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Abstract— We propose a numerical integration accelerator
(INTIACC) that speeds up the solution of partial differential
equations (PDEs) for scientific computing. In contrast to recent
works, INTIACC applies to a variety of PDEs and boundary
conditions, has enhanced nonlinear function capability, supports
high-order integration algorithms, and uses floating-point
arithmetic for orders of magnitude smaller solution error. With
all the benefits, our test chip still achieves 40X speed-up over
prior accelerators and orders of magnitudes over CPU and GPU
based systems.
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1. INTRODUCTION

PDEs are the core mathematical tool for modeling a wide
range of scientific and engineering phenomena, making it of
great interest to accelerate their numerical solution. Today's
primary choices for solving PDEs are multi-core CPUs [5, 6]
and GPUs, but it still takes a long time and a large amount of
energy to solve them. This limitation has motivated multiple
accelerator architectures [1-4, 7]. However, they are still
severely limited in mainly four ways. First, they can only
handle ordinary differential equations (ODEs) [3] or a single
type of PDE (Poisson's equation) [1, 2], leaving a large number
of essential PDEs inapplicable. Second, they only support
constant (i.e., Dirichlet) boundary conditions [1-4]. Third,
some accelerators do not support the computation of nonlinear
terms such as x2, sin(x), and 1/x, which frequently arise in real-
world problems [1, 2]. Fourth, they have low computation
precision and limited dynamic range, using analog current
signals [3] or 4-16-bit fixed-point arithmetic [1, 2].

II. PROPOSED ACCELERATOR

A. Architectural Features

INTIACC contains 16 processing elements (PEs), each of
which is a fully programmable custom-ISA RISC processor.
The programmable architecture allows INTIACC to solve a
wide range of PDEs (Fig. 1) and to support Dirichlet,
Neumann, and time-dependent boundary conditions. Also,
each core employs the 32-bit floating-point ALU and
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multiplier, allowing it to compute high-precision solutions
without dynamic range issues (Fig. 2). Also, the accelerator
supports high-order integration algorithms such as the Runge-
Kutta 4th order (RK4). Furthermore, it can compute almost any
nonlinear terms by evaluating them with numerical routines
(ie., algorithms) programmed in each PE, such as the
Goldschmidt fast division for 1/x, Newton-Raphson for + x,
and Taylor approximation for sin(x). As compared to using
look-up tables (LUTs) [3, 4], the algorithmic method is orders-
of-magnitude more efficient in memory usage (Fig. 3). We also
adopt a hybrid local and global clock scheme, where each PE
operates at a fast local clock (570 MHz), with only the slow
global clock (10-50 MHz) distributed across PEs, significantly
saving clock power dissipation. We prototyped INTIACC in
65nm (Fig. 12). It vastly outperforms the previous accelerators
in applicability and precision while improving speed by 40X
(Fig. 14). As compared to the CPU/GPU-based system,
INTIACC achieves one to three orders of magnitude
improvement both in speed and energy (Fig. 13 bottom right).
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Fig. 1. Applicability compared to prior arts.
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Fig. 3. Methods for mapping nonlinear functions and their memory usage.

B. Programming Model

Fig. 4 illustrates the programming model of INTIACC.
First, we discretize a target PDE by applying the finite-
difference method to the space dimensions and a numerical
integration method (e.g., Euler, RK4) to the time dimension [§]
(Fig. 4, top left). The discretization produces 16 coupled
equations, each leading to a time-evolving PDE solution at one
of the 16 discretized spatial grid points in the domain of
interest. Then, we formulate a data flow for each discrete
equation. Fig. 4 top right depicts the exemplary data flow of
the first equation. It performs Euler's method (the green box),
i.e., computing the solution w[i+1] for the (i+1)-th time step
from the solution uy[i] and a slope value k[i] (the red box). We
can compute k[i] using u[i] 's from neighboring grid points or
boundary conditions. Next, we write a program based on each
data flow and map it on each PE (Fig. 4 bottom). The figure
shows the program for PE1, which starts with getting u[i]
values from neighboring grid points, then evaluating k[i],
updating u;[i+1], and sending u;[i+1] to its neighbors. If the PE
is at a boundary that has time-dependent or Neumann boundary
conditions, then we add to the program the additional step of
updating the boundary values (blue box in Fig. 4). Note that for
PDEs that do not have the time dimension (e.g., Poisson's or
Laplace's equation), we can create a similar program that
performs an iterative algorithm (e.g., Jacobi's) without the time
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integration. Finally, we write the programs to the PEs through
a test circuit consisting of scan chains and a global clock
generator, ctc.
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Fig. 4. INTIACC programming methodology.

C. Microarchitecture

Fig. 5 depicts the microarchitecture of the PE. The PE
features the proposed hybrid local (570 MHz) and global (10-
50 MHz) clock scheme for saving clock power dissipation. In
this scheme, each positive edge of the global clock triggers the
local clock generator to produce a local clock signal using a
ring oscillator (Fig. 6-7). With this active local clock, the PE
executes the instructions of the program. At the end of the
program execution, as determined by the instruction, the local
finish signal is asserted, which disables the local clock and
resets the PC to zero, getting the PE ready for the next global
clock positive edge. The D flip-flop and mux in the local clock
generator ensure that the local clock always starts with the
logic-0 value to avoid any setup time violation. We designed
the special register file (SRF) in each PE to capture the
computation results from neighboring PEs at every global
clock positive edge. The captured data are transferred to the
last four registers (A28~31) of the general-purpose register file
(GRF), which the PE can access with the local clock (Fig. 8).

D. Custom ISA and Algorithms

We designed a custom ISA for the PE to implement
numerical routines to perform high-order integration and
evaluate nonlinear functions. Fig. 9 shows INTIACC's 28-bit
instruction format and a summary of the custom ISA. Fig. 10
shows the pseudo-program implementation of RK4, which
INTIACC can perform across four global clock cycles for each
time step (it computes one slope [k; to ka] per cycle). RK4 is
the de facto standard method for time integration since it is
significantly more accurate than the Euler method. On the
other hand, Fig. 11 left shows the pseudo-program for
computing the sin(u) function using Taylor approximation.
Here, the variable u is first reduced to a value between 0 and
w4 based on trigonometric identities, and Taylor expansion is
applied to approximate the function. Meanwhile, an iterative
algorithm gives higher accuracy for some nonlinear functions,
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e.g., the Goldschmidt fast division is optimal to compute the
reciprocal function 1/u. For this algorithm to converge,
however, it is critical to give an approximately correct initial
guess. Therefore, we propose a new procedure (Fig. 11 top
right), which exploits the fact that the magnitude of the
mantissa part of the floating-point number (i.e., M) is between
1 and 2. Hence, the initial guess for its reciprocal (i.e., 1/M)
can be any number from 0.5 to 1. While those programs look
complex, the custom ISA allows us to implement them with
small numbers of instructions, typically 11-33, consuming
38.5-115.5 bytes of memory (Fig. 11 bottom right).
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Fig. 6. Local clock generator circuit.
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Name Mremanic | umber formatf +-MAN‘2’?EXP) (binary)
Add add _ |R[wj=R[ra]+R[rb] 0000
Sub sub _ |R[wj=R[ra]-R[rb] 0001
Multiply mult _ [R[rw]=R[ra]*R[rb] 0010
if(R[ra]>R[rb]) R[rw]=-1.0, PC=PC+pcy
Compare and branch cpbr else Rirwj=1.0, PC=PC#pen 0011
Get exg ial unsigned gexpu__|R[w]=1.0*2A(EXP of R[ra]) 0100
Get exponential reciprocal signed | gexprs [R[rw]=+-1.0°2A(-EXP of R[ra]) 0101
Get manti igned gmanu__[R[rw]=(MAN of Rlra])*20 0110
Get fractional gfrac_ |R[rw]=fractional part of Rra] 0111
Get sign gsign __ [R[rw]=sign of R[ra] 1000
Absolute value abs R[rwj value of R[ra] 1001
Pass pass __ [R[rw]=R[ra] 1010
Jump jump  [PC=PC+R]ra] 1011
If(EXP of R[ra] is even)
Square root initial guess sqrig  |R[rw]=(MAN of R[ra])*2*((EXP of R[ra])/2) | 1100
else R[rw]=1.0*2*(((EXP of R[ra])+1)/2)
Special notes:

we: write enable (if we=1); PC =PC +pcy by default; If pcn = 100 Ginary, PC = 0 and local finish =1;

Fig. 9. instruction format and instructions of the custom instruction set
architecture (ISA).
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Fig. 10. Implementation of RK4 scheme on INTIACC.
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Fig. 11. Examples of numerical routines and the memory requirements.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 13:59:43 UTC from |IEEE Xplore. Restrictions apply.



[ Program storage (40.8%)

"] General-purpose register file (27.7%)
I ALU (27.3%)

I:l Special-purpose register file (2.5%)
[ Local clock generator (1.2%)
[___]Program counter (0.5%)

2
PE: 0.058 mm
Fig. 12. Die photo and PE area breakdown.
Test case #1
Equation parameters Clock frequencies 600 —
Convection-diffusion equation (see Fig. 2): | num of instr. per iter <39 W 550 14 2
D=0.4,v =0.1e1+0.2x +0.1y, R = sin(u), | fiocst= 570MHz z 3
‘with boundary conditions: u= e at all folomi= 11.6MHz (< 570/39) = H
boundaries i oy 500 g / &
Solution for 0<t<10s Solution @t=55 g 450 12§
20 X g 3
¢ N < 400 3
: 8 10§
L opo®x X x 2 350 *
3 8
S 300 °©
S lg %
— 07 038 09 1.0 e
PE Supply Voltage (V)
Test case descriptions Solution Time and *Energy (per 1k Iterations) vs. GPU and CPU
o 10¢ [C1GPU (Nvidia Quadro RTX6000) [l CPU (Intel i9-9920X) Il INTIACC
s
| [#2 |same as #1 except R=0 } #5 |Wave equation, Dirichlet b.c. 3 102
| @
1 |#3 [R=0, v=0.1, Dirichlet b.c. } #6 |Poisson's equation, Dirichist b.e. | £ 10‘
I
1 [#4 |R=0, v=0.1, Neumann b.c. } #7 |Laplace's equation, Neumann b.c. 100
e e 10
1272X 1944x
" X 1134X  1442X  2231X _ 2706X
Pseudo-program of CPU and GPU for solving PDEs i :g’ 1340
terate =
3 10
5 1
Initialize Update Aand b g 10
matrix A, vectors u (needed by u=Ausb [ W10
andb #1,24,5.7) # # #3 #4 #5 #6 #7

*E,,, = (P Pl Xt TestCase

epucomputing ™

Fig. 13. Test case specifications and measurement results vs. CPU and GPU.

III. MEASUREMENT RESULTS

We prototyped INTIACC in a 65nm CMOS with a core
area of 0.975 mm? (Fig. 12). At 1 V, it operates at 570 MHz
locally, offering an aggregated computation performance of
9.12 GFLOPS (FP32). Fig. 13 top left shows the equation
parameters and measured solutions of our first test case of
seven in total (Fig. 13 bottom left). For case #1, we chose the
parameter v to depend on both space and time and the
boundary conditions to change over time. We solved the
equation from t = 0-10 s with a step size of 0.01 s. The global
clock frequency (11.6 MHz) is set based on the maximum
number of instructions required per iteration. For case#l,
INTIACC consumes 13 pJ at 1 V (Fig. 13 top right).

For all test cases, we also compared INTIACC’s
performance with MATLAB running on an Intel i9-9920X
CPU and with CUDA running on an NVIDIA Quadro
RTX6000 GPU. For the test-case equations, we chose them to
represent different types of PDEs with various parameter
settings and boundary conditions. For instance, as compared to
case #1, case #2 sets the nonlinear term R to zero, thus
eliminating the computation time for evaluating sin(u). Then in
cases #3 and #4, we set the parameter v to a constant and used
different boundary conditions. For the programs running on the

CPU and GPU, we used a conventional matrix/vector approach
(Fig. 13 bottom left) [9]. The matrix A (16-by-16) contains the
parameter information of the equation, while the vector b (16-
by-1) includes the boundary conditions. We summarize the test
results in Fig. 13 bottom right. We observed up to 17.5X speed
and 2,706X energy improvements over the CPU. The speed-up
stems from the efficient in-place computing of INTIACC's
PEs. Finally, Fig. 14 compares INTIACC with recently
published accelerators. INTIACC significantly expands the
diversity of accelerable problems in equation types, boundary
conditions, and applicable numerical algorithms with orders of
magnitude better solution errors, dynamic range, and speed.

JSSC 2016 [3] JSSC 2020 [2] ISSCC 2021 [1] INTIACC
Technology 65nm CMOS 180nm CMOS 65nm CMOS 65nm CMOS
Analog/Digital Mixed-signal Mixed-signal Digital Digital
Number Precision 8bit Fixed-Point 5bit Fixed-Point 16bit Fixed-Point__| 32bit Floating-Point
Applicable to different types of PDEs No No No Yes
Problem Dimension’ 1+1D 2D 2D 2D, 2+1D, 1D, 1+1D
Variable Boundary Conditions No No No Yes
Can Compute Nonlinear Terms Yes No No Yes
Energy Efficiency Against CPU NA N/A N/A 1,100X-2,700X
Speedup Against CPU N/A NA NA 8-17X
Numerical Routine Support NA No No Yes
Core Area 2.0 mm’ 1.868 mm” 0462 mm’ 0.975 mm*
Supply Voltage 12V 18V 06-12V 051V
Clock Frequency N/A 200 MHz 25.6 MHz 570 MHz Local
Energy per Clock Cycle NA 332pJ 94 pJ 263 pJ
Number of Iterations® 473 390
Laplat.:e's2 Solution Time* Not mappable Time per iteration not 311.7us 7.8 us
Equation Solution EDP® mentioned 234 ul-us 252 ud-us
Solution NRMS Error 1.00E-04 3.43E-08
Conv-diff Number of Time Steps 1000
. Solution Time Not mappable Not mappable Not mappable 86.2us
Equation Solution EDP 41 mus

‘space dimensions + time dimension (e.g., 2+1D means 2 space dimensions and 1 time dimension)

2FX16 (range -128 to 128) vs. FP32 simulation results, solving 21x21 grid points, boundary conditions: 1.992, -2.66, 56.33, -101.5
3For achieving the same NRMS error (i.e., 1.00E-04), with INTIACC's performance data extrapolated to 21x21 PEs

“equation setup specified in Fig. 5a

Fig. 14. Comparison with prior arts.
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