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Abstract— We propose a numerical integration accelerator 

(INTIACC) that speeds up the solution of partial differential 

equations (PDEs) for scientific computing. In contrast to recent 

works, INTIACC applies to a variety of PDEs and boundary 

conditions, has enhanced nonlinear function capability, supports 

high-order integration algorithms, and uses floating-point 

arithmetic for orders of magnitude smaller solution error. With 

all the benefits, our test chip still achieves 40X speed-up over 

prior accelerators and orders of magnitudes over CPU and GPU 

based systems.  
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I. INTRODUCTION 

PDEs are the core mathematical tool for modeling a wide 
range of scientific and engineering phenomena, making it of 
great interest to accelerate their numerical solution. Today's 
primary choices for solving PDEs are multi-core CPUs [5, 6] 
and GPUs, but it still takes a long time and a large amount of 
energy to solve them. This limitation has motivated multiple 
accelerator architectures [1-4, 7]. However, they are still 
severely limited in mainly four ways. First, they can only 
handle ordinary differential equations (ODEs) [3] or a single 
type of PDE (Poisson's equation) [1, 2], leaving a large number 
of essential PDEs inapplicable. Second, they only support 
constant (i.e., Dirichlet) boundary conditions [1-4]. Third, 
some accelerators do not support the computation of nonlinear 
terms such as x2, sin(x), and 1/x, which frequently arise in real-
world problems [1, 2]. Fourth, they have low computation 
precision and limited dynamic range, using analog current 
signals [3] or 4-16-bit fixed-point arithmetic [1, 2]. 

II. PROPOSED ACCELERATOR 

A. Architectural Features 

INTIACC contains 16 processing elements (PEs), each of 
which is a fully programmable custom-ISA RISC processor. 
The programmable architecture allows INTIACC to solve a 
wide range of PDEs (Fig. 1) and to support Dirichlet, 
Neumann, and time-dependent boundary conditions. Also, 
each core employs the 32-bit floating-point ALU and 

multiplier, allowing it to compute high-precision solutions 
without dynamic range issues (Fig. 2). Also, the accelerator 
supports high-order integration algorithms such as the Runge-
Kutta 4th order (RK4). Furthermore, it can compute almost any 
nonlinear terms by evaluating them with numerical routines 
(i.e., algorithms) programmed in each PE, such as the 

Goldschmidt fast division for 1/x, Newton-Raphson for √x, 

and Taylor approximation for sin(x). As compared to using 
look-up tables (LUTs) [3, 4], the algorithmic method is orders-
of-magnitude more efficient in memory usage (Fig. 3). We also 
adopt a hybrid local and global clock scheme, where each PE 
operates at a fast local clock (570 MHz), with only the slow 
global clock (10-50 MHz) distributed across PEs, significantly 
saving clock power dissipation. We prototyped INTIACC in 
65nm (Fig. 12). It vastly outperforms the previous accelerators 
in applicability and precision while improving speed by 40X 
(Fig. 14). As compared to the CPU/GPU-based system, 
INTIACC achieves one to three orders of magnitude 
improvement both in speed and energy (Fig. 13 bottom right). 
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Fig. 1. Applicability compared to prior arts. 
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Fig. 2. FP vs. FX in dynamic range. 
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Fig. 3. Methods for mapping nonlinear functions and their memory usage. 

B. Programming Model 

Fig. 4 illustrates the programming model of INTIACC. 
First, we discretize a target PDE by applying the finite-
difference method to the space dimensions and a numerical 
integration method (e.g., Euler, RK4) to the time dimension [8] 
(Fig. 4, top left). The discretization produces 16 coupled 
equations, each leading to a time-evolving PDE solution at one 
of the 16 discretized spatial grid points in the domain of 
interest. Then, we formulate a data flow for each discrete 
equation. Fig. 4 top right depicts the exemplary data flow of 
the first equation. It performs Euler's method (the green box), 
i.e., computing the solution u1[i+1] for the (i+1)-th time step 
from the solution u1[i] and a slope value k[i] (the red box). We 
can compute k[i] using u[i] 's from neighboring grid points or 
boundary conditions. Next, we write a program based on each 
data flow and map it on each PE (Fig. 4 bottom). The figure 
shows the program for PE1, which starts with getting u[i] 
values from neighboring grid points, then evaluating k[i], 
updating u1[i+1], and sending u1[i+1] to its neighbors. If the PE 
is at a boundary that has time-dependent or Neumann boundary 
conditions, then we add to the program the additional step of 
updating the boundary values (blue box in Fig. 4). Note that for 
PDEs that do not have the time dimension (e.g., Poisson's or 
Laplace's equation), we can create a similar program that 
performs an iterative algorithm (e.g., Jacobi's) without the time 

integration. Finally, we write the programs to the PEs through 
a test circuit consisting of scan chains and a global clock 
generator, etc. 
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Fig. 4. INTIACC programming methodology. 

C. Microarchitecture 

Fig. 5 depicts the microarchitecture of the PE. The PE 
features the proposed hybrid local (570 MHz) and global (10-
50 MHz) clock scheme for saving clock power dissipation. In 
this scheme, each positive edge of the global clock triggers the 
local clock generator to produce a local clock signal using a 
ring oscillator (Fig. 6-7). With this active local clock, the PE 
executes the instructions of the program. At the end of the 
program execution, as determined by the instruction, the local 
finish signal is asserted, which disables the local clock and 
resets the PC to zero, getting the PE ready for the next global 
clock positive edge. The D flip-flop and mux in the local clock 
generator ensure that the local clock always starts with the 
logic-0 value to avoid any setup time violation. We designed 
the special register file (SRF) in each PE to capture the 
computation results from neighboring PEs at every global 
clock positive edge. The captured data are transferred to the 
last four registers (A28~31) of the general-purpose register file 
(GRF), which the PE can access with the local clock (Fig. 8). 

D. Custom ISA and Algorithms 

We designed a custom ISA for the PE to implement 
numerical routines to perform high-order integration and 
evaluate nonlinear functions. Fig. 9 shows INTIACC's 28-bit 
instruction format and a summary of the custom ISA. Fig. 10 
shows the pseudo-program implementation of RK4, which 
INTIACC can perform across four global clock cycles for each 
time step (it computes one slope [k1 to k4] per cycle). RK4 is 
the de facto standard method for time integration since it is 
significantly more accurate than the Euler method. On the 
other hand, Fig. 11 left shows the pseudo-program for 
computing the sin(u) function using Taylor approximation. 
Here, the variable u is first reduced to a value between 0 and 
π⁄4 based on trigonometric identities, and Taylor expansion is 
applied to approximate the function. Meanwhile, an iterative 
algorithm gives higher accuracy for some nonlinear functions, 
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e.g., the Goldschmidt fast division is optimal to compute the 
reciprocal function 1/u. For this algorithm to converge, 
however, it is critical to give an approximately correct initial 
guess. Therefore, we propose a new procedure (Fig. 11 top 
right), which exploits the fact that the magnitude of the 
mantissa part of the floating-point number (i.e., M) is between 
1 and 2. Hence, the initial guess for its reciprocal (i.e., 1/M) 
can be any number from 0.5 to 1. While those programs look 
complex, the custom ISA allows us to implement them with 
small numbers of instructions, typically 11-33, consuming 
38.5-115.5 bytes of memory (Fig. 11 bottom right). 
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Fig. 5. Microarchitecture of INTIACC's PE. 
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Fig. 6. Local clock generator circuit. 
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Fig. 8. Timing diagram of PE operation. 
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Fig. 9. instruction format and instructions of the custom instruction set 
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Fig. 10. Implementation of RK4 scheme on INTIACC. 
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Fig. 11. Examples of numerical routines and the memory requirements. 
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Fig. 12. Die photo and PE area breakdown. 

Convection-diffusion equation (see Fig. 2):
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Fig. 13. Test case specifications and measurement results vs. CPU and GPU. 

III. MEASUREMENT RESULTS 

We prototyped INTIACC in a 65nm CMOS with a core 
area of 0.975 mm2 (Fig. 12). At 1 V, it operates at 570 MHz 
locally, offering an aggregated computation performance of 
9.12 GFLOPS (FP32). Fig. 13 top left shows the equation 
parameters and measured solutions of our first test case of 
seven in total (Fig. 13 bottom left). For case #1, we chose the 
parameter v to depend on both space and time and the 
boundary conditions to change over time. We solved the 
equation from t = 0-10 s with a step size of 0.01 s. The global 
clock frequency (11.6 MHz) is set based on the maximum 
number of instructions required per iteration. For case#1, 
INTIACC consumes 13 µJ at 1 V (Fig. 13 top right). 

For all test cases, we also compared INTIACC’s 
performance with MATLAB running on an Intel i9-9920X 
CPU and with CUDA running on an NVIDIA Quadro 
RTX6000 GPU. For the test-case equations, we chose them to 
represent different types of PDEs with various parameter 
settings and boundary conditions. For instance, as compared to 
case #1, case #2 sets the nonlinear term R to zero, thus 
eliminating the computation time for evaluating sin(u). Then in 
cases #3 and #4, we set the parameter v to a constant and used 
different boundary conditions. For the programs running on the 

CPU and GPU, we used a conventional matrix/vector approach 
(Fig. 13 bottom left) [9]. The matrix A (16-by-16) contains the 
parameter information of the equation, while the vector b (16-
by-1) includes the boundary conditions. We summarize the test 
results in Fig. 13 bottom right. We observed up to 17.5X speed 
and 2,706X energy improvements over the CPU. The speed-up 
stems from the efficient in-place computing of INTIACC's 
PEs. Finally, Fig. 14 compares INTIACC with recently 
published accelerators. INTIACC significantly expands the 
diversity of accelerable problems in equation types, boundary 
conditions, and applicable numerical algorithms with orders of 
magnitude better solution errors, dynamic range, and speed. 
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1space dimensions + time dimension (e.g., 2+1D means 2 space dimensions and 1 time dimension)
2FX16 (range -128 to 128) vs. FP32 simulation results, solving 21x21 grid points, boundary conditions: 1.992, -2.66, 56.33, -101.5
3For achieving the same NRMS error (i.e., 1.00E-04), with INTIACC s performance data extrapolated to 21x21 PEs
4equation setup specified in Fig. 5a  

Fig. 14. Comparison with prior arts. 
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