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ABSTRACT

Skeleton-based motion capture and visualization is an important

computer vision task, especially in the virtual reality (VR) envi-

ronment. It has grown increasingly popular due to the ease of

gathering skeleton data and the high demand of virtual socializa-

tion. The captured skeleton data seems anonymous but can still

be used to extract personal identifiable information (PII). This can

lead to an unintended privacy leakage inside a VR meta-verse. We

propose a novel linkage attack on skeleton-based motion visual-

ization. It detects if a target and a reference skeleton are the same

individual. The proposed model, called Linkage Attack Neural Net-

work (LAN), is based on the principles of a Siamese Network. It

incorporates deep neural networks to embed the relevant PII then

uses a classifier to match the reference and target skeletons. We

also employ classical and deep motion retargeting (MR) to cast

the target skeleton onto a dummy skeleton such that the motion

sequence is anonymized for privacy protection. Our evaluation

shows that the effectiveness of LAN in the linkage attack and the

effectiveness of MR in anonymization. The source code is available

at https://github.com/Thomasc33/Linkage-Attack
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1 INTRODUCTION

Visualizing human motion in virtual reality (VR) combines motion

capture and virtual reality to create a realistic simulation of a per-

son’s movements. This allows for detailed analysis of movements,

identification of areas for improvement, and development of train-

ing programs. It has numerous applications in fields such as sports,

physical therapy, and entertainment [10, 18, 25]. Human motion
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visualization may reveal sensitive data such as body measurements,

movement patterns, and potentially even biometric data [17]. It is

important to protect the personal data and identity of individuals

who are interacting in virtual reality meta-verse.

Motion capture technologies like Kinect and Perception Neuron

output accurate skeleton data for visualization in the VR environ-

ment. Such skeleton-based motion visualization contains limited

personal information and seem łanonymized". However, several

studies prove that personal identification from skeleton data has

good performance because of the recent development in deep neu-

ral networks. [21] combines gait recognition and neural networks

to identify individuals using the skeleton information from Kinect.

[26] uses a multi-task Recurrent Neural Networks (RNN) to si-

multaneously predict person ID and action class. [16] uses Graph

Convolutional Networks (GCN) based models to identify individ-

ual’s gender and identity. The limitations of these identification

is that they use ID for supervised learning, where the attacking

model tries to re-identify individuals by predicting ID number. It

requires the adversarial attacker has access to a large amount of

skeleton data from the same person. It also does not work well for

individuals who are not included in the adversary’s training.

A linkage attack, structured like a Siamese Neural Network [5],

allows adversaries to identify sensitive or private information about

an individual by linking together anonymized information and pub-

licly available information. Siamese Networks has been used for

facial recognition [22, 28], signature verification [4, 7, 29], and ob-

ject tracking [3, 8, 11, 12] among other tasks. In terms of motion

visualization, the target skeleton data is visualized in VR and acces-

sible to the adversary. The adversary can easily extract reference

skeleton data from public videos. Then through linkage attacks, the

adversary can identify the individuals by matching the target skele-

ton and the reference skeleton. Unlike the supervised personal ID

classification, the linkage attack model applies to any individuals,

even the ones it has not seen before.

In this work, we propose a novel framework of Linkage Attack

Neural Networks, called LAN, to attack on skeleton-based motion

visualization. LAN is inspired by recent development of using deep

learning for action recognition on the spatio-temporal skeleton

sequences with various network structures, including Recurrent

Neural Networks (RNN) [9, 19, 20, 23, 31, 34], Convolutional Neural

Networks (CNN) [13, 15, 27, 32], and Graph Convolutional Net-

works (GCN) [20, 24, 30]. Our proposed LAN model includes two

Semantic-Guided Encoders (SGE) and and a matching classifier.

The SGE obtain embeddings from the target and reference skele-

tons separately. SGE consists of a GCN-based joint-level module

and a CNN-based frame-level module. The final embedding from

SGE encodes personal identifiable information (PII) from both the

joint-level and the frame-level. The matching classifier takes the em-

beddings of the target and reference skeleton motions and predicts

whether or not they are from the same individual.
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In addition to the linkage attack model, we propose to use mo-

tion retargeting (MR) for privacy protection. Motion retargeting

methods transfer the motion from one character to another while

maintaining the overall timing and movement patterns. We employ

classical and deep motion retargeting methods to project the private

target skeleton onto a normalized dummy character to mask the

personal identity. Classical motion retargeting, utilizing inverse

and forward kinematics, aligns the joints of the dummy character

with those of the target character and subsequently maps the mo-

tion by casting joint rotations [6]. Deep motion retargeting trains

a deep neural network to decompose temporal motion sequences

into skeleton-agnostic dynamic motion and static skeleton [2].

To evaluate the effectiveness of our proposed linkage attack

model, we experiment on a large widely-used skeleton dataset

NTU120 [14]. The experiment results show that LAN is effective in

detecting PII leakage in the skeleton data. It generalizes well to un-

seen characters and action classes. Even if the existing anonymiza-

tion methods, including motion retargeting, defends the linkage

attack, they suffer a big loss in utility.

We summarize our contributions as follows: (1) To the best of our

knowledge, this is the first work to perform linkage attacks on the

skeleton data. (2) We developed a deep linkage attack model, LAN,

which uses semantic guided encoders to encode PII from skeleton

sequences and then conducts comparison. (3) We also show that

motion retargeting works as a general privacy protection method.

2 METHODOLOGY

2.1 Problem Statement

A 3D skeleton data s ∈ R𝑁×𝑀×3 captures the human motion with

3D coordinates s = (𝑥𝑚𝑛 , 𝑦𝑚𝑛 , 𝑧𝑚𝑛 )𝑀×𝑁 of 𝑀 joins over 𝑁 frames.

The skeleton data is visualized in VR so the motion action informa-

tion can be recognized. The skeleton visualization is anonymous

in VR or at least reveals limited PII. The adversary can use public

skeleton data to train a linkage attack model. The goal of the link-

age attack model is to determine whether two skeleton sequences

represent the same person when it is given an anonymous target

skeleton s𝑇 and a reference skeleton s𝑅 with known identity.

2.2 Linkage Attack Neural Networks

We propose a Linkage Attack Neural Networks, called LAN, for link-

age attacks on skeleton-based motion visualizations. Figure 1 shows

the overall end-to-end framework. It consists of two Semantic-

Guided Encoders 𝐸𝑇 , 𝐸𝑅 and a matching classifier 𝐶 . Specifically,

SGE 𝐸𝑇 and 𝐸𝑅 takes in the target skeleton s𝑇 and the reference

skeleton s𝑅 , respectively, to extract low-dimensional embeddings

e𝑇 , e𝑅 , which encodes personal identifiable information from both

the static skeleton joint structure and the dynamic dependency. The

classifier 𝐶 takes the embeddings e𝑇 , e𝑅 and makes the prediction

𝑦 on whether the target and reference belong to the same person.

Semantic-Guided Encoder (SGE). The Semantic-Guided En-

coder is inspired by a state-of-the-art action recognition model

known as the Semantic Guided Neural Network (SGN) [33]. SGE

explicitly introduce the high level semantics, joint type and frame

index, to improve the representation capability of learned features.

SGE first represents the skeleton sequence s with a dynamics rep-

resentation (DR). Then the joint-level module (JM) exploit PII from

the correlations of joints in the same frame, while the frame-level

module (FM) exploits PII from the correlations across frames.

Dynamics Representation (DR). For a given joint s𝑚𝑛 , we define

its dynamics by the position p𝑚𝑛 = (𝑥𝑚𝑛 , 𝑦𝑚𝑛 , 𝑧𝑚𝑛 )𝑁 ∈ R3 in the 3D

coordinate system, and the velocity v𝑚𝑛 = p𝑚𝑛 − p𝑚
𝑛−1. Both p𝑚𝑛

and v𝑚𝑛 go through two fully connected (FC) layers with ReLU acti-

vation functions and end up as high-dimensional representations

p̃𝑚𝑛 , ṽ𝑚𝑛 . The final dynamics representation fuses them together by

summation as r𝑚𝑛 = p̃𝑚𝑛 + ṽ𝑚𝑛 ∈ R𝑑1 , where 𝑑1 is the dimension of

the joint representation.

Joint-level Module (JM). The Joint-level Module (JM) adopts

GCNs to explore the correlations for the structural skeleton data.

After DR, we get s = (r𝑚𝑛 )𝑀×𝑁 . The joint type𝑚 is converted to

a representation with a dimension of 𝑑1, and then concatenated

with r𝑚𝑛 . The semantic representations for joint types are shared

for both 𝐸𝑇 and 𝐸𝑅 . Thus, the joint representation of joint type

𝑚 at frame 𝑛 with both the dynamics and semantics of joint type

becomes r̃𝑚𝑛 ∈ R2𝑑1 . All the joints at frame 𝑛 is represented by

𝑅𝑛 ∈ R𝑀×2𝑑1 . The edge weight from the joint 𝑖 to joint 𝑗 in the

same frame 𝑛 is modeled by their affinity in the embedded space

as 𝑎𝑛 (𝑖, 𝑗) = 𝜃 (r̃𝑖𝑛)
𝑇𝜙 (r̃

𝑗
𝑛), where 𝜃 and 𝜙 denote two transforma-

tion functions, each implemented by an FC layer. The adjacency

matrix 𝐴𝑛 is obtained by computing the affinities of all the joint

pairs at frame 𝑛 and then normalization with Softmax. After the

residual graph convolution layer, the final output of JM at frame 𝑛 is

𝑅′𝑛 = 𝐴𝑛𝑅𝑛𝑊1 + 𝑅𝑛𝑊2 ∈ R𝑑2 , where𝑊1 and𝑊2 are transformation

matrices. The weights are shared for different temporal frames.

Frame-level Module (FM). The Frame-level Module (FM) adopts

CNNs to explore the correlations across frames. After JM, we get

s = (𝑟 ′𝑚𝑛 )𝑀×𝑁 . The frame index 𝑛 is converted to a representation

with a dimension of 𝑑2, and then fused by summation with r𝑚𝑛 . The

semantic representations for frame indices are shared for both 𝐸𝑇
and 𝐸𝑅 . Thus, the joint representation of joint type𝑚 at frame 𝑛

with both the learned feature and semantics of frame index become

r̃′
𝑚
𝑛 ∈ R𝑑2 . A Spatial MaxPooling (SMP) layer is applied to aggregate

the information across the joints to a dimension of 𝑁 × 1 × 𝑑2. A

temporal CNN layer is applied to model the dependencies of frames.

Then another CNN layer maps it to a high dimensional space of 𝑑3
with a kernel size of 1. In the end, a Temporal MaxPooling (TMP)

layer is applied to aggregate the information of all frames. The final

output of FM at sequence level is e ∈ R𝑑3 . It encodes PII from the

correlations of joints and the dependencies of frames.

Matching Classification. The matching classifier is a neural

network to compare the extracted PII in the embeddings e𝑇 and e𝑅 .

If the PII belongs to the same person, it predicts matching 𝑦 = 0;

otherwise, 𝑦 = 1. The classifier𝐶 consists of a 1D convolution layer,

two batch normalization layers, and three fully connected layers.

The last FC layer uses Sigmoid activation function for classification.

Model Training. To train the LAN model, we construct paired

training data (s𝑇 , s𝑅, 𝑦)
|𝑆 | through positive and negative sampling.

Positive sampling selects a target skeleton sequence s𝑇 of an indi-

vidual, then randomly selects another skeleton sequence from the

same person as the reference skeleton s𝑅 . The pair is assigned a

matching label 𝑦 = 1. Negative sampling selects a target skeleton

sequence s𝑇 of an individual, then randomly selects a skeleton se-

quence from any other person as the reference skeleton s𝑅 . The pair
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Figure 1: The framework of LAN. It consists of two Semantic-Guided Encoders and a Matching Classifier.

is assigned a matching label 𝑦 = 0. We maintain balanced sampling

rates to maximize the classifier performance of the classifier.

The Semantic Guided Encoders (SGEs) are pre-trained for iden-

tity classification. The SGE alone is followed by a fully connected

layer with Softmax to predict the personal ID. The learned em-

beddings from the pre-trained SGEs can already capture the PII

correlations of joints within and across frames. During the LAN

training, the two SGEs 𝐸𝑇 , 𝐸𝑅 are guided to extract PII related cor-

relations for the purpose of linkage attack. The output embeddings

e𝑇 and e𝑅 are then concatenated and passed to the classifier. The

loss function of LAN is a binary cross entropy loss𝐶𝐸 (𝑦, 𝑓 (s𝑇 , s𝑅)),

where 𝑓 (s𝑇 , s𝑅) = 𝐶 (𝐸𝑇 (s𝑇 ), 𝐸𝑅 (s𝑅)).

2.3 Anonymization through Motion Retargeting

To defend against a linkage attack, visualizing the raw skeleton

data without personal ID is not enough. To truly anonymize the

skeleton, the indirect information in the skeleton motion sequence

related to PII should be removed. Previous study [16] creates an

adversarial training-based anonymization framework for skeleton

action recognition. It modifies the skeleton data to confuse a per-

sonal ID classifier and a gender classifier while maintaining the

performance of an action recognition model. The limitation of such

adversarial training-based defense includes: (1) personal ID classifi-

cation only works on identities seen by themodel, but linkage attack

works on skeletons of unseen identities and unseen action class.

(2) Adversarial training is confined to the seen actions, individuals,

and attackers. (3) The anonymizer only preserves the performance

of the included action recognition model. Instead of adversarial

training, we propose to use motion retargeting for anonymization.

Motion retargeting is not restricted to specific characters, actions,

or models that have been previously encountered. It can be easily

generalized to any skeleton data, making it a versatile and comple-

mentary defense against linkage attacks.

To use motion retargeting for skeleton anonymization, we cast

all the raw skeleton data to a łdummy" character. Then we only use

the transformed new skeleton for motion visualization in VR. The

spatial structure of the skeleton is transformed, which effectively

mitigates the indirect PII related to unique spatial attributes. At the

same time, the essence of the motion pattern remains largely intact,

ensuring that the anonymized data is still valuable for downstream

applications. We employ both classical and deep motion retargeting

in this work. Classical MR approach is grounded in the principle

of Inverse and Forward Kinematics [6, Chapter 4-5], which allows

for the calculation of each joint’s XYZ position, given a new joint

length and XYZ orientation. By preserving the joint rotations it

retains a majority of the temporal data in the skeleton’s movement

while casting the motion sequence from one character to a new

character. The benefits of classic approach includes the lack of

formal training required and a relatively lower computational cost

during evaluation. Recently, deep learning based motion retargeting

is developed [1, 2]. It trains a deep neural network to extract a high-

level latentmotion representation, which is invariant to the skeleton

geometry. It decompose temporal motion sequences into explicit

latent representations of dynamic motion and static skeleton. Then

it re-combines the motion with novel skeletons, and decodes a

retargeted temporal sequence. Due to limited space, please check

the references for implementation details of the MR approaches.

3 EXPERIMENTS

3.1 Experiment Setup

DatasetWe use the NTU RGB+D 60+120 dataset [14], which is a

large-scale dataset of human motions captured with the Microsoft

Kinect v2 sensor. The dataset was created in two parts, NTU60 (40

actors and 60 actions) and NTU120 (66 new actors and 60 new ac-

tions). The skeleton contains position and rotation information for

25 joints. Only the position information is used for our experiments.

Linkage Attack. Implementation details. To train the Linkage

Attack Neural Networks (LAN), we utilize the entire NTU60 dataset,

which has 40 actors. For testing, we employ the 66 unseen actors

from the NTU120 dataset. We use a default sampling size of 400

per target actor for both the positive sampling (featuring the same

actor) and negative sampling (featuring different actors), yielding

32,000 training samples and 52,800 testing samples.

Baselines. In Table 1, we compare the performance of the pro-

posed LAN model to two baselines. (1) A frame-wise random forest

(RF) is trained on 1.2 million samples and tested on 2.07 million sam-

ples. Through hyperparameter tuning, we select 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 = 100

and𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 10. (2) A multi-layer perceptron model (MLP) is

trained on 400,000 samples and tested it on 690,000 samples. The

MLP model had 4 layers with sizes of [1000, 100, 100, 1]. The input

is a flattened sequence of 50 frames.

Anonymization. Implementation details. Classical motion retar-

geting (CMR) does not require training. For the dummy skeleton,
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Table 1: Linkage attack performance comparison

Attack Model Precision Recall F-1 score

LAN 0.6830 0.8138 0.7427

MLP 0.7059 0.6852 0.6954

RF 0.7346 0.7708 0.6576

we use an average skeleton based on all the actors in the NTU60+120

dataset, which averages on the Euclidean distances along the joint

paths. The motion from the original skeleton identity is retargeted

to the average dummy skeleton while preserving the overall timing

and movement. Deep motion retargeting (DMR) is based on [2]. By

encoding static and dynamic data, swapping the static data, then

decoding we achieve a retargeted skeleton. We use a random actor

as the dummy skeleton to cast all of our sequence data to.

Baselines.We compare the MR anonymizer with the UNet and

ResNet anonymizers from [16]. Both are trained on the NTU60

dataset. Consequently, the additional NTU120 data remains unseen

to the anonymizer. This allows us to evaluate the performance of

the anonymizer on unseen data in terms of actors and actions. This

evaluation also aligns with the split of the linkage attack models.

Utility evaluation. Additionally, we compare the proposed MR

algorithm to the UNet and ResNet models by evaluating its utility

with action recognition. We use the SGN model [33] for action

recognition due to its state-of-the-art performance. An effective

anonymization method should strike a balance between privacy

protection and maintaining the utility of the data. This balance is

crucial for real-world applications, as overly aggressive anonymiza-

tion may render the data unusable for its intended purpose.

3.2 Experimental Results

Linkage Attack. Comparison against baselines. As shown in Table

1, the proposed LAN detects a significant leakage of private infor-

mation, with an F-1 score of 0.7427. The proposed LAN produce

an F-1 score that is 4.73% higher than MLP and 8.51% higher than

RF. This comparison demonstrates that the semantic guided em-

beddings by SGE effectively capture the PII encoded in the joints

correlations within and across frames. We also evaluated how the

end-to-end training of LAN improved the attack performance over

one with the SGE layers frozen after pre-training. The end-to-end

training yields an average of 2% higher F-1 score on testing.

Scalability analysis.We conduct the scalability analysis of LAN

on the availability of the training sample to the adversary. We vary

the sampling size per actor when constructing the training dataset

via positive and negative sampling. As seen in Figure 2, havingmore

training data available to the adversary yields a higher attacking

F-1 score. When the training data are limited, the LAN model still

has a relatively high F-1 score. For example, when the sampling

size reduce to 100 (25% of the default setting), LAN still achieves

0.7136 F-1 score. But it only takes 20% run time than the default.

Figure 2: Scalability analysis on sampling size per actor

Table 2: Linkage attack on the anonymized data

Data for Visualization Precision Recall F-1 score

Raw data 0.6830 0.8138 0.7427

UNet 0.5 1.0 0.6667

ResNet 0.5 1.0 0.6667

CMR 0.5004 0.9963 0.6662

DMR 0.5057 0.8977 0.6469

Anonymization. Defense against linkage attacks.We use anony-

mization on skeleton data to defend against the linkage attacks.

We compare the performance of four different anonymizer models:

UNet and ResNet from [16], CMR and DMR. To defend a linkage

attack, a perfect anonymizer should trick the attack model into

predicting all skeletons are the same, i.e., a Recall score of 1.0.

Table 2 shows the results of the linkage attack as well as the

performance of the anonymizer models. The base linkage attack

achieves an impressively high F-1 score at 74.27%. All anonymizer

models tested fool the LAN model into believing most actors were

the same, i.e., the anonymizers are great at hiding PII. This means

that the LAN model focuses more heavily on spatial rather than

temporal information. This aligns with human perception, as people

tend to recognize others based on appearance rather than move-

ment.

Action recognition utility. Upon testing the utility, we find the

raw data preserves all the action class information well. The SGN

action recognition model on the raw data achieves an accuracy of

94.25% on the NTU60+120 dataset. However, the anonymized data

preserves little utility about action recognition. The highest utility

for the anonymizer is DMR with an action recognition accuracy

of 4.55%, followed by CMR with an action recognition accuracy of

3.2%. The UNet and ResNet anonymizers both achieve an accuracy

of only 0.84%, which is about the same as random choices (1/120).

The high action recognition utility presented in [16] is only because

the anonymizer’s utility is only preserved when evaluated with

the pre-trained utility adversary. The DMR had the highest utility

but the lowest privacy performance indicating the necessity of

a privacy/utility trade off. It suggests that further research and

development are necessary to improve the utility performance of

anonymizers without compromising privacy protection.

4 CONCLUSION

In this work we presented a novel linkage attack method, called

Linkage Attack Neural Network (LAN), that detects if a target and

a reference skeleton are the same individual. We base the model on

the structure of Siamese Networks and utilize the semantic guided

encoders to create a low dimensional PII encoding. Our experiment

reveals that there is a privacy leakage that the LAN can detect.

We also present two MR based defense models and compare their

results to established anonymizer frameworks. In future works, we

will develop a deep motion retargeting framework purpose built to

mitigate PII leakage and anonymize the skeleton while preserving

its action recognition utility.

ACKNOWLEDGEMENTS

This work was supported in part by UNC Charlotte startup fund

and NSF grant 1840080.



Linkage Attack on Skeleton-based Motion Visualization CIKM ’23, October 21ś25, 2023, Birmingham, United Kingdom

REFERENCES
[1] Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-

Or, and Baoquan Chen. 2020. Skeleton-aware networks for deep motion retarget-
ing. ACM Trans. Graph. 39, 4 (2020), 62.

[2] Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen, and Daniel Cohen-Or.
2019. Learning character-agnostic motion for motion retargeting in 2D. ACM
Trans. Graph. 38, 4 (2019), 75:1ś75:14.

[3] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip
H. S. Torr. 2016. Fully-Convolutional Siamese Networks for Object Tracking. In
Computer Vision - ECCV 2016 Workshops - Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 9914), Gang Hua and Hervé Jégou (Eds.). 850ś865.

[4] Jane Bromley, James W. Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff
Moore, Eduard Säckinger, and Roopak Shah. 1993. Signature Verification Using
A "Siamese" Time Delay Neural Network. Int. J. Pattern Recognit. Artif. Intell. 7, 4
(1993), 669ś688.

[5] Davide Chicco. 2021. Siamese Neural Networks: An Overview. In Artificial
Neural Networks - Third Edition, Hugh M. Cartwright (Ed.). Methods in Molecular
Biology, Vol. 2190. Springer, 73ś94.

[6] Carl D. Crane, III and Joseph Duffy. 1998. Kinematic Analysis of Robot Manipula-
tors. Cambridge University Press. https://doi.org/10.1017/CBO9780511530159

[7] Sounak Dey, Anjan Dutta, Juan Ignacio Toledo, Suman K. Ghosh, Josep Lladós,
and Umapada Pal. 2017. SigNet: Convolutional Siamese Network for Writer
Independent Offline Signature Verification. CoRR abs/1707.02131 (2017).

[8] Xingping Dong and Jianbing Shen. 2018. Triplet Loss in Siamese Network for
Object Tracking. In Proceedings of the European Conference on Computer Vision
(ECCV).

[9] Yong Du, Wei Wang, and Liang Wang. 2015. Hierarchical recurrent neural
network for skeleton based action recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 1110ś1118.

[10] Sean Ryan Fanello, Ilaria Gori, Giorgio Metta, and Francesca Odone. 2013. Keep
it simple and sparse: real-time action recognition. J. Mach. Learn. Res. 14, 1 (2013),
2617ś2640.

[11] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang. 2017.
Learning Dynamic Siamese Network for Visual Object Tracking. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV).

[12] Anfeng He, Chong Luo, Xinmei Tian, andWenjun Zeng. 2018. A Twofold Siamese
Network for Real-Time Object Tracking. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018. Computer Vision Foundation / IEEE Computer Society, 4834ś4843.

[13] Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous Ahmed Sohel, and
Farid Boussaïd. 2017. A New Representation of Skeleton Sequences for 3D Action
Recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 4570ś
4579.

[14] Jun Liu, Amir Shahroudy, Mauricio Perez, GangWang, Ling-Yu Duan, and Alex C.
Kot. 2020. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity
Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42, 10 (2020), 2684ś2701.

[15] Mengyuan Liu, Hong Liu, and Chen Chen. 2017. Enhanced skeleton visualization
for view invariant human action recognition. Pattern Recognit. 68 (2017), 346ś362.

[16] Saemi Moon, Myeonghyeon Kim, Zhenyue Qin, Yang Liu, and Dongwoo Kim.
2023. Anonymization for Skeleton Action Recognition. AAAI Press. https:
//doi.org/10.1609/aaai.v37i12.26754

[17] Ilesanmi Olade, Charles Fleming, and Hai-Ning Liang. 2020. BioMove: Biometric
User Identification from Human Kinesiological Movements for Virtual Reality
Systems. Sensors 20, 10 (2020), 2944.

[18] Alessia Saggese, Nicola Strisciuglio, Mario Vento, and Nicolai Petkov. 2019. Learn-
ing skeleton representations for human action recognition. Pattern Recognit. Lett.
118 (2019), 23ś31.

[19] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. 2016. NTU RGB+D:
A Large Scale Dataset for 3D Human Activity Analysis. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 1010ś1019.

[20] Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu Tan. 2018. Skeleton-
Based Action Recognition with Spatial Reasoning and Temporal Stack Learning.
InComputer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, Sep-
tember 8-14, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11205),
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.).
Springer, 106ś121.

[21] Aniruddha Sinha, Kingshuk Chakravarty, and Brojeshwar Bhowmick. 2013. Per-
son identification using skeleton information from kinect.

[22] Cunli Song and Shouyong Ji. 2022. Face Recognition Method Based on Siamese
Networks Under Non-Restricted Conditions. IEEE Access 10 (2022), 40432ś40444.
https://doi.org/10.1109/ACCESS.2022.3167143

[23] Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. 2017. An
End-to-End Spatio-Temporal Attention Model for Human Action Recognition
from Skeleton Data. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA, Satinder Singh and
Shaul Markovitch (Eds.). AAAI Press, 4263ś4270.

[24] Yansong Tang, Yi Tian, Jiwen Lu, Peiyang Li, and Jie Zhou. 2018. Deep Progressive
Reinforcement Learning for Skeleton-Based Action Recognition. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer Society,
5323ś5332.

[25] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. 2018. A Closer Look at Spatiotemporal Convolutions for Action Recogni-
tion. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation /
IEEE Computer Society, 6450ś6459.

[26] Hongsong Wang and Liang Wang. 2018. Learning content and style: Joint action
recognition and person identification from human skeletons. Pattern Recognit.
81 (2018), 23ś35.

[27] JunwuWeng, Mengyuan Liu, Xudong Jiang, and Junsong Yuan. 2018. Deformable
Pose Traversal Convolution for 3D Action and Gesture Recognition. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part VII (Lecture Notes in Computer Science, Vol. 11211), Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer,
142ś157.

[28] Haoran Wu, Zhiyong Xu, Jianlin Zhang, Wei Yan, and Xiao Ma. 2017. Face
recognition based on convolution siamese networks. In 2017 10th International
Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI). 1ś5. https://doi.org/10.1109/CISP-BMEI.2017.8302003

[29] Wanghui Xiao and Yuting Ding. 2022. A Two-Stage Siamese Network Model for
Offline Handwritten Signature Verification. Symmetry 14, 6 (2022), 1216.

[30] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger
(Eds.). AAAI Press, 7444ś7452.

[31] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue, and Nan-
ning Zheng. 2017. View Adaptive Recurrent Neural Networks for High Perfor-
mance Human Action Recognition from Skeleton Data. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE
Computer Society, 2136ś2145.

[32] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue, and Nan-
ning Zheng. 2019. View Adaptive Neural Networks for High Performance
Skeleton-Based Human Action Recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 41, 8 (2019), 1963ś1978.

[33] Pengfei Zhang, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jianru Xue, and Nan-
ning Zheng. 2021. Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition. CoRR abs/2111.03993 (2021).

[34] Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li, Li Shen,
and Xiaohui Xie. 2016. Co-Occurrence Feature Learning for Skeleton Based
Action Recognition Using Regularized Deep LSTM Networks. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, Dale Schuurmans and Michael P. Wellman (Eds.). AAAI
Press, 3697ś3704.


	Abstract
	1 Introduction
	2 Methodology
	2.1 Problem Statement
	2.2 Linkage Attack Neural Networks
	2.3 Anonymization through Motion Retargeting

	3 Experiments
	3.1 Experiment Setup
	3.2 Experimental Results

	4 Conclusion
	References

