
INTIACC: A 32-bit Floating-Point Programmable

Custom-ISA Accelerator for Solving Classes of

Partial Differential Equations

Paul Xuanyuanliang Huang, Daniel Jang, Yannis Tsividis, and Mingoo Seok

Department of Electrical Engineering

Columbia University

New York, NY, USA

Email: xh2373@columbia.edu

Abstract— We propose a numerical integration accelerator

(INTIACC) that speeds up the solution of partial differential

equations (PDEs) for scientific computing. In contrast to recent

works, INTIACC applies to a variety of PDEs and boundary

conditions, has enhanced nonlinear function capability, supports

high-order integration algorithms, and uses floating-point

arithmetic for orders of magnitude smaller solution error. With

all the benefits, our test chip still achieves 40X speed-up over

prior accelerators and orders of magnitudes over CPU and GPU

based systems.

Keywords—Digital Accelerator, Scientific Computing, Partial

Differential Equations

I. INTRODUCTION

PDEs are the core mathematical tool for modeling a wide
range of scientific and engineering phenomena, making it of
great interest to accelerate their numerical solution. Today's
primary choices for solving PDEs are multi-core CPUs [5, 6]
and GPUs, but it still takes a long time and a large amount of
energy to solve them. This limitation has motivated multiple
accelerator architectures [1-4, 7]. However, they are still
severely limited in mainly four ways. First, they can only
handle ordinary differential equations (ODEs) [3] or a single
type of PDE (Poisson's equation) [1, 2], leaving a large number
of essential PDEs inapplicable. Second, they only support
constant (i.e., Dirichlet) boundary conditions [1-4]. Third,
some accelerators do not support the computation of nonlinear
terms such as x2, sin(x), and 1/x, which frequently arise in real-
world problems [1, 2]. Fourth, they have low computation
precision and limited dynamic range, using analog current
signals [3] or 4-16-bit fixed-point arithmetic [1, 2].

II. PROPOSED ACCELERATOR

A. Architectural Features

INTIACC contains 16 processing elements (PEs), each of
which is a fully programmable custom-ISA RISC processor.
The programmable architecture allows INTIACC to solve a
wide range of PDEs (Fig. 1) and to support Dirichlet,
Neumann, and time-dependent boundary conditions. Also,
each core employs the 32-bit floating-point ALU and

multiplier, allowing it to compute high-precision solutions
without dynamic range issues (Fig. 2). Also, the accelerator
supports high-order integration algorithms such as the Runge-
Kutta 4th order (RK4). Furthermore, it can compute almost any
nonlinear terms by evaluating them with numerical routines
(i.e., algorithms) programmed in each PE, such as the

Goldschmidt fast division for 1/x, Newton-Raphson for √x,

and Taylor approximation for sin(x). As compared to using
look-up tables (LUTs) [3, 4], the algorithmic method is orders-
of-magnitude more efficient in memory usage (Fig. 3). We also
adopt a hybrid local and global clock scheme, where each PE
operates at a fast local clock (570 MHz), with only the slow
global clock (10-50 MHz) distributed across PEs, significantly
saving clock power dissipation. We prototyped INTIACC in
65nm (Fig. 12). It vastly outperforms the previous accelerators
in applicability and precision while improving speed by 40X
(Fig. 14). As compared to the CPU/GPU-based system,
INTIACC achieves one to three orders of magnitude
improvement both in speed and energy (Fig. 13 bottom right).

P
D

E
s

Equation Class
Boundary

Conditions

JSSC16

[3]

JSSC20

[2]

ISSCC21

[1]
INTIACC

Dirichlet P P

Neumann O P

Time-dependent O P

Dirichlet

Neumann

Time-dependent

Dirichlet

Neumann

Time-dependent

Dirichlet

Neumann

Time-dependent

Dirichlet

Neumann

Time-dependent

Dirichlet O P O P

Neumann O O O P

Dirichlet O P P P

Neumann O O O P

Poisson's equation
Elliptic

Laplace's equation
Elliptic

Ordinary differential

equations

Advection equation

Wave equation

Heat equation

Conv-diff equation

ODE

1st-order

hyperbolic

2nd-order

hyperbolic

Parabolic

Hyperbolic-

parabolic

O

O O O

O

O

O O P

P

O O O P

O O O P

2 2

2 2
f

u u

x y

 
+ =

 

v
u u u

t x y

   
= − + 

   

2 2 2
2

2 2 2
c

u u u

t x y

   
= + 

   

2 2

2 2
D

u u u

t x y

   
= + 

   

2 2

2 2
D v R

u u u u u

t x y x y

       
= + − + +   

      

2 2

2 2
0

u u

x y

 
+ =

 

Fig. 1. Applicability compared to prior arts.

978-1-6654-8494-7/22/$31.00 ©2022 IEEE 349

ES
SC

IR
C

20
22

- I
EE

E
48

th
 E

ur
op

ea
n

So
lid

 S
ta

te
 C

irc
ui

ts
 C

on
fe

re
nc

e
(E

SS
CI

RC
) |

 9
78

-1
-6

65
4-

84
94

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
ES

SC
IR

C5
54

80
.2

02
2.

99
11

44
1

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40

-2

0

2

4

6

8

M
ag

n
it

u
d

e

Time

 FX8 FX16 FX32 FP32 INTIACC

damped oscillation

-0.05

0.00

0.05

-0.0005

0.0000

0.0005

(c)

Fig. 2. FP vs. FX in dynamic range.

JSSC16 [3]
ISCA17 [4]

INTIACC

2 4 8 16 32 64
100

103

106

109

1012

1015

1018

1021

M
em

o
ry

 R
eq

u
ir

ed
 (

b
yt

es
)

Number Precision (bits)

 Full LUT mapping

 Partial LUT mapping*

 Algorithmic method**

*map half number of bits w/ Taylor expansion

**use sin() function as example

(d)

Fig. 3. Methods for mapping nonlinear functions and their memory usage.

B. Programming Model

Fig. 4 illustrates the programming model of INTIACC.
First, we discretize a target PDE by applying the finite-
difference method to the space dimensions and a numerical
integration method (e.g., Euler, RK4) to the time dimension [8]
(Fig. 4, top left). The discretization produces 16 coupled
equations, each leading to a time-evolving PDE solution at one
of the 16 discretized spatial grid points in the domain of
interest. Then, we formulate a data flow for each discrete
equation. Fig. 4 top right depicts the exemplary data flow of
the first equation. It performs Euler's method (the green box),
i.e., computing the solution u1[i+1] for the (i+1)-th time step
from the solution u1[i] and a slope value k[i] (the red box). We
can compute k[i] using u[i] 's from neighboring grid points or
boundary conditions. Next, we write a program based on each
data flow and map it on each PE (Fig. 4 bottom). The figure
shows the program for PE1, which starts with getting u[i]
values from neighboring grid points, then evaluating k[i],
updating u1[i+1], and sending u1[i+1] to its neighbors. If the PE
is at a boundary that has time-dependent or Neumann boundary
conditions, then we add to the program the additional step of
updating the boundary values (blue box in Fig. 4). Note that for
PDEs that do not have the time dimension (e.g., Poisson's or
Laplace's equation), we can create a similar program that
performs an iterative algorithm (e.g., Jacobi's) without the time

integration. Finally, we write the programs to the PEs through
a test circuit consisting of scan chains and a global clock
generator, etc.

Program for PE16

Program for PE2

Program for PE1

* uleft, uright, utop, and ubottom refer to corresponding adjacent grid-point values
* i is time step index; subscripts are grid-point indices; h = x = y

discretize

D is a constant

v is a function of x, y, t

R is a function of u

Convection-diffusion equation

u1[i]

uright[i]
utop[i]
uleft[i]
ubot[i]

Euler integrator

Dirichlet*:

Neumann*:

*u1[0] and uboundary[0] are given by initial conditions

Time-

dependent:

PE13 PE14

PE10PE9

PE15 PE16

PE12PE11

PE5 PE6

PE2PE1

PE7 PE8

PE4PE3

Test Circuit

Send u1[i+1] to neighboring PEs

Get u[i] s from neighboring PEs

k[i]
R

-4D/h2

(D/h2 – v/2h)

(D/h2 + v/2h)

Data flow of the first discrete equation

Programs for PEs INTIACC

Slope:

Evaluate:k[i]=f(t,u1,uleft,uright,utop,ubot)

Integrate: u1[i+1] = u1[i] + Δtk[i]

Update boundary values:

uleft[i+1], ubot[i+1]

k[i] = f(t,u1,uleft,uright,utop,ubot)[i]

Δt

       ()    ()  

       ()    ()  

1 1 right top left bot 12 2 2

2 2 right top left bot 22 2 2

D v D v 4D
i 1 i Δt i i i i i R

h 2h h 2h h

D v D v 4D
i 1 i Δt i i i i i R

h 2h h 2h h

u u u u u u u

u u u u u u u

    
+ = + − + + + + − +    

    

    
+ = + − + + + + − +    

    

       ()    ()  16 16 right top left bot 162 2 2

D v D v 4D
i 1 i Δt i i i i i R

h 2h h 2h h
u u u u u u u

    
+ = + − + + + + − +    

    

2 2

2 2
D v R

u u u u u

t x y x y

       
= + − + +   

      

     boundary 1 boundary2 2

2D D v D
i 1 Δt i 2ΔtK 1 Δt i

h h 2 h
u u u

   
+ = − + + −   

   

uboundary[i+1] = uboundary[i]

uboundary[i+1] = g(iΔt + Δt)

Fig. 4. INTIACC programming methodology.

C. Microarchitecture

Fig. 5 depicts the microarchitecture of the PE. The PE
features the proposed hybrid local (570 MHz) and global (10-
50 MHz) clock scheme for saving clock power dissipation. In
this scheme, each positive edge of the global clock triggers the
local clock generator to produce a local clock signal using a
ring oscillator (Fig. 6-7). With this active local clock, the PE
executes the instructions of the program. At the end of the
program execution, as determined by the instruction, the local
finish signal is asserted, which disables the local clock and
resets the PC to zero, getting the PE ready for the next global
clock positive edge. The D flip-flop and mux in the local clock
generator ensure that the local clock always starts with the
logic-0 value to avoid any setup time violation. We designed
the special register file (SRF) in each PE to capture the
computation results from neighboring PEs at every global
clock positive edge. The captured data are transferred to the
last four registers (A28~31) of the general-purpose register file
(GRF), which the PE can access with the local clock (Fig. 8).

D. Custom ISA and Algorithms

We designed a custom ISA for the PE to implement
numerical routines to perform high-order integration and
evaluate nonlinear functions. Fig. 9 shows INTIACC's 28-bit
instruction format and a summary of the custom ISA. Fig. 10
shows the pseudo-program implementation of RK4, which
INTIACC can perform across four global clock cycles for each
time step (it computes one slope [k1 to k4] per cycle). RK4 is
the de facto standard method for time integration since it is
significantly more accurate than the Euler method. On the
other hand, Fig. 11 left shows the pseudo-program for
computing the sin(u) function using Taylor approximation.
Here, the variable u is first reduced to a value between 0 and
π⁄4 based on trigonometric identities, and Taylor expansion is
applied to approximate the function. Meanwhile, an iterative
algorithm gives higher accuracy for some nonlinear functions,

The work is supported in part by NSF (1840763).

350

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

e.g., the Goldschmidt fast division is optimal to compute the
reciprocal function 1/u. For this algorithm to converge,
however, it is critical to give an approximately correct initial
guess. Therefore, we propose a new procedure (Fig. 11 top
right), which exploits the fact that the magnitude of the
mantissa part of the floating-point number (i.e., M) is between
1 and 2. Hence, the initial guess for its reciprocal (i.e., 1/M)
can be any number from 0.5 to 1. While those programs look
complex, the custom ISA allows us to implement them with
small numbers of instructions, typically 11-33, consuming
38.5-115.5 bytes of memory (Fig. 11 bottom right).

Program
Storage

PC

Top

Bottom

Left

Right

we rw ra rb

From neighboring PEs

local

CLK

global

CLK

local

CLK

local

CLK

To neighboring PEs

5 5 5
4

32

32

32
2

6

28

8

32

32

32

32

32

32

32

32

Local
Clock

Generator

PC = 0 ?local finish
local CLK

A
L

UGeneral-purpose
Register File

32

uout

32

32

32

32

Fig. 5. Microarchitecture of INTIACC's PE.

T Q

global CLK

local finish T Q

D Q

0

1

local

CLK

0

...

ring oscillator

Fig. 6. Local clock generator circuit.

local finish

global CLK

XOR output

local CLK

load u[i] from neighboring PEs

capture u[i] from neighboring PEs

u[i] ready to be captured by neighboring PEs

Fig. 7. Timing diagram of local clock generation.

global CLK

last instr. 0 1 2

local CLK

PC

...

...

uout

RegRight

RegTop

...

A28

A31

...

uright[i]

utop[i]

uright[i+1]

utop[i+1]

uright[i+1]

utop[i+1]utop[i]

uright[i]

u1[i+1]

Fig. 8. Timing diagram of PE operation.

Specia l notes:

we: write enable (if we=1); PC = PC + pcy by default; If pcn = 1000binary, PC = 0 and local finish = 1;

Add add R[rw]=R[ra]+R[rb] 0000

Subtract sub R[rw]=R[ra]-R[rb] 0001

Multiply mult R[rw]=R[ra]*R[rb] 0010

Compare and branch cpbr
if(R[ra]>R[rb]) R[rw]=-1.0, PC=PC+pcy

else R[rw]=1.0, PC=PC+pcn
0011

Get exponential unsigned gexpu R[rw]=1.0*2^(EXP of R[ra]) 0100

Get exponential reciprocal signed gexprs R[rw]=+-1.0*2^(-EXP of R[ra]) 0101

Get mantissa unsigned gmanu R[rw]=(MAN of R[ra])*2^0 0110

Get fractional gfrac R[rw]=fractional part of R[ra] 0111

Get sign gsign R[rw]=sign of R[ra] 1000

Absolute value abs R[rw]=absolute value of R[ra] 1001

Pass pass R[rw]=R[ra] 1010

Jump jump PC=PC+R[ra] 1011

Square root initial guess sqrig

If(EXP of R[ra] is even)

R[rw]=(MAN of R[ra])*2^((EXP of R[ra])/2)

else R[rw]=1.0*2^(((EXP of R[ra])+1)/2)

1100

Name Mnemonic
Operation (in Verilog)

(number format: +-MAN*2^EXP)

opcode

(binary)

opcode we rw ra rb pcy pcn
27 24 22 18 17 13 12 8 7 4 3 0

4 1 5 5 5 4 4

Fig. 9. instruction format and instructions of the custom instruction set

architecture (ISA).

Global CLK

Cycle
Computation Performed*

1

2

3

4

 i2 1ik
1 1

f Δt, t
2

kΔ
2

t u
 

= + + 
 

 i3 2ik
1 1

f Δt, t
2

kΔ
2

t u
 

= + + 
 

 ()i1 ik f ,t u=

 ()

()

    l

1 32

i

final

fin

4

a

4

3f Δt, i Δt

1
k 2 2

6

i 1 i

k

k

k

k

k

kk

Δt

t u

u u

= + +

= + + +

+ = +

Euler stops here

Runge Kutta 4th-order integration

Exact Solution

u[i+1]

u[i]

k1

k2

k3

k4

kfinal

ti ti+Δt/2 ti+Δt

Fig. 10. Implementation of RK4 scheme on INTIACC.

u

N

Y

N

Y N

Y N

Y N

Y N

Y N

Compute sin(u)

Taylor approximation

Compute 1/u

Goldschmidt, compute 1/M

u > 0?

flagA = -1

Y

flagA = 1

v = abs(u)

1
2 gfrac

2
v u



 
=   

 

flagB = -1

2 ?v 

?v 

?
2

v



3

?
2

v




?
4

v




2
v v


 −

()
2 4 6

cos 1
2! 4! 6!

v v v
ans v=  − + − ()

3 5

sin
3! 5!

v v
ans v v=  − +

()sin flagA flagBu ans=  

2v v= − v v = − v v= −

flagB = 1

u (= ± M 2E)

M = gmanu(u) ± 2-E = gexps(u)

N1 = initial guess

D1 = N1 M

R1 = 2 – D1

Ni+1 = Ri Ni

Di+1 = Ri Di

Ri+1 = 2 – Di+1

Ri < 1.0001?

1/M = Ni Ri

1/u = 1/M ± 2-E

0

20

40

60

80

100

120

In
s

tr
.

S
iz

e
 (

b
y

te
s

)

RK4 ()sin u eu 1 u u

Instr. memory requirements

Fig. 11. Examples of numerical routines and the memory requirements.

351

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

PE: 0.058 mm2
Test Circuit

PE1 PE2 PE3 PE4

PE5 PE6 PE7 PE8

PE9 PE10 PE11 PE12

PE13 PE14 PE15 PE16

0.975 mm

0.
9

53
 m

m

 Program storage (40.8%)

 General-purpose register file (27.7%)

 ALU (27.3%)

 Special-purpose register file (2.5%)

 Local clock generator (1.2%)

 Program counter (0.5%)

Fig. 12. Die photo and PE area breakdown.

Convection-diffusion equation (see Fig. 2):

D = 0.4, v = 0.1e-0.1t + 0.2x + 0.1y, R = sin(u),

with boundary conditions: u = e-0.2t at all

boundaries

num of instr. per iter

flocal 570MHz

fglobal= 11.6MHz (< 570/39)

Pseudo-program of CPU and GPU for solving PDEs

Iterate

Equation parameters Clock frequencies

u = Au+b

Update A and b

(needed by

#1,2,4,5,7)

Initialize

matrix A, vectors u

and b

#5 Wave equation, Dirichlet b.c.

#6 Poisson's equation, Dirichlet b.c.

#7 Laplace's equation, Neumann b.c.

Convection-diffusion equation

#2 Same as #1 except R=0

#3 R=0, v=0.1, Dirichlet b.c.

#4 R=0, v=0.1, Neumann b.c.

Test case #1

Test case descriptions

0.7 0.8 0.9 1.0

300

350

400

450

500

550

600

L
o

c
a

l
c

lo
c
k

 f
re

q
u

e
n

c
y
 (

M
H

z
)

Supply Voltage (V)

8

10

12

14

T
e
s
t

C
a
s

e
 #

1
 S

o
lu

ti
o

n
 E

n
e
rg

y
 (


J
)

10
0

10
1

10
2

10
3

10
4

*E
cpu

 = (P
cpu,computing

 - P
cpu,idle

) x t

1272X

13.0X10.4X11.0X8.3X

10.6X
17.5X

T
im

e
(

s)

 GPU (Nvidia Quadro RTX6000) CPU (Intel i9-9920X) INTIACC

Solution Time and *Energy (per 1k Iterations) vs. GPU and CPU

8.5X

#1 #2 #3 #4 #5 #6 #7
10

0

10
1

10
2

10
3

10
4 2706X2231X1442X1134X1349X

1944X

E
n

e
rg

y
 (


J
)

Test Case

4 8 12 16

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

u

t (s)

Solution for 0 < t < 10 s

PE1

PE16

PE

Solution @ t = 5 s

Fig. 13. Test case specifications and measurement results vs. CPU and GPU.

III. MEASUREMENT RESULTS

We prototyped INTIACC in a 65nm CMOS with a core
area of 0.975 mm2 (Fig. 12). At 1 V, it operates at 570 MHz
locally, offering an aggregated computation performance of
9.12 GFLOPS (FP32). Fig. 13 top left shows the equation
parameters and measured solutions of our first test case of
seven in total (Fig. 13 bottom left). For case #1, we chose the
parameter v to depend on both space and time and the
boundary conditions to change over time. We solved the
equation from t = 0-10 s with a step size of 0.01 s. The global
clock frequency (11.6 MHz) is set based on the maximum
number of instructions required per iteration. For case#1,
INTIACC consumes 13 µJ at 1 V (Fig. 13 top right).

For all test cases, we also compared INTIACC’s
performance with MATLAB running on an Intel i9-9920X
CPU and with CUDA running on an NVIDIA Quadro
RTX6000 GPU. For the test-case equations, we chose them to
represent different types of PDEs with various parameter
settings and boundary conditions. For instance, as compared to
case #1, case #2 sets the nonlinear term R to zero, thus
eliminating the computation time for evaluating sin(u). Then in
cases #3 and #4, we set the parameter v to a constant and used
different boundary conditions. For the programs running on the

CPU and GPU, we used a conventional matrix/vector approach
(Fig. 13 bottom left) [9]. The matrix A (16-by-16) contains the
parameter information of the equation, while the vector b (16-
by-1) includes the boundary conditions. We summarize the test
results in Fig. 13 bottom right. We observed up to 17.5X speed
and 2,706X energy improvements over the CPU. The speed-up
stems from the efficient in-place computing of INTIACC's
PEs. Finally, Fig. 14 compares INTIACC with recently
published accelerators. INTIACC significantly expands the
diversity of accelerable problems in equation types, boundary
conditions, and applicable numerical algorithms with orders of
magnitude better solution errors, dynamic range, and speed.

JSSC 2016 [3] JSSC 2020 [2] ISSCC 2021 [1] INTIACC

65nm CMOS 180nm CMOS 65nm CMOS 65nm CMOS

Mixed-signal Mixed-signal Digital Digital

8bit Fixed-Point 5bit Fixed-Point 16bit Fixed-Point 32bit Floating-Point

No No No Yes

1+1D 2D 2D 2D, 2+1D, 1D, 1+1D

No No No Yes

Yes No No Yes

N/A N/A N/A 1,100X-2,700X

N/A N/A N/A 8-17X

N/A No No Yes

2.0 mm
2

1.868 mm
2

0.462 mm
2

0.975 mm
2

1.2 V 1.8 V 0.6-1.2 V 0.5-1 V

N/A 200 MHz 25.6 MHz 570 MHz Local

N/A 332 pJ 94 pJ 263 pJ

Number of Iterations
3 473 390

Solution Time
3 311.7 us 7.8 us

Solution EDP
3 234 uJ∙us 252 uJ∙us

Solution NRMS Error 1.00E-04 3.43E-08

Number of Time Steps 1000

Solution Time 86.2 us

Solution EDP 1.11 mJ∙us

Numerical Routine Support

Technology

Analog/Digital

Number Precision

Applicable to different types of PDEs

Problem Dimension
1

Variable Boundary Conditions

Can Compute Nonlinear Terms

Energy Efficiency Against CPU

Speedup Against CPU

Not mappable

Time per iteration not

mentioned

Core Area

Conv-diff

Equation
4

Laplace's

Equation
2

Energy per Clock Cycle

Not mappable

Not mappable Not mappable

Supply Voltage

Clock Frequency

1space dimensions + time dimension (e.g., 2+1D means 2 space dimensions and 1 time dimension)
2FX16 (range -128 to 128) vs. FP32 simulation results, solving 21x21 grid points, boundary conditions: 1.992, -2.66, 56.33, -101.5
3For achieving the same NRMS error (i.e., 1.00E-04), with INTIACC s performance data extrapolated to 21x21 PEs
4equation setup specified in Fig. 5a

Fig. 14. Comparison with prior arts.

REFERENCES

[1] J. Mu et al., "A 21x21 Dynamic-Precision Bit-Serial Computing Graph

Accelerator for Solving Partial Differential Equations Using Finite
Difference Method," ISSCC, pp. 230-231, 2021.

[2] T. Chen et al., "A 1.87-mm2 56.9-GOPS Accelerator for Solving Partial
Differential Equations," IEEE JSSC, vol. 55, no. 6, pp. 1709-1718, June
2020.

[3] N. Guo et al., "Energy-Efficient Hybrid Analog/Digital Approximate
Computation in Continuous Time," IEEE JSSC, vol. 51, no. 7, pp. 1514-
1524, July 2016.

[4] J. Kung et al., "A Programmable Hardware Accelerator for Simulating
Dynamical Systems," IEEE/ACM ISCA, pp. 403-415, 2017.

[5] P. Vivet et al., "IntAct: A 96-Core Processor With Six Chiplets 3D-
Stacked on an Active Interposer With Distributed Interconnects and
Integrated Power Management," IEEE JSSC, vol. 56, no. 1, pp. 79-97,
Jan. 2021.

[6] K. Bryson, "NVIDIA Announces CPU for Giant AI and High
Performance Computing Workloads", NVIDIA, Apr. 12, 2021.

[7] M. Zidan et al., "A General Memristor-Based Partial Differential
Equation Solver," Nature Electronics, pp. 411-420, July 2018.

[8] Schiesser, W. E. (1991), The Numerical Method of Lines Integration of
Partial Differential Equations, Academic Press, San Diego.

[9] Bruaset, Tveito, A., & Bruaset, A. M. (Are M. (2006). Numerical
solution of partial differential equations on parallel computers / Are
Magnus Bruaset, Aslak Tveito (eds.). Springer.
https://doi.org/10.1007/3-540-31619-1

352

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 13:59:43 UTC from IEEE Xplore. Restrictions apply.

