the error behavior brings new challenges that

do not arise in the additive error setting. Roughly speaking, when analyzing the accuracy of the estimate for
R(�) for any ixed item �, all error can be łattributedž to compaction operations. In the additive error setting, one
may suppose that every compaction operation contributes to the error and still obtain a tight error analysis [15].
Unfortunately, this is not at all the case for relative error: as already indicated, to obtain our accuracy bounds it is
essential to show that the estimate for any low-ranked item � is afected by very few compaction operations.
Thus, the irst step of our analysis is to carefully bound the number of compactions on each level that afect

the error for �, using a charging argument that relies on the derandomized exponential distribution to choose
the number of protected items. To get a suitable bound on the variance of the error, we also need to show that
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the rank of � in the input stream to each compactor falls by about a factor of two at every level of the sketch.
While this is intuitively true (since each compaction operation outputs a randomly chosen half of łunprotectedž
items stored in the compactor), it only holds with high probability and hence requires a careful treatment in
the analysis. Finally, we observe that the error in the estimate for � is a zero-mean sub-Gaussian variable with
variance bounded as above, and thus applying a standard Chernof tail bound yields our inal accuracy guarantees
for the estimated rank of �.
There are substantial additional technical diiculties to analyze the algorithm under an arbitrary sequence

of merge operations, especially with no foreknowledge of the total size of the input. Most notably, when the
input size is not known in advance, the parameters of the sketch must change as more inputs are processed.
This makes obtaining a tight bound on the variance of the resulting estimates highly involved. In particular, as a
sketch processes more and more inputs, it protects more and more items, which means that items appearing early
in the stream may not be protected by the sketch, even though they would have been protected if they appeared
later in the stream. Addressing this issue is reasonably simple in the streaming setting, because every time the
sketch parameters need to change, one can aford to allocate an entirely new sketch with the updated parameters,
without discarding the previous sketch(es); see Section 5 for details. Unfortunately, this simple approach does not
work for a general sequence of merge operations, and we provide a much more intricate analysis to give a fully
mergeable summary.

A second challengewhen designing and analyzingmerge operations arises fromworkingwith our derandomized

exponential distribution, since this requires each compactor to maintain a łstatež variable determining the current
number of protected items, and these variables need to be łmergedž appropriately. It turns out that the correct
way to merge state variables is to take a bitwise OR of their binary representations. With this technique for
merging state variables in hand, we extend the charging argument bounding the number of compactions afecting
the error in any given estimate so as to handle an arbitrary sequence of merge operations.

Analysis with extremely small probability of failure. We close by giving an alternative analysis of our algorithm
that achieves a space bound with an exponentially better (double logarithmic) dependence on 1/� , compared
to Theorem 1. However, this improved dependence on 1/� comes at the expense of the exponent of log(��)
increasing from 1.5 to 2. Formally, we prove the following theorem in Section 7, where we also show that it
directly implies a deterministic space bound of � (�−1 · log3 (��)), matching the state-of-the-art result in [27]. For
simplicity, we only prove the theorem in the streaming setting, although we conjecture that an appropriately
modiied proof of Theorem 1 would yield the same result even when the sketch is built using merge operations.

Theorem 2. For any 0 < � ≤ 0.5 and 0 < � ≤ 1, there is a randomized, comparison-based, one-pass streaming

algorithm that computes a sketch consisting of �
(
�−1 · log2 (��) · log log(1/�)

)
universe items, and from which an

estimate R̂(�) of R(�) can be derived for every � ∈ U. For any ixed � ∈ U, with probability at least 1 − � , the

returned estimate satisies the multiplicative error guarantee |R̂(�) − R(�) | ≤ � R(�).
We remark that this alternative analysis builds on an idea from [15] to analyze the top few levels of compactors

deterministically rather than obtaining probabilistic guarantees on the errors introduced to estimates by these
levels.

Organization of the paper. Since the proof of full mergeability in Theorem 1 is quite involved, we proceed in
several steps of increasing complexity. We describe our sketch in the streaming setting in Section 2, where we
also give a detailed but informal outline of the analysis. We then formally analyze the sketch in the streaming
setting in Sections 3 and 4, also assuming that a polynomial upper bound on the stream length � is known in
advance. The space usage of the algorithm grows polynomially with the logarithm of this upper bound, so if this
upper bound is at most �� for some constant � ≥ 1, then the space usage remains as stated in Theorem 1, with
only the hidden constant factor changing. Then, in Section 5, we explain how to remove the assumption of a
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foreknowledge of � in the streaming setting, yielding an algorithm that works without any information about
the inal stream length.
Finally, we fully describe the merge procedure and analyze the accuracy of our sketch under an arbitrary

sequence of merge operations in Section 6 (for didactic purposes, we outline a simpliied merge operation in
Section 2.3). As mentioned above, Section 7 contains an alternative analysis that yields better space bounds for
extremely small failure probabilities � .

1.1 Detailed Comparison to Prior Work

Some prior works on streaming quantiles consider queries to be ranks � ∈ {1, . . . , �}, and the algorithm must
identify an item � ∈ U such that R(�) is close to � ; this is called the quantile query. In this work, we focus on the
dual problem of rank queries, where we consider queries to be universe items � ∈ U and the algorithm must
yield an accurate estimate for R(�). Unless speciied otherwise, algorithms described in this section directly solve
both formulations (this holds for our algorithm as well). Algorithms are randomized unless stated otherwise. For
simplicity, randomized algorithms are assumed to have constant failure probability � . All reported space costs
refer to the number of universe items stored. (Apart from storing items, the algorithms may store, for example,
bounds on ranks of stored items or some counters, but the number of such � (log�)-bit variables is proportional
to the number of items stored or even smaller.)

Additive Error. Manku, Rajagopalan, and Lindsay [17, 18] built on the work of Munro and Paterson [20] and gave
a deterministic solution that stores at most � (�−1 · log2 (��)) items, assuming prior knowledge of �. Greenwald
and Khanna [13] created an intricate deterministic streaming algorithm that stores� (�−1 · log(��)) items. This is
the best known deterministic algorithm for this problem, with a matching lower bound for comparison-based
streaming algorithms [8]. Agarwal et al. [1] provided a mergeable sketch of size � (�−1 · log1.5 (1/�)). This paper
contains many ideas and observations that were used in later work. Felber and Ostrovsky [11] managed to reduce
the space complexity to � (�−1 · log(1/�)) items by combining sampling with the Greenwald-Khanna sketches
in non-trivial ways. Finally, Karnin, Lang, and Liberty [15] resolved the problem by providing an � (1/�)-space
solution, which is optimal. For general (non-constant) failure probabilities � , the space upper bound becomes
� (�−1 · log log(1/�)), and they also prove a matching lower bound for comparison-based randomized algorithms,
assuming � ≤ 1/�! (i.e., � is exponentially small in �).

Multiplicative Error. A large number of works sought to provide more accurate quantile estimates for low
or high ranks. Only a handful ofer solutions to the relative error quantiles problem considered in this work
(sometimes also called the biased quantiles problem). Gupta and Zane [14] gave an algorithm for relative error
quantiles that stores � (�−3 · log2 (��)) items, and used this to approximately count the number of inversions in a
list; their algorithm requires prior knowledge of the stream length �. As previously mentioned, Zhang et al. [28]
presented an algorithm storing � (�−2 · log(�2�)) universe items. Cormode et al. [6] designed a deterministic
sketch storing � (�−1 · log(��) · log |U|) items, which requires prior knowledge of the data universe U. Their
algorithm is inspired by the work of Shrivastava et al. [25] in the additive error setting and it is also mergeable (see
[1, Section 3]). Zhang and Wang [27] gave a deterministic merge-and-prune algorithm storing � (�−1 · log3 (��))
items, which can handle arbitrary merges with an upper bound on �, and streaming updates for unknown �.
However, it does not tackle the most general case of merging without a prior bound on �. Cormode and Veselý
[8] recently showed a space lower bound of Ω(�−1 · log2 (��)) items for any deterministic comparison-based
algorithm.
Other related works that do not fully solve the relative error quantiles problem are as follows. Manku,

Rajagopalan, and Lindsay [18] designed an algorithm that, for a speciied number� ∈ [0, 1], stores� (�−1·log(1/�))
items and can return an item � with R(�)/� ∈ [(1 − �)�, (1 + �)�] (their algorithm requires prior knowledge
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of �). Cormode et al. [5] gave a deterministic algorithm that is meant to achieve error properties łin betweenž
additive and relative error guarantees. That is, their algorithm aims to provide multiplicative guarantees only
up to some minimum rank � ; for items of rank below � , their solution only provides additive guarantees. Their
algorithm does not solve the relative error quantiles problem: [28] observed that for adversarial item ordering,
the algorithm of [5] requires linear space to achieve relative error for all ranks.

Dunning and Ertl [9, 10] describe a heuristic algorithm called �-digest that is intended to achieve relative error,
but they provide no formal accuracy analysis (note that �-digest is deterministic but not comparison-based).
Indeed, Cormode et al. [7] show that the error of �-digest may be arbitrarily large on adversarially generated
inputs. This latter paper also compares �-digest and ReqSketch (i.e., the algorithm of Theorem 1) on randomly
generated inputs and proposes implementation improvements for ReqSketch that make it process an input stream
faster than �-digest.
Most recently, Masson, Rim, and Lee [19] considered a notion of relative value error for quantile sketches,

which is distinct from the notion of relative rank error considered in this work. They require that for a query
percentile � ∈ [0, 1], if � denotes the item in the data stream satisfying R(�) = ��, then the algorithm should
return an item �̂ ∈ U such that |� − �̂ | ≤ � · |� |. This deinition only makes sense for data universes with
a notion of magnitude and distance (e.g., numerical data), and the deinition is not invariant to natural data
transformations, such as incrementing every data item � by a large constant. It is also trivially achieved by
maintaining a (mergeable) histogram with buckets ((1+ �)� , (1+ �)�+1]. In contrast, the standard notion of relative
error considered in this work does not refer to the data items themselves, only to their ranks, and is arguably of
more general applicability.

2 DESCRIPTION OF THE ALGORITHM

2.1 The Relative-Compactor Object

The crux of our algorithm is a building block that we call the relative-compactor. Roughly speaking, this object
processes a stream of � items and outputs a stream of at most �/2 items (each łup-weightedž by a factor of 2),
meant to łapproximatež the input stream. It does so by maintaining a bufer of limited capacity.

Our complete sketch, described in Section 2.2 below, is composed of a sequence of relative-compactors, where
the input of the (ℎ + 1)-th relative-compactor is the output of the ℎ-th. With at most log2 (��) such relative-
compactors of size Ω(�−1) (where � is the length of the input stream), the output of the last relative-compactor is
of size � (1/�), and hence can be stored in memory.

Compaction Operations. The basic subroutine used by our relative-compactor is a compaction operation. The
input to a compaction operation is a list � of 2� items �1 ≤ �2 ≤ . . . ≤ �2� , and the output is a sequence � of�
items. This output is chosen to be one of the following two sequences, uniformly at random: Either � = {�2�−1}��=1
or � = {�2� }��=1. That is, the output sequence � equals either the even or odd indexed items in the sorted order of
� , with both outcomes equally probable.

Consider an item � ∈ U and recall that R(�;� ) = |{� ∈ � | � ≤ �}| is the number of items � ∈ � satisfying
� ≤ � (we remark that both � and {� ∈ � | � ≤ �} are multisets of universe items). The following is a trivial
observation regarding the error of the rank estimate of � with respect to the input � of a compaction operation
when using � . We view the output � of a compaction operation, with all items up-weighted by a factor of 2, as
an approximation to the input � ; for any �, its weighted rank in � should be close to its rank in � . Observation
2.1 below states that this approximation incurs zero error on items that have an even rank in � . Moreover, for
items � that have an odd rank in � , the error for � ∈ U introduced by the compaction operation is +1 or −1 with
equal probability. Note that the ranks are only w.r.t. to the input � of the operation, which will contain a number
of the largest items in a relative-compactor. However, the observation holds for any universe item that may not
be present in � .
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Full buffer

L largest items sortedB − L smallest items in the buffer

Output every other item

Delete top L items

Insert new item xt in the next open slot

xt

Fig. 1. Illustration of the execution of a relative-compactor when inserting a new item �� into a bufer that is full at time � .
See lines 5-14 of Algorithm 1.

Observation 2.1. A universe item � ∈ U is said to be even (odd) w.r.t. a compaction operation if R(�;� ) is even
(odd), where � is the input sequence to the operation. If � is even w.r.t. the compaction, then R(�;� ) − 2 R(�;� ) = 0,
where � is the output sequence of the operation. Otherwise, R(�;� ) − 2 R(�;� ) is a variable taking a value from
{−1, 1} uniformly at random.

The observation that items of even rank (and in particular items of rank zero) sufer no error from a compaction
operation plays an especially important role in the error analysis of our full sketch.

Full Description of the Relative-Compactor Object. The complete description of the relative-compactor object
is given in Algorithm 1. The high-level idea is as follows. The relative-compactor maintains a bufer of size
� = 2 · � · ⌈log2 (�/�)⌉ where � is an even integer parameter controlling the error and � is the upper bound on
the stream length. (For now, we assume that such an upper bound is available; we remove this assumption in
Section 5.) The incoming items are stored in the bufer until it is full. At this point, we perform a compaction
operation, as described above.

The input to the compaction operation is not all items in the bufer, but rather the largest � items in the bufer
for a parameter � ≤ �/2 such that � is even. These � largest items are then removed from the bufer, and the
output of the compaction operation is sent to the output stream of the bufer. This intuitively lets low-ranked
items stay in the bufer longer than high-ranked ones. Indeed, by design the lowest-ranked half of items in the
bufer are never removed. We show later that this facilitates the multiplicative error guarantee.

The crucial part in the design of Algorithm 1 is to select the parameter � correctly, as � controls the number of
items compacted each time the bufer is full. If we were to set � = �/2 for all compaction operations, then analyzing
the worst-case behavior reveals that we need � ≈ 1/�2, resulting in a sketch with a quadratic dependency on 1/�.
To achieve the linear dependency on 1/�, we choose the parameter � via a derandomized exponential distribution
subject to the constraint that � ≤ �/2.4

4A prior version of this manuscript used an actual exponential distribution; see https://arxiv.org/abs/2004.01668v1. The algorithm presented
here uses randomness only to select which items to place in the output stream, not how many items to compact. This leads to a cleaner
analysis and isolates the one component of the algorithm for which randomness is essential.
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Algorithm 1 Relative-Compactor

Input: Parameters � ∈ 2N+ and � ∈ N+, and a stream of items �1, �2, . . . of length at most �
1: Set � = 2 · � · ⌈log2 (�/�)⌉
2: Initialize an empty bufer B of size �, indexed from 1
3: Set � = 0 ⊲ State of the compaction schedule
4: for � = 1 . . . do
5: if B is full then ⊲ Compaction operation
6: Compute � (�) = the number of trailing ones in the binary representation of �
7: Set �� = (� (�) + 1) · � and �� = � − �� + 1
8: Pivot B s.t. the largest �� items occupy B[�� : �]
9: ⊲ B[�� : �] are the last �� slots of B
10: Sort B[�� : �] in non-descending order
11: Output either even or odd indexed items in the range B[�� : �] with equal probability
12: Mark slots B[�� : �] in the bufer as clear
13: Increase � by 1

14: Store �� to the next available slot in the bufer B.

B/2 slots (never compacted) ⌈log
2
(n/k)⌉ = 7 sections with k slots each

1234567

Fig. 2. Illustration of a relative-compactor and its sections, together with the indexes of the sections.

In more detail, one can think of Algorithm 1 as choosing � as follows. During each compaction operation, the
second half of the bufer (with �/2 largest items) is split into ⌈log2 (�/�)⌉ sections, each of size � and numbered
from the right so that the irst section contains the � largest items, the second one next � largest items, and so
on; see Figure 2. The idea is that the irst section is involved in every compaction (i.e., we always have � ≥ �),
the second section in every other compaction (i.e., � ≥ 2� every other time), the third section in every fourth
compaction, and so on. This can be described concisely as follows: Let� be the number of compactions performed
so far. During the next (i.e., the � + 1-st) compaction of the relative-compactor, we set �� = (� (�) + 1) · � , where
� (�) is the number of trailing ones in the binary representation of � (that is, if � viewed as a bitstring can be
written as (x, 0, 1� ), for some x, then � (�) = � ). We call the variable� the state of this łcompaction schedulež (i.e.,
a particular way of choosing �). See lines 6-7 of Algorithm 1, where we also deine �� = � − �� + 1 as the irst
index in the compacted part of the bufer.
Observe that �� ≤ �/2 always holds in Algorithm 1. Indeed, there are at most �/� compaction operations

(as each discards at least � items), so the binary representation of � never has more than ⌈log2 (�/�)⌉ bits, not
even after the last compaction. Thus, � (�), the number of trailing ones in the binary representation of � , is
always less than ⌈log2 (�/�)⌉ and hence, �� ≤ ⌈log2 (�/�)⌉ · � = �/2. It also follows that there is at most one
compaction operation that compacts all ⌈log2 (�/�)⌉ sections at once. Our deterministic compaction schedule has
the following crucial property:

Observation 2.2. Between any two compaction operations that involve exactly � sections (i.e., both have � = � ·�),
there is at least one compaction operation that involves more than � sections.

Proof. Let � < �′ denote the states of the compaction schedule in two steps � < � ′ with a compaction
operation involving exactly � sections. Then we can express the binary representations of � and �′ as (x, 0, 1�−1)
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Algorithm 2 ReqSketch (Relative-Error Quantiles sketch)

Input: Parameters � ∈ 2N+ and � ∈ N+, and a stream of items �1, �2, . . . of length at most �
Output: A sketch answering rank queries
1: Let RelCompactors be a list of relative-compactors
2: Set � = 0, initialize relative-compactor at RelCompactors[0], with parameters � and �
3: for � = 1 . . . do
4: Insert(�� , 0)

5: function Insert(� ,ℎ)
6: if � < ℎ then

7: Set � = ℎ

8: Initialize relative-compactor at RelCompactors[ℎ], with parameters � and �

9: Insert item � into RelCompactors[ℎ]
10: for � in output stream of RelCompactors[ℎ] do
11: Insert(�, ℎ + 1)

12: function Estimate-Rank(�)
13: Set R̂(�) = 0
14: for ℎ = 0 to � do

15: for each item �′ ≤ � stored in RelCompactors[ℎ] do
16: Increment R̂(�) by 2ℎ

return R̂(�)

and (x′, 0, 1�−1), respectively, where 1�−1 denotes the all-1s vector of length � − 1, and x and x
′ are respectively

the binary representations of two numbers � and � with � < �. Consider the binary vector (x, 1� ). This is the
binary representation of a number �̂ ∈ (�,�′) with strictly more trailing ones than the binary representations of
� and�′. The claim follows as there must be a step �̂ ∈ (�, � ′) when the state equals �̂ and a compaction operation
is performed. □

2.2 The Full Sketch

Following prior work [1, 15, 17], the full sketch uses a sequence of relative-compactors. At the very start of the
stream, it consists of a single relative-compactor (at level 0) and opens a new one (at level 1) once items are fed to
the output stream of the irst relative-compactor (i.e., after the irst compaction operation, which occurs on the
irst stream update during which the bufer is full). In general, when the newest relative-compactor is at level ℎ,
the irst time the bufer at level ℎ performs a compaction operation (feeding items into its output stream for the
irst time), we open a new relative-compactor at level ℎ + 1 and feed it these items. Algorithm 2 describes the
logic of this sketch.

To answer rank queries, we use the items in the bufers of the relative-compactors as a weighted coreset. That
is, the union of these items is a weighted set C of items, where the weight of items in relative-compactor at
level ℎ is 2ℎ (recall that ℎ starts from 0), and the approximate rank of �, denoted R̂(�), is the sum of weights of
items in C smaller than or equal to �. Similarly, ReqSketch can answer quantile queries, i.e., for a given rank
� ∈ {1, . . . , �}, return an item � ∈ U with R(�) close to � ; the algorithm just returns an item � stored in one of
the relative-compactors with R̂(�) closest to the query rank � among all items in the sketch.
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Algorithm 3 Merge operation

Input: Sketches � ′ and � ′′ to be merged such that � ′ .� ≥ � ′′ .� and � ′ .� = � ′′ .�
Output: A sketch answering rank queries for the combined inputs of � ′ and � ′′

1: for ℎ = 0, . . . , � ′′ .� do ⊲ Merge � ′′ into � ′

2: � ′.RelCompactors[ℎ].� = � ′.RelCompactors[ℎ].� OR � ′′.RelCompactors[ℎ].�
3: Insert all items in � ′′.RelCompactors[ℎ] into � ′.RelCompactors[ℎ]

4: for ℎ = 0, . . . , � ′ .� do

5: if bufer � ′.RelCompactors[ℎ] exceeds its capacity then

6: Perform compaction operation as in lines 6-13 of Algorithm 1 and insert output items into
� ′.RelCompactors[ℎ + 1]

7: return � ′

The construction of layered exponentially-weighted compactors and the subsequent rank estimation is virtually
identical to that explained in prior works [1, 15, 17]. Our essential departure from prior work is in the deinition
of the compaction operation, not in how compactors are plumbed together to form a complete sketch.

2.3 Merge Operation

We describe a merge operation that takes as input two sketches � ′ and � ′′ which have processed two separate
streams � ′ and � ′′, and that outputs a sketch � summarizing the concatenated stream � = � ′ ◦ � ′′ (the order of
� ′ and � ′′ does not matter here). For simplicity, we assume w.l.o.g. that sketch � ′ has at least as many levels as
sketch � ′′. Then, the resulting sketch � inherits parameters � and � from sketch � ′, and in fact, we will merge
sketch � ′′ into � ′. We further assume that both � ′ and � ′′ have the same value of � (otherwise, it would not be
meaningful to analyze the error of �) and that � is still an upper bound on the combined input size. Later, in
Section 6, we show how to remove the latter assumption and provide a tight analysis of the sketch created by an
arbitrary sequence of merge operations without any advance knowledge about the total input size, thus proving
Theorem 1.

The basic idea of the merge operation is straightforward: At each level, concatenate the bufers and if that
causes the capacity of the compactor to be exceeded, perform the compaction operation, as in Algorithm 1.
However, there is a crucial subtlety: We need to combine the states � of the compaction schedule at each level in
a manner that ensures that relative-error guarantees are satisied for the merged sketch. Consider a level ℎ and
let �′ and �′′ be the states of the compaction schedule at level ℎ in � ′ and � ′′, respectively. The new state � at
level ℎ will be the bitwise OR of �′ and �′′. We explain the intuition behind using the bitwise OR in Section 6.
Note that while in the streaming setting, the state corresponds to the number of compaction operations already
performed, after a merge operation this may not hold anymore. Still, if the state is zero, this indicates that the
bufer has not yet been subject to any compactions. Algorithm 3 provides a pseudocode of the merge operation,
where we use �.� for the index of the highest level of sketch � and similarly, �.� for the parameter � of � .

2.4 Informal Outline of the Analysis

To analyze the error of the full sketch, we focus on the error in the estimated rank of an arbitrary item � ∈ U.
For clarity in this informal overview, we consider the failure probability � to be constant, and we assume that
�−1 >

︁
log2 (��), or equivalently,� < �−1·2�−2 . Recall that in our algorithm, all bufers have size� = Θ(� log(�/�));

we ultimately will set � = Θ

(
�−1/

︁
log(��)

)
, in which case � = �

(
�−1

︁
log(��)

)
.

J. ACM



12 • Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý

Let R(�) be the rank of item � in the input stream, and Err(�) = R̂(�) − R(�) the error of the estimated rank
for �. Our analysis of Err(�) relies on just two properties.

(1) The level-ℎ compactor only does at most R(�)/(� · 2ℎ) compactions that afect the error of � (up to a
constant factor).
Roughly speaking, this holds by the following reasoning. First, recall from Observation 2.1 that � needs to
be odd w.r.t. any compaction afecting the error of �, which implies that at least one item � ≤ � must be
removed during that compaction. We show that as we move up one level at a time, �’s rank with respect
to the input stream fed to that level falls by about half (this is formally established in Lemma 4.4). This
is the source of the 2ℎ factor in the denominator. Second, we show that each compaction operation that
afects Err(�) can be łattributedž to � items smaller than or equal to � inserted into the bufer, which relies
on using our particular compaction schedule (see Lemma 3.1). This is the source of the � factor in the
denominator.

(2) Let �� be the smallest positive integer such that 2�� ≳ R(�)/� (the approximate inequality ≳ hides a
universal constant). Then no compactions occurring at levels above �� afect Err(�), because �’s rank
relative to the input stream of any such bufer is less than �/2 and no relative-compactor ever compacts
the lowest-ranked �/2 items that it stores.
Again, this holds because, as we move up one level at a time, �’s rank w.r.t. each level falls by about half
(see Lemma 4.4).

Together, this means that the variance of the estimate for � is at most (up to constant factors):

��︁

ℎ=1

R(�)
� · 2ℎ

· 22ℎ =

��︁

ℎ=1

R(�)
�

· 2ℎ , (1)

where in the LHS, R(�)/(�2ℎ) bounds the number of level-ℎ compaction operations afecting the error (this
exploits Property 1 above), and 22ℎ is the variance contributed by each such compaction, due to Observation 2.1
and because each item processed by the relative-compactor at level ℎ represents 2ℎ items in the original stream.

The RHS of Equation (1) is dominated by the term for ℎ = �� , and the term for that value of ℎ is at most (up to
constant factors)

R(�)
�

· 2�� ≲
R(�)
�

· R(�)
�

=
R(�)2
� · � ≃ R(�)2 · log(��)

�2
. (2)

The irst inequality in Equation (2) exploits Property 2 above, while the last equality exploits the fact that
� = � (� · log(��)).5 We obtain the desired accuracy guarantees so long as this variance is at most �2 R(�)2, as
this will imply that the standard deviation is at most � R(�). This hoped-for variance bound holds so long as
� ≳ �−1 ·

︁
log2 (��), or equivalently � ≳ �−1/

︁
log2 (��).

2.5 Roadmap for the Formal Analysis

Section 3 establishes the necessary properties of a single relative-compactor (Algorithm 1), namely that, roughly
speaking, each compaction operation that afects a designated item � can be charged to � items smaller than
or equal to � added to the bufer. Section 4 then analyzes the full sketch (Algorithm 2), completing the proof
of our result in the streaming setting when a polynomial upper bound on � is known in advance. In Section 5,

5In the derivations within Equation (2), there is a couple of important subtleties. The irst is that when we replace 2�� with Θ(R(�)/�) , that
substitution is only valid if R(�)/� ≥ Ω (1) . However, we can assume w.l.o.g. that R(�) ≥ �/2, as otherwise the algorithm will make no
error on � by virtue of storing the lowest-ranked �/2 items deterministically. The second subtlety is that the algorithm is only well-deined if
� ≥ 2, so when we replace � with Θ(�/log(��) ) , that is a valid substitution only if � ≥ Ω (log(��) ) , which holds by the assumption that
�−1 >

︁
log2 (��) .
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we provide a simple argument that the assumption of having such an upper bound on � is not needed in the
streaming setting.
For the most general analysis under an arbitrary sequence of merge operations (i.e., for the proof of full

mergeability) and without assuming a foreknowledge of �, we refer to Section 6.

3 ANALYSIS OF THE RELATIVE-COMPACTOR IN THE STREAMING SETTING

To analyze our algorithm, we keep track of the error associated with an arbitrary ixed item �. Throughout this
section, we restrict our attention to any single relative-compactor at some level ℎ (Algorithm 1) maintained
by our sketching algorithm (Algorithm 2), and we use łtime �ž to refer to the �-th insertion operation to this
particular relative-compactor.
We analyze the error introduced by the relative-compactor for an item �. Speciically, at time � , let � �

=

(�1, . . . , �� ) be the input stream to the relative-compactor, � � be the output stream, and B� be the items in the
bufer after inserting item �� . The error for the relative-compactor at time � with respect to item � is deined as

Err�ℎ (�) = R(�;� � ) − 2 R(�;� � ) − R(�;B� ). (3)

Conceptually, Err�
ℎ
(�) tracks the diference between �’s rank in the input stream � � at time � versus its rank

as estimated by the combination of the output stream and the remaining items in the bufer at time � (output
items are upweighted by a factor of 2 while items remaining in the bufer are not). The overall error of the
relative-compactor is Err�

ℎ
(�), where � is the length of its input stream. To bound Err�

ℎ
(�), we keep track of the

error associated with � over time, and deine the increment or decrement of it as

Δ
�
ℎ (�) = Err�ℎ (�) − Err�−1ℎ (�),

where Err0
ℎ
(�) = 0.

Clearly, if the algorithm performs no compaction operation in a time step � , then Δ
�
ℎ
(�) = 0. (Recall that a

compaction is an execution of lines 6-13 of Algorithm 1.) Let us consider what happens in a step � in which a
compaction operation occurs. Recall from Observation 2.1 that if � is even with respect to the compaction (i.e., �
has even rank w.r.t. the � largest items in the relative-compactor), then � sufers no error, meaning that Δ�

ℎ
(�) = 0.

Otherwise, Δ�
ℎ
(�) is uniform in {−1, 1}.

Our aim is to bound the number of steps � with Δ
�
ℎ
(�) ≠ 0, equal to

∑�
�=1 |Δ�

ℎ
(�) |, and use this in turn to help

us bound Err�
ℎ
(�). We call a step � with Δ

�
ℎ
(�) ≠ 0 important. Likewise, call an item � with � ≤ � important. Let

Rℎ (�) be the rank of � in the input stream to level ℎ; so there are Rℎ (�) important items inserted to the bufer at
level ℎ (in the notation above, we have Rℎ (�) = R(�;��)). Recall that � denotes the parameter in Algorithm 1
controlling the size of the bufer sections of each relative-compactor and that � denotes the bufer’s capacity.
Our main analytic result regarding relative-compactors is that there are at most Rℎ (�)/� important steps. Its

proof explains the intuition behind our compaction schedule, i.e., why we set � as described in Algorithm 1.

Lemma 3.1. Consider the relative-compactor at level ℎ, fed an input stream of length at most �. For any ixed item

� ∈ U with rank Rℎ (�) in the input stream to level ℎ, there are at most Rℎ (�)/� important steps. In particular,

�︁

�=1

|Δ�
ℎ (�) | ≤ Rℎ (�)/� and

��Err�ℎ (�)�� ≤ Rℎ (�)/� .

Proof. We focus on steps � in which the algorithm performs a level-ℎ compaction operation (possibly not
important), and call a step � a �-step for � ≥ 1 if the compaction operation in step � (if any) involves exactly �

sections (i.e., �� = � · � in line 7 of Algorithm 1). Recall from Section 2.1 that sections are numbered from the
right, so that the irst section contains the � largest items in the bufer, the second section contains the next �
largest items, and so on. Note that we think of the bufer as being sorted at all times.

J. ACM



14 • Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý

For any � ≥ 1, let � � be the number of important �-steps. Further, let Rℎ,� (�) be the number of important items
that are either removed from the �-th section during a compaction, or remain in the �-th section at the end
of execution, i.e., after the relative-compactor has processed its entire input stream. We also deine Rℎ,� (�) for
� = ⌈log2 (�/�)⌉ + 1; for this � , we deine the �-th section to be the last � slots in the irst half of the bufer (which
contains �/2 smallest items). This special section is never involved in any compaction.

Observe that
∑

�≥1 � � is the number of important steps and that
∑

�≥1 Rℎ,� (�) ≤ Rℎ (�). We will show

� � · � ≤ Rℎ,�+1 (�) . (4)

Intuitively, our aim is to łchargež each important �-step to � important items that are either removed from section
� + 1, or remain in section � + 1 at the end of execution, so that each such item is charged at most once.
Equation 4 implies the lemma as the number of important steps is

�︁

�=1

|Δ� (�) | =
⌈log2 (�/� ) ⌉︁

�=1

� � ≤
⌈log2 (�/� ) ⌉︁

�=1

Rℎ,�+1 (�)
�

≤ Rℎ (�)
�

.

To show the lower bound on Rℎ,�+1 (�) in (4), consider an important �-step � . Since the algorithm compacts
exactly � sections and Δ

�
ℎ
(�) ≠ 0, there is at least one important item in section � by Observation 2.1. As section

� + 1 contains smaller-ranked (or equal-ranked) items than section � , section � + 1 contains important items only.
We have two cases for charging the important �-step � :

Case A: There is a compaction operation after step � that involves at least � + 1 bufer sections, i.e., a � ′-step for
� ′ ≥ � +1. Let � ′ be the irst such step. Note that just before the compaction in step � ′, the ( � +1)-st section contains
important items only as it contains important items only immediately after step � . We charge the important step
� to the � important items that are in the ( � + 1)-st section just before step � ′. Thus, all of these charged items are
removed from level ℎ in step � ′.

Case B: Otherwise, there is no compaction operation after step � that involves at least � + 1 bufer sections. Then,
we charge step � to the � important items that are in the ( � + 1)-st section at the end of execution.

It remains to observe that each important item � accounted for in Rℎ,�+1 (�) is charged at most once. (Note that
diferent compactions may be charged to the items which are consumed during the same later compaction, but
our charging will ensure that these are assigned to diferent sections. For example, consider a sequence of three
consecutive important steps (there is no compaction in other steps in between them) such that in the irst one the
algorithm compacts 2 sections, then 1 section, and 3 sections in the third important step. The irst compaction
will be charged to section 3 of the last compaction, and the second compaction is charged to section 2 of the last
compaction.)

Formally, suppose that � is removed from section � + 1 during some compaction operation in a step � ′. Item �

may only be charged by some number of important �-steps before step � ′ (satisfying the condition of Case A).
To show there is at most one such important step, we use the crucial property of our compaction schedule
(Observation 2.2) that between every two compaction operations involving exactly � sections, there is at least
one compaction that involves more than � sections. Since any important �-step is charged to the irst subsequent
compaction that involves more than � sections, item � is charged at most once.
Otherwise, � remains in section � + 1 of the level-ℎ bufer at the end of processing. The proof in this case is

similar to the previous case. Item � may only be charged by some number of important �-steps (that fall into
Case B) such that there are no subsequent compaction operations involving at least � + 1 bufer sections, and
there is at most one such important step by Observation 2.2. This shows (4), which implies the lemma as noted
above. □
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4 ANALYSIS OF THE FULL SKETCH IN THE STREAMING SETTING

We denote by Errℎ (�) the error for item � at the end of the stream when comparing the input stream to the
compactor of level ℎ and its output stream and bufer. That is, letting Bℎ be the items in the bufer of the level-ℎ
relative-compactor after Algorithm 2 has processed the input stream,

Errℎ (�) = Rℎ (�) − 2 Rℎ+1 (�) − R(�;Bℎ). (5)

For the analysis, we irst set the value of parameter � of Algorithm 2. Namely, given (an upper bound on) the
stream length �, the desired accuracy 0 < � ≤ 1, and the desired upper bound 0 < � ≤ 0.5 on failure probability,
we let

� = 2 ·

4

�
·

︄
ln 1

�

log2 (��)


. (6)

In the rest of this section, we suppose that parameters � and � satisfy � > 1/exp(��/64) (note that this a very
weak assumption as for � ≤ 1/exp(��/64), the accuracy guarantees hold nearly deterministically, the space

cost of
︁
ln(1/�) becomes Ω(

√
��), and furthermore, the analyses in Sections 6 and 7 do not require such an

assumption). We start by showing a lower bound on � · �.

Claim 4.1. If parameter � is set according to Equation (6) and � is set as in Algorithm 1 (line 1), then the following

inequality holds:

� · � ≥ 26 · 1

�2
· ln 1

�
. (7)

Proof. We irst need to relate log2 (�/�) (used to deine �, see line 1 of Algorithm 1) and log2 (��) (that appears
in the deinition of � , see Equation (6)). Using the assumption � > 1/exp(��/64), we have � ≤ 8�−1 ·

︁
ln(1/�) ≤

8�−1 ·
︁
��/64 = �−1 ·

√
��, which gives us

log2

(�
�

)
≥ log2

(
��
√
��

)
=
log2 (��)

2
.

Using this and the deinition of � , we bound � · � as follows:

� · � = 2 · �2 ·
⌈
log2

�

�

⌉
≥ 2 · 26 · 1

�2
·

ln 1
�

log2 (��)
·
log2 (��)

2
= 26 · 1

�2
· ln 1

�
.

□

We now provide bounds on the rank of � on each level, starting with a simple one that will be useful for
bounding the maximum level ℎ with Rℎ (�) > 0.

Observation 4.2. Rℎ+1 (�) ≤ max{0, Rℎ (�) − �/2} for any ℎ ≥ 0.

Proof. Since the lowest-ranked �/2 items in the input stream to the level-ℎ relative-compactor are stored
in the bufer Bℎ and never given to the output stream of the relative-compactor, it follows immediately that
Rℎ+1 (�) ≤ max{0, Rℎ (�) − �/2}. □

Next, we prove that Rℎ (�) roughly halves with every level. This is easy to see in expectation and we show
that it is true with high probability up to a certain crucial level � (�). Here, we deine � (�) to be the minimal ℎ
for which 22−ℎ R(�) ≤ �/2. For ℎ = � (�) − 1 (assuming � (�) > 0), we particularly have 23−� (�) R(�) ≥ �/2, or
equivalently

2� (�) ≤ 24 · R(�)/�. (8)

J. ACM



16 • Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý

Below, in Lemma 4.4, we show that no important item (i.e., one smaller than or equal to �) can ever reach level
� (�) with high probability, unless � (�) = 0. (For � (�) = 0, all important items it into the level-0 bufer, so the
estimated rank R̂(�) equals R(�).) Recall that a zero-mean random variable � with variance �2 is sub-Gaussian if
E[exp(�� )] ≤ exp(− 1

2 · �2 ·�2) for any � ∈ R; note that a (weighted) sum of independent zero-mean sub-Gaussian
variables is a zero-mean sub-Gaussian random variable as well. We will use the following standard (Chernof)
tail bound for sub-Gaussian variables (see, e.g., Lemma 1.3 in [24]):

Fact 4.3. Let � be a zero-mean sub-Gaussian variable with variance at most �2. Then for any � > 0, it holds that

Pr[� > �] ≤ exp

(
− �2

2�2

)
and Pr[� < −�] ≤ exp

(
− �2

2�2

)
.

Lemma 4.4. Assuming� (�) > 0, with probability at least 1−� it holds that Rℎ (�) ≤ 2−ℎ+1 R(�) for any ℎ < � (�).
Proof. We prove by induction on 0 ≤ ℎ < � (�) that, conditioned on Rℓ (�) ≤ 2−ℓ+1 R(�) for any ℓ < ℎ, with

probability at least 1−� · 2ℎ−� (�) it holds that Rℎ (�) ≤ 2−ℎ+1 R(�). Taking the union bound over all 0 ≤ ℎ < � (�)
implies the claim. As R0 (�) = R(�), the base case follows immediately.
Next, consider ℎ > 0 and condition on Rℓ (�) ≤ 2−ℓ+1 R(�) for any ℓ < ℎ. Observe that any compaction

operation at any level ℓ that involves � important items inserts 1
2� such items to the input stream at level ℓ + 1 in

expectation, no matter whether � is odd or even. Indeed, if � is odd, then the number of important items promoted
is 1

2 (� +� ), where � is a zero-mean random variable uniform on {−1, 1}. For an even �, the number of important
items that are promoted is 1

2� with probability 1.
Thus, random variable Rℓ (�) for any level ℓ > 0 is generated by the following random process: To get Rℓ (�),

start with Rℓ−1 (�) important items and remove those stored in the level-(ℓ − 1) relative-compactor Bℓ−1 at the
end of execution; there are R(�;Bℓ−1) ≤ � important items in Bℓ−1. Then, as described above, each compaction
operation at level ℓ − 1 involving � > 0 important items promotes to level ℓ either 1

2� important items if � is even,
or 1

2 (� +� ) important items if � is odd, i.e., the compaction is important. In total, Rℓ−1 (�) − R(�;Bℓ−1) important
items are involved in compaction operations at level ℓ − 1. Summarizing and letting �ℓ−1 be the number of
important compaction operations at level ℓ − 1, we have

Rℓ (�) =
1

2
· (Rℓ−1 (�) − R(�;Bℓ−1) + Binomial(�ℓ−1)) , (9)

where Binomial(�) represents the sum of � zero-mean i.i.d. random variables uniform on {−1, 1}.
To simplify (9), consider the following sequence of random variables �0, . . . , �ℎ : Start with �0 = R(�) and for

0 < ℓ < ℎ let

�ℓ =
1

2
· (�ℓ−1 + Binomial(�ℓ−1)) . (10)

Note that E[�ℓ ] = 2−ℓ R(�). Since variables �ℓ difer from Rℓ (�) only by not subtracting R(�;Bℓ−1) at every level
ℓ > 0, variable �ℎ stochastically dominates variable Rℎ (�), so in particular,

Pr[Rℎ (�) > 2−ℎ+1 R(�)] ≤ Pr[�ℎ > 2−ℎ+1 R(�)] , (11)

which implies that it is suicient to bound Pr[�ℎ > 2−ℎ+1 R(�)]. Unrolling the deinition of �ℎ in (10), we obtain

�ℎ = 2−ℎ · R(�) +
ℎ−1︁

ℓ=0

2−ℎ+ℓ · Binomial(�ℓ ) . (12)

Observe that �ℎ equals a ixed amount (2−ℎ · R(�)) plus a zero-mean sub-Gaussian variable

�ℎ =

ℎ−1︁

ℓ=0

2−ℎ+ℓ · Binomial(�ℓ ) , (13)
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since Binomial(�) is a sum of � independent zero-mean sub-Gaussian variables (with variance 1).
To bound the variance of �ℎ , irst note that for any ℓ < ℎ, we have�ℓ ≤ Rℓ (�)/� ≤ 2−ℓ+1 R(�)/� by Lemma 3.1

and by conditioning on Rℓ (�) ≤ 2−ℓ+1 R(�). As Var[Binomial(�)] = �, the variance of �ℎ is

Var[�ℎ] ≤
ℎ−1︁

ℓ=0

2−2ℎ+2ℓ ·�ℓ ≤
ℎ−1︁

ℓ=0

2−2ℎ+2ℓ · 2
−ℓ+1 R(�)

�
=

ℎ−1︁

ℓ=0

2−2ℎ+ℓ+1 R(�)
�

≤ 2−ℎ+1 · R(�)
�

.

Note that Pr[�ℎ > 2−ℎ+1 R(�)] = Pr[�ℎ > 2−ℎ R(�)]. To bound the latter probability, we apply the tail bound
for sub-Gaussian variables (Fact 4.3) to get

Pr[�ℎ > 2−ℎ R(�)] < exp

(
− 2−2ℎ · R(�)2
2 · (2−ℎ+1 · R(�)/�)

)

= exp
(
−2−ℎ−2 · R(�) · �

)
= exp

(
−2−ℎ+� (�)−6 · 24−� (�) R(�) · �

)
≤ exp

(
−2−ℎ+� (�)−6 · � · �

)
(14)

≤ exp

(
−2−ℎ+� (�)−6 · 26 · 1

�2
· ln 1

�

)
(15)

≤ exp

(
−2−ℎ+� (�) · ln 1

�

)
= �2

� (�)−ℎ ≤ � · 2−� (�)+ℎ , (16)

where inequality (14) uses 24−� (�) R(�) ≥ � (by the deinition of � (�), cf. Equation (8)), inequality (15) follows
from Claim 4.1, inequality (16) uses � ≤ 1, and the last inequality uses � ≤ 0.5. As explained above, this concludes
the proof. □

In what follows, we condition on the bound on Rℎ (�) in Lemma 4.4 for any ℎ < � (�).

Lemma 4.5. Assume that � (�) > 0. Conditioned on the bound on R� (�)−1 (�) in Lemma 4.4, it holds that

R� (�) (�) = 0.

Proof. According to Lemma 4.4 and the deinition of � (�) as the minimal ℎ for which 22−ℎ R(�) ≤ �/2,

R� (�)−1 (�) ≤ 22−� (�) R(�) ≤ 1

2
� .

Invoking Observation 4.2, we get R� (�) (�) ≤ max{0, R� (�)−1 (�) − �/2} = 0. □

We are now ready to bound the overall error of the sketch for item �, i.e., Err(�) = R̂(�) − R(�) where R̂(�) is
the estimated rank of �. It is easy to see that

Err(�) =
�︁

ℎ=0

2ℎ Errℎ (�),

where � is the highest level with a relative-compactor (that never produces any output). To bound this error, we
reine the guarantee of Lemma 3.1. Notice that for any particular relative-compactor, the bound

∑�
�=1 |Δ�

ℎ
(�) |

referred to in Lemma 3.1 applied to a level ℎ is a potentially crude upper bound on Errℎ (�) =
∑�

�=1 Δ
�
ℎ
(�): Each

non-zero term Δ
�
ℎ
(�) is positive or negative with equal probability, so the terms are likely to involve a large

amount of cancellation. To take advantage of this, we bound the variance of Err(�).
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Lemma 4.6. Conditioned on the bound on Rℎ (�) in Lemma 4.4 for any ℎ < � (�), Err(�) is a zero-mean sub-

Gaussian random variable with Var[Err(�)] ≤ 25 · R(�)2/(� · �).

Proof. Consider the relative-compactor at any level ℎ. By Lemma 3.1, Errℎ (�) is a sum of at most Rℎ (�)/�
random variables, i.i.d. uniform in {−1, 1}. In particular, Errℎ (�) is a zero-mean sub-Gaussian random variable
with Var[Errℎ (�)] ≤ Rℎ (�)/� . Thus, Err(�) is a sum of independent zero-mean sub-Gaussian random variables,
and as such is itself a zero-mean sub-Gaussian random variable.
It remains to bound the variance of Err(�), for which we irst bound Var[Errℎ (�)] for each ℎ. If Rℎ (�) = 0,

then Observation 2.1 implies that Errℎ (�) = 0, and hence that Var[Errℎ (�)] = 0. Thus, using Lemma 4.5, we have
Var[Errℎ (�)] = 0 for any ℎ ≥ � (�). For ℎ < � (�), we use Var[Errℎ (�)] ≤ Rℎ (�)/� to obtain:

Var[Err(�)] =
� (�)−1︁
ℎ=0

22ℎ Var[Errℎ (�)]

≤
� (�)−1︁
ℎ=0

22ℎ · Rℎ (�)
�

≤
� (�)−1︁
ℎ=0

2ℎ+1 · R(�)
�

≤ 2� (�)+1 · R(�)
�

≤ 25 · R(�)
2

� · � ,

where the second inequality is due to Lemma 4.4 and the last inequality follows from (8). □

To show that the space bound is maintained, we also need to bound the number of relative-compactors.

Observation 4.7. The number of relative-compactors ever created by the full algorithm (Algorithm 2) is at most

⌈log2 (�/�)⌉ + 1.

Proof. Each item on level ℎ has weight 2ℎ , so there are at most �/2ℎ items inserted to the bufer at that level.
Applying this observation to ℎ = ⌈log2 (�/�)⌉, we get that on this level, there are fewer than � items inserted to
the bufer, which is consequently not compacted, so the highest level has index at most ⌈log2 (�/�)⌉. The claim
follows (recall that the lowest level has index 0). □

We are now ready to prove the main result of this section, namely, the accuracy guarantees in the streaming
setting when the stream length is essentially known in advance.

Theorem 3. Assume that (a polynomial upper bound on) the stream length � is known in advance. For any

parameters 0 < � ≤ 0.5 and 0 < � ≤ 1 satisfying � > 1/exp(��/64), there is a randomized, comparison-based,

one-pass streaming algorithm that, when processing a data stream consisting of � items from a totally-ordered

universe U, produces a summary � satisfying the following property. Given � , for any � ∈ U one can derive an

estimate R̂(�) of R(�) such that

Pr

[
|R̂(�) − R(�) | > � R(�)

]
< � ,

where the probability is over the internal randomness of the streaming algorithm. The size of � in memory words is

�

(
�−1 · log1.5 (��) ·

︂
log

1

�

)
.

Proof. First, suppose that � ≤ 4 ·
︁
ln(1/�)/log2 (��). Then we use Algorithm 2 with parameters � and �, where

� is set as in (6). Note that � is an even positive integer as required by Algorithm 2. By Lemma 4.4, with probability
at least 1 − � , we have Rℎ (�) ≤ 2−ℎ+1 R(�) for any ℎ < � (�) and we condition on this event happening.
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We again apply the standard (Chernof) tail bound for sub-Gaussian variables (Fact 4.3) together with Lemma 4.6
(for which we need the bound on Rℎ (�) for any ℎ < � (�)) and obtain

Pr [| Err(�) | ≥ � R(�)] < 2 exp

(
− �2 · R(�)2
2 · 25 · R(�)2/(� · �)

)

≤ 2 exp

(
−
�2 · 26 · �−2 · ln 1

�

26

)
= 2 exp

(
− ln

1

�

)
= 2� ,

where we use Claim 4.1 in the second inequality. This concludes the calculation of the failure probability (up to
scaling � by a factor of 1/3).
Regarding the memory usage, there are at most ⌈log2 (�/�)⌉ + 1 ≤ log2 (��) relative-compactors by Observa-

tion 4.7, and each requires � = 2 · � · ⌈log2 (�/�)⌉ memory words. Thus, the memory needed to run the algorithm
is at most

log2 (��) · 2 · � ·
⌈
log2

�

�

⌉
≤ log2 (��) · 2 · 2 ·


4

�
·

︄
ln 1

�

log2 (��)


·� (log(��)) , (17)

wherewe use that ⌈log2 (�/�)⌉ ≤ � (log(��)), which follows from� ≥ �−1/
︁
log2 (��). Using � ≤ 4·

︁
ln(1/�)/log2 (��),

we have� := 4�−1·
︁
ln(1/�)/log2 (��) ≥ 1, so ⌈�⌉ ≤ 2� and it follows that (17) is bounded by�

(
�−1 · log1.5 (��) ·

︁
log(1/�)

)
.

For � > 4 ·
︁
ln(1/�)/log2 (��), we use the comparison-based streaming algorithm by Zhang et al. [28] that

requires space �
(
�−2 · log(�2�) · log(1/�)

)
and otherwise satisies the same error guarantee as our algorithm.

To get the desired space bound, we observe that the case condition implies
︁
log2 (��) > 4 ·

︁
ln(1/�) · �−1 and

thus, �
(
�−2 · log(�2�) · log(1/�)

)
≤ �

(
�−1 · log1.5 (��) ·

︁
log(1/�)

)
.6 We remark that the algorithm from [28]

does not require any foreknowledge of the total input length �. □

Update time. We now analyze the amortized update time of Algorithm 2 and show that it can be made
� (log�) = � (log(�) + log log(�/�)), i.e., the algorithm processes � streaming updates in total time � (� · log�).
To see this, irst observe that the time complexity is dominated, up to a constant factor, by running Algorithm 1
for the relative-compactor at level 0. Indeed, the running time can be decomposed into the operations done by
Algorithm 2 itself, plus the running time of Algorithm 1 for each level of the sketch, and the former is bounded
by the latter. Moreover, at level ℎ there are at most �/2ℎ items added to the bufer, implying that the running time
of Algorithm 1 decreases exponentially with the level. At level 0, the update time is � (1), except for performing
compaction operations (lines 6-13 of Algorithm 1). To make those faster, we maintain the bufer sorted after each
insertion, which can be achieved by using an appropriate data structure in time � (log�) per update. Then the
time to execute each compaction operation is linear in the number of items removed from the bufer, making it
amortized constant. Hence, the amortized update time with such adjustments is � (log�).

5 HANDLING UNKNOWN STREAM LENGTHS

The algorithm of Section 2.2 and analysis in Sections 3-4 proved Theorem 3 in the streaming setting assuming
that (an upper bound on) � is known, where � is the true stream length. The space usage of the algorithm grows

6In fact, as we show in Section 6, one may use a variant of our algorithm also for the case of large � , that is, when � > 4 ·
︁
ln(1/� )/log2 (��) .

Namely, we compute the largest value of � such that 1 < � = 2 ·
⌈
(4/� ) ·

︁
ln(1/� )/log2 (��)

⌉
(for given � and �); cf. (18) in Section 6. If

� > �, then using bufers of size Θ(log ��) is suicient and we do not need to use the compaction schedule (intuitively, the section size � is
too small to be useful). In this section, we omit these details for brevity and focus just on the main case of relatively small � .
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polynomially with the logarithm of this upper bound, so if this upper bound is at most �� for some constant
� ≥ 1, then the space usage of the algorithm will remain as stated in Theorem 3, with only the hidden constant
factor changing.
In the case that such a polynomial upper bound on � is not known, we modify the algorithm slightly, and

start with an initial estimate �0 of �, namely, �0 = Θ(�−1). That is, we begin by running Algorithm 2 with
parameters � and �0. As soon as the stream length hits the current estimate �� , the algorithm łcloses outž the
current data structure and continues to store it in łread onlyž mode, while initializing a new summary based
on the estimated stream length of ��+1 = � 2

� (i.e., we execute Algorithm 2 with parameters � and ��+1; only if

� > 4 ·
︁
ln(1/�)/log2 (���+1) we switch to the algorithm from [28] as in the proof of Theorem 3).7 This process

occurs at most log2 log2 (��) many times, before the guess is at least the true stream length �. At the end of the
stream, the rank of any item� is estimated by summing the estimates returned by each of the at most log2 log2 (��)
summaries stored by the algorithm.
To prove a variant of Theorem 3 for unknown stream lengths, we need to bound the space usage of the

algorithm, and the probability of having a too large error for a ixed item �. We start with some notation. Let
ℓ be the biggest index � of estimate �� used by the algorithm; note that ℓ ≤ log2 log2 (��). Let �� denote the
substream processed by the summary with the �-th guess for the stream length for � = 0, . . . ℓ . Let � ′ ◦ � ′′

denote the concatenation of two streams � ′ and � ′′. Then the complete stream processed by the algorithm is
� = �0 ◦ �1 ◦ · · · ◦ �ℓ . Let �� and �� be the values of parameters � and � computed for estimate �� .

Space bound. We claim that the sizes of summaries for the substreams�0, �1, . . . , �ℓ sumup to�
(
�−1 · log1.5 (��) ·

︁
log(1/�)

)
,

as required. By Theorem 3, the size of the summary for �� is �
(
�−1 · log1.5 (��� ) ·

︁
log(1/�)

)
. In the special case

ℓ = 0, the size of the summary for �0 satisies the bound provided that �0 = � (�−1). For ℓ ≥ 1, since �ℓ−1 < �

and �ℓ = � 2
ℓ−1, it holds that �ℓ ≤ �2 and thus, the size of the summary for �ℓ satisies the claimed bound. As

��+1 = � 2
� , the log

1.5 (��� ) factor in the size bound from Theorem 3 increases by a factor of 21.5 when we increase
� . It follows that the total space usage is dominated, up to a constant factor, by the size of the summary for �ℓ . □

Failure probability. We need to show that | Err(�) | = |R̂(�) − R(�) | ≤ � R(�) with probability at least 1 − � for
any ixed item �. Note that R(�) = R(�;�) = ∑ℓ

�=0 R(�;�� ).
We apply the analysis in Section 4 to all of the summaries at once. Observe that for the tail bound in the proof

of Theorem 3, we need to show that Err(�) is a zero-mean sub-Gaussian random variable with a suitably bounded
variance. Let Err� (�) be the error introduced by the summary for �� . By Lemma 4.6, Err� (�) is a zero-mean
sub-Gaussian random variable with Var[Err� (�)] ≤ 25 · R(�;�� )2/(�� · �� ). As Err(�) =

∑
� Err

� (�) and as the
summaries are created with independent randomness, variable Err(�) is also zero-mean sub-Gaussian and its
variance is bounded by

Var[Err(�)] =
ℓ︁

�=0

Var[Err� (�)] ≤
ℓ︁

�=0

25 · R(�;�� )
2

�� · ��
≤ �2 · R(�)2

2 · ln(1/�)

where the last inequality uses that
∑ℓ

�=0 R(�;�� )2 ≤ R(�)2, which follows from R(�) = ∑ℓ
�=0 R(�;�� ), and that

�� · �� = Ω(�−2 · ln(1/�)), which holds by Claim 4.1. Applying the tail bound for sub-Gaussian variables similarly
as in the proof of Theorem 3 concludes the proof of (a variant of) Theorem 3 for unknown stream lengths. □

7In a practical implementation, we suggest not to close out the current summary, but rather recompute the parameters � and � of every
relative-compactor in the summary, according to the new estimate ��+1, and continue with using the summary. The analysis in Section 6
(which applies in the more general mergeability setting) shows that the same accuracy guarantees as in Theorem 3 hold for this variant of
our algorithm. Here, we choose to have one summary for each estimate of � because it is amenable to a much simpler analysis (it is not clear
how to extend this simpler analysis from the streaming setting to the general mergeability setting of Section 6).
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6 FULL MERGEABILITY

Fully-mergeable sketches allow us to sketch many diferent streams (or any inputs) and then merge the resulting
sketches (via an arbitrary sequence of pairwise merge operations) to get an accurate summary of the concatenation
of the streams. Mergeable sketches form an essential primitive for parallel and distributed processing of massive
data sets. We show that our sketch maintains its accuracy guarantees even in these settings, and therefore, it is
fully mergeable.
The merge operation takes as input two sketches � ′ and � ′′ that processed two separate streams � ′ and � ′′

and outputs a sketch � that summarizes the concatenated stream � = � ′ ◦ � ′′ (the order of � ′ and � ′′ does not
matter here). For full mergeability, � must satisfy the same space and accuracy guarantees as if it was created by
processing stream � in one pass. Moreover, we do not assume that we built � ′ by processing stream � ′ directly
and similarly for � ′′, but we allow to create � ′ and � ′′ using merge operations. Thus, we may create the resulting
summary from many summaries by merging them in an arbitrary way (i.e., using an arbitrary merge tree).

We stress that we do not assume any advance knowledge about �, the total size of all the inputs merged, which
indeed may not be available in many applications.

6.1 Merge Operation

In this section, we describe the merge operation of our sketch, without assuming a foreknowledge of the total
input size �. The description builds on Section 2.3, which outlines a simpliied merge procedure under the
assumption that a polynomial upper bound on � is available. To facilitate the merge operation, each sketch
maintains list RelCompactors of its relative-compactors and the following parameters:
� = index of the highest level with a relative-compactor in the sketch.
� = size of the input currently summarized by the sketch.
� = an upper bound on �, based on which the subsequent parameters � and � (deined below) are calculated.

�̂ = a parameter that depends on the desired accuracy � and failure probability � , namely, �̂ = 4�−1 ·
︁
ln(1/�).

Unlike � , the parameter �̂ remains constant during the computation. The section size parameter � (deined
below) depends on �̂ in addition to � .

� = size of a bufer section.
� = size of the bufer at each level.

Parameters �,�, and �. The parameter � is set similarly as in Section 5, that is, it is equal to �� for some � ,
where �0 = ⌈210 · �̂⌉ and ��+1 = � 2

� . We set the parameters � and � based on � similarly as in Section 4 (cf.
Equation (6)) so that � decreases and � increases as we increase � . Importantly, we no longer change � and �

once �̂ ≤
︃
log2 (��/�̂). To facilitate this, we deine � ≥ 0 as the smallest integer � such that

�̂︃
log2 (��/�̂)

≤ 1 , (18)

and then for � ≥ 0 we set

�� := 25 ·


�̂︃
log2 (��/�̂)


and �� := 2 · �� ·

⌈
log2

(
��

��

)⌉
where �� = min{�� , ��} . (19)

From a practical point of view, since �� is about �̂ · 2�̂2
, we have that �� = �� unless �� is extremely large or

�̂ = 4�−1 ·
︁
ln(1/�) is small (say, even for � = 0.2 we have �� ≫ 2400). We use this truncation of �� to guarantee

the space bound when � > �� . Furthermore, observe that once we reach � ≥ �� , the values of �� and �� do not
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change; this is because, intuitively, the section size �� becomes too small to help in the analysis and our algorithm
can in fact be simpliied by involving all sections in every compaction, without violating the error guarantees
(i.e., when � ≥ �� , the compaction schedule is no longer relevant). The most challenging part of the analysis is
bounding the error for � ≤ �.

Description of the merge operation. The merge operation that creates sketch � from � ′ and � ′′ goes as follows:
Suppose that both � ′ and � ′′ are based on the same parameter �̂ and that � ′ has at least as many levels as � ′′

(otherwise, we swap the sketches). Then, via the following procedure, we merge � ′′ into � ′, so � ′′ acts as a source
sketch, while � ′ is a target sketch of the merge operation. First, we compute the parameters of the resulting
sketch. For sketch � resulting from the merge operation, �.� is just the sum of � ′ .� and � ′′ .�. If � ′ .� ≥ �.�, then
we keep parameters �,�, and � as they are set in � ′. Otherwise, � ′ .� < �.� = � ′ .� + � ′′ .�, so � ′ .� would be too
small after merging. In this case, we choose the next upper bound by setting �.� = � ′ .� 2 and also recompute �
and � as described in Equation (19) above.

Recall from Section 2.3 that the crucial part of the merge operation is to combine the states of the compaction
schedules at each level without violating the relative-error guarantees even when many merge operations are
executed.8 Consider a level ℎ and let �′ and �′′ be the states of the compaction schedule at level ℎ in � ′ and � ′′,
respectively. The new state � at level ℎ will be the bitwise OR of �′ and �′′; we explain the intuition behind
using the bitwise OR below. Note that while in the streaming setting, the state corresponds to the number of
compaction operations already performed, after a merge operation this may not hold anymore. Still, if the state is
zero, this indicates that the level-ℎ bufer has not yet been subject to any compactions.
Having set up the parameters and states at each level, we concatenate the level-ℎ bufers of � ′ and of � ′′ at

each level that appears in both of them. Then we perform a single compaction operation at each level that has
at least �.� items, in the bottom-up fashion. For such a compaction operation, all but the smallest �.� items in
the bufer are automatically included in the compaction, while the smallest � items are treated exactly as a full
bufer is treated in the streaming setting to determine what suix is compacted. That is, the state variable � of
the compaction schedule determines how many sections among the smallest � items in the bufer are compacted,
via the number of trailing 1s in the binary representation of � . If this number of trailing 1s is � ≥ 0, then � + 1
sections are compacted and we say that the compaction involves exactly � + 1 sections of the bufer. Note that
there is at most one compaction per level during the merge operation. Finally, when �� > �� , we do not use the
compaction schedule as the section size becomes too small, i.e., we compact all bufer sections.
Algorithm 4 provides pseudocode describing the merge operation speciied above. We note that inserting a

single item � can be viewed as a trivial merge with a summary consisting just of � (with weight 1).
Several remarks and observations are in order. First, the combined bufer contains at most 2 · �.� items before

the merge procedure begins performing compactions level-by-level, because each bufer of � ′ and each bufer
of � ′′ stores at most �.� items. Second, when we perform a compaction on a level-ℎ bufer during the merge
procedure, it contains no more than 7

2 · �.� items. To see this, observe that there are three sources of input to the
bufer at level ℎ during a merge operation: the at most �.� items in � ′ at level ℎ at the start of the merge operation,
the at most �.� items in � ′′ at level ℎ at the start of the merge operation, and the output of the level-(ℎ − 1) bufer
during the merge procedure. An easy inductive argument shows that the third source of inputs consists of at
most 3

2 · �.� items, as follows: Observe that if the level-(ℎ − 1) bufer has size at most 7
2�.� when it is compacted,

then the number of items compacted by that bufer is at most 7
2�.� − 1

2�.� = 3�.�, and hence, the number of
items output by the compaction is at most 3

2 · �.� (here, we also use that �.� as deined in (19) is divisible by

8By the state of the compaction schedule, we mean the variable that determines how many sections of the bufer to include in a compaction
operation if one is performed. In the streaming setting (Algorithm 1), we denoted this variable by � , and maintain this notation in the
mergeability setting.
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Algorithm 4 Merge operation of ReqSketch

Input: Sketches � ′ and �′′ to be merged such that � ′ .�̂ = � ′′ .�̂ and � ′ .� ≥ � ′′ .�
Output: A sketch answering rank queries for the combined inputs of � ′ and �′′

⊲ We merge � ′′ into � ′

1: Set � ′ .� = � ′ .� + � ′′ .� ⊲ Combined input size
2: if � ′ .� < � ′ .� then ⊲ Upper bound on input size is too small
3: Set � ′ .� = � ′ .� 2

⊲ Square the upper bound
4: Set � ′ .� and � ′ .� according to (19)

5: for ℎ = 0, . . . , � ′′ .� do ⊲ Combine bufers and states of compaction schedules
6: Insert all items in � ′′.RelCompactors[ℎ] into � ′.RelCompactors[ℎ]
7: � ′.RelCompactors[ℎ].� = � ′.RelCompactors[ℎ].� OR � ′′.RelCompactors[ℎ].�
8: for ℎ = 0, . . . , � ′ .� do

9: if there are at least �′ .� items in � ′.RelCompactors[ℎ] then
10: PerformCompaction(�′, ℎ)
11: return �′

12: function PerformCompaction(� ′, ℎ, �)
13: if ℎ = � ′ .� then

14: Increase � ′ .� by one
15: Initialize relative-compactor at RelCompactors[ℎ + 1]

16: Set B = � ′.RelCompactors[ℎ] ⊲ The level-ℎ bufer of � ′

17: Sort items in B in non-descending order
18: if � ′ .� ≤ �� then ⊲ � is deined in (18)
19: Compute � = number of trailing 1s in binary representation of B .�

20: Set � = � ′ .� − (� + 1) · � ′ .� + 1 ⊲ First slot of the bufer involved in the compaction
21: else ⊲ Then � ′ .� = Θ(1)
22: Set � = � ′ .�/2 ⊲ Compaction schedule not used when � ′ .� is small

23: Let |B| be the number of items stored in B ⊲ |B| may be larger than � ′ .�
24: Set � = equally likely either even or odd indexed items in the range B[� : |B|]
25: ⊲ Note that the range B[� : |B|] may be of an odd size, which does not cause any issues
26: Insert each item in � to � ′.RelCompactors[ℎ + 1]
27: Mark slots B[� : |B|] in the bufer as clear
28: Increase B .� by 1

four, so 3
2 · �.� is even). This guarantees that at the time a level-ℎ bufer is actually compacted during a merge

procedure, it contains no more than 7
2 · �.� items.

Third, using the bitwise OR in line 7 to combine the states has two simple but important implications.

Fact 6.1. When the �-th bit of �′ or of �′′ is set to 1, then the �-th bit of � = �′ OR �′′ is also set to 1.

Fact 6.2. The bitwise OR of�′ and�′′ (interpreted as bitstrings) is no larger than�′ +�′′ (interpreted as integers).

Fact 6.2 will be used later to show that the state � never has more than ⌈log2 (�.� /�.�)⌉ bits, so we never
compact more than ⌈log2 (�.� /�.�)⌉ bufer sections during a compaction. See Observation 6.3 for details. (Note
that this is only relevant for �.� ≤ �� .)
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6.2 Preliminaries for the Analysis of the Merge Procedure

Consider a sketch � built using an arbitrary sequence of merge operations from an input of size �. We will
show that the space bound holds for � using an argument similar to the one in the proof of Theorem 3, but the
calculation of the failure probability needs to be modiied compared to Section 4. The main challenge is that the
parameters � and � change as more and more merge operations are performed.
To prove that the accuracy guarantees hold for � , consider the binary tree � in which each of � leaves

corresponds to a single item of the input. Internal nodes correspond to merge operations (recall that inserting
one item to the sketch can be seen as the merge of the sketch with a trivial sketch storing the item to be inserted),
and hence each internal node � in � represents a sketch �� resulting from the merge operation that corresponds
to node � . Also, for a particular level ℎ, node � represents the level-ℎ bufer of �� . Finally, we say that � represents
the level-ℎ compaction operation (if any); recall that the merge operation captured by an internal node � performs
at most one compaction operation at each level ℎ. The root of � represents the inal merge operation, which
outputs the inal sketch.

Recall that we set the upper bounds � on the input size used by the sketches as �0 = ⌈210 · �̂⌉ and �� = � 2
�−1

for 1 ≤ � ≤ ℓ ≤ ⌈log2 log2 (��)⌉ (as �0 ≥ �̂ ≥ 1/�). We assume that ℓ > 0, otherwise the whole input can be stored

in space � (�̂) = � (�−1 ·
︁
log(1/�)).

We say that an (internal) node � in tree � is an �-node for 0 ≤ � ≤ ℓ if the sketch �� represented by � satisies
�� .� = �� , i.e., it uses the parameters �� and �� . Note that this means that if parameter � is updated from ��−1 to
�� during the merge operation represented by � , then � is considered an �-node. Moreover, we say that node � is a
topmost �-node if the parent of � is a �-node for some � > � or � is the root of� . Note that for any � , the subtrees of
topmost �-nodes are disjoint.
As in Sections 3 and 4, we consider a ixed item � and analyze the error of the estimated rank of �. Let R(�)

denote the rank of � in the input summarized by the sketch, and let R̂(�) be the estimated rank of � obtained from
the inal sketch � ; recall that we get this estimate by summing over all levels ℎ ≥ 0 the number of items � ≤ � in
the level-ℎ bufer of the inal sketch, multiplied by 2ℎ . Our aim is to show that | Err(�) | = |R̂(�) − R(�) | ≤ � R(�)
with probability at least 1 − � .

6.3 Analysis of a Single Level for Mergeability

For the duration of this section, we consider a single level ℎ and solely focus on �-nodes for � ≤ �; recall that the
compaction schedule helps to decrease the error from compactions and that we do not use the schedule during
compactions represented by �-nodes for � > � (since the bufer section size is too small to make a diference). For
convenience, � refers to min{�, ℓ}, i.e., if � > ℓ we decrease � to ℓ compared to (18). This is to ensure that, e.g.,
topmost �-nodes are well-deined. Note that when � = ℓ , then the only topmost �-node is the root of the merge
tree � .

We start by showing that the binary representation of the state� at levelℎ never has more than ⌈log2 (�.� /�.�)⌉
bits, or equivalently, � ≤ �.� /�.� . Consequently, � (viewed as a bitstring) never has ⌈log2 (�.� /�.�)⌉ trailing
ones just before a compaction operation (as after the operation, it would have more than ⌈log2 (�.� /�.�)⌉ bits).

Observation 6.3. Consider a node � of tree� and sketch � represented by � . Let� be the state of the level-ℎ bufer

of � . Then � ≤ �.� /�.� .

Proof. Let � be the number of items removed from the level-ℎ bufer of � during all compactions represented
by nodes in the subtree of � . We show that � ≤ �/�.� by induction. This implies � ≤ �.� /�.� as � ≤ �.� ≤ �.� .
The base case of a leaf node follows as � = 0 and � = 0. Let � be the sketch represented by an internal node

and let � ′ and � ′′ be the sketches represented by its children. Let �′ and �′′ be the states of the level-ℎ bufers
of � ′ and � ′′, and let � ′ and � ′′ be the number of items removed from the level-ℎ bufer during compactions
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represented by nodes in the subtrees of � ′ and � ′′, respectively. By the induction hypothesis, we have�′ ≤ � ′/� ′ .�
and �′′ ≤ � ′′/� ′′ .� . Note that � equals � ′ + � ′′ plus the number of items removed from the level-ℎ bufer during
the compaction represented by � if there is one. Let � ∈ {0, 1} be the indicator variable with � = 1 if there is a
level-ℎ compaction represented by � . Observe that � = (�′ OR�′′) + � and if � = 1, then the compaction removes
at least �.� items from the level-ℎ bufer. We thus have � ≥ � ′ + � ′′ + � · �.� and using this, we obtain

� = (�′ OR�′′) + � ≤ �′ +�′′ + � ≤ � ′

� ′ .�
+ � ′′

� ′′ .�
+ � ≤ � ′

�.�
+ � ′′

�.�
+ � · �.�

�.�
≤ �

� .�
,

where the penultimate inequality uses �.� ≤ min{� ′ .�, � ′′ .�}, which follows from �0 ≥ �1 ≥ · · · ≥ �� . □

For � ≤ �, we recall that the second half of the bufer of size �� has ⌈log2 (��/�� )⌉ sections of size �� (see Equation
(19)) and that these sections are indexed from 1 such that the rightmost section (with slots �� − �� + 1, . . . , �� )
is section 1 and section � consists of slots �� − � · �� + 1, . . . , �� − ( � − 1) · �� . The deinition of the compaction
operation and Observation 6.3 imply that section ⌈log2 (��/�� )⌉ (i.e., the leftmost section of the second half of the
bufer) is involved only in one compaction represented by an �-node on any leaf-to-root path in � .

Bounding the number of important compaction operations. As in Section 3, the key part of the analysis is
bounding the number of level-ℎ compaction operations that introduce some error for the ixed item �; recall
that we call such compactions important and that by Observation 2.1, a compaction is important if and only if
it removes an odd number of important items from the bufer. Also, recall that we call items � ≤ � important
and that for ℎ > 0, Rℎ (�) denotes the total number of important items promoted to level ℎ during compaction
operations at level ℎ − 1 (represented by any node in � ). For level 0, we have R0 (�) = R(�).

The bound on the number of important level-ℎ compactions in Lemma 6.4 below is more involved than in the
streaming setting (Section 3), but this complexity allows for the tightest and most general analysis, presented in
Section 6.4. In particular, for any 0 ≤ � ≤ �, we will need a bound on the number of important level-ℎ compactions
represented by �-nodes for � ∈ [�, �].
To state the bound, we irst give a few deinitions. We say that a compaction involves important items if it

removes at least one important item from the bufer; note that compactions involving important items are a
superset of important compactions. Let�ℎ be the set of nodes � such that (i) � is an �-node for � ≤ � that represents
a level-ℎ compaction involving important items (this compaction may or may not be important), and (ii) there is
no node � ′ on the path from the parent of � to the topmost �-node containing � in its subtree such that � ′ represents
a level-ℎ compaction involving important items. Intuitively, �ℎ captures łmaximalž nodes (disregarding �-nodes
for � > �, if any) that represent a level-ℎ compaction removing one or more important items from level ℎ. Note
that an important item that remains in the level-ℎ bufer represented by a node � ∈ �ℎ (after performing the
compaction operation represented by � ) is never removed from the level-ℎ bufer during compactions represented
by �-nodes for � ≤ �, by the deinition of �ℎ . For � ∈ [0, �], let ��

ℎ
be the set of �-nodes in �ℎ .

For some 0 ≤ � ≤ �, let R[�,�]
ℎ

(�) be the number of important items that are either (i) removed from level ℎ
during a compaction represented by an �-node for � ∈ [�, �], or (ii) remain at the level-ℎ bufer of the sketch
represented by a node � ∈ ��

ℎ
for � ∈ [�, �] (after the compaction operation represented by � is performed). Note

that important items in (ii) also belong to the level-ℎ bufer represented by a topmost �-node since the level-ℎ
bufer is not subject to a compaction that removes an important item and is represented by a node on the path
from � ∈ ��

ℎ
to its corresponding topmost �-node, by the deinition of ��

ℎ
. We remark that the level-ℎ bufers

represented by topmost �-nodes may contain important items not present in the level-ℎ bufers represented by
nodes in �ℎ (these are items promoted from level ℎ − 1 to level ℎ during merge operations represented by nodes
on the path from a node � ∈ �ℎ to a topmost �-node).

We now state the bound on the number of important level-ℎ compactions represented by �-nodes for � ≤ �. Let
��

ℎ
be the number of important compaction operations at level ℎ represented by �-nodes.
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Lemma 6.4. For any level ℎ and any 0 ≤ � ≤ �, it holds that

�︁

�=�

��
ℎ · �� ≤ 4 R[�,�]

ℎ
(�) . (20)

Proof overview. The proof is an extension of the charging argument in Lemma 3.1 to the mergeability setting.
In a nutshell, we will again charge each important compaction represented by an �-node for some � ≤ � ≤ �

to �� important items that are removed from the level-ℎ bufer (during a compaction represented by an �′-node
for some � ≤ �′ ≤ �) or that remain in the level-ℎ bufer represented by a node in ��′

ℎ
for � ≤ �′ ≤ �. However,

unlike in the streaming setting, we will not identify speciic important items to which we charge an important
compaction.
Instead, for each node � in the subtree of a node in �ℎ , we will maintain the overall charge from � ’s subtree

to the (level-ℎ) bufer represented by � . Intuitively, when two bufers are merged during the merge procedure
represented by an �-node � for � ≤ � ≤ �, the charge to the resulting bufer is the sum of the charges to the two
bufers increased or decreased by the following:

• when the level-ℎ compaction represented by �-node � (if any) is important, we increase the charge to the
bufer by �� ,

• removing � important items during the compaction operation (not necessarily important) decreases the
charge to the bufer by 3� , and

• if a child � ′ of � is a topmost �′-node for �′ < � such that there is an important compaction represented by
an �′-node in the subtree of � ′, we decrease by 2�� the charge in the bufer represented by � (not by � ′).

The latter decrease helps us to deal with merge operations in which parameters � and � of the level-ℎ bufer
change (in particular, �� decreases and therefore, we need to create a slack in the analysis). We prove below
that (i) the charge to any bufer is always bounded by the number of important items in the bufer and that (ii)
these properties imply (20), proving the lemma. Showing (ii) is not diicult given (i); the only non-trivial part is
bounding the total decrease of the charge from the third bullet above, which is done in the parents of topmost
�-nodes.

Proving (i) relies on the compaction schedule. We in particular show that for each �-node � either there is
slack at � , i.e., the charge to � is smaller by at least �� than the number of important items in the level-ℎ bufer
represented by � , or the schedule state � guarantees that at least �� important items would be removed if a
compaction is executed.9

Proof of Lemma 6.4. For simplicity, when we refer to a bufer or a compaction operation represented by a
node we implicitly mean the one at level ℎ. For any node � in the subtree of a node in �ℎ , we deine its charge
� (�) (implicitly w.r.t. item � and level ℎ) recursively as follows:

• If � is a leaf node or an �-node for � < �, we set � (�) = 0.
• Otherwise, let � ′ and � ′′ be the children of � and let � ∈ [�, �] be such that � is an �-node. To deine � (�), we
need a few quantities and indicators:
� (�) = the number of important items removed from the bufer during the compaction represented by �
(we use � (�) = 0 if there is no compaction operation represented by � );
� (�) is the indicator whether the compaction represented by � (if any) is important, i.e., � (�) = 1 if there is
an important compaction represented by � , and � (�) = 0 otherwise; and
� (�) is the indicator whether for a child �̂ ∈ {� ′, � ′′} of � , it holds that �̂ is a topmost �′-node for some
� ≤ �′ < � and there is an important level-ℎ compaction represented by an �′-node in the subtree of �̂ .

9A somewhat simpler but weaker proof of the lemma appears in the previous version of this manuscript; see https://arxiv.org/abs/2004.01668v3.
However, this earlier analysis required a modiied (and slightly more involved) merge procedure.
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Then, we deine

� (�) = max{� (� ′) + � (� ′′) − 3� (�) + � (�) · �� − � (�) · 2 · �� , 0} . (21)

(We do not deine � (�) for nodes that are not in the subtree of a node in �ℎ .) This recursive deinition implies
that � (�) > 0 only if there is an important compaction represented by an �′-node (for � ≤ �′ ≤ � with �′ ≤ �) in
the subtree of � , including � (the converse may not be true). The key part is to prove that � (�) as deined above is
always bounded by the number of important items in the bufer represented by � .

Claim 6.5. For any node � in the subtree of a node in �ℎ , it holds that � (�) ≤ R(�;Bℎ (�)), where Bℎ (�) is the
level-ℎ bufer represented by � and R(�;Bℎ (�)) is the number of important items in that bufer.

Proof. We start with some notation. Let �ℎ (�) be the state of the compaction schedule of the level-ℎ bufer
represented by a node � , and for a state � and � ≥ 1, let � [ �] be the �-th bit from the right in the binary
representation of � .
We prove by an induction over the tree� a stronger claim: If � is an �-node for � ≤ � ≤ � in the subtree of a node

in �ℎ , then one of the following holds:

(i) � (�) ≤ max{R(�;Bℎ (�)) − �� , 0}, or
(ii) there is an important level-ℎ compaction represented by an �-node in the subtree of � and moreover, letting

� ≥ 1 be the smallest index of a section which contains important items only, � (�) ≤ �� − ( � − 1) · �� and,
provided that � > 1, �ℎ (�) [ � − 1] = 1.

Note that both (i) and (ii) are stronger requirements than � (�) ≤ R(�;Bℎ (�)); speciically, in (ii), it holds that
R(�;Bℎ (�)) ≥ �� − ( � − 1) · �� by the deinition of � (recall that sections are indexed from the right).
The claim in (i) clearly holds if � (�) = 0 and thus, (i) holds for any leaf node or for any �-node � for � < � as we

deine � (�) = 0 in both of these cases.
Consider a non-leaf �-node � with � ≤ � ≤ � and � (�) > 0, and let � ′ and � ′′ be the children of � . Note that

R(�;Bℎ (�)) ≥ R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) − � (�); on the RHS of this inequality, we do not take into account
important items added from level ℎ − 1 during a compaction represented by � , if any. We consider several cases,
using the irst case that applies:

Case A: � (�) ≥ �� , i.e., the compaction operation represented by � removes at least �� important items from the
level-ℎ bufer. Then, from (21), we obtain

� (�) = max{� (� ′) + � (� ′′) − 3� (�) + � (�) · �� − � (�) · 2 · �� , 0}
≤ max{� (� ′) + � (� ′′) − � (�) − �� , 0}
≤ max{R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) − � (�) − �� , 0} ≤ max{R(�;Bℎ (�)) − �� , 0} ,

where the irst inequality follows from the case condition and � (�) ≤ 1 (that is, we use that 2� (�) ≥ � (�) · �� + �� ),
and the second inequality uses the induction hypothesis. This shows that (i) holds for � .

Case B: � (� ′) = 0 and � (� ′′) = 0. If the compaction operation represented by � (if any) is not important, then
� (�) = 0 and (i) holds for � . Otherwise, there is an important compaction represented by � , which may happen if
many important items are added to level ℎ during the level-(ℎ − 1) compaction. Then, (21) and � (� ′) = � (� ′′) = 0
imply that

� (�) ≤ �� ≤ ��/2 − �� ≤ R(�;Bℎ (�)) − �� ,

where the second inequality uses �� ≥ 2 ·�� · log2 (��/�� ) and �� ≥ 4 ·�� , and the last inequality follows from that
there must be at least ��/2 important items remaining in the bufer after the important compaction represented
by � . Hence, (i) holds for � .
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Case C: (i) holds for � ′ and � (� ′) > 0, or (i) holds for � ′′ and � (� ′′) > 0, or both. This condition implies that

� (� ′) + � (� ′′) ≤ R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) − �� ; (22)

note that � ′ or � ′′ may be an �′-node for some �′ < � , but this inequality still holds as �� ≤ ��′ for �′ < � . We
consider two subcases:

Case C.1: � (�) = 0, i.e., there is no important compaction represented by � . Then, (i) holds for � as

� (�) ≤ max{� (� ′) + � (� ′′) − 3� (�), 0} ≤ max{R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) − �� − � (�), 0}
≤ max{R(�;Bℎ (�)) − �� , 0} .

Case C.2: � (�) = 1, i.e., there is an important compaction represented by � . In this case, we show that (ii) holds for
� . Since the (level-ℎ) compaction represented by � is important, it removes 0 < � (�) < �� important items from the
bufer (for � (�) ≥ �� , case A applies). Let � be the smallest index of a section that contains important items only; it
must be the same before and after the compaction as � (�) < �� and as only the whole sections are compacted. Note
that we must have � > 1 as section 1 is involved in any compaction. Since the compaction does not involve section
� , we have�′

ℎ
(�) [ � − 1] = 0 for the state�′

ℎ
(�) before the compaction (recall that�′

ℎ
(�) [ � − 1] is the ( � − 1)-st bit

from the right in �′
ℎ
(�)). Moreover, �′

ℎ
(�) [ � ′] = 1 for all 0 < � ′ < � − 1 as the compaction involves section � − 1.

Thus, after the compaction, it holds that �ℎ (�) [ � − 1] = 1. Next, observe that R(�;Bℎ (�)) = �� − ( � − 1) · �� since
the compaction involves the irst � − 1 sections and it is important. It thus remains to obtain a suitable upper
bound on � (�):

� (�) ≤ max{� (� ′) + � (� ′′) − 3� (�) + �� , 0} ≤ max{R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) − �� − � (�) + �� , 0}
≤ R(�;Bℎ (�)) = �� − ( � − 1) · �� ,

where the second inequality uses (22). Hence, (ii) holds for � .

Case D: None of the previous cases applies. Since we have that � (� ′) > 0 or � (� ′′) > 0 (as case B does not
apply) and since case C does not apply, property (ii) holds for � ′ or for � ′′ or for both of them. For simplicity, we
assume that (ii) holds for � ′ as the other case follows by symmetric arguments. Let �′ ≤ � be such that � ′ is an
�′-node and let � ′ be the index from property (ii) for � ′. To recall, � ′ ≥ 1 is the smallest index of a section which
contains important items only in Bℎ (� ′), and it holds that � (� ′) ≤ ��′ − ( � ′ − 1) · ��′ and, provided that � ′ > 1,
�ℎ (� ′) [ � ′ − 1] = 1. Let �′

ℎ
(�) be the state of the compaction schedule just before the compaction represented by � .

Since we use the bitwise OR when merging states of the compaction schedule, we also have that�′
ℎ
(�) [ � ′ − 1] = 1

if � ′ > 1; see Fact 6.1.
We consider a few further subcases:

Case D.1: �′ < � . Thus, � ′ is a topmost �′-node, which together with property (ii) for � ′ implies that � (�) = 1 (here,
we also use that � is in the subtree of a node in �ℎ). Then, (21) becomes

� (�) = max{� (� ′) + � (� ′′) − 3� (�) + � (�) · �� − 2 · �� , 0}
≤ max{� (� ′) + � (� ′′) − � (�) − �� , 0}
≤ max{R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) − � (�) − �� , 0} ≤ max{R(�;Bℎ (�)) − �� , 0} ,

where the second inequality uses the induction hypothesis for � ′ and � ′′, namely, that � (� ′) ≤ R(�;Bℎ (� ′)) and
� (� ′′) ≤ R(�;Bℎ (� ′′)). This shows (i).
Case D.2: �′ = � . We show that � (� ′′) = 0 in such a case. Indeed, for a contradiction suppose that � (� ′′) > 0,
which implies that property (ii) holds for � ′′ since otherwise, case C applies. Then, if � ′′ is an �′-node for �′ < � ,
we use case D.1 with � ′′ acting as � ′. Thus, � ′′ is an �-node and (ii) holds for both � ′ and � ′′, from which we obtain
R(�;Bℎ (� ′)) ≥ ��/2 and R(�;Bℎ (� ′′)) ≥ ��/2 (as there is an important compaction represented by an �-node in
the subtree of each of � ′ and � ′′). It follows that R(�;Bℎ (� ′)) +R(�;Bℎ (� ′′)) ≥ �� and since all items with position
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at least �� − �� + 1 in the sorted bufer when merging (cf. line 20 in Algorithm 4) are always involved in the
compaction, we must have that � (�) ≥ �� Ð a contradiction with the assumption that case A does not apply. This
shows � (� ′′) = 0.
Let �(�) be the number of important items added to the level-ℎ bufer from level ℎ − 1 during the level-

(ℎ − 1)compaction represented by � , if any. Let B′
ℎ
(�) be the sorted bufer obtained from merging the (level-ℎ)

bufers of � ′ and � ′′ and adding �(�) important items from level ℎ−1, but before performing the level-ℎ compaction
represented by � , if any; thus B′

ℎ
(�) may contain more than �� items.

Note that section � ′ is not involved in the level-ℎ compaction represented by � (if any), otherwise we would
have � (�) ≥ �� as section � ′ contains important items only in Bℎ (� ′) and thus also in B′

ℎ
(�). This implies that

section � ′ − 1 is not involved in the compaction either, which follows from �′
ℎ
(�) [ � ′ − 1] = 1 (here, we refer to

the state just before the compaction). We consider a few further subcases:

Case D.2.a: R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) + �(�) < �� − ( � ′ − 2) · �� . This means that in B′
ℎ
(�), section � ′ − 2 (for

� ′ > 2) contains no important items and moreover, section � ′ − 1 contains an item � > � (we suppose bufer
B′
ℎ
(�) is sorted). Since section � ′ − 1 is not involved in the compaction, it follows that � (�) = 0, so the compaction

represented by � (if any) is not important, i.e., � (�) = 0. As � (� ′′) = 0, we get

� (�) ≤ � (� ′) ≤ �� − ( � ′ − 1) · �� .

We show (ii) holds for � . Indeed, section � ′ − 1 of Bℎ (�) contains a non-important item, so � ′ is still the smallest
index of a section with important items only. Furthermore, �ℎ (�) [ � ′ − 1] = 1 and there is an important level-ℎ
compaction represented by an �-node in the subtree of � ′ as (ii) holds for � ′, concluding that (ii) holds for � .

CaseD.2.b: R(�;Bℎ (� ′))+R(�;Bℎ (� ′′))+�(�) ≥ ��−( � ′−2) ·�� and � (�) = 0, i.e., the compaction represented by � (if
any) is not important. As section � ′−1 is not involved in this compaction, we have that R(�;Bℎ (�)) ≥ ��−( � ′−2) ·�� .
Then, (i) holds for � as

� (�) ≤ � (� ′) ≤ �� − ( � ′ − 1) · �� ≤ R(�;Bℎ (�)) − �� .

Case D.2.c: R(�;Bℎ (� ′)) + R(�;Bℎ (� ′′)) + �(�) ≥ �� − ( � ′ − 2) · �� and � (�) = 1, i.e., the compaction represented
by � is important. We show that (ii) holds. Let � > 1 be the smallest index of a section that contains important
items only in Bℎ (�), i.e., after the compaction. By the case condition and since section � ′ − 1 is not involved in the
compaction, we have � ≤ � ′ − 1. Observe that R(�;Bℎ (�)) = �� − ( � − 1) ·�� as the compaction removes important
items from the bufer and thus, it involves the irst � − 1 sections by the deinition of � . After the compaction, the
( � − 1)-st bit of the state is set to 1, i.e., �ℎ (�) [ � − 1] = 1, by the deinition of the compaction. Finally, we upper
bound � (�) as follows:

� (�) ≤ � (� ′) + �� ≤ �� − ( � ′ − 1) · �� + �� = �� − ( � ′ − 2) · �� ≤ �� − ( � − 1) · �� ,

where the last inequality uses � ≤ � ′ − 1. Hence, (ii) holds. □

It remains to show that Claim 6.5 together with the deinition of � (�) in (21) implies Lemma 6.4, i.e., that (20)
holds. To this end, irst note that the deinition of � (�) for a non-leaf �-node � with � ≤ � ≤ � implies

� (�) ≥ � (� ′) + � (� ′′) − 3� (�) + � (�) · �� − � (�) · 2 · �� , (23)

where � ′ and � ′′ are the children of � . For a node � ∈ �
�

ℎ
with � ≤ � ≤ �, consider the sum of (23) over all non-leaf

�-nodes � for � ≤ � ≤ � such that � is in the subtree of �, and observe that � (�) either appears exactly once on both
sides of the resulting inequality, or � appears only on the right-hand side and � (�) = 0, or � = � and � appears
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only on the left-hand side. Letting �� denote the subtree of � and � �
� be the set of �-nodes in �� , we obtain

� (�) ≥
�︁

�=�

︁
� ∈� �

�

−3� (�) + � (�) · �� − � (�) · 2 · �� . (24)

Next, consider the sum of (24) over all nodes � ∈ �
�

ℎ
for � ≤ � ≤ �. Observe that if an �-node � for � ≤ � ≤ �

represents a compaction removing at least one important item, then � must be in the subtree �� of a node � ∈ �
�

ℎ

for � ≤ � ≤ �. Furthermore, subtrees �� are disjoint by the deinition of �ℎ . Letting � (� [�,�]) be the total number
of important items removed from level ℎ during a compaction represented by an �-node for � ≤ � ≤ � that is in
the subtree of a node in �ℎ , we thus have the following two equalities:

�︁

�=�

︁
�∈� �

ℎ

�︁

�=�

︁
� ∈� �

�

� (�) = � (� [�,�])

�︁

�=�

︁
�∈� �

ℎ

︁
� ∈� �

�

� (�) =��
ℎ for any � ∈ [�, �] .

Hence, summing (24) over all nodes � ∈ �
�

ℎ
for � ≤ � ≤ �, we get

�︁

�=�

︁
�∈� �

ℎ

� (�) ≥ −3 · � (� [�,�]) +
�︁

�=�

��
ℎ · �� −

�︁

�=�

︁
�∈� �

ℎ

�︁

�=�

︁
� ∈� �

�

� (�) · 2 · �� . (25)

We now upper bound the last term on the RHS of (25). Let ��′ be the number of topmost �′-nodes � ′ for �′ ≤ �

satisfying that there is an important level-ℎ compaction represented by an �′-node in the subtree of � ′ and that � ′

is in the subtree of a node � ∈ �
�

ℎ
for � ≤ � ≤ �. Recall that if � (�) = 1 for an �-node � , then at least one of the

children of � is a topmost �′-node for � ≤ �′ < � accounted for in ��′ . Using �0 ≥ �1 ≥ · · · ≥ �� , we thus have

�︁

�=�

︁
�∈� �

ℎ

�︁

�=�

︁
� ∈� �

�

� (�) · 2 · �� ≤
�︁

�′=�

��′ · 2 · ��′ . (26)

For any �′ ∈ [�, �], we claim that

��′ ·
��′

2
≤ R[�,�]

ℎ
(�) . (27)

Indeed, any topmost �′-node � ′ accounted for in ��′ has an important level-ℎ compaction represented by an �′-node
in the subtree of � ′. At the time of this compaction operation, the bufer needs to have more than ��′/2 important
items (otherwise, the compaction would not be important). Since the lowest-ranked ��′/2 important items are
never removed from the bufer (when its capacity is ��′ ), the bufer represented by � ′ has at least ��′/2 important
items. Furthermore, these sets of at least ��′/2 important items are disjoint for any two topmost �′-nodes � ′ ≠ � ′′

accounted for in ��′ . Finally, all these important items are accounted for in R[�,�]
ℎ

(�) as they are either removed
from the level-ℎ bufer by a compaction represented by an �′′-node for �′ ≤ �′′ ≤ �, or remain at the level-ℎ bufer
represented by a node � ∈ �

�

ℎ
for �′ ≤ � ≤ �. This shows (27).
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Thus, the last term on the RHS of (25) is bounded by

�︁

�=�

︁
�∈� �

ℎ

�︁

�=�

︁
� ∈� �

�

� (�) · 2 · �� ≤
�︁

�′=�

��′ · 2 · ��′

≤ 2 ·
�︁

�′=�

��′ · 1
2 · ��′

log2 (��′/��′ )
≤ 2 ·

�︁

�′=�

R[�,�]
ℎ

(�)
log2 (��′/��′ )

≤ R[�,�]
ℎ

(�) , (28)

where the irst inequality is (26), the second inequality uses the deinition of ��′ in (19), the third inequality
follows from (27), and the last inequality holds as

∑�
�′=� 1/log2 (��′/��′ ) ≤ 2 log2 (�0/�0) ≤ 1

2 (in more detail, here
we use that log2 (��′/��′ ) increases with �′ by a factor of at least 2 for �′ ≤ � and that log2 (�0/�0) ≥ 4, which
holds by the deinition of �0).

To upper bound the LHS of (25), we use Claim 6.5 for each� ∈ �
�

ℎ
with � ≤ � ≤ � to get that � (�) ≤ R(�;Bℎ (�))

for any such �. Plugging this together with (28) into (25), we obtain

�︁

�=�

︁
�∈� �

ℎ

R(�;Bℎ (�)) ≥ −3 · � (� [�,�]) +
�︁

�=�

��
ℎ · �� − R[�,�]

ℎ
(�) , (29)

which implies (20) by rearranging and using R[�,�]
ℎ

(�) = � (� [�,�]) + ∑�
�=�

∑
�∈� �

ℎ
R(�;Bℎ (�)) (the second term

equals the total number of important items in the bufers represented by nodes in �
�

ℎ
for � ≤ � ≤ �). □

Lemma 6.4 with � = 0 has a simple corollary.

Corollary 2. Consider level ℎ and let�≤�
ℎ

=
∑�

�=0�
�
ℎ
be the total number of important compactions at level ℎ

represented by �-nodes for � ≤ �. Suppose that Rℎ (�) ≤ 2−ℎ+2 R(�) and let � (ℎ) ≥ 0 be the largest integer 0 ≤ � ≤ �

satisfying 2−ℎ+2 R(�) > ��/2. Then�≤�
ℎ

≤ 4 Rℎ (�)/�� (ℎ) .

Proof. This follows from Lemma 6.4 by observing that��
ℎ
= 0 for � (ℎ) < � ≤ � and by using �� ≥ �� (ℎ) for

any � ≤ � (ℎ) and R[0,�]
ℎ

(�) ≤ Rℎ (�) □

6.4 Analysis of the Full Sketch for Mergeability

In this section, we complete the proof of full mergeability that matches our result in the streaming setting
(Theorem 3). The crucial part of analyzing the full sketch, similarly as in the streaming setting (Section 4), is
bounding the variance of Err(�), using the bounds on the number of important level-ℎ compactions from the
previous section. The bound of this section is, however, substantially more involved than in the streaming setting,
mainly because parameters � and � of the sketches change as merge operations are processed. Here, we again
stress that we assume no advance knowledge of �, the total size of the input.

Before presenting the most general and tight analysis, we will however describe that a simple extension of the ar-
guments used in the streaming setting readily gives the result with an additional factor ofmin{log log(��), log(�−1)+
log log(�−1)} in the asymptotic space complexity, relative to our result in the streaming setting (Theorem 3).10

This simpler, non-tight analysis of the full sketch is less delicate than our analysis that avoids the additional
factor, thereby establishing Theorem 1. We nevertheless do not assume any advance knowledge about the inal
input size �.

10We provide a detailed description of a simpler analysis with an additional log log(��) factor in a prior version of this manuscript; see
https://arxiv.org/abs/2004.01668v3.
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6.4.1 A Sketch of a Simpler Analysis with an Additional Double Logarithmic Factor. The key trick that allows to
apply similar arguments as in Section 4 is to modify the deinition of �� for � ≥ 0 compared to (19), as follows:

�� = Θ(1) ·

min{� + 1, �} · �̂︃

log2 (��/�̂)


, (30)

where � and �� are deined similarly as in (19) and the multiplicative constant is set appropriately. In particular,
relative to Equation (19), note the extra factor of min{�+1, �}; including it considerably simpliies the analysis, but it
is responsible for an additional min{log log(��), �} term in the space bound, where � = � (log(�−1) + log log(�−1)).
Recall that �� = 2 · �� ·

⌈
log2 (��/�� )

⌉
.

We omit the detailed analysis and only highlight where we use the modiied deinition of the parameter �� . As
in the subsequent tight analysis, the error from compactions represented by �-nodes for � > � (if any) will be
analyzed separately (and is much simpler to deal with). In particular, a similar calculation as in (7) gives us that
for 0 ≤ � ≤ �,

�� · �� ≥ Θ(1) · (� + 1)2
�2

· ln 1

�
, (31)

so we have an extra factor of (� + 1)2 compared to (7). Using Corollary 2, one can show that

Var[Err(�)] ≤
�︁

�=0

Θ(1) · R(�)
2

�� · ��
≤ �2 · R(�)2

4 · ln(1/�) ·
�︁

�=0

1

(� + 1)2 ≤ �2 · R(�)2
2 · ln(1/�) ,

where the second inequality uses (31) and the last step holds as
∑�

�=0 1/(� + 1)2 < �2/6 < 2; the fact that this sum
is bounded allows us to deal with the challenge of changing parameters � and � in a simple way. The application
of the tail bound for sub-Gaussian variables and the derivation of the space bound is otherwise the same as in
Theorem 3.

6.4.2 A Tight Analysis. Recall that �̂ = 4�−1 ·
︁
ln(1/�) and that by (19), �� = 25 ·

⌈
�̂/

︃
log2 (��/�̂)

⌉
and �� = 2 ·�� ·

⌈log2 (��/�� )⌉, where�� = min {�� , ��} by (19). Here, � ≥ 0 is the smallest integer � such that �̂/
︃
log2 (��/�̂) ≤ 1.

If � > ℓ , we decrease � to ℓ for convenience. Using a similar calculation as in Claim 4.1, we show a lower bound
on �� · �� .

Claim 6.6. Parameters �� and �� set according to (19)
satisfy

�� · �� ≥ 214 · 1

�2
· ln 1

�
. (32)

Proof. We irst need to relate log2 (��/�� ) (used to deine �� ) and log2 (��/�̂) (that appears in the deinition of

�� ). As �� ≤ 25 · �̂ , it holds that log2 (��/�� ) ≥ log2 (��/�̂) −5 ≥ log2 (��/�̂)/2, where we use that �� ≥ �0 ≥ 210 · �̂ ,
so log2 (��/�̂) ≥ 10. Using this, we bound �� · �� as follows:

�� · �� = 2 · �2� ·
⌈
log2

��

��

⌉
≥ 2 · 210 · 16

�2
·

ln 1
�

log2 (��/�̂)
·
log2 (��/�̂)

2
= 214 · 1

�2
· ln 1

�
.

□
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For analyzing the case � > �� , the following bound will be useful:

�� ≥ 25 · �̂2 (33)

This is because the deinition of � implies that
︃
log2 (��/�̂) ≥ �̂ while �� ≥ 25, thus �� ≥ 26 · log2 (��/��) ≥

26 · log2
(
��/�̂

)
/2 ≥ 25 · �̂2, where the second inequality follows from the same argument as in Claim 6.6.

For any 0 ≤ � ≤ ℓ , let�� (�) be the minimal ℎ for which 2−ℎ+2 R(�) ≤ ��/2. As� is ixed, we write�� rather than
�� (�) for brevity. In particular, by considering ℎ = �� − 1 (assuming�� > 0), it can be seen that 23−�� R(�) ≥ ��/2,
or equivalently

2�� ≤ 24 · R(�)/�� . (34)

As increasing � by one increases �� , we have �0 ≥ �1 ≥ · · · ≥ �ℓ .
We show below that no important item (i.e., one smaller than or equal to �) can ever reach level �0 + 1.

Lemma 6.7. Assuming �0 > 0, with probability at least 1 − � it holds that Rℎ (�) ≤ 2−ℎ+2 R(�) for any ℎ ≤ �0.

Proof. The proof is similar to that of Lemma 4.4, except that we need to deal with parameters � and �

changing over time. To this end, we use an idea from the KLL paper [15] to analyze the top log log 1/� levels
deterministically. We deine

� ′
0 = max

(
0, �0 −

⌈
log2

︂
ln

1

�

⌉)
.

(Note that for � ≤ 0.5, we have

⌈
log2

︃
ln 1

�

⌉
≥ 0.)

We irst show by induction on 0 ≤ ℎ ≤ � ′
0 that Rℎ (�) ≤ 2−ℎ+1 R(�) with probability at least 1 − � · 2ℎ−� ′

0−1,
conditioned on Rℎ′ (�) ≤ 2−ℎ

′+1 R(�) for any ℎ′ < ℎ. The base case holds by R0 (�) = R(�).
Consider 0 < ℎ ≤ � ′

0, and recall that�ℎ′ denotes the number of important compactions at level ℎ′ over all
merge operations represented in the merge tree � . As in the proof of Lemma 4.4,

Pr[Rℎ (�) > 2−ℎ+1 R(�)] ≤ Pr[�ℎ > 2−ℎ R(�)],

where �ℎ =
∑ℎ−1

ℎ′=0 2
−ℎ+ℎ′ · Binomial(�ℎ′ ) is a zero-mean sub-Gaussian random variable. To bound the variance

of �ℎ , irst note that for any ℎ′ < ℎ, since each important compaction needs to remove at least one important
item from the bufer, we have that�ℎ′ ≤ Rℎ′ (�) ≤ 2−ℎ

′+1 · R(�), using the assumption that Rℎ′ (�) ≤ 2−ℎ
′+1 · R(�).

(While this may seem like a very crude bound compared to Lemma 6.4, it is suicient due to analyzing top levels
deterministically and furthermore, it can be used for compactions represented by �-nodes for � > �, where we do
not use the deterministic compaction schedule.)
As Var[Binomial(�)] = �, the variance of �ℎ is

Var[�ℎ] ≤
ℎ−1︁

ℎ′=0

2−2ℎ+2ℎ
′ ·�ℎ′ ≤

ℎ−1︁

ℎ′=0

2−2ℎ+2ℎ
′ · 2−ℎ′+1 · R(�) =

ℎ−1︁

ℎ′=0

2−2ℎ+ℎ
′+1 · R(�) ≤ 2−ℎ+1 · R(�) .
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To bound Pr[�ℎ > 2−ℎ · R(�)], we apply the tail bound for sub-Gaussian variables (Fact 4.3) to get

Pr[�ℎ > 2−ℎ · R(�)] < exp

(
− 2−2ℎ · R(�)2
2 · (2−ℎ+1 · R(�))

)

= exp
(
−2−ℎ−2 · R(�)

)
= exp

(
−2�0−� ′

0 · 2−ℎ+� ′
0−6 · 24−�0 R(�)

)

≤ exp

(
−
︂
ln

1

�
· 2−ℎ+� ′

0−6 · �0

)

≤ exp

(
− ln

1

�
· 2−ℎ+� ′

0+1
)
= �2

−ℎ+� ′
0+1 ≤ � · 2−� ′

0+ℎ−1 ,

where the second inequality uses the deinition of � ′
0 and 24−�0 R(�) ≥ �0 by (34), the third inequality follows

from �0 ≥ 2 · �0 · log2 (�0/�0) ≥ 27 ·
︁
ln(1/�), and the last inequality uses � ≤ 0.5. Hence, taking the union

bound over levels ℎ ≤ � ′
0, with probability at least 1 − � it holds that Rℎ (�) ≤ 2−ℎ+1 R(�) for any ℎ ≤ � ′

0.
Finally, consider level ℎ with � ′

0 < ℎ ≤ �0 and condition on R� ′
0
(�) ≤ 2−�

′
0+1 R(�). (In the case � ′ (�) = 0, we

have R0 (�) = R(�).) We again proceed by induction and assume that Rℎ′ (�) ≤ 2−ℎ
′+2 · R(�) for any ℎ′ < ℎ. First,

we argue that for any ℎ with � ′
0 < ℎ ≤ �0 it holds that

∑
�>��

�
ℎ′ = 0, so we can use Corollary 2. Indeed, it is

suicient to show R� ′
0
(�) ≤ ��/2 as follows:

R� ′
0
(�) ≤ 2−�

′
0+1 R(�) = 2�0−� ′

0 · 2−2 · 2−�0+3 R(�) ≤ 2

︂
ln

1

�
· 2−2 · �0 ≤ 24 · �̂2 ≤ 1

2
�� , (35)

where the penultimate inequality uses the deinitions of �̂ and �0 in (19) and the last inequality is by (33).
We now observe that for any� ′

0 < ℎ′ ≤ ℎ, it holds that Rℎ′ (�) ≤ 1
2 · (1+4/�� (ℎ′ ) ) ·Rℎ′−1 (�), where � (ℎ′) ≤ � is the

largest integer � satisfying 2−ℎ
′+3 R(�) > ��/2. Indeed, Rℎ′ (�) ≤ 1

2 · (Rℎ′−1 (�) + Binomial(�ℎ′−1)) (see Equation 9)
and Binomial(�ℎ′−1) ≤ �ℎ′−1 ≤ 4 Rℎ′−1 (�)/�� (ℎ′ ) by Corollary 2, using the deinition of � (ℎ′) and the induction
hypothesis for level ℎ′ − 1, i.e., Rℎ′−1 (�) ≤ 2−ℎ

′+3 · R(�). That is, regardless of the outcome of the random choices,
we always obtain this bound on the rank of an item. By using this deterministic bound for levels � ′

0 < ℎ′ ≤ ℎ, we
get

Rℎ (�) ≤ 2−ℎ+�
′
0 · R� ′

0
(�) ·

ℎ∏
ℎ′=� ′

0+1

(
1 + 4

�� (ℎ′ )

)
≤ 2−ℎ+�

′
0 · 2−� ′

0+1 · R(�) ·
ℎ∏

ℎ′=� ′
0+1

(
1 + 4

�� (ℎ′ )

)
. (36)

It remains to show that the product
∏ℎ

ℎ′=� ′
0+1

(
1 + 4

�� (ℎ′ )

)
is bounded by 2, which implies Rℎ (�) ≤ 2−ℎ+2 · R(�).

We irst observe that �� (� ′
0+1) ≥ �� ≥ 25, since � (� ′

0 + 1) ≤ �. Next, recall that the sequence of �� ’s decreases

exponentially with a factor of
√
2 (up to rounding) with increasing � . Thus, it is suicient to show that the sequence

� (ℎ′) decreases for ℎ′ = � ′
0 + 1, . . . , ℎ. More precisely, we show that � (ℎ′ + 1) ≤ � (ℎ′) − 1 for ℎ′ = � ′

0 + 1, . . . , ℎ − 1
This latter inequality holds as increasing ℎ′ by one in 2−ℎ

′+3 R(�) > ��/2 implies that the largest � satisfying the
inequality should decrease by at least one (recall that the sequence of �� ’s increases by a factor of

√
2 (up to

rounding) with increasing �). Note that we always have 2−ℎ
′+3 R(�) > �0/2 as ℎ′ ≤ ℎ ≤ �0. Summing up, we get

ℎ∏
ℎ′=� ′

0+1

(
1 + 4

�� (ℎ′ )

)
≤

∏
�≥0

(
1 + 1

23 ·
√
2
�

)
≤ exp

(︁
�≥0

log

(
1 + 1

23 ·
√
2
�

))
≤ exp

(︁
�≥0

1

23 ·
√
2
�

)
≤ 2 .
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We remark that the last inequality has a slack, which is suicient to deal with the rounding issues mentioned
above. □

As a corollary, we obtain a bound on the highest level with a compaction removing important items from
the level-ℎ bufer (no matter whether such a compaction is important or not). Recall from Section 6.3 that a
compaction involves important items if it removes at least one important item from the bufer. Recall that we
only consider a compaction to be important if it afects an odd number of important items, so these compactions
involving important items are a superset of the important compactions.

Lemma 6.8. Conditioned on the bounds in Lemma 6.7 holding, for any 0 ≤ � ≤ ℓ , no compaction involving

important items occurs at level �� or above during any merge procedure represented by any �-node in the merge tree

� .

Proof. By Lemma 6.7, R��
(�) ≤ 2−��+2 R(�) ≤ ��/2, where the second inequality follows from the deinition

of �� . Hence, no important item is ever removed from level �� during merge operations represented by �-nodes
when the bufer size is �� . The same argument also works for any level ℎ > �� . □

Consider level ℎ. Recall from Section 6.3 that �ℎ is the set of nodes � such that (i) � is an �-node for � ≤ � that
represents a level-ℎ compaction involving important items (this compaction may or may not be important), and
(ii) there is no node � ′ on the path from the parent of � to the topmost �-node containing � in its subtree such that
� ′ represents a level-ℎ compaction involving important items. Intuitively, �ℎ captures łmaximalž nodes (with
index � ≤ �) that represent a level-ℎ compaction removing one or more important items from level ℎ. Note that an
important item that remains in the level-ℎ bufer represented by a node � ∈ �ℎ (after performing the compaction
operation represented by � ) is never removed from the level-ℎ bufer, by the deinition of �ℎ . For 0 ≤ � ≤ �, let
��
ℎ
be the set of �-nodes in �ℎ and let ��

ℎ
= |��

ℎ
|.

Note that ��
ℎ
= 0 for ℎ ≥ �0 by Lemma 6.8 (conditioned on the bounds in Lemma 6.7 holding). Now we observe

that values ��
ℎ
for � = 0, . . . , � give upper bounds on the number of important items at level ℎ. This follows from

the fact that the level-ℎ bufer represented by a node in ��
ℎ
contains at most �� items.

Observation 6.9. For any ℎ ≥ 0 and 0 ≤ � ≤ �, the level-ℎ bufers of the sketches represented by nodes in ��
ℎ
for

some � ≥ � contain at most
∑�

�=� �
�
ℎ
· �� important items in total (after performing compaction operations represented

by these nodes).

Next, in Observation 6.10, we show that the ��
ℎ
values can as well be used to lower bound the total number of

important items at level ℎ in topmost �-nodes. Combined with Lemma 6.11, this will give us a useful bound on∑
ℎ≥0

∑�
�=0 2

ℎ · ��
ℎ
· �� at the very end of the analysis.

In the observation, we also take into account items added to level ℎ from compactions (at level ℎ − 1 if ℎ > 0)
that are not represented by a node in the subtree of a node in �ℎ . Namely, for ℎ > 0 and any 0 ≤ � ≤ �, let ��

ℎ
be

the number of items added to level ℎ during merge operations represented by �-nodes that are not in the subtree
of a node in �ℎ . For ℎ = 0, we deine ��0 = 0 for any � .

Observation 6.10. For any level ℎ, the level-ℎ bufers of topmost �-nodes contain at least
∑�

�=0 �
�
ℎ
· ��/2 + ��

ℎ
important items.

Proof. Consider an �-node � ∈ ��
ℎ
and the level-ℎ bufer represented by � . As the level-ℎ compaction represented

by � removes one or more important items and as � is an �-node, there must be at least ��/2 important items in
the level-ℎ bufer that remain there after the compaction operation is done. Furthermore, by condition (ii) in
the deinition of �ℎ , these ��/2 important items are not removed from the level-ℎ bufer and the sets of these
��/2 important items for two nodes �, � ′ ∈ �ℎ are disjoint. Finally, the ��

ℎ
items added to level ℎ during merge
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operations represented by �-nodes that are not in the subtree of a node in �ℎ are disjoint (w.r.t. index �) and
distinct from items in the bufers of nodes in �ℎ , which shows the claim. □

Note that using Observation 6.10, the values of
∑�

�=0 �
�
ℎ
·��/2+��ℎ give a lower bound on the rank of � estimated

by the topmost �-nodes (if ℓ = �, then the only topmost �-node is the root of the merge tree � ). We now
complement it with an upper bound showing that the rank of � estimated by the topmost �-nodes cannot be too
far from R(�). This can be seen as an initial bound on the error which will be used within the proof of the inal,
more reined bound on the variance of Err(�).

Lemma 6.11. Conditioned on the bounds in Lemma 6.7 holding, with probability at least 1 − � it holds that

�︁

�=0

��︁

ℎ′=0

2ℎ
′ ·

(
��ℎ′ ·

��

2
+ ��ℎ′

)
≤ 2 R(�) (37)

Proof. Note that ��
ℎ
= 0 for ℎ ≥ �� and that there is no important compaction represented by an �-node at

any level ℎ ≥ �� by Lemma 6.8. Let Err≤� (�) be the error introduced by compactions represented by �-nodes
for � ≤ �. By Observation 6.10, it is suicient to show that Err≤� (�) ≤ R(�). Recall that Err≤� (�) is a zero-mean
sub-Gaussian random variable. Similarly as in Lemma 6.7, we deine

� ′
0 = max

(
0, �0 −

⌈
log2

︂
ln

1

�

⌉)
.

We split Err≤� (�), the error of the rank estimate for�, into two parts (we drop the superscript ≤ � for simplicity):

Err′ (�) =
� ′

0−1︁

ℎ=0

2ℎ · Errℎ (�) and Err′′ (�) =
�0−1︁

ℎ=� ′
0

2ℎ · Errℎ (�) .

Note that Err≤� (�) = Err′ (�) + Err′′ (�); we bound both these parts by 1
2 R(�) w.h.p., starting with Err′ (�). If

� ′
0 = 0, then clearly Err′ (�) = 0. Otherwise, we analyze the variance of the zero-mean sub-Gaussian variable

Err′ (�) as follows:

Var[Err′ (�)] =
� ′

0−1︁

ℎ=0

22ℎ · Var[Errℎ (�)]

≤
� ′

0−1︁

ℎ=0

22ℎ · Rℎ (�)

≤
� ′

0−1︁

ℎ=0

22ℎ · 2−ℎ+2 R(�)

≤ 2�
′
0+2 · R(�) = 2�

′
0−�0+2 · 2�0 · R(�) ≤ 2�

′
0−�0+6 · R(�)

2

�0
≤ R(�)2

8 ln 1
�

where the irst inequality is using a simple bound of Var[Errℎ (�)] ≤ Rℎ (�), the second follows from Lemma 6.7,
and the fourth inequality uses 2�0 ≤ 24 · R(�)/�0 by (34), and the last inequality follows from the deinition of

� ′
0 and �0 ≥ 29 ·

︁
ln(1/�) by (19). We again apply Fact 4.3 to obtain

Pr

[
Err′ (�) > 1

2
R(�)

]
< exp

(
−

R(�)2 · ln 1
�
·

4 · 2 · 1
8 R(�)2

)
= exp

(
− ln

1

�

)
= � .

J. ACM



Relative Error Streaminguantiles • 37

Finally, we use deterministic bounds to analyze Err′′ (�), using that we only care about �-nodes for � ≤ � As in
Lemma 6.7, let � (ℎ) ≤ � be the largest integer � satisfying 2−ℎ+2 R(�) > ��/2. Then

Err′′ (�) ≤
�0−1︁

ℎ=� ′
0

2ℎ ·�≤�
ℎ

≤
�0−1︁

ℎ=� ′
0

2ℎ · 4 Rℎ (�)
�� (ℎ)

≤
�0−1︁

ℎ=� ′
0

2ℎ · 2
−ℎ+4 R(�)
�� (ℎ)

=

�0−1︁

ℎ=� ′
0

24 · R(�)
�� (ℎ)

≤ R(�)
2

,

where the second inequality is by Corollary 2, the third by Lemma 6.7, and the last inequality uses that �� (� ′
0 ) ≥ 25

and that the values of �� (ℎ) for ℎ ∈ [� ′
0, �0 − 1] increase exponentially with increasing ℎ (by a factor of

√
2),

which follows from similar arguments as in the paragraph below (36) in Lemma 6.7. □

The following technical lemma bounds the variance on each level in a somewhat diferent way than in the
streaming setting (Section 4). The idea is to bound the variance in terms of the ��

ℎ
values so that we can then use

Observation 6.10. To this end, we irst use Observation 6.9 to bound Rℎ (�) in terms of the ��
ℎ
values, using the

following observation: For each important item at level ℎ + 1, there are roughly two important items removed
from level ℎ. Here, łroughlyž refers to the fact that each level-ℎ compaction operation that promotes � ≥ 1
important items removes at most 2� + 1 ≤ 3� important items from the level-ℎ bufer. Applying this observation

together with Observation 6.9, we show by an induction on ℎ that R[0,�]
ℎ

(�) ≤ ∑�
�=0

∑
ℎ′≥ℎ 2 · 3ℎ

′−ℎ · (��
ℎ′ · �� + ��ℎ′ ).

Recall that R[�,�]
ℎ

(�) is the number of important items that are either removed from level ℎ during a compaction
represented by an �-node for � ≤ � ≤ �, or remain at the level-ℎ bufer represented by a node � ∈ ��

ℎ
for � ≤ � ≤ �

(after the compaction operation represented by � is done). Note that this provides alternative rank bounds to
Lemma 6.7.
Then we apply Lemma 6.4 to get our variance bound, which however brings additional technical diiculties.

To overcome them, we use a careful proof by induction over � ∈ [0, �]. We will only focus on �-nodes with � ≤ �

and on levels ℎ ≥ ��+1; the error from remaining nodes and levels will be analyzed later.

Lemma 6.12. Conditioned on the bounds in Lemma 6.7 holding, for any ℎ ≥ ��+1, it holds that

Var[Errℎ (�)] ≤
�︁

�=0

︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (��
ℎ′ · �� + ��

ℎ′ )
��

. (38)

Proof. We irst note that by Lemma 6.8 (conditioned on Lemma 6.7), there is no important compaction at
any level ℎ ≥ ��+1 represented by an �-node for � > �. Therefore, our focus will again be solely on �-nodes for

� ≤ �. As outlined above, we irst bound R[�,�]
ℎ

(�) for any 0 ≤ � ≤ � and in particular, we prove by a łbackwardž
induction on ℎ = �,� − 1, . . . , ��+1 that the following inequality holds for any ixed 0 ≤ � ≤ �:

R[�,�]
ℎ

(�) ≤
�︁

�=�

( ︁
ℎ′≥ℎ+1

(
2 · 3ℎ′−ℎ · (��ℎ′ · �� + ��ℎ′ )

)
+ 2 · ��ℎ · ��

)
. (39)

At level ℎ = � , there is no important compaction, implying that R[�,�]
�

(�) = 0 and ��
�

= 0 for any � , which
establishes the base case.

Consider ℎ < � and suppose that (39) holds for ℎ + 1, i.e., we have that

R[�,�]
ℎ+1 (�) ≤

�︁

�=�

( ︁
ℎ′≥ℎ+2

(
2 · 3ℎ′−ℎ−1 · (��ℎ′ · �� + ��ℎ′ )

)
+ 2 · ��ℎ+1 · ��

)
. (40)
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To show (39), we irst bound the number of important items removed from level ℎ in terms of R[�,�]
ℎ+1 (�). For

brevity, let � [�,�]
ℎ+1 =

∑�
�=� �

�
ℎ+1. Note that there are at most R[�,�]

ℎ+1 (�) + �
[�,�]
ℎ+1 important items added to level ℎ + 1

during compactions represented by �-nodes for some � ∈ [�, �], since each such important item either gets
removed from level ℎ + 1 or remains in the level-(ℎ + 1) bufer represented by a node in ��

ℎ+1 for some � ∈ [�, �]
or is added to level ℎ + 1 during a merge operation represented by an �-node � for � ∈ [�, �] such that � is not
in the subtree of a node in �ℎ+1. Further, observe that each compaction which adds � important items to level
ℎ + 1 removes at most 2� + 1 important items from the level-ℎ bufer Ð more precisely, it removes 2� important
items if it is not important, and otherwise, it removes either 2� − 1, or 2� + 1 important items. The number of

important compactions represented by �-nodes for some � ∈ [�, �] is at most R[�,�]
ℎ

(�)/5 by Lemma 6.4 with � = �

and by �� ≥ 20 for any � ≤ �. Thus, the number of important items removed from level ℎ during compactions

represented by �-nodes for � ∈ [�, �] is upper bounded by 2 R[�,�]
ℎ+1 (�) + 2� [�,�]

ℎ+1 + (R[�,�]
ℎ

(�)/5).
By Observation 6.9, at most

∑�
�=� �

�
ℎ
·�� important items remain at the level-ℎ bufers of the sketches represented

by nodes in ��
ℎ
for some � ≥ �. We thus have that

R[�,�]
ℎ

(�) ≤ 2 R[�,�]
ℎ+1 (�) + 2� [�,�]

ℎ+1 + 1

5
· R[�,�]

ℎ
(�) +

�︁

�=�

��ℎ · �� .

After subtracting R[�,�]
ℎ

(�)/5 from both sides of this inequality, and then multiplying both sides of the inequality
by 5/4, we get

R[�,�]
ℎ

(�) ≤ 5

2
· R[�,�]

ℎ+1 (�) + 5

2
· � [�,�]

ℎ+1 + 5

4
·

�︁

�=�

��ℎ · ��

≤ 5

2
·
(

�︁

�=�

( ︁
ℎ′≥ℎ+2

(
2 · 3ℎ′−ℎ−1 · (��ℎ′ · �� + ��ℎ′ )

)
+ 2 · ��ℎ+1 · ��

))
+ 5

2
· � [�,�]

ℎ+1 + 5

4
·

�︁

�=�

��ℎ · ��

≤
�︁

�=�

( ︁
ℎ′≥ℎ+1

(
2 · 3ℎ′−ℎ · (��ℎ′ · �� + ��ℎ′ )

)
+ 2 · ��ℎ · ��

)
,

where the second inequality uses the induction hypothesis (40). Thus, (39) holds.
Using ��

ℎ
≥ 0, we simplify (39) and get

R[�,�]
ℎ

(�) ≤
�︁

�=�

︁
ℎ′≥ℎ

(
2 · 3ℎ′−ℎ · (��ℎ′ · �� + ��ℎ′ )

)
. (41)

Finally, we bound the variance Var[Errℎ (�)], which is at most
∑�

�=0�
�
ℎ
as��

ℎ
= 0 for � > � and ℎ ≥ ��+1,

by Lemma 6.8. Recall from Section 6.3 that��
ℎ
is the number of important compaction operations at level ℎ

represented by �-nodes. We prove by a łbackwardž induction on � = �, � − 1, . . . , 0 that the following inequality
holds for any ℎ ≥ ��+1:

�︁

�=�

��
ℎ ≤

�︁

�=�

1

��
·
︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (��ℎ′ · �� + ��ℎ′ ) . (42)
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Note that (42) for � = 0 gives (38) and that for ℎ = � , there is no (important) compaction, thus we have that
ℎ < � . Consider 0 ≤ � ≤ � and suppose that for any �′ > � (in the case � < �), we have that

�︁

�=�′
��

ℎ ≤
�︁

�=�′

1

��
·
︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (��ℎ′ · �� + ��ℎ′ ) . (43)

To show (42), we use Lemma 6.4 with � = � to get
∑�

�=��
�
ℎ
· �� ≤ 4 R[�,�]

ℎ
(�). Dividing this inequality by �� and

using (41) gives
�︁

�=�

��

��
·��

ℎ ≤
�︁

�=�

1

��
·
︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (��ℎ′ · �� + ��ℎ′ ) .

If � = �, this proves the base case of the induction. Otherwise, for every �′ > �, we add inequality (43) (that holds
by the induction hypothesis) multiplied by (��′−1 − ��′ )/�� (which is non-negative as ��′−1 ≥ ��′ ) to obtain

�︁

�=�

(
��

��
+

�︁

�′=�+1

��′−1 − ��′

��

)
·��

ℎ

≤
�︁

�=�

(
��

�� · ��
+

�︁

�′=�+1

��′−1 − ��′

�� · ��

)
·
︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (��ℎ′ · �� + ��ℎ′ ) . (44)

Note that the sum of fractions of �� ’s on the RHS of (44) equals 1/�� for any � , since the numerators in∑�
�′=�+1 (��′−1 − ��′ )/(�� · �� ) form a telescoping sum, which equals �� − �� . Similarly, the sum of fractions

of �� ’s on the LHS of (44) equals 1 for any � , so the LHS equals
∑�

�=��
�
ℎ
. This shows (42). □

Finally, we have all ingredients needed to show that we can match the streaming result of Theorem 3 even
when creating the sketch using an arbitrary sequence of merge operations without any advance knowledge about
the total size of the input. That is, we now prove the full mergeability claim of Theorem 1, which we restate for
convenience.

Theorem 1. For any parameters 0 < � ≤ 0.5 and 0 < � ≤ 1, there is a randomized, comparison-based, one-pass

streaming algorithm that, when processing a data stream consisting of � items from a totally-ordered universeU,

produces a summary � satisfying the following property. Given � , for any � ∈ U one can derive an estimate R̂(�) of
R(�) such that

Pr

[
|R̂(�) − R(�) | > � R(�)

]
< � ,

where the probability is over the internal randomness of the streaming algorithm. The size of � in memory words11 is

�

(
�−1 · log1.5 (��) ·

︂
log

1

�

)
.

Moreover, the summary produced is fully mergeable.

Proof. We condition on the bounds from Lemmas 6.7 and 6.11, which together hold with probability at least
1 − 2� . Using Lemma 6.12, we irst bound the error on levels ℎ ≥ ��+1, for which we have that��

ℎ
= 0 for � > �

11A memory word can store any universe item or an integer with� (log(� + |U | ) ) bits. We express all the space bounds in memory words.
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by Lemma 6.8:

︁
ℎ≥��+1

22ℎ · Var[Errℎ (�)] ≤
︁

ℎ≥��+1

22ℎ ·
�︁

�=0

︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (��
ℎ′ · �� + ��

ℎ′ )
��

=

�︁

�=0

︁
ℎ′≥��+1

ℎ′︁
ℎ=��+1

22ℎ
8 · 3ℎ′−ℎ · (��

ℎ′ · �� + ��
ℎ′ )

��

≤
�︁

�=0

︁
ℎ′≥��+1

22ℎ
′+5 · (��

ℎ′ · �� + ��
ℎ′ )

��
(45)

≤
�︁

�=0

��︁

ℎ′=��+1

2ℎ
′+9 · (��

ℎ′ · �� + ��
ℎ′ ) · R(�)

�� · ��
(46)

≤ �2 · R(�)
25 ln(1/�) ·

�︁

�=0

��︁

ℎ′=��+1

2ℎ
′ · (��ℎ′ · �� + ��ℎ′ ) , (47)

where inequality (45) follows from

ℎ′︁
ℎ=��+1

22ℎ · 8 · 3ℎ′−ℎ
= 8 · 3ℎ′ ·

ℎ′︁
ℎ=��+1

(
4

3

)ℎ
≤ 8 · 3ℎ′ · 3 ·

(
4

3

)ℎ′+1
= 8 · 4ℎ′+1

= 22ℎ
′+5 ,

inequality (46) uses that ��
ℎ′ = 0 and ��

ℎ′ = 0 for ℎ′ > �� by Lemma 6.8 and that 2�� ≤ 24 · R(�)/�� by (34), and
inequality (47) follows from the bound on �� · �� in (32).
By Lemma 6.11,

∑�
�=0

∑��

ℎ′=��+1
2ℎ

′ · (��
ℎ′ · �� + ��

ℎ′ ) ≤ 4 R(�), which implies our inal variance bound for levels

ℎ ≥ ��+1: ︁
ℎ≥��+1

22ℎ · Var[Errℎ (�)] ≤
�2 · R(�)2
8 ln(1/�) .

Let Err≥��+1 (�) be the error in the estimate of � from compactions at levels ℎ ≥ ��+1. Plugging the variance
bound into the tail bound for sub-Gaussian variables (Fact 4.3) we conclude that

Pr
[
| Err≥��+1 (�) | > � R(�)/2

]
< 2 exp

(
− �2 · R(�)2
8 · �2 · R(�)2/(8 ln(1/�))

)
= 2 exp

(
− ln

1

�

)
= 2� .

Next, we bound the error from compactions on levels below ��+1, denoted Err<��+1 (�). The variance of this
error is

��+1−1︁
ℎ=0

22ℎ · Var[Errℎ (�)] ≤
��+1−1︁
ℎ=0

22ℎ · Rℎ (�)

≤
��+1−1︁
ℎ=0

22ℎ · 2−ℎ+2 · R(�) (48)

≤ 2��+1+2 · R(�) ≤ 26 · R(�)
2

��+1
≤ �2 · R(�)2

8 ln(1/�)
where (48) uses Lemma 6.7 and the last two steps use (34) and (33), respectively (note that ��+1 ≥ ��). Using
Fact 4.3 as above we get that Pr

[
| Err<��+1 (�) | > � R(�)/2

]
< 2� . Rescaling � , this completes the calculation of

the failure probability.
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Lastly, we bound the size of the inal sketch � . Let � be the index of the highest level in � . Observe that
� ≤ ⌈log2 (�/�0)⌉. Indeed, since each item at level ℎ = ⌈log2 (�/�0)⌉ has weight 2ℎ , there are fewer than �0 items
inserted to level ℎ and consequently, level ℎ is never compacted (here, we also use that �0 ≤ �1 ≤ · · · ≤ �ℓ ).
Hence, there are � (log(��)) levels in � as �0 ≥ 1/�. Each level has capacity �ℓ = 2 · �ℓ · ⌈log2 (�ℓ/�ℓ )⌉, where
�ℓ = min{�ℓ , ��}, so the total memory requirement of � is

�

(
log(��) · �ℓ · log

(
�ℓ

�ℓ

))
= �

©­­«
log(��) · �̂︃

log(�ℓ/�̂)
· log

(
�ℓ

�ℓ

)ª®®¬
= �

©­«
log(��) · �̂ ·

√√√
log

(
�ℓ

�̂

)ª®¬
= �

(
�−1 · log1.5 (��) ·

︂
log

1

�

)
,

where we use that log2 (�ℓ/�ℓ ) = � (log(�ℓ/�̂)) = � (log(��ℓ )) = � (log(��)) (as �ℓ ≥ �̂/
︃
log2 (�ℓ/�̂), �̂ ≥ 1/�,

and �ℓ ≤ �2). □

7 ANALYSIS WITH EXTREMELY SMALL FAILURE PROBABILITY

In this section, we provide a somewhat diferent analysis of our algorithm, which yields an improved space bound
for extremely small values of � , at the cost of a worse dependency on �. In particular, we show a space upper
bound of � (�−1 · log2 (��) · log log(1/�)) for any � > 0. For simplicity, we only give the subsequent analysis in
the streaming setting, although we conjecture that an appropriately adjusted analysis in Section 6 would yield
the same bound under arbitrary merge operations. We further assume foreknowledge of (a polynomial bound
on) �, the stream length; this assumption can be removed in a similar fashion to Section 5. As a byproduct, we
show at the end of this section that this result implies a deterministic space upper bound of � (�−1 · log3 (��))
for answering rank queries with multiplicative error �, thus matching the state-of-the-art result of Zhang and
Wang [27].

To this end, we use Algorithm 2 with a diferent setting of � , namely,

� = 24 ·
⌈
1

�
· log2 ln

1

�

⌉
. (49)

We remark that, unlike in Section 4, the value of � does not depend on � directly (only possibly indirectly if � or �
is set based on �). Note that the analysis of a single relative-compactor in Section 3 still applies and in particular,
there are at most Rℎ (�)/� important steps at each level ℎ by Lemma 3.1.

We enhance the analysis for a ixed item � of Section 4. The crucial trick to improve the dependency on � from︁
ln(1/�) to log2 ln(1/�) is to analyze the sketch using Chernof bounds only below a certain level � ′ (�) and

provide deterministic bounds for levels � ′ (�) ≤ ℎ < � (�), where � (�) is deined as in Section 4 as the minimal
ℎ for which 22−ℎ R(�) ≤ �/2. The idea to analyze a few top levels deterministically was irst used by Karnin et
al. [15] and we apply it also in Section 6.4. We deine

� ′ (�) = max
(
0, � (�) − ⌈log2 ln(1/�)⌉

)
.

Next, we provide modiied rank bounds.
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Lemma 7.1. Assuming � (�) > 0, for any ℎ < � (�) it holds that Rℎ (�) ≤ 2−ℎ+2 R(�) with probability at least

1 − � .

Proof. We irst show by induction on 0 ≤ ℎ < � ′ (�) that Rℎ (�) ≤ 2−ℎ+1 R(�) with probability at least
1 − � · 2ℎ−� ′ (�) , conditioned on Rℓ (�) ≤ 2−ℓ+1 R(�) for any ℓ < ℎ. This part of the proof is similar to that of
Lemma 4.4. The base case holds by R0 (�) = R(�).
Consider 0 < ℎ < � ′ (�). As in Lemma 4.4,

Pr[Rℎ (�) > 2−ℎ+1 R(�)] ≤ Pr[�ℎ > 2−ℎ R(�)],
where �ℎ is a zero-mean sub-Gaussian variable with variance at most Var[�ℎ] ≤ 2−ℎ+1 · R(�)/� . We apply the
tail bound for sub-Gaussian variables (Fact 4.3) on �ℎ to get

Pr[�ℎ > 2−ℎ R(�)] < exp

(
− 2−2ℎ · R(�)2
2 · (2−ℎ+1 · R(�)/�)

)

= exp
(
−2−ℎ−2 · R(�) · �

)
= exp

(
−2−ℎ+� ′ (�)−6 · 2� (�)−� ′ (�) · 24−� (�) R(�) · �

)
≤ exp

(
−2−ℎ+� ′ (�)−6 · 2� (�)−� ′ (�) · � · �

)

≤ exp

(
−2−ℎ+� ′ (�) · ln 1

�

)
= �2

−� ′ (�)+ℎ ≤ � · 2−� ′ (�)+ℎ ,

where the second inequality uses 24−� (�) R(�) ≥ � (by the deinition of � (�)), the third inequality follows
from 2� (�)−� ′ (�) ≥ ln 1

�
and � · � ≥ �2 ≥ 26, and the last inequality uses � ≤ 0.5. This concludes the proof by

induction. Taking the union bound over levels ℎ < � ′ (�), it holds that Rℎ (�) ≤ 2−ℎ+1 R(�) for any ℎ < � ′ (�)
with probability at least 1 − � .

Finally, consider level ℎ ≥ � ′ (�) and condition on R� ′ (�)−1 (�) ≤ 2−�
′ (�)+2 R(�). (In the case � ′ (�) = 0, we

have R0 (�) = R(�).) Note that for any ℓ > 0, it holds that Rℓ (�) ≤ 1
2 · (1 + 1/�) · Rℓ−1 (�). Indeed, Rℓ (�) ≤

1
2 · (Rℓ−1 (�) + Binomial(�ℓ−1)) (see Equation 9) and Binomial(�ℓ−1) ≤ �ℓ−1 ≤ Rℓ−1 (�)/� by Lemma 3.1. That
is, regardless of the outcome of the random choices, we always obtain this weaker bound on the rank of an item.

By using this deterministic bound for levels � ′ (�) ≤ ℓ ≤ ℎ, we get

Rℎ (�) ≤ 2−ℎ+�
′ (�)−1 ·

(
1 + 1

�

)ℎ−� ′ (�)+1
· R� ′ (�)−1 (�)

≤ 2−ℎ+�
′ (�)−1 ·

(
1 + 1

�

)0.5·�
· 2−� ′ (�)+2 · R(�) ≤ 2−ℎ+2 · R(�) ,

where in the second inequality, we use ℎ − � ′ (�) + 1 ≤ 0.5 · � (which follows from ℎ < � (�) and � (�) −
� ′ (�) ≤ 2 · log2 ln 1

�
≤ 0.5 · �) together with the bound on R� ′ (�)−1 (�), and the last inequality uses the fact that

(1 + 1/�)0.5·� ≤
√
� < 2. □

We now state the main result of this section, which proves Theorem 2 assuming an advance knowledge of (a
polynomial upper bound on) the stream length �. This assumption can be removed using the technique described
in Section 5.

Theorem 4. Assume that (a polynomial upper bound on) the stream length � is known in advance. For any

parameters 0 < � ≤ 0.5 and 0 < � ≤ 1, let � be set as in (49). Then, for any ixed item �, Algorithm 2 with parameters
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� and � computes an estimate R̂(�) of R(�) with error Err(�) = R̂(�) − R(�) such that

Pr [| Err(�) | > � R(�)] < 3� .

The overall memory used by the algorithm is �
(
�−1 · log2 (��) · log log(1/�)

)
.

Proof. We condition on the bounds in Lemma 7.1, which together hold with probability at least 1 − � . We
split Err(�), the error of the rank estimate for �, into two parts:

Err′ (�) =
� ′ (�)−1︁

ℎ=0

2ℎ · Errℎ (�) and Err′′ (�) =
�︁

ℎ=� ′ (�)
2ℎ · Errℎ (�) .

Note that Err(�) = Err′ (�) + Err′′ (�); we bound both these parts by 1
2� R(�) w.h.p., starting with Err′ (�). If

� ′ (�) = 0, then clearly Err′ (�) = 0. Otherwise, we analyze the variance of the zero-mean sub-Gaussian variable
Err′ (�) as follows:

Var[Err′ (�)] =
� ′ (�)−1︁

ℎ=0

22ℎ · Var[Errℎ (�)]

≤
� ′ (�)−1︁

ℎ=0

22ℎ · Rℎ (�)
�

≤
� ′ (�)−1︁

ℎ=0

22ℎ · 2
−ℎ+2 R(�)

�

≤ 2�
′ (�)+2 · R(�)

�
= 2�

′ (�)−� (�)+2 · 2� (�) · R(�)
�

≤ 2�
′ (�)−� (�)+6 · R(�)

2

� · �

where the irst inequality is by Lemma 3.1, the second by Lemma 7.1, and the last inequality uses 2� (�) ≤ 24·R(�)/�,
which follows from the deinition of � (�).
We again apply Fact 4.3 to obtain

Pr

[
| Err′ (�) | > � R(�)

2

]
< 2 exp

(
− �2 · R(�)2

4 · 2 · 2� ′ (�)−� (�)+6 · R(�)2/(� · �)

)

= 2 exp
(
−�2 · � · � · 2−� ′ (�)+� (�)−9

)

≤ 2 exp
(
−2−� ′ (�)+� (�)

)
= 2 exp

(
− ln

1

�

)
= 2� ,

where the second inequality uses � · � ≥ 2 · �2 ≥ �−2 · 29.
Finally, we use deterministic bounds to analyze Err′′ (�). Note that

R� (�) (�) ≤ 2−� (�)+2 R(�) ≤ �/2,

where the irst inequality holds because we have conditioned on the bounds of Lemma 7.1 holding, and the
second inequality holds by the deinition of � (�). It follows that there is no important step at level � (�), and
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hence no error introduced at any level ℎ ≥ � (�), i.e., Errℎ (�) = 0 for ℎ ≥ � (�). We thus have

Err′′ (�) =
� (�)−1︁
ℎ=� ′ (�)

2ℎ · Errℎ (�)

≤
� (�)−1︁
ℎ=� ′ (�)

2ℎ · Rℎ (�)
�

≤
� (�)−1︁
ℎ=� ′ (�)

2ℎ · 2
−ℎ+2 R(�)

�
≤

� (�)−1︁
ℎ=� ′ (�)

� R(�)
2 · ⌈log2 ln 1

�
⌉
≤ � R(�)

2
,

where the irst inequality is by Lemma 3.1, the second by Lemma 7.1, the third inequality follows from the
deinition of � in (49), and the last step uses that the sum is over� (�) −� ′ (�) ≤ ⌈log2 ln 1

�
⌉ levels. This concludes

the analysis of Err(�) and the calculation of the failure probability.
Regarding the space bound, there are at most � ≤ ⌈log2 (�/�)⌉ + 1 ≤ log2 (��) relative-compactors by

Observation 4.7, and each requires � = 2 · � · ⌈log2 (�/�)⌉ = �
(
�−1 · log log(1/�) · log(��)

)
memory words. □

The proof of Theorem 4 implies a deterministic sketch of size � (�−1 · log3 (��)), which matches the state-of-
the-art result by Zhang and Wang [27]. Indeed, when log2 ln(1/�) ≥ log2 (��) ≥ � (i.e., � < exp(−��)), we have
� ′ (�) = 0, and in this case, inspecting the proofs of Lemma 7.1 and Theorem 4 yields that the entire analysis
holds with probability 1. In more detail, when � ′ (�) = 0, the bounds in Lemma 7.1 hold with probability 1, and
the quantity Err′ (�) in the proof of Theorem 4 is deterministically 0, while the bound on Err′′ (�) in the proof of
Theorem 4 holds with probability 1 as well. This is suicient to conclude that the error guarantee holds for any
choice of the algorithm’s internal randomness. The resulting algorithm is reminiscent of deterministic algorithms
for the uniform quantiles problem [17].

8 DISCUSSION AND OPEN PROBLEMS

For constant failure probability � , we have shown an � (�−1 · log1.5 (��)) space upper bound for relative error
quantile approximation over data streams. Our algorithm is provably more space-eicient than any deterministic

comparison-based algorithm [8], and is within an �̃
(︁

log(��)
)
factor of the known lower bound for randomized

algorithms (even non-streaming algorithms, see Appendix A). Moreover, the sketch output by our algorithm is
fully mergeable, with the same accuracy-space trade-of as in the streaming setting, rendering it suitable for a
parallel or distributed environment. The main open question is to close the aforementioned �̃ (

︁
log(��))-factor

gap.
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A A LOWER BOUND FOR NON-COMPARISON BASED ALGORITHMS

Cormode and Veselý [8, Theorem 6.5] proved an Ω(�−1 · log2 (��)) lower bound on the number of items stored by
any deterministic comparison-based streaming algorithm for the relative-error quantiles problem. Below, we
provide a lower bound which also applies to oline, non-comparison-based randomized algorithms, but at the
(necessary) cost of losing a log(��) factor in the resulting space bound. This result appears not to have been
explicitly stated in the literature, though it follows from an argument similar to [5, Theorem 2]. We provide
details in this appendix for completeness.

Theorem 5. For any randomized algorithm that processes a data stream of items from universe U of size

|U| ≥ Ω(�−1 · log(��)) and outputs a sketch that solves the all-quantiles approximation problem for multiplicative

error � with probability at least 2/3 requires the sketch to have size Ω
(
�−1 · log(��) · log(� |U|)

)
bits of space.

Proof. We show that any multiplicative-error sketch for all-quantiles approximation can be used to losslessly

encode an arbitrary subset � of the data universe U of size |� | = Θ
(
�−1 log(��)

)
. This requires log2

( |U |
|� |

)
=

Θ
(
log(( |U|/|� |) |� | )

)
= Θ ( |� | log (� |U|)) bits of space. The theorem follows.

Let ℓ = 1/(8�) and � = log2 (��); for simplicity, we assume that both ℓ and � are integers. Let � be a subset
of U of size � := ℓ · � . We will construct a stream � of length less than ℓ · 2� ≤ � such that a sketch solving
the all-quantiles approximation problem for � enables reconstruction of � . To this end, let {�1, . . . , �� } denote
the elements of � in increasing order. Consider the stream � where items �1, . . . , �ℓ each appear once, items
�ℓ+1, . . . , �2ℓ appear twice, and in general items ��ℓ+1, . . . , � (�+1)ℓ appear 2

� times, for � = 0, . . . , � − 1. Let us refer
to all universe items in the interval [��ℓ+1, � (�+1)ℓ ] as łphase-�ž items.
The construction of � means that the multiplicative error � in the estimated rank of any phase-� item is at

most 2�+1/8 < 2�−1. This means that for any phase � ≥ 0 and integer � ∈ [1, ℓ], one can identify item ��ℓ+� by
inding the smallest universe item whose estimated rank is strictly greater than (2� − 1) · ℓ + 2� · � − 2�−1. Here,
(2� − 1) · ℓ is the number of stream updates corresponding to items in phases 0, . . . , � − 1, while 2�−1 is an upper
bound on the error of the estimated rank of any phase-� item. Hence, from any sketch solving the all-quantiles
approximation problem for � one can obtain the subset � , which concludes the lower bound. □

Theorem 5 is tight up to constant factors as an optimal summary consisting of � (�−1 · log(��)) items can
be constructed oline. For ℓ = �−1, this summary stores all items of rank 1, . . . , 2ℓ appearing in the stream and
assigns them weight one, stores every other item of rank between 2ℓ + 1 and 4ℓ and assigns them weight 2, stores
every fourth item of rank between 4ℓ + 1 and 8ℓ and assigns them weight 4, and so forth. This yields a weighted
coreset � for the relative-error quantiles approximation, consisting of |� | = Θ (ℓ · log(��)) many items. Such a set

� can be represented with log2
( |U |
|� |

)
= Θ

(
�−1 · log(��) · log(� |U|)

)
many bits.

B PROOF OF COROLLARY 1

Here we prove Corollary 1, restated for the reader’s convenience.

Corollary 1 (All-uantiles Approximation). The error bound from Theorem 1 holds for all � ∈ U simulta-

neously with probability 1 − � when the size of the sketch in memory words is

�
©­
«
�−1 · log1.5 (��) ·

︄
log

(
log(��)

��

)ª®¬
.

Proof. Let �∗ be the oline optimal summary of the stream with multiplicative error �/3, i.e., a subset of items
in the stream such that for any item � , there is � ∈ �∗ with | R(�) − R(�) | ≤ (�/3) · R(�). Here, � is simply the
closest item to � in the total order that is an element of �∗. Observe that �∗ has � (�−1 · log(��)) items; see the
remark below Theorem 5 in Appendix A for a construction of �∗.
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Thus, if our sketch with parameter �′ = �/3 is able to compute for any � ∈ �∗ a rank estimate R̂(�) such that
|R̂(�)−R(�) | ≤ (�/3) ·R(�), then we can approximate R(�) by R̂(�) using� ∈ �∗ with | R(�)−R(�) | ≤ (�/3) ·R(�)
and the multiplicative guarantee for � follows from

|R̂(�) − R(�) | ≤ |R̂(�) − R(�) | + | R(�) − R(�) |

≤ �

3
· R(�) + �

3
· R(�)

≤
( �
3
· (1 + �

3
) + �

3

)
· R(�)

≤ � · R(�) .
It remains to ensure that our algorithm provides a good-enough rank estimate for any � ∈ �∗. We apply

Theorem 1 with error parameter �′ = �/3 and with failure probability set to � ′ = �/|�∗ | = Θ (� · �/log(��)).
By the union bound, with probability at least 1 − � , the resulting sketch satisies the (1 ± �/3)-multiplicative
error guarantee for any item in �∗. In this event, the previous paragraph implies that the (1 ± �)-multiplicative
guarantee holds for all � ∈ U. The space bound follows from Theorem 1 with �′ and � ′ as above. □
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