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Abstract. We construct an example of a simple approximately homogeneous

C∗-algebra such that its Elliott invariant admits an automorphism which is
not induced by an automorphism of the algebra.

Classification theory for simple nuclear C∗-algebras reached a milestone recently.
The results of [EGLN15] and [TWW17], building on decades of work by many
authors, show that simple nuclear unital C∗-algebras satisfying the Universal Co-
efficient Theorem are classified via the Elliott invariant, Ell(·), which consists of
the ordered K0-group along with the class of the identity, the K1-group, the trace
simplex, and the pairing between the trace simplex and the K0-group. Earlier
counterexamples due to Toms and Rørdam ([Tom08, Rør03]), related to ideas of
Villadsen ([Vil98]), show that one cannot expect to be able to extend this clas-
sification theorem beyond the case of finite nuclear dimension, at least without
either extending the invariant or restricting to another class of C∗-algebras. An
important facet of the classification theorems is a form of rigidity. Starting with
two C∗-algebras A and B and an isomorphism Φ: Ell(A) → Ell(B), one not only
shows that A and B are isomorphic, but rather that there exists an isomorphism
from A to B which induces the given isomorphism Φ on the level of the Elliott
invariant, and furthermore that the isomorphism on the algebra level is unique up
to approximate unitary equivalence.

The goal of this paper is to illustrate how this existence property may fail in
the infinite nuclear dimension setting, even when restricting to a class consisting of
a single C∗-algebra. Namely, we construct an example of a simple unital nuclear
separable AH algebra C, along with an automorphism of Ell(C), which is not
induced by any automorphism of C. This can be viewed as a companion of sorts to
[Tom08, Theorem 1.2], where it was shown that when such automorphisms exist,
they need not be unique in the sense described. The mechanism of the example is
that if there were such an automorphism φ, there would be projections p, q ∈ C
such that φ(p) = q but such that the corners pCp and qCq have different radii
of comparison ([Tom06]; the definition is recalled at the beginning of Section 1).
This further shows that simple unital AH algebras can be quite inhomogeneous.
In particular, extending the Elliott invariant by adding something as simple as the
radius of comparison will not help for the classification of AH algebras which are
not Jiang-Su stable.
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We now give an overview of our construction. We start with the counterexample
from [Tom08, Theorem 1.1]. We consider two direct systems, described diagram-
matically as follows:

(0.1) C(X0) →→ →→
→→→→ C(X1)⊗Mr(1) →→→→

→→→→ C(X2)⊗Mr(2) →→→→
→→→→ · · ·

C([0, 1])
→→ →→→→→→ C([0, 1])⊗Mr(1)

→→→→→→→→ C([0, 1])⊗Mr(2)
→→→→→→→→ · · ·

The ordinary arrows indicate a large (and rapidly increasing) number of embeddings
which are carefully chosen, and the dotted arrows indicate a small number of point
evaluation maps, thrown in so as to ensure that the resulting direct limit is simple.
The spaces in the upper diagram are contractible CW complexes whose dimension
increases rapidly compared to the sizes of the matrix algebras. (Toms uses cubes;
in our construction we found it easier to use cones over products of spheres, but the
underlying idea is similar.) The direct system is constructed so as to have positive
radius of comparison. We use [Tho94] to choose the lower diagram so as to mimic
the upper diagram, and produce the same Elliott invariant. As the resulting algebra
on the bottom is AI, it has strict comparison, and therefore is not isomorphic to
the one on the top. (In [Tom08] it isn’t important for the two diagrams to match
up nicely in terms of the ranks of the matrices involved. However, we will show
that it can be done, as it is important for us.)

Our construction involves moving the point evaluations across, so as to merge
the two systems, getting:

(0.2) C(X0)

→→

→→→→→→ C(X1)⊗Mr(1)

→→

→→→→→→ C(X2)⊗Mr(2)

↘↘

→→→→→→ · · ·

C([0, 1])

→→

→→→→→→ C([0, 1])⊗Mr(1)

→→

→→→→→→ C([0, 1])⊗Mr(2)

↗↗

→→→→→→ · · · .

With care, one can arrange for the flip between the two levels of the diagram to
make sense as an automorphism of the Elliott invariant. The resulting C∗-algebra
has positive radius of comparison and behaves roughly as badly as Toms’ example.
Nevertheless, we can distinguish a part of it which roughly corresponds to the rapid
dimension growth diagram on the top from a part which roughly corresponds to
the AI part on the bottom. Namely, if at the first level C(X0)⊕C([0, 1]) we denote
by q the function which is 1 on X0 and 0 on [0, 1], and we denote q⊥ = 1− q, then
the K0-classes of q and q⊥ will be switched by the automorphism of the Elliott
invariant we construct. However, we can tell apart the corners qCq and q⊥Cq⊥ by
considering their radii of comparison.

Section 1 develops the choices needed to get different radii of comparison in
different corners of the algebra we construct. Section 2 contains the work needed to
assemble the ingredients of the construction into a simple C∗-algebra whose Elliott
invariant admits an appropriate automorphism. The main theorem is in Section 3.

The second author is grateful to M. Ali Asadi-Vasfi for a careful reading of
Section 1, and in particular finding a number of misprints.
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1. Upper and lower bounds on the radius of comparison

We recall the required standard definitions and notation related to the Cuntz
semigroup. See Section 2 of [Rør92] for details. For a unital C∗-algebraA, we denote
its tracial state space by T(A). We take M∞(A) =

⋃∞
n=1Mn(A), using the usual

embeddings Mn(A) ↪→ Mn+1(A). For τ ∈ T(A), we define dτ : M∞(A)+ → [0,∞)
by dτ (a) = limn→∞ τ(a1/n). If a, b ∈ M∞(A)+, then a ≾ b (a is Cuntz subequiva-
lent to b) if there is a sequence (vn)

∞
n=1 in M∞(A) such that limn→∞ vnbv

∗
n = a.

Following [Tom06, Definition 6.1], for ρ ∈ [0,∞), we say that A has ρ-comparison
if whenever a, b ∈ M∞(A)+ satisfy dτ (a) + ρ < dτ (b) for all τ ∈ T(A), then a ≾ b.
The radius of comparison of A, denoted rc(A), is

rc(A) = inf
({
ρ ∈ [0,∞) | A has ρ-comparison

})
.

We take rc(A) =∞ if there is no ρ such that A has ρ-comparison. Since AH algebras
are nuclear, all quasitraces on them are traces by [Haa14, Theorem 5.11]. Thus, we
ignore quasitraces. Also, by Proposition 6.12 of [Phi14], the radius of comparison
remains unchanged if we replaceM∞(A) by K⊗A throughout. Thus, we may work
only in M∞(A).

Our construction uses a specific setup, with a number of parameters of various
kinds which must be chosen to satisfy specific conditions. Construction 1.1 lists
for reference many of the objects used in it, and some of the conditions they must
satisfy. It abstracts the diagram (0.2). Construction 1.6 specifies the choices of
spaces and maps needed for the results on Cuntz comparison, and Construction 2.17
together with the additional maps in parts (11), (12), and (13) of Construction 1.1,
is used to arrange the existence of a suitable automorphism of the tracial state space
of the algebra we construct. Because of the necessity of passing to a subsystem at
one stage in this process, we must start the proof of the main theorem with a
version of just the top row in the diagram (0.1); this is Construction 3.3. Many of
the lemmas use only a few of the objects and their properties, so that the reader
can refer back to just the relevant parts of the constructions. In particular, many
details are used only in this section or only in Section 2. Some of the details are
used for just one lemma each.

Construction 1.1. For much of this paper, we will consider algebras constructed
in the following way and using the following notation:

(1) (d(n))n=0,1,2,... and (k(n))n=0,1,2,... are sequences in Z≥0, with d(0) = 1 and
k(0) = 0. Moreover, for n ∈ Z≥0,

l(n) = d(n) + k(n) , r(n) =

n∏
j=0

l(j) , and s(n) =

n∏
j=0

d(j) .

Further define t(n) inductively as follows. Set t(0) = 0, and

t(n+ 1) = d(n+ 1)t(n) + k(n+ 1)[r(n)− t(n)] .

(See Lemma 1.14 for the significance of t(n).)
(2) We will assume that k(n) < d(n) for all n ∈ Z≥0.
(3) We define

κ = inf
n∈Z>0

s(n)

r(n)
.

For estimates involving the radius of comparison, we will assume κ > 1
2 .
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(4) The numbers ω, ω′ ∈ (0,∞] are defined by

ω =
k(1)

k(1) + d(1)
and ω′ =

∞∑
n=2

k(n)

k(n) + d(n)
.

We will require ω′ < ω < 1
2 . In particular,

∞∑
n=1

k(n)

k(n) + d(n)
<∞ .

(5) We will also eventually require that κ as in (3) and ω as in (4) are related
by 2κ− 1 > 2ω. This can easily be arranged with a suitable choice of d(1)
and k(1).

(6) (Xn)n=0,1,2,... and (Yn)n=0,1,2,... are sequences of compact metric spaces.
(They will be further specified in Construction 1.6.)

(7) For n ∈ Z≥0, the algebra Cn is

Cn =Mr(n) ⊗
(
C(Xn)⊕ C(Yn)

)
.

We further make the identifications:

C(Xn+1, Mr(n+1)) =Ml(n+1) ⊗ C(Xn+1, Mr(n)),

C(Yn+1, Mr(n+1)) =Ml(n+1) ⊗ C(Yn+1, Mr(n)),

C(Xn)⊕ C(Yn) = C(Xn ⨿ Yn),
C(Xn, Mr(n))⊕ C(Yn, Mr(n)) = C(Xn ⨿ Yn,Mr(n)) .

(8) For n ∈ Z>0, we are given a unital homomorphism

γn : C(Xn)⊕ C(Yn)→Ml(n+1)

(
C(Xn+1)⊕ C(Yn+1)

)
,

and the homomorphism

Γn+1, n : Cn → Cn+1

is given by Γn+1, n = idMr(n)
⊗ γn. Moreover, for m,n ∈ Z≥0 with m ≤ n,

Γn,m = Γn,n−1 ◦ Γn−1, n−2 ◦ · · · ◦ Γm+1,m : Cm → Cn .

In particular, Γn,n = idCn .
(9) We require that the maps

γn : C(Xn ⨿ Yn)→Ml(n+1)

(
C(Xn+1 ⨿ Yn+1)

)
in (8) be diagonal, that is, that there exist continuous functions

Sn,1, Sn,2, . . . , Sn, l(n+1) : Xn+1 ⨿ Yn+1 → Xn ⨿ Yn
such that for all f ∈ C(Xn ⨿ Yn), we have

γn(f) = diag
(
f ◦ Sn,1, f ◦ Sn,2, . . . , f ◦ Sn, l(n+1)

)
.

(These maps will be specified further in Construction 1.6.)
(10) We set C = lim−→n

Cn, taken with respect to the maps Γn,m. The maps

associated with the direct limit will be called Γ∞,m : Cm → C for m ∈ Z≥0.

As we need to work with two diagrams which are similar in most positions, as
in diagrams (0.1) and (0.2), we sometimes use additional objects and conditions in
the construction, as follows:
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(11) For n ∈ Z>0, we may be given an additional unital homomorphism

γ(0)n : C(Xn)⊕ C(Yn)→Ml(n+1)

(
C(Xn+1)⊕ C(Yn+1)

)
.

Then the maps Γ
(0)
n+1, n : Cn → Cn+1, Γ

(0)
n,m : Cm → Cn are defined anal-

ogously to (8), the algebra C(0) is given as C(0) = lim−→n
Cn, taken with

respect to the maps Γ
(0)
n,m, and the maps Γ

(0)
∞,m : Cm → C(0) are defined

analogously to (10).
(12) In (11), analogously to (9), we may require that there be

S
(0)
n,1, S

(0)
n,2, . . . , S

(0)
n, l(n+1) : Xn+1 ⨿ Yn+1 → Xn ⨿ Yn

such that for all f ∈ C(Xn ⨿ Yn), we have

γ(0)n (f) = diag
(
f ◦ S(0)

n,1, f ◦ S
(0)
n,2, . . . , f ◦ S

(0)
n, l(n+1)

)
.

(These maps will be specified further in Construction 1.6.)
(13) Assuming diagonal maps as in (9), we may require that they agree in the

coordinates 1, 2, . . . , d(n+1), that is, for n ∈ Z>0 and k = 1, 2, . . . , d(n+1),

we have S
(0)
n,k = Sn,k.

Lemma 1.2. In Construction 1.1(1), the sequence
(

s(n)
r(n)

)
n=1,2,...

is strictly de-

creasing.

Proof. The proof is straightforward. □

Lemma 1.3. In Construction 1.1(1), and assuming Construction 1.1(2), we have

0 =
t(0)

r(0)
<
t(1)

r(1)
<
t(2)

r(2)
< · · · < 1

2
.

Proof. We have t(0) = 0 by definition. We prove by induction on n ∈ Z>0 that

(1.1)
t(n− 1)

r(n− 1)
<
t(n)

r(n)
<

1

2
.

This will finish the proof. For n = 1, we have

t(1)

r(1)
=

k(1)

k(1) + d(1)
,

which is in
(
0, 12

)
by Construction 1.1(2). Now assume (1.1); we prove this relation

with n+ 1 in place of n. We have r(n)− t(n) > t(n), so

t(n+ 1)

r(n+ 1)
=
d(n+ 1)t(n) + k(n+ 1)[r(n)− t(n)]

[d(n+ 1) + k(n+ 1)]r(n)
(1.2)

>
d(n+ 1)t(n) + k(n+ 1)t(n)

[d(n+ 1) + k(n+ 1)]r(n)
=
t(n)

r(n)
.

Also, with

α =
d(n+ 1)

d(n+ 1) + k(n+ 1)
and β =

t(n)

r(n)
,

starting with the first step in (1.2), and at the end using α > 1
2 (by Construction

1.1(2)) and β < 1
2 (by the induction hypothesis), we have

t(n+ 1)

r(n+ 1)
= αβ + (1− α)(1− β) = 1

2

[
1− (2α− 1)(1− 2β)

]
<

1

2
.
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This completes the induction, and the proof. □

Lemma 1.4. With the notation of Construction 1.1(1) and Construction 1.1(4),
and assuming the conditions in Construction 1.1(2) and Construction 1.1(4), for
all n ∈ Z>0 we have

ω ≤ t(n)

r(n)
≤ ω + ω′ < 2ω .

Proof. The third inequality is immediate from Construction 1.1(4).

By Lemma 1.3, the sequence
(

t(n)
r(n)

)
n=1,2,...

is strictly increasing. Also,

(1.3)
t(1)

r(1)
=

k(1)

k(1) + d(1)
= ω.

The first inequality in the statement now follows.
Next, we claim that

t(n)

r(n)
≤

n∑
j=1

k(j)

k(j) + d(j)

for all n ∈ Z>0. The case n = 1 is (1.3). Assume this inequality is known for n.
Then

t(n+ 1)

r(n+ 1)
=

(
d(n+ 1)

k(n+ 1) + d(n+ 1)

)(
t(n)

r(n)

)
+

(
k(n+ 1)

k(n+ 1) + d(n+ 1)

)(
r(n)− t(n)

r(n)

)
≤ t(n)

r(n)
+

k(n+ 1)

k(n+ 1) + d(n+ 1)
≤

n+1∑
j=1

k(j)

k(j) + d(j)
,

as desired.
The second inequality in the statement now follows. □

Notation 1.5. For a topological space X, we define

cone(X) = (X × [0, 1])/(X × {0}) .

Then cone(X) is contractible, and cone(·) is a covariant functor: if T : X → Y is a
continuous map, then it induces a continuous map cone(T ) : cone(X) → cone(Y ).
We identify X with the image of X × {1} in cone(X).

Construction 1.6. We give further details on the spaces Xn and Yn in Construc-
tion 1.1(6).

(14) The space Xn is chosen as follows. First set Z0 = S2. With (d(n))n=0,1,2,...

and (s(n))n=0,1,2,... as in Construction 1.1(1), define inductively

Zn = Z
d(n)
n−1 = (S2)s(n).

Then set Xn = cone(Zn). (In particular, Xn is contractible, and Zn ⊂ Xn

as in Notation 1.5.) Further, for n ∈ Z≥0 and j = 1, 2, . . . , d(n + 1),

we let P
(n)
j : Zn+1 → Zn be the j-th coordinate projection, and we set

Q
(n)
j = cone

(
P

(n)
j

)
: Xn+1 → Xn.

(15) Yn = [0, 1] for all n ∈ Z>0. (In particular, Yn is contractible.)
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(16) We assume we are given points xm ∈ Xm for m ∈ Z≥0 such that, using the
notation in (14), for all n ∈ Z≥0, the set{(

Q(n)
ν1
◦Q(n+1)

ν2
◦ · · · ◦Q(m−1)

νm−n

)
(xm) |

m = n+ 1, n+ 2, . . . and νj = 1, 2, . . . , d(n+ j) for j = 1, 2, . . . ,m− n
}

is dense in Xn.
(17) We assume we are given a sequence (yk)k=0,1,2,... in [0, 1] such that for all

n ∈ Z≥0, the set {yk | k ≥ n} is dense in [0, 1].
(18) The maps

γn : C(Xn ⨿ Yn)→Ml(n+1)

(
C(Xn+1 ⨿ Yn+1)

)
will be as in Construction 1.1(9), with the maps Sn,j : Xn+1 ⨿ Yn+1 →
Xn ⨿ Yn appearing there defined as follows:

(a) With Q
(n)
j as in (14), we set Sn,j(x) = Q

(n)
j (x) for x ∈ Xn+1 and

j = 1, 2, . . . , d(n+ 1).
(b) Sn,j(x) = yn for

x ∈ Xn+1 and j = d(n+ 1) + 1, d(n+ 1) + 2, . . . , l(n+ 1) .

(c) There are continuous functions

Rn,1, Rn,2, . . . , Rn, d(n+1) : Yn+1 → Yn

(which will be taken from Proposition 2.14 below) such that Sn,j(y) =
Rn,j(y) for y ∈ Yn+1 and j = 1, 2, . . . , d(n+ 1).

(d) Sn,j(y) = xn for

y ∈ Yn+1 and j = d(n+ 1) + 1, d(n+ 1) + 2, . . . , l(n+ 1) .

(19) The maps

γ(0)n : C(Xn ⨿ Yn)→Ml(n+1)

(
C(Xn+1 ⨿ Yn+1)

)
will be as in Construction 1.1(12), with the maps S

(0)
n,j : Xn+1 ⨿ Yn+1 →

Xn⨿Yn appearing there given by S
(0)
n,j = Sn,j for j = 1, 2, . . . , d(n+1) and

to be specified later for j = d(n+ 1) + 1, d(n+ 1) + 2, . . . , l(n+ 1).

With the choices in Construction 1.6(18), the map

γn : C(Xn)⊕ C(Yn)→ C(Xn+1, Ml(n+1))⊕ C(Yn+1, Ml(n+1))

in Construction 1.1(8), as further specified in Construction 1.1(9), is given as fol-
lows. With Cd(n) viewed as embedded in Md(n) as the diagonal matrices, there is
a homomorphism

δn : C(Yn)→ C(Yn+1, Cd(n+1)) ⊂ C(Yn+1,Md(n+1))

such that

γn(f, g) =

(
diag

(
f ◦Q(n)

1 , f ◦Q(n)
2 , . . . , f ◦Q(n)

d(n+1), g(yn), g(yn), . . . , g(yn)  
k(n+ 1) times

)
,

diag
(
δn(g), f(xn), f(xn), . . . , f(xn)  

k(n+ 1) times

))
.(1.4)
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For the purposes of this section, we need no further information on the maps δn,
except that they send constant functions to constant functions.

Lemma 1.7. Assume the notation and choices in parts (1), (7), (8), and (10)
of Construction 1.1, and in Construction 1.6 (except part (19)) and the parts of
Construction 1.1 referred to there. Then the algebra C is simple.

Proof. Using Construction 1.6(16), this is easily deduced from Proposition 2.1
of [DNNP92]. □

Notation 1.8. Let p ∈ C(S2,M2) denote the Bott projection, and let L be the
tautological line bundle over S2 ∼= CP1. (Thus, the range of p is the section space
of L.) Recalling that X0 = cone(S2), parametrized as in Notation 1.5, define
b ∈ C(X0,M2) by b(λ) = λ · p for λ ∈ [0, 1]. Assuming the notation and choices in
parts (1), (6), (7), (8), and (10) of Construction 1.1 and in Construction 1.6, for
n ∈ Z≥0 set bn = (idM2

⊗ Γn,0)(b, 0) ∈M2(Cn).

We require the following simple lemma concerning characteristic classes. It gives
us a way of estimating the radius of comparison which is similar to the one used in
[Vil98, Lemma 1], but more suitable for the types of estimates we need here.

Lemma 1.9. The Cartesian product L×k does not embed in a trivial bundle over
(S2)k of rank less than 2k.

Proof. We refer the reader to [MS74, Section 14] for an account of Chern classes.
The Chern character c(L) is of the form 1+ ε, where ε is a generator of H2(S2,Z),
and the product operation satisfies ε2 = 0. Let P1, P2, . . . , Pk : (S

2)k → S2 be
the coordinate projections. For j = 1, 2, . . . , k, set εj = P ∗

j (ε). The elements

ε1, ε2, . . . , εk ∈ H2((S2)k,Z), along with 1 ∈ H0((S2)k,Z) (the standard generator)
generate the cohomology ring of (S2)k, and satisfy ε2j = 0 for j = 1, 2, . . . , k. By
naturality of the Chern character ([MS74, Lemma 14.2]) and the product theorem

([MS74, (14.7) on page 164]), we have c(L×k) =
∏k

j=1(1 + εj). Now, suppose L×k

embeds as a subbundle of a trivial bundle E. Let F be the complementary bundle,
so that L×k ⊕ F = E. By the product theorem, c(L×k)c(F ) = c(L×k ⊕ F ) =

c(E) = 1. Thus, c(F ) = c(L×k)−1 =
∏k

j=1(1− εj). Since c(F ) has a nonzero term

in the top cohomology class H2k((S2)k), it follows that rank(F ) is at least k. Thus,
rank(E) = rank(L×k) + rank(F ) ≥ 2k, as required. □

Lemma 1.10. Adopt the assumptions and notation of Notation 1.8. Let n ∈ Z>0.
Then bn|Zn is the orthogonal sum of a projection pn whose range is isomorphic to
the section space of the Cartesian product bundle L×s(n) and a constant function
of rank at most r(n)− s(n)− t(n).

We don’t expect bn|Zn
to be a projection, since some of the point evaluations

occurring in the maps of the direct system will be at points x ∈ cone(Zm) \Zm for
values of m < n, and bm(x) is not a projection for such x.

We don’t need the estimate on the rank of the second part of the description
of bn|Zn

; it is included to make the construction more explicit. If there are no
evaluations at the “cone points”

(Zm × {0})/(Zm × {0}) ∈ (Zm × [0, 1])/(Zm × {0})
(following the parametrization in Notation 1.5), then this rank will be exactly
r(n)− s(n)− t(n).
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Proof of Lemma 1.10. For n ∈ Z≥0 write bn = (cn, gn) with

cn ∈M2(C(Xn,Mr(n))) and gn ∈M2(C(Yn,Mr(n))) .

Further, for j = 1, 2, . . . , s(n) let T
(n)
j : (S2)s(n) → S2 be the j-th coordinate projec-

tion. We claim that cn is an orthogonal sum cn,0 + cn,1, in which cn,0 is the direct

sum of the functions b ◦ cone
(
T

(n)
j

)
for j = 1, 2, . . . , s(n) and cn,1 is a constant

function of rank at most r(n) − s(n) − t(n), and moreover that gn is a constant
function of rank at most t(n). The statement of the lemma follows from this claim.

The proof of the claim is by induction on n. The claim is true for n = 0, by the
definition of b and since s(0) = 1, t(0) = 0, and r(0)− s(0)− t(0) = 0.

Now assume that the claim is known for n, recall that Γn+1, n = idMr(n)
⊗ γn

(see Construction 1.1(8)), and examine the summands in the description (1.4) of the
map γn (after Construction 1.6). With this convention, first take (f, g) in (1.4) to
be (cn,0, 0). The first coordinate Γn+1,n(cn,0, 0)1 is of the form required for cn+1,0,
while Γn+1,n(cn,0, 0)2 is a constant function of rank k(n+1)s(n) unless cn(xn) = 0,
in which case it is zero. In the same manner, we see that:

• Γn+1,n(cn,1, 0)1 is constant of rank at most d(n+ 1)[r(n)− s(n)− t(n)].
• Γn+1,n(cn,1, 0)2 is constant of rank at most k(n+ 1)[r(n)− s(n)− t(n)].
• Γn+1,n(0, gn)1 is constant of rank at most k(n+ 1)t(n).
• Γn+1,n(0, gn)2 is constant of rank at most d(n+ 1)t(n).

Putting these together, we get in the first coordinate of Γn+1,n(bn) the direct sum
of cn+1,0 as described and a constant function of rank at most

d(n+ 1)[r(n)− s(n)− t(n)] + k(n+ 1)t(n) .

A computation shows that this expression is equal to r(n+1)− s(n+1)− t(n+1).
In the second coordinate we get a constant function of rank at most

k(n+ 1)s(n) + k(n+ 1)[r(n)− s(n)− t(n)] + d(n+ 1)t(n) = t(n+ 1) .

This completes the induction, and the proof. □

Corollary 1.11. Adopt the assumptions and notation of Notation 1.8. Let n ∈
Z≥0. Let e = (e1, e2) be an element in M∞(Cn) ∼= M∞(C(Xn) ⊕ C(Yn)) such
that e1 is a projection which is equivalent to a constant projection. If there exists
x ∈M∞(Cn) such that ∥xex∗ − bn∥ < 1

2 then rank(e1) ≥ 2s(n).

Proof. Recall from Construction 1.6(14) and Notation 1.5 that

Zn = (S2)s(n) and Zn ⊂ cone(Zn) = Xn ⊂ Xn ⨿ Yn .

Also recall the line bundle L and the projection p from Notation 1.8.
It follows from Lemma 1.10 that there is a projection q ∈M2r(n)(C(Zn)) whose

range is isomorphic to the section space of the s(n)-dimensional vector bundle
L×s(n) and such that q(bn|Zn)q = q. Now ∥xex∗ − bn∥ < 1

2 implies ∥q(xex∗|Zn)q −
q∥ < 1

2 . Since e|Zn
and q|Zn

are projections, it follows that q|Zn
is Murray-von

Neumann equivalent to a subprojection of e|Zn = e1|Zn . Therefore rank(e|Zn) ≥
2s(n) by Lemma 1.9. So rank(e1) ≥ 2s(n). □

Although not strictly needed for the sequel, we record the following.
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Corollary 1.12. Assume the notation and choices in parts (1), (3) (including
κ > 1

2), (7), (8), and (10) of Construction 1.1, and in Construction 1.6 (except
part (19)) and the parts of Construction 1.1 referred to there. Then the algebra C
satisfies rc(C) ≥ 2κ− 1 > 0.

Proof. Suppose ρ < 2κ− 1. We show that C does not have ρ-comparison. Choose
n ∈ Z>0 such that 1/r(n) < 2κ − 1 − ρ. Choose M ∈ Z≥0 such that ρ + 1 <
M/r(n) < 2κ. Let e ∈M∞(Cn) be a trivial projection of rank M . By slight abuse
of notation, we use Γm,n to denote the amplified map from M∞(Cn) to M∞(Cm)

as well. For m > n, the rank of Γm,n(e) isM · r(m)
r(n) , and the choice ofM guarantees

that this rank is strictly less than 2s(m). Now, for any trace τ on Cm (and thus
for any trace on C), and justifying the last step afterwards, we have

dτ (Γm,n(e)) = τ(Γm,n(e)) =
1

r(m)
·M · r(m)

r(n)
≥ 1 + ρ > dτ (bm) + ρ .

To explain the last step, recall bm from Notation 1.8, and use Lemma 1.10 to
see that the ranks of its components (bm)1 ∈ M2

(
C(Xm,Mr(m))

)
and (bm)2 ∈

M2

(
C(Ym,Mr(m))

)
are both less than r(m), while the identity element has rank

r(m).
On the other hand, if Γ∞,0(b) ≾ Γ∞,n(e) then, in particular, there exists some

m > n and x ∈ M∞(Cm) such that ∥xΓm,n(e)x
∗ − bm∥ < 1

2 , which contradicts
Corollary 1.11. □

Notation 1.13. We assume the notation and choices in parts (1), (6), (7), (8),
and (10) of Construction 1.1. In particular, C0 = C(X0) ⊕ C(Y0). Define q0 =
(1, 0) ∈ C(X0) ⊕ C(Y0) and q⊥0 = 1 − q0. For n ∈ Z>0 define qn = Γn,0(q0) ∈ Cn

and q⊥n = 1− qn, and finally, define q = Γ∞,0(q0) ∈ C and q⊥ = 1− q.

Lemma 1.14. Make the assumptions in Notation 1.13. Further assume the nota-
tion and choices in Construction 1.6 (except part (19)). Then the projection

1− qn ∈Ml(n)(C(Xn))⊕Ml(n)(C(Yn))

has the form (e, f) for a constant projection e ∈ Ml(n)(C(Xn)) = C(Xn,Ml(n))
of rank t(n) and a constant projection f ∈ Ml(n)(C(Yn)) = C(Yn,Ml(n)) of rank
r(n)− t(n).

From Construction 1.6, we don’t actually need to know anything about the
spaces Xn and Yn, we don’t need to know anything about the points xn and yn
except which spaces they are in, and we don’t need to know anything about the

maps Q
(n)
j and Rn,j except their domains and codomains.

Proof of Lemma 1.14. The proof is an easy induction argument, using the fact
that the image of a constant function under a diagonal map is again a constant
function. □

Lemma 1.15. Assume the notation and choices in parts (1)–(10) of Construction
1.1, Construction 1.6 (except part (19)), and Notation 1.13, including k(n) < d(n)
for all n ∈ Z≥0, κ >

1
2 , ω > ω′, and 2κ− 1 > 2ω. Then

rc(q⊥Cq⊥) ≥ 2κ− 1

2ω
.
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Proof. We proceed as in the proof of Corollary 1.12, although the rank computa-
tions are somewhat more involved. The difference is in the definition of dτ . In this
corner, dτ is normalized so that dτ (q

⊥) = 1 for all τ ∈ T(C). To avoid redefining
the notation, we will use τ to denote a tracial state on C, and therefore our dimen-
sion functions will be of the form a ↦→ dτ (a)/τ(q

⊥), noting that τ(q⊥) = dτ (q
⊥)

since q⊥ is a projection.
It suffices to show that for all ρ ∈

(
1, 2κ−1

2ω

)
∩Q, we have rc(q⊥Cq⊥) ≥ ρ.

Fix δ ∈ (0, ω) such that

(1.5) ρ < (1− δ)
(
2κ− 1

2ω

)
.

Set

(1.6) ε =
δ

2ρ(1− δ)
> 0.

Since the sequence
(

s(n)
r(n)

)
n=0,1,2,...

is nonincreasing and converges to a nonzero

limit κ, there exists n0 ∈ Z≥0 such that for all n and m with m ≥ n ≥ n0, we have

0 ≤ 1− r(n)

s(n)
· s(m)

r(m)
< ε .

This implies that

(1.7)
r(m)

r(n)
− s(m)

s(n)
< ε · r(m)

r(n)
.

Using (1.5) and δ < ω at the first step, we get

1− ω + 2ρω < 1− δ + 2(1− δ)
(
2κ− 1

2ω

)
ω = 2κ(1− δ) .

Now write ρ = α/β with α, β ∈ Z>0. Choose n ≥ n0 such that

β

r(n)
< 2κ(1− δ)− (1− ω + 2ρω) .

Then there exists N1 ∈ Z>0 such that ρN1 ∈ Z>0 and

(1.8) 2κ(1− δ) > N1

r(n)
> 1− ω + 2ρω .

Set

(1.9) N2 = ρN1 .

Using ρ > 1 at the last step, we have

N2

r(n)
=
ρN1

r(n)
> ρ(1− ω + 2ρω) > ρ(1− ω) + 2ω .

Now suppose e ∈ M∞(Cn) = M∞
(
C(Xn) ⊕ C(Yn)

)
is an ordered pair whose

first component is a trivial projection on Xn of rank N1 and whose second com-
ponent is a (trivial) projection on Yn of rank N2. Let m > n, and let f be the
first component of Γm,n(e); we estimate rank(f). (The second component is a
trivial projection over Ym whose rank we don’t care about.) Now f is the direct
sum of r(m)/r(n) trivial projections, coming from C(Xn,Mr(n)) and C(Yn,Mr(n)).
At least s(m)/s(n) of these summands come from C(Xn,Mr(n)). So at most
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r(m)/r(n) − s(m)/s(n) of these summands come from C(Yn,Mr(n)). The sum-
mands coming from C(Xn,Mr(n)) have rank N1 and the summands coming from
C(Yn,Mr(n)) have rank N2. Since N2 > N1, we get

rank(f) ≤
(
r(m)

r(n)
− s(m)

s(n)

)
N2 +

s(m)

s(n)
·N1

=
r(m)

r(n)
·N1 +

(
r(m)

r(n)
− s(m)

s(n)

)
(N2 −N1) .

Combining this with (1.7) at the first step, and using (1.9) at the second step, (1.6)
at the third step, (1.8) at the fifth step, and Construction 1.1(3) at the sixth step,
we get

rank(f) <
r(m)

r(n)
· (N1 + εN2) =

r(m)

r(n)
· (1 + ερ) ·N1

=
r(m)

r(n)
· 2− δ
2(1− δ)

·N1 <
r(m)

r(n)
· N1

1− δ
< 2κr(m) ≤ 2s(m) .

So Corollary 1.11 implies that there is no x ∈ M∞(Cm) for which ∥xΓn,m(e)x∗ −
bm∥ < 1

2 . Since m > n is arbitrary,

(1.10) Γ∞,n(e) ̸≾ b .

Now let τ be a trace on C, and restrict it to Cn
∼= Mr(n)

(
C(Xn) ⊕ C(Yn)

)
.

Denote by tr the normalized trace on Mr(n). There is a probability measure µ on

Xn ⨿ Yn such that τ(a) =
∫
Xn⨿Yn

tr(a) dµ for all a ∈ Cn. Define λ = µ(Xn), so

1− λ = µ(Yn). Then, using (1.9) at the second step,

τ(e) =
λN1 + (1− λ)N2

r(n)
=

[λ+ ρ(1− λ)]N1

r(n)
.

Using Lemma 1.14 to calculate the ranks of the components of q⊥n , we get

(1.11) τ(q⊥n ) =
λt(n) + (1− λ)[r(n)− t(n)]

r(n)

and

(1.12) τ(qn) = 1− τ(q⊥n ) =
λ[r(n)− t(n)] + (1− λ)t(n)

r(n)
.

It follows from Lemma 1.10 and Lemma 1.14 that dτ (bn) ≤ τ(qn). Using this at
the first step, and (1.11) and (1.12) at the second step, we get

dτ (bn)

τ(q⊥n )
≤ τ(qn)

τ(q⊥n )
=
λ[r(n)− t(n)] + (1− λ)t(n)
λt(n) + (1− λ)[r(n)− t(n)]

.

So
τ(e)− dτ (bn)

τ(q⊥n )
≥
(
λ+ ρ(1− λ)

)
N1 −

(
λ[r(n)− t(n)] + (1− λ)t(n)

)
λt(n) + (1− λ)[r(n)− t(n)]

.

The last expression is a fractional linear function in λ, and is defined for all
values of λ in the interval [0, 1]. Any such function is monotone on [0, 1]. In the

following calculations, we recall from Lemma 1.4 that ω ≤ t(n)
r(n) < 2ω. If we set

λ = 1 and use (1.8), the value we obtain is

N1/r(n)− (1− t(n)/r(n))
t(n)/r(n)

>
(1− ω + 2ρω)− (1− ω)

2ω
= ρ .
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If we set λ = 0, we get, using (1.8) at the first step and ρ > 1 at the last step,

ρN1/r(n)− t(n)/r(n)
1− t(n)/r(n)

>
ρ(1− ω + 2ρω)− 2ω

1− ω
= ρ+

2ρ2ω − 2ω

1− ω
> ρ .

Therefore
dτ (Γ∞,n(e))

dτ (q⊥)
>

dτ (b)

dτ (q⊥)
+ ρ

for all traces τ on C, so rc(q⊥Cq⊥) > ρ, as required. □

We now turn to the issue of finding upper bounds on the radius of comparison.
For this, we appeal to results of Niu from [Niu14]. Niu introduced a notion of mean
dimension for a diagonal AH-system, [Niu14, Definition 3.6]. Suppose we are given
a direct system of homogeneous algebras of the form

An = C(Kn,1)⊗Mjn,1
⊕ C(Kn,2)⊗Mjn,2

⊕ · · · ⊕ C(Kn,m(n))⊗Mjn,m(n)
,

in which each of the spaces involved is a connected finite CW complex, and the
connecting maps are unital diagonal maps. Let γ denote the mean dimension of
this system, in the sense of Niu. It follows trivially from [Niu14, Definition 3.6]
that

γ ≤ lim
n→∞

max

({
dim(Kn,l)

jn,l
| l = 1, 2, . . . ,m(n)

})
.

Theorem 6.2 of [Niu14] states that if A is the direct limit of a system as above, and
A is simple, then rc(A) ≤ γ/2. Since the system we are considering here is of this
type, Niu’s theorem applies. With that at hand, we can derive an upper bound for
the radius of comparison of the complementary corner.

Lemma 1.16. Under the same assumptions as in Lemma 1.15, we have

rc(qCq) ≤ 1

1− 2ω
.

Proof. The algebra C is simple by Lemma 1.7, so qCq is also simple. This fact and
Lemma 1.14 allow us to apply the discussion above, getting

rc(qCq) ≤ 1

2
lim
n→∞

max

(
dim(Xn)

rank(qn|Xn
)
,

dim(Yn)

rank(qn|Yn
)

)
.

As dim(Yn) = 1 for all n, the second term converges to 0. As for the first term, by
Construction 1.6(14), we have dim(Xn) = 2s(n)+1. Also, rank(qn|Xn) = r(n)−t(n)
by Lemma 1.14. Thus, using Construction 1.1(1), Lemma 1.4, and d(n) → ∞
(which follows from Construction 1.1(4)) at the last step,

lim
n→∞

dim(Xn)

rank(qn|Xn
)
= lim

n→∞

2s(n) + 1

r(n)− t(n)
≤ lim

n→∞

2r(n) + 1

r(n)− t(n)
≤ 2

1− 2ω
.

This gives us the required estimate. □

Lemma 1.17. Let the assumptions and notation be as in Notation 1.13, Construc-
tion 1.6(14), and Construction 1.6(15). If e ∈ C is a projection which has the same
same K0-class as q then e is unitarily equivalent to q. The same holds with q⊥ in
place of q.
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Proof. This can be seen directly from the construction. For each n ∈ Z≥0, since
Xn and Yn are contractible (Construction 1.6(14) and Construction 1.6(15)), if
e ∈ M∞(Cn) is a projection which has the same K0-class as q, then e is actually
unitarily equivalent to qn. The same holds for q⊥n . It follows that this is the case
in C as well. □

We point out that this lemma can also be deduced using cancellation. By
[EHT09, Theorem 4.1], simple unital AH algebras which arise from AH systems
with diagonal maps have stable rank 1. Rieffel has shown that C∗-algebras with
stable rank 1 have cancellation; see [Bla98, Theorem 6.5.1].

2. The tracial state space

For a compact Hausdorff space X, we will need all of C(X,R) (the space of
real valued continuous functions on X), the tracial state space of C(X) (and of
C(X,Mn)), and the space of affine functions on the tracial state space. This last
space is an order unit space, and much of our work will be done there.

For later reference, we recall some of the definitions, and then describe how to
move between these spaces. We begin with the definition of an order unit space
from the discussion before Proposition II.1.3 of [Alf71]. We suppress the order unit
in our notation, since (except in several abstract results) our order unit spaces will
always be sets of affine continuous functions on compact convex sets with order
unit the constant function 1.

Definition 2.1. An order unit space V is a partially ordered real Banach space
(see page 1 of [Goo86] for the axioms of a partially ordered real vector space) which
is Archimedean (if v ∈ V and {λv | λ ∈ (0,∞)} has an upper bound, then v ≤ 0),
with a distinguished element e ∈ V which is an order unit (that is, for every v ∈ V
there is λ ∈ (0,∞) such that −λe ≤ v ≤ λe), and such that the norm on V satisfies

∥v∥ = inf
({
λ ∈ (0,∞) | −λe ≤ v ≤ λe

})
for all v ∈ V .

The morphisms of order unit spaces are the positive linear maps which preserve
the order units.

The morphisms of compact convex sets (compact convex subsets of locally convex
topological vector spaces) are just the continuous affine maps.

Definition 2.2. If K is a compact convex set, we denote by Aff(K) the order unit
space of continuous affine functions f : K → R, with the supremum norm and with
order unit the constant function 1.

If K and L are compact convex sets and λ : K → L is continuous and affine, we
let λ∗ : Aff(L)→ Aff(K) be the positive linear order unit preserving map given by
λ∗(f) = f ◦ λ for f ∈ Aff(L).

This definition makes K ↦→ Aff(K) a functor.

Definition 2.3. If V is an order unit space with order unit e, we denote by S(V )
(or S(V, e) if e is not understood) its state space (the order unit space morphisms
to (R, 1)), which is a compact convex set with the weak* topology.

If W is another order unit space and φ : V → W is positive, linear, and order
unit preserving, we let S(φ) : S(W )→ S(V ) be the continuous affine map given by
S(φ)(ω) = ω ◦ φ for ω ∈ S(W ).
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This definition makes V ↦→ S(V ) a functor.

Theorem 2.4 (Theorem 7.1 of [Goo86]). There is a natural isomorphism S(Aff(K)) ∼=
K for compact convex sets K, given by sending x ∈ K to the evaluation map
evx : Aff(K)→ R defined by evx(f) = f(x) for f ∈ Aff(K).

Definition 2.5. For a unital C*-algebra A, we denote its tracial state space by
T(A).

If A and B are unital C∗-algebras and φ : A→ B is a unital homomorphism, we
let T(φ) : T(B)→ T(A) be the continuous affine map given by T(φ)(τ) = τ ◦φ for
τ ∈ T(B). We let φ̂ : Aff(T(A))→ Aff(T(B)) be the positive order unit preserving
map given by φ̂(f) = f ◦ T(φ) for f ∈ Aff(T(A)). (Thus, φ̂ = T(φ)∗.)

Lemma 2.6. Let X be a compact Hausdorff space. Then C(X,R), with the supre-
mum norm and distinguished element the constant function 1, is a complete order
unit space. Restriction of tracial states on C(X) is an affine homeomorphism from
T(C(X)) to S(C(X,R)). The map from X to S(C(X,R)) which sends x ∈ X
to the point evaluation evx : C(X,R) → R is a homeomorphism onto its image,
and the map RX : Aff

(
S(C(X,R))

)
→ C(X,R), given by RX(f)(x) = f(evx) for

f ∈ Aff
(
S(C(X,R))

)
and x ∈ X, is an isomorphism of order unit spaces.

If Y is another compact Hausdorff space, then the function which sends a positive
linear order unit preserving map Q : C(X,R) → C(Y,R) to S(Q) : S(C(Y,R)) →
S(C(X,R)), as in Definition 2.3, is a bijection to the continuous affine maps from
S(C(Y,R)) to S(C(X,R)). Its inverse is the map E given as follows. For a contin-
uous affine map λ : S(C(Y,R))→ S(C(X,R)), using the notation of Definition 2.2,
define E(λ) : C(X,R)→ C(Y,R) by E(λ) = RY ◦ λ∗ ◦R−1

X .

A positive linear order unit preserving map from C(X,R) to C(Y,R) is called a
Markov operator .

Proof of Lemma 2.6. It is immediate that C(X,R) is a complete order unit space.
The identification of S(C(X,R)) is also immediate. The fact that RX is bijective
follows from [Goo86, Corollary 11.20] using the identification of X with the extreme
points of S(C(X,R)).

For the second paragraph, it is immediate that S sends positive linear order unit
preserving maps to continuous affine maps, and that E does the reverse. For the
rest, we must show that S ◦E and E ◦ S are the identity maps on the appropriate
sets.

We first claim that for g ∈ Aff
(
S(C(X,R))

)
and ρ ∈ S(C(X,R)) we have

(2.1) g(ρ) = ρ(RX(g)) .

This formula is true by definition when ρ = evx for some x ∈ X. Since, for fixed g,
both sides of (2.1) are continuous affine functions of ρ, and since S(C(X,R)) is the
closed convex hull of {evx | x ∈ X}, the claim follows.

We next claim that if λ : S(C(Y,R)) → S(C(X,R)) is continuous and affine,
ω ∈ S(C(Y,R)), and g ∈ Aff

(
S(C(X,R))

)
, then

(2.2) (ω ◦RY )(g ◦ λ) = (λ(ω) ◦RX)(g) .

To prove this claim, for the same reasons as in the proof of the first claim, it
suffices to prove this when there is y ∈ Y such that ω = evy. In this case, using



16 ILAN HIRSHBERG AND N. CHRISTOPHER PHILLIPS

the definition of RY at the second step and the previous claim with ρ = λ(evy) at
the third step,

(evy ◦RY )(g ◦ λ) = RY (g ◦ λ)(y) = (g ◦ λ)(evy) = (λ(evy) ◦RX)(g) ,

as desired.
Now let λ : S(C(Y,R)) → S(C(X,R)) be continuous and affine; we prove that

S(E(λ)) = λ. Let ω ∈ S(C(X,R)) and let f ∈ C(Y,R). Working through the
definitions gives

S(E(λ))(ω)(f) = (ω ◦RY )(R
−1
X (f) ◦ λ) .

By (2.2) with g = R−1
X (f), the right hand side is λ(ω)(f), as desired.

Finally, let Q : C(X,R) → C(Y,R) be a positive linear order unit preserving
map; we show that E(S(Q)) = Q. Let f ∈ C(X,R) and let y ∈ Y . Working
through the definitions gives

E(S(Q))(f)(y) = R−1
X (f)(evy ◦Q) .

Applying (2.1) with g = R−1
X (f) and ρ = evy ◦ Q, we see that the right hand

side is (evy ◦ Q)(f) = Q(f)(y). This proves that E(S(Q)) = Q, and the proof is
complete. □

Direct limits of direct systems of order unit spaces are constructed at the begin-
ning of Section 3 of [Tho94], including Lemma 3.1 there.

Proposition 2.7. Let
(
(Dn)n=0,1,2,..., (φn,m)0≤m≤n

)
be a direct system of unital

C∗-algebras and unital homomorphisms. Set D = lim−→n
Dn. Then there are a

natural homeomorphism
T(D)→ lim←−

n

T(Dn)

and a natural isomorphism

Aff(T(D))→ lim−→
n

Aff(T(Dn))

of order unit spaces.

Proof. The first part is Lemma 3.3 of [Tho94].
The second part is Lemma 3.2 of [Tho94], combined with the fact (Theorem 2.4)

that the state space of Aff(K) is naturally identified with K. □

Definition 2.8. Let V and W be order unit spaces, with order units e ∈ V and
f ∈ W . We define the direct sum V ⊕ W to be the vector space direct sum
V ⊕W as a real vector space, with the order (v1, w1) ≤ (v2, w2) for v1, v2 ∈ V and
w1, w2 ∈W if and only if v1 ≤ v2 and w1 ≤ w2, with the order unit (e, f), and the
norm ∥(v, w)∥ = max(∥v∥, ∥w∥).

Lemma 2.9. Let V and W be order unit spaces. Then V ⊕W as in Definition 2.8
is an order unit space, which is complete if V and W are.

Proof. The proof is straightforward. □

Lemma 2.10. Let A and B be unital C∗-algebras. Then, taking the direct sum on
the right to be as in Definition 2.8, there is an isomorphism

Aff(T(A⊕B)) ∼= Aff(T(A))⊕Aff(T(B)) ,

given as follows. Identify T(A) with a subset of T(A ⊕ B) by, for τ ∈ T(A),
defining i(τ)(a, b) = τ(a) for all a ∈ A and b ∈ B, and similarly identify T(B) with
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a subset of T(A⊕ B). Then the map Aff(T(A⊕ B)) → Aff(T(A))⊕ Aff(T(B)) is
f ↦→ (f |T(A), f |T(B)).

Proof. It is clear that if f ∈ Aff(T(A⊕B)), then f |T(A) ∈ Aff(T(A)) and f |T(B) ∈
Aff(T(B)), and moreover that the map of the lemma is linear, positive, and pre-
serves the order units. One easily checks that every tracial state on A ⊕ B is a
convex combination of tracial states on A and B, from which it follows that if
f |T(A) = 0 and f |T(B) = 0 then f = 0.

It remains to prove that the map of the lemma is surjective. Let g ∈ Aff(T(A))
and h ∈ Aff(T(B)). Define f : T(A⊕B)→ R by, for τ ∈ T(A⊕B),

f(τ) = τ(1, 0)g
(
τ(1, 0)−1τ |A

)
+ τ(0, 1)g

(
τ(0, 1)−1τ |B

)
(taking the first summand to be zero if τ(1, 0) = 0 and the second summand to be
zero if τ(0, 1) = 0). Straightforward but somewhat tedious calculations show that
f is weak* continuous and affine, and clearly f |T(A) = g and f |T(B) = h. □

The following result generalizes Lemma 3.4 of [Tho94]. It still isn’t the most
general Elliott approximate intertwining result for order unit spaces, because we
assume that the underlying order unit spaces of the two direct systems are the
same. The main effect of this assumption is to simplify the notation.

Proposition 2.11. Let (Vm)m=0,1,2,... be a sequence of separable complete order
unit spaces, and let(

(Vm)m=0,1,2,..., (φn,m)0≤m≤n

)
and

(
(Vm)m=0,1,2,..., (φ

′
n,m)0≤m≤n

)
be two direct systems of order unit spaces, using the same spaces, and with maps
φn,m, φ

′
n,m : Vm → Vn which are linear, positive, and preserve the order units. Let

V and V ′ be the direct limits

V = lim−→
n

(
(Vm)m=0,1,2,..., (φn,m)0≤m≤n

)
and

V ′ = lim−→
n

(
(Vm)m=0,1,2,..., (φ

′
n,m)0≤m≤n

)
,

with corresponding maps

φ∞,n : Vn → V and φ′
∞,n : Vn → V ′

for n ∈ Z≥0. For n ∈ Z≥0 further let

v
(n)
0 , v

(n)
1 , . . . ∈ Vn

be a dense sequence in the closed unit ball of Vn, and define Fn ⊂ Vn to be the finite
set

Fn =

n⋃
m=0

[{
φn,m

(
v
(m)
k

)
: 0 ≤ k ≤ n

}
∪
{
φ′
n,m

(
v
(m)
k

)
: 0 ≤ k ≤ n

}]
.

Suppose that there are δ0, δ1, . . . ∈ (0,∞) such that

(2.3)

∞∑
n=0

δn <∞

and for all n ∈ Z≥0 and all v ∈ Fn we have

∥φn+1, n(v)− φ′
n+1, n(v)∥ < δn .
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Then there is a unique isomorphism ρ : V → V ′ such that for all m ∈ Z≥0 and all
v ∈ Vm we have

ρ(φ∞,m(v)) = lim
n→∞

(φ′
∞,n ◦ φn,m)(v) .

Its inverse is determined by

ρ−1(φ′
∞,m(v)) = lim

n→∞
(φ∞,n ◦ φ′

n,m)(v)

for m ∈ Z≥0 and v ∈ Vm.

Proof. We first claim that for m ∈ Z≥0 and v ∈ Fm, the sequence
(
(φ′

∞,n ◦
φn,m)(v)

)
n≥m

is a Cauchy sequence in V ′. For n ≥ m, we estimate, using ∥φ′
∞,n+1∥ ≤

1, ∥v∥ ≤ 1, and φn,m(v) ∈ Fn at the last step:(φ′
∞,n+1 ◦ φn+1,m)(v)− (φ′

∞,n ◦ φn,m)(v)


=
(φ′

∞,n+1 ◦ φn+1, n ◦ φn,m)(v)− (φ′
∞,n+1 ◦ φ′

n+1, n ◦ φn,m)(v)


≤ ∥φ′
∞,n+1∥

φn+1, n(φn,m(v))− φ′
n+1, n(φn,m(v))

 ≤ δn .
The claim now follows from (2.3).

Next, we claim that form ∈ Z≥0 and k ∈ Z>0, the sequence
(
(φ′

∞,n◦φn,m)
(
v
(m)
k

))
n≥m

is a Cauchy sequence in V ′. Indeed, taking m0 = max(m, k), this follows from the

previous claim and the fact that φm0,m

(
v
(m)
k

)
∈ Fm0 .

Now we claim that form ∈ Z≥0 and v ∈ Vm, the sequence ((φ′
∞,n◦φn,m)(v))n≥m

is a Cauchy sequence in V ′. Without loss of generality ∥v∥ ≤ 1. This claim follows
from a standard ε

3 argument: to show that(φ′
∞,n1

◦ φn1,m)(v)− (φ′
∞,n2

◦ φn2,m)(v)
 < ε

for all sufficiently large n1 and n2, choose k ∈ Z>0 such that
v − v(m)

k

 < ε
3 , and

use the previous claim.
Since V ′ is complete, it follows that limn→∞(φ′

∞,n ◦ φn,m)(v) exists for all m ∈
Z≥0 and k ∈ Z>0. Since ∥φ′

∞,n ◦φn,m∥ ≤ 1 whenever m,n ∈ Z≥0 satisfy m ≤ n, it
follows that for m ∈ Z>0 there is a unique bounded linear map ρm : Vm → V ′ such
that ∥ρm∥ ≤ 1 and ρm(v) = limn→∞(φ′

∞,n ◦ φn,m)(v) for all k ∈ Z>0.
It is clear from the construction that ρn ◦ φn,m = ρm whenever m,n ∈ Z≥0

satisfy m ≤ n. By the universal property of the direct limit, there is a unique
bounded linear map ρ : V → V ′ such that ρ ◦ φ∞,m = ρm for all m ∈ Z≥0. It is
clearly contractive, order preserving, and preserves the order units, and is uniquely
determined as in the statement of the proposition.

The same argument shows that there is a unique contractive linear map λ : V ′ →
V determined in the analogous way. For all m ∈ Z≥0, we have

λ ◦ ρ ◦ φ∞,m = λ ◦ φ′
∞,m = φ∞,m ,

so the universal property of the direct limit implies λ ◦ ρ = idV . Similarly ρ ◦ λ =
idV ′ . □

Proposition 2.12. The isomorphism of Proposition 2.11 has the following natu-
rality property. Let the notation be as there, and suppose that, in addition, we are
given separable complete order unit spaces Wn for n ∈ Z≥0, direct systems(

(Wm)m=0,1,2,..., (ψn,m)0≤m≤n

)
and

(
(Wm)m=0,1,2,..., (ψ

′
n,m)0≤m≤n

)
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using the same spaces, with positive linear order unit preserving maps, with direct
limits W and W ′, and with corresponding maps

ψ∞,n : Wn →W and ψ′
∞,n : Wn →W ′

for n ∈ Z≥0. Also suppose that for n ∈ Z>0 there is a sequence

w
(n)
0 , w

(n)
1 , . . . ∈Wn

which is dense in the closed unit ball ofWn, and that there is a sequence (εn)n=0,1,2,...

in (0,∞) such that
∑∞

n=0 εn <∞ and, with

Gn =

n⋃
m=0

[{
ψn,m

(
w

(m)
k

)
| 0 ≤ k ≤ n

}
∪
{
ψ′
n,m

(
w

(m)
k

)
| 0 ≤ k ≤ n

}]
,

for all n ∈ Z≥0 and all w ∈ Gn we have

∥ψn+1, n(w)− ψ′
n+1, n(w)∥ < εn .

Let σ : W → W ′ be the isomorphism of Proposition 2.11. Suppose further that we
have positive linear order unit preserving maps µn, µ

′
n : Vn →Wn for n ∈ Z≥0 such

that
µn ◦ φn,m = ψn,m ◦ µm and µ′

n ◦ φ′
n,m = ψ′

n,m ◦ µ′
m

for all m,n ∈ Z≥0 with m ≤ n. Let µ : V → W and µ′ : V ′ → W ′ be the induced
maps of the direct limits. Then µ′ ◦ ρ = σ ◦ µ.

Proof. By construction, ρ : V → V ′ and σ : W →W ′ are determined by

(2.4) ρ(φ∞,m(v)) = lim
n→∞

(φ′
∞,n ◦ φn,m)(v)

for m ∈ Z≥0 and v ∈ Vm, and

(2.5) σ(ψ∞,m(w)) = lim
n→∞

(ψ′
∞,n ◦ ψn,m)(w)

for m ∈ Z≥0 and w ∈ Wm. Using (2.4) at the first step and (2.5) at the last step,
for m ∈ Z≥0 and v ∈ Vm we therefore have

(µ′ ◦ ρ)(φ∞,m(v)) = µ′
(
lim

n→∞
(φ′

∞,n ◦ φn,m)(v)
)
= lim

n→∞
(µ′ ◦ φ′

∞,n ◦ φn,m)(v)

= lim
n→∞

(ψ′
∞,n ◦ ψn,m ◦ µm)(v) = (σ ◦ µ)(φ∞,m(v)) .

Since
⋃∞

m=0 φ∞,m(Vm) is dense in V , the result follows. □

Proposition 2.14 below can essentially be extracted from the proof of Lemma 3.7
of [Tho94]. We give here a precise formulation which is needed for our purposes.
The difference between our formulation and that of [Tho94] is that we need more
control over the matrix sizes in the construction. In the argument, the following
result substitutes for Lemma 3.6 there.

Lemma 2.13 (Based on [Tho94]). Let X and Y be compact Hausdorff spaces,
with X path connected. Let λ : T(C(Y ))→ T(C(X)) be affine and continuous. Let
E(λ) : C(X,R) → C(Y,R) be as in Lemma 2.6. Then for every ε > 0 and every
finite set F ⊂ C(X,R) there exists N0 ∈ Z>0 such that for every N ∈ Z>0 with
N ≥ N0 there are continuous functions g1, g2, . . . , gN : Y → X such that for every
f ∈ F we have E(λ)(f)− 1

N

N∑
j=1

f ◦ gj


∞

< ε .
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Proof. It suffices to prove the result under the additional assumption that ∥f∥ ≤ 1
for all f ∈ F .

Let ε > 0. Since E(λ) is a Markov operator, Theorem 2.1 of [Tho94] provides n ∈
Z>0, unital homomorphisms ψ1, ψ2, . . . , ψn : C(X) → C(Y ), and α1, α2, . . . , αn ∈
[0, 1] with

∑n
l=1 αl = 1 such thatE(λ)(f)−

n∑
l=1

αlψl(f)


∞

<
ε

2

for all f ∈ F . Note that if β1, β2, . . . , βn ∈ [0, 1] satisfy
∑n

l=1 |αl − βl| < ε
2 thenE(λ)(f)−

n∑
l=1

βlψl(f)


∞

< ε

for all f ∈ F . ChooseN0 ∈ Z>0 such thatN0 > 4n/ε. LetN ∈ Z>0 satisfyN ≥ N0.

For l = 1, 2, . . . , n − 1 choose βl ∈
(
αl − 1

N , αl

]
∩ 1

NZ, and set βn = 1 −
∑n−1

l=1 βl.
Then

β1, β2, . . . , βn ∈
1

N
Z≥0,

n∑
l=1

βl = 1, and

n∑
l=1

|αl − βl| <
ε

2
.

Set ml = Nβl for l = 1, 2, . . . , n. Then for all f ∈ F we haveE(λ)(f)− 1

N

n∑
l=1

mlψl(f)


∞

< ε .

Now for l = 1, 2, . . . , n let hl : Y → X be the continuous function such that
ψl(f) = f ◦ hl for all f ∈ C(X), and for j = 1, 2, . . . , N define gj = hl when

l−1∑
k=1

mk < j ≤
l∑

k=1

mk .

Then

1

N

n∑
l=1

mlψl(f) =
1

N

N∑
j=1

f ◦ gj

for all f ∈ C(X). □

Proposition 2.14. Let K be a metrizable Choquet simplex, and let (l(n))n=0,1,2,...

be a sequence of integers such that l(n) ≥ 2 for all n > 0. For n ∈ Z≥0 set
r(n) =

∏n
j=1 l(j). Then there exist n0 < n1 < n2 < · · · ∈ Z>0, with n0 = 0 and

n1 = 1, and a direct system

C([0, 1])⊗Mr(n0)
α1,0−→ C([0, 1])⊗Mr(n1)

α2,1−→ C([0, 1])⊗Mr(n2)
α3,2−→ · · ·

with injective maps which are diagonal (in the sense analogous to Construction
1.1(9)) and such that the direct limit A satisfies T(A) ∼= K.

It is easy to arrange that the algebra A in this proposition be simple: by Propo-
sition 2.11, replacement of a small enough fraction of the maps gk,l in the proof
with suitable point evaluations does not change the tracial state space. However,
doing so at this stage does not help with later work.

The conditions n0 = 0 and n1 = 1 are needed because we will later need to pass
to a corresponding subsystem of a system as in Construction 1.1 (more accurately,
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Construction 3.3 below), and we want to avoid later complexity of the argument
by preserving the value of ω.

Proof of Proposition 2.14. We mostly follow the proof of Lemma 3.7 of [Tho94],
using Lemma 2.13 in place of Lemma 3.6 of [Tho94], and slightly changing the
order of the steps to accommodate the difference between our conclusion and that
of Theorem 3.9 of [Tho94]. For convenience, we will use Proposition 2.11 in place
of Lemma 3.4 of [Tho94].

For convenience of notation, and following [Tho94], set P = T(C([0, 1])). Lemma
3.8 of [Tho94] provides an inverse system

(
(Pk)k=0,1,..., (λj,k)0≤j≤k

)
with continu-

ous affine maps λj,k : Pk → Pj such that Pk = P for all k ∈ Z≥0 and

(2.6) lim←−
(
(Pk)k=0,1,..., (λj,k)0≤j≤k

) ∼= K.

Choose f0, f1, . . . ∈ C([0, 1], R) such that {f0, f1, . . .} is dense in C([0, 1], R).
We now construct numbers nk ∈ Z>0 for k ∈ Z≥0, finite subsets Fk ⊂ C([0, 1], R)

for k ∈ Z≥0, positive unital linear maps ψk+1, k : C([0, 1], R) → C([0, 1], R) for
k ∈ Z>0, and continuous functions

gk,1, gk,2, . . . , gk, r(nk+1)/r(nk) : [0, 1]→ [0, 1] ,

such that the following conditions are satisfied:

(1) F0 = {f0} and for k ∈ Z≥0,

Fk+1 = Fk ∪ {fk+1} ∪ E(λk, k+1)(Fk ∪ {fk+1}) ∪ ψk+1, k(Fk ∪ {fk+1}) .
(2) n0 = 0, n1 = 1, and n2 = 2, and for k ∈ Z>0 with k ≥ 2 we have nk+1 > nk

and r(nk+1)/r(nk) > 2k.
(3) For k ∈ Z≥0 and f ∈ C([0, 1], R),

ψk+1, k(f) =
r(nk)

r(nk+1)

r(nk+1)/r(nk)∑
l=1

f ◦ gk,l .

(4)
E(λk, k+1)(f)− ψk+1, k(f)

 < 2−k for k ≥ 2 and f ∈ Fk.

We carry out the construction by induction on k. Define F0 = {f0}, n0 = 0, and
n1 = 1. Take g0,l : [0, 1]→ [0, 1] to be the identity map for l = 1, 2, . . . , r(1). Then
define ψ1, 0 by (3) and define F1 by (1).

Now suppose k ≥ 1 and we have Fk and nk; we construct

Fk+1, nk+1, gk,1, gk,2, . . . , gk, r(nk+1)/r(nk), and ψk+1, k .

Apply Lemma 2.13 with λ = λk, k+1, with ε = 2−k, and with F = Fk, obtaining
N0 ∈ Z>0. Choose nk+1 > nk and so large that

r(nk+1)

r(nk)
> max

(
N0, 2

k
)
.

This gives (2). Apply the conclusion of Lemma 2.13 with N = r(nk+1)/r(nk),
calling the resulting functions gk,1, gk,2, . . . , gk, r(nk+1)/r(nk). Then define ψk+1, k

by (3). This gives (4). Finally, define Fk+1 by (1). This completes the induction.
For j, k ∈ Z≥0 with j ≤ k, define ψk,j : C([0, 1], R)→ C([0, 1], R) by

ψk,j = ψk, k−1 ◦ ψk−1, k−2 ◦ · · · ◦ ψj+1, j .

An induction argument shows that for j, k ∈ Z≥0 with j ≤ k, we have

E(λj,k)(fj) ∈ Fk and ψk,j(fj) ∈ Fk .
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This condition, together with Proposition 2.11, allows us to conclude that, as order
unit spaces, we have

lim−→
(
(C([0, 1], R))k=0,1,..., (E(λj,k))0≤j≤k

)
(2.7)

∼= lim−→
(
(C([0, 1], R))k=0,1,..., (ψk,j)0≤j≤k

)
.

For k ∈ Z≥0 define

αk+1, k : C([0, 1], Mr(nk))→ C([0, 1], Mr(nk+1)) =Mr(nk+1)/r(nk)

(
C([0, 1], Mr(nk))

)
by

αk+1, k(f) = diag
(
f ◦ gk,1, f ◦ gk,2, . . . , f ◦ gk, r(nk+1)/r(nk)

)
for f ∈ C([0, 1], Mr(nk)). Let A be the resulting direct limit C∗-algebra.

It is easy to check, and is stated as Lemma 3.5 of [Tho94], that α̂k+1,k = ψk+1,k.
Letting V and W be the order unit spaces

V = lim−→
(
(C([0, 1], R))k=0,1,..., (E(λj,k))0≤j≤k

)
and

W = lim−→
(
(C([0, 1], R))k=0,1,..., (α̂k,j)0≤j≤k

)
,

(2.7) now says V ∼= W . Lemma 3.2 of [Tho94] and (2.6) imply that V ∼= Aff(K).
Proposition 2.7 implies that Aff(T (A)) ∼= W . So Aff(T (A)) ∼= Aff(K), whence
T (A) ∼= K by Theorem 2.4. □

Proposition 2.15. Let (Dn)n=0,1,2,... and (Cn)n=0,1,2,... be sequences of unital C∗-
algebras. Let(

(Dn)n=0,1,2,..., (φn,m)0≤m≤n

)
and

(
(Dn)n=0,1,2,..., (φ

′
n,m)0≤m≤n

)
and (

(Cn)n=0,1,2,..., (ψn,m)0≤m≤n

)
and

(
(Cn)n=0,1,2,..., (ψ

′
n,m)0≤m≤n

)
be direct systems with unital homomorphisms, and call the direct limits (in order) D,
D′, C, and C ′. Suppose further that we have unital homomorphisms µn, µ

′
n : Dn →

Cn for n ∈ Z≥0 such that

µn ◦ φn,m = ψn,m ◦ µm and µ′
n ◦ φ′

n,m = ψ′
n,m ◦ µ′

m

for all m,n ∈ Z≥0 with m ≤ n. Let µ : D → C and µ′ : D′ → C ′ be the induced
maps of the direct limits. Assume that for all m ∈ Z≥0 we have

∞∑
n=m

φ̂n,m − φ̂′
n,m

 <∞ and

∞∑
n=m

ψ̂n,m − ψ̂′
n,m

 <∞ .

Then there exist isomorphisms

ρ : Aff(T(D))→ Aff(T(D′)) and σ : Aff(T(C))→ Aff(T(C ′))

such that µ̂′ ◦ ρ = σ ◦ µ̂. Moreover, if Cn = Dn for all n ∈ Z≥0 and ψn,m = φn,m

and ψ′
n,m = φn,m for all m and n, then we can take σ = ρ.

Proof. We can apply Proposition 2.11 and Proposition 2.12 using arbitrary count-
able dense subsets of the closed unit balls of Aff(T(Dn)) and Aff(T(Cn)) for
n ∈ Z>0. Under the hypotheses of the last statement, the uniqueness statement in
Proposition 2.11 implies that σ = ρ. □
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Lemma 2.16. Adopt the notation of Construction 1.1, including (11) (a sec-
ond set of maps), and (9) and (13) (diagonal maps, agreeing in the coordinates
1, 2, . . . , d(n+ 1)). ThenΓ̂(0)

n+1, n − Γ̂n+1, n

 ≤ 2k(n+ 1)

d(n+ 1) + k(n+ 1)

for all n ∈ Z≥0.

Proof. For a compact metrizable space Z, let M(Z) be the real Banach space
consisting of all signed Borel measures on Z. (That is, M(Z) is the dual space of
C(Z,R).) Identify Z with the set of point masses in M(Z). For n ∈ Z≥0, we can
identify T(Cn) with the weak* compact convex subset of M(Xn⨿Yn) consisting of
probability measures. Thus Xn⨿Yn ⊂ T(Cn). For every function f ∈ Aff(T(Cn)),
the function ιn(f)(z) = f(z) ·1Mr(n)

for z ∈ Xn⨿Yn is in C(Xn⨿Yn, Mr(n)) = Cn,

and τ(ιn(f)) = f(τ) for all τ ∈ Xn ⨿ Yn ⊂ T(Cn), hence also all τ ∈ T(Cn) by
linearity and continuity.

For f ∈ Aff(T(Cn)) and τ ∈ T(Cn+1), we can apply the formula in Construction
1.1(9) to ιn(f) and apply τ to everything, to get

Γ̂
(0)
n+1, n(f)(τ) =

1

l(n+ 1)

l(n+1)∑
k=1

τ(f ◦ S(0)
n,1)

and

Γ̂n+1, n(f)(τ) =
1

l(n+ 1)

l(n+1)∑
k=1

τ(f ◦ Sn,1) .

Using (13), we get⏐⏐⏐⏐Γ̂(0)
n+1, n(f)(τ)− Γ̂n+1, n(f)(τ)

⏐⏐⏐⏐ = 1

l(n+ 1)

⏐⏐⏐⏐⏐⏐
l(n+1)∑

k=d(n+1)+1

[
τ(f ◦ S(0)

n,1)− τ(f ◦ Sn,1)
]⏐⏐⏐⏐⏐⏐

≤ l(n+ 1)− d(n+ 1)

l(n+ 1)

(
2∥f∥∞) .

The conclusion follows. □

We add additional parts to Construction 1.1 and Construction 1.6.

Construction 2.17. Adopt the assumptions and notation of all parts of Con-
struction 1.1 (except (13)), and in addition make the following assumptions and
definitions:

(20) For all m ∈ Z≥0, the maps S
(0)
m,j , Sm,j : Xm+1 ⨿ Ym+1 → Xm ⨿ Ym satisfy

S
(0)
m,j(Xm+1) ⊂ Xm and S

(0)
m,j(Ym+1) ⊂ Ym

for j = 1, 2, . . . , l(m),

Sm,j(Xm+1) ⊂ Xm and Sm,j(Ym+1) ⊂ Ym
for j = 1, 2, . . . , d(m), and

Sm,j(Xm+1) ⊂ Ym and Sm,j(Ym+1) ⊂ Xm

for j = d(m) + 1, d(m) + 2, . . . , l(m).
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(21) Form ∈ Z≥0, defineDm =Mr(m)⊕Mr(m). Define φ
(0)
m+1,m, φm+1,m : Dm →

Dm+1 by, for a, b ∈Mr(m),

φ
(0)
m+1,m(a, b) =

(
diag(a, a, . . . , a), diag(b, b, . . . , b)

)
and

φm+1,m(a, b) =
(
diag(a, a, . . . , a, b, b, . . . , b), diag(b, b, . . . , b, a, a, . . . , a)

)
,

in which a occurs d(m) times in the first entry on the right and k(m) times
in the second entry, while b occurs k(m) times in the first entry and d(m)
times in the second entry. For m,n ∈ Z≥0 with m ≤ n, define

φn,m = φn,n−1 ◦ φn−1, n−2 ◦ · · · ◦ φm+1,m : Dm → Dn ,

and define φ
(0)
n,m : Dm → Dn similarly. Define the following AF algebras:

D = lim−→
m

(Dm, φm+1,m) and D(0) = lim−→
m

(Dm, φ
(0)
m+1,m) ,

and for m ∈ Z>0 let φ∞,m : Dm → D and φ
(0)
∞,m : Dm → D(0) be the maps

associated to these direct limits.
(22) For m ∈ Z≥0, define µm : Dm → Cm as follows. For a, b ∈ Mr(m) let

f ∈ C(Xm,Mr(m)) and g ∈ C(Ym,Mr(m)) be the constant functions with
values a and b. Then set µm(a, b) = (f, g). Further, following Lemma
2.18(2) below, let µ : D → C and µ(0) : D(0) → C(0) be the direct limits of
the maps µm.

(23) For m ∈ Z≥0, define θm : Dm → Dm by θm(a, b) = (b, a) for a, b ∈
Mr(m). Further, following Lemma 2.18(3) below, let θ ∈ Aut(D) and

θ(0) ∈ Aut
(
D(0)

)
be the direct limits of the maps θm.

Lemma 2.18. Under the assumptions of Construction 1.1 (except (13)), Construc-
tion 1.6, and Construction 2.17, the following hold:

(1) The direct system
(
(C

(0)
n )n=0,1,2,..., (Γ

(0)
n,m)0≤m≤n

)
is the direct sum of two

direct systems(
(C(Xn, Mr(n)))n=0,1,2,..., (Γ

(0)
n,m|C(Xm,Mr(m)))0≤m≤n

)
and (

(C(Yn, Mr(n)))n=0,1,2,..., (Γ
(0)
n,m|C(Ym,Mr(m)))0≤m≤n

)
,

and C(0) is isomorphic to the direct sum of the direct limits A and B of
these systems.

(2) For all m,n ∈ Z≥0 with m ≤ n,

Γ(0)
n,m ◦ µm = µn ◦ φ(0)

n,m and Γn,m ◦ µm = µn ◦ φn,m .

Moreover, the maps µm induce unital homomorphisms µ(0) : D(0) → C(0)

and µ : D → C, and for all m ∈ Z≥0,

Γ(0)
∞,m ◦ µm = µ(0) ◦ φ(0)

∞,m and Γ∞,m ◦ µm = µ ◦ φ∞,m .

(3) For all m,n ∈ Z≥0 with m ≤ n,

φ(0)
n,m ◦ θm = θn ◦ φ(0)

n,m and φn,m ◦ θm = θn ◦ φn,m .
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The maps θm induce automorphisms θ : D → D and θ(0) : D(0) → D(0) such
that

φ∞,m ◦ θm = θ ◦ φ∞,m and φ(0)
∞,m ◦ θm = θ(0) ◦ φ(0)

∞,m

for all m ∈ Z≥0.
(4) For all m ∈ Z≥0, (µm)∗ : K∗(Dm)→ K∗(Cm) is an isomorphism, and

µ∗ : K∗(D)→ K∗(C) and
(
µ(0)

)
∗ : K∗

(
D(0)

)
→ K∗

(
C(0)

)
are isomorphisms.

Proof. The fact that all the maps in (4) are isomorphisms on K-theory comes from
the assumption that the spaces Xm and Ym are contractible ((14) and (15) in
Construction 1.6). Everything else is essentially immediate from the constructions.

□

3. The main theorem

We now have the ingredients to deduce the main theorem of this paper, Theorem
3.2.

To state the theorem, we first need to define automorphisms of Elliott invariants,
so we need a category in which they lie. For convenience, we restrict to unital C∗-
algebras, and we give a very basic list of conditions.

Definition 3.1. An abstract unital Elliott invariant is a tupleG =
(
G0, (G0)+, g,G1,K, ρ

)
in which (G0, (G0)+, g) is a preordered abelian group with distinguished positive
element g which is an order unit, G1 is an abelian group, K is a Choquet simplex
(possibly empty), and ρ : G0 → Aff(K) is an order preserving group homomorphism
such that ρ(g) is the constant function 1. (If K = ∅, we take Aff(K) = {0}, and
we take ρ to be the constant function with value 0.)

If

G(0) =
(
G

(0)
0 ,
(
G

(0)
0

)
+
, g(0), G

(0)
1 ,K(0), ρ(0)

)
and

G(1) =
(
G

(1)
0 ,
(
G

(1)
0

)
+
, g(1), G

(1)
1 ,K(1), ρ(1)

)
are abstract unital Elliott invariants, then a morphism from G(0) to G(1) is a triple

F = (F0, F1, S) in which F0 : G
(0)
0 → G

(1)
0 is a group homomorphism satisfying

F0

((
G

(0)
0

)
+

)
⊂
(
G

(1)
0

)
+

and F0

(
g(0)

)
= g(1) ,

F1 : G
(0)
1 → G

(0)
1 is a group homomorphism, and S : K(1) → K(0) is a continuous

affine map satisfying

(3.1) ρ(1)(F0(η)) = ρ(0)(η) ◦ S

for all η ∈ G(0)
0 .

If

F (0) : G(0) → G(1) and F (1) =
(
F

(1)
0 , F

(1)
1 , S(1)

)
: G(1) → G(2)

are morphisms of abstract unital Elliott invariants, then define

F (1) ◦ F (0) =
(
F

(1)
0 ◦ F (0)

0 , F
(1)
1 ◦ F (0)

1 , S(0) ◦ S(1)
)
.

(Note: S(0) ◦ S(1), not S(1) ◦ S(0).)
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The Elliott invariant of a unital C∗-algebra A is

Ell(A) =
(
K0(A), K0(A)+, [1], K1(A), T(A), ρA

)
,

in which ρA : K0(A)→ Aff(T(A)) is given by ρA(η)(τ) = τ∗(η) for η ∈ K0(A) and
τ ∈ T(A).

If A and B are unital C∗-algebras and φ : A → B is a unital homomorphism,
then we define φ∗ : Ell(A)→ Ell(B) to consist of the maps φ∗ from K0(A) to K0(B)
and from K1(A) to K1(B), together with the map T(φ) of Definition 2.5. We write
it as (φ∗,0, φ∗,1, T(φ)).

Definition 3.1 is enough to make the abstract unital Elliott invariants into a
category such that Ell(·) is a functor from unital C∗-algebras and unital homomor-
phisms to abstract unital Elliott invariants.

Theorem 3.2. There exists a simple unital separable AH algebra C with stable
rank 1 and with the following property. There exists an automorphism F of Ell(C)
such that there is no automorphism α of C satisfying α∗ = F . Moreover, the auto-
morphism F in this example can be chosen so that F ◦ F is the identity morphism
of Ell(C).

We outline the proof. We make a first pass through Construction 1.1 and Con-
struction 1.6, without the spaces Yn, and without specifying the point evaluation
maps. This is Construction 3.3 below. We get a direct system; call its direct

limit C̃. Apply Proposition 2.14 using the sequence of matrix sizes in this sys-

tem and K = T
(
C̃
)
. Doing so requires passing to a subsequence of the sequence

of matrix sizes. Replace the original system with the corresponding subsystem;
Lemma 3.5 below justifies this. Then make a second pass through Construction 1.1
and Construction 1.6, taking the spaces Xn and the maps between them from this
subsystem and the spaces Yn and the maps between them from the system got-
ten from Proposition 2.14, as needed substituting appropriate point evaluations for
the diagonal entries of the formulas for the maps. This requires sufficiently few
changes that, by our work in Section 2, the tracial state space remains the same.
Therefore the algebra obtained from these constructions has an order two auto-
morphism of its tracial state space which corresponds to exchanging the two rows
in the diagram (0.2). The constructions have been designed so that there is also
a corresponding automorphism of the K-theory. Our work in Section 1 rules out
the possibility of a corresponding automorphism of the algebra, because such an
automorphism would necessarily send a particular corner of the algebra to another
one with a different radius of comparison.

We start with the following construction, which is “half” of Construction 1.1,
and gives just the top row of the diagram (0.1).

Construction 3.3. We will consider direct systems and their associated direct
limits constructed as follows.

(1) The sequences (d(n))n=0,1,2,... and (k(n))n=0,1,2,... in Z≥0 are as in Con-
struction 1.1(1) and satisfy the condition of Construction 1.1(2). We further
define (l(n))n=0,1,2,..., (r(n))n=0,1,2,..., (s(n))n=0,1,2,..., and (t(n))n=0,1,2,...

as in Construction 1.1(1).
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(2) Following Construction 1.1(3) and Construction 1.1(4), we define

κ = inf
n∈Z>0

s(n)

r(n)
, ω =

k(1)

k(1) + d(1)
, and ω′ =

∞∑
n=2

k(n)

k(n) + d(n)
.

(These will not be used directly in connection with this direct system.)
(3) As in Construction 1.6(14), we define compact metric spaces by Xn =

cone
(
(S2)s(n)

)
for n ∈ Z≥0, and we define maps Q

(n)
j : Xn+1 → Xn for

n ∈ Z≥0 and j = 1, 2, . . . , d(n+1) to be the cones over the projection maps

(S2)s(n+1) =
(
(S2)s(n)

)d(n+1) → (S2)s(n).

(4) We are given maps δn : C(Xn) → C(Xn+1, Ml(n+1)) (as in Construction
1.1(8), but with only one summand) which are diagonal, that is, there are
continuous maps

Tn,1, Tn,2, . . . , Tn,l(n+1) : Xn+1 → Xn

such that

δn(f) = diag
(
f ◦ Tn,1, f ◦ Tn,2, . . . , f ◦ Tn,l(n+1)

)
for f ∈ C(Xn). (Compare with Construction 1.1(9).) Moreover, Tn,j =

Q
(n)
j for j = 1, 2, . . . , d(n + 1). The maps Tn,j are unspecified for j =

d(n+ 1) + 1, d(n+ 1) + 2, . . . , l(n+ 1).
(5) Set An = Mr(n) ⊗ C(Xn) (like in Construction 1.1(7) but with only one

summand). Following Construction 1.1(8), set

∆n+1, n = idMr(n)
⊗ δn : An → An+1 ,

and for m,n ∈ Z≥0 with m ≤ n, we take

∆n,m = ∆n,n−1 ◦∆n−1, n−2 ◦ · · · ◦∆m+1,m : Am → An .

(6) Define A = lim−→n
An, taken with respect to the maps ∆n,m. For n ∈ Z≥0,

let ∆∞,n : An → A be the map associated with the direct limit.

To avoid confusing notation, we isolate the following computation as a lemma.

Lemma 3.4. Let n ∈ Z>0 and let κ1, κ2, . . . , κn, δ1, δ2, . . . , δn ∈ (0,∞). Then

n∑
j=1

κj
δj + κj

≥
∏n

j=1(δj + κj)−
∏n

j=1 δj∏n
j=1(δj + κj)

.

Proof. For j = 1, 2, . . . , n define

λj =
κj

δj + κj
.

Then λj ∈ (0, 1). Some calculation shows that the conclusion of the lemma becomes

(3.2)

n∑
j=1

λj ≥ 1−
n∏

j=1

(1− λj).

We prove (3.2) by induction on n. For n = 1 it is trivial. Suppose (3.2) is known
for some value of n. Given λ1, λ2, . . . , λn+1 ∈ (0, 1), set µ = 1− (1−λn)(1−λn+1).
Then

µ ∈ (0, 1) and µ = λn + λn+1 − λnλn+1 ≤ λn + λn+1.
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Applying the induction hypothesis on λ1, λ2, . . . , λn−1, µ at the second step, we
then have

n+1∑
j=1

λj ≥
n−1∑
j=1

λj + µ ≥ 1−

[
n−1∏
j=1

(1− λj)

]
(1− µ) = 1−

n+1∏
j=1

(1− λj).

This completes the induction, and the proof of the lemma. □

Lemma 3.5. Let a direct system as in Construction 3.3 be given, but using se-

quences
(
d̃(n)

)
n=0,1,2,...

and
(
k̃(n)

)
n=0,1,2,...

in place of (d(n))n=0,1,2,... and (k(n))n=0,1,2,....

Denote the additional sequences analogous to those in Construction 3.3(1) by l̃, r̃,
and s̃. Denote the numbers analogous to those in Construction 3.3(2) by κ̃, ω̃,

and ω̃′. Denote the spaces used in the system by X̃n. Let ν : Z≥0 → Z≥0 be a
strictly increasing function such that ν(0) = 0 and ν(1) = 1. Then the direct sys-

tem
(
C
(
X̃ν(m), Mr̃(ν(m))

))
m=0,1,2,...

is isomorphic to a system as in Construction

3.3, with the choices d(0) = 1, k(0) = 0,

(3.3) d(m) = d̃
(
ν(m− 1) + 1

)
d̃
(
ν(m− 1) + 2

)
· · · d̃

(
ν(m)

)
and

(3.4) k(m) = l̃
(
ν(m− 1) + 1

)
l̃
(
ν(m− 1) + 2

)
· · · l̃

(
ν(m)

)
− d(m)

for m ∈ Z>0. Moreover, following the notation of Construction 3.3,

(3.5) l(m) = l̃
(
ν(m− 1) + 1

)
l̃
(
ν(m− 1) + 2

)
· · · l̃

(
ν(m)

)
,

r(m) = r̃
(
ν(m)

)
, and s(m) = s̃

(
ν(m)

)
for m ∈ Z≥0, and

κ = κ̃, ω = ω̃, and ω′ ≤ ω̃′.

Proof. Given the definitions of d and k, the proofs of the formulas for l, r, and s
are easy.

Using Lemma 1.2 at the first and fourth steps, we now get

κ̃ = lim
n→∞

s̃(n)

r̃(n)
= lim

m→∞

r̃
(
ν(m)

)
s̃
(
ν(m)

) = lim
m→∞

s(m)

r(m)
= κ.

We have ω = ω̃ because ν(1) = 1.
Using Lemma 3.4 at the second step and (3.3), (3.4) and (3.5) at the third step,

we have

ω̃′ =

∞∑
m=2

ν(m)∑
j=ν(m−1)+1

k̃(j)

k̃(j) + d̃(j)

≥
∞∑

m=2

∏ν(m)
j=ν(m−1)+1[d̃(j) + k̃(j)]−

∏ν(m)
j=ν(m−1)+1 d̃(j)∏ν(m)

j=ν(m−1)+1[d̃(j) + k̃(j)]

=

∞∑
m=2

k(m)

k(m) + d(m)
= ω′.

Define Xm = X̃ν(m) for m ∈ Z≥0. Clearly Xm = cone
(
(S2)s(m)

)
, as required.

Denote the maps in the system of the hypotheses by

δ̃n : C
(
X̃n

)
→ C(X̃n+1, Ml̃(n+1)

)
and ∆̃n,m : C̃m → C̃n,
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with δ̃n being built using maps

T̃n,1, T̃n,2, . . . , T̃n, l(n+1) : X̃n+1 → X̃n,

as in Construction 3.3(4). For p = ν(m), ν(m) + 1, . . . , ν(m+ 1)− 1, set

j(p) =
r̃(p)

r̃(ν(m))
= l̃
(
ν(m) + 1

)
l̃
(
ν(m) + 2

)
· · · l̃(p).

Then define
δ(0)m : C

(
X̃ν(m)

)
→ C(X̃ν(m+1), Ml(n+1)

)
by

δ(0)m = idMj(ν(m+1)−1)
⊗ δ̃ν(m+1)−1 ◦ idMj(ν(m+1)−2)

⊗ δ̃ν(m+1)−2 ◦ · · · ◦ δ̃ν(m).

(In the last term we omit idMj(ν(m))
since j(ν(m)) = 1.) With this definition,

one checks that idMr̃(ν(m))
⊗ δ̃m = ∆̃ν(m+1), ν(m), so that the direct system gotten

using the maps δ
(0)
m in Construction 3.3 is a subsystem of the system given in the

hypotheses.

We claim that δ
(0)
m is unitarily equivalent to a map δm : C(Xm)→ C(Xm+1, Ml(n+1)

)
as in Construction 3.3. This will imply isomorphism of the direct systems, and com-

plete the proof of the lemma. First, δ
(0)
m is given as in Construction 3.3(4) using

some maps from X̃ν(m+1) to X̃ν(m), namely all possible compositions

T̃ν(m), iν(m)
◦ T̃ν(m)+1, iν(m)+1

◦ · · · ◦ T̃ν(m+1)−1, iν(m+1)−1

with ip = 1, 2, . . . , l̃(p + 1) for p = ν(m), ν(m) + 1, . . . , ν(m + 1) − 1. More-
over, since the composition of projection maps is a projection map, restricting to

ip = 1, 2, . . . , d̃(p + 1) for all p gives exactly all the maps Q
(m)
j : Xm+1 → Xm

for j = 1, 2, . . . , d(n + 1). Therefore δ
(0)
m is unitarily equivalent to a map as in

Construction 3.3 by a permutation matrix. □

Proof of Theorem 3.2. Choose N ∈ Z>0 such that

(3.6) N > 5 and exp

(
− 1

N − 1

)
>

3

4
.

(For example, N = 6 will work.) We make preliminary choices of the numbers d(n)

etc. in Construction 1.1(1), calling them d̃(n) etc. Take d̃(0) = 1 and k̃(0) = 0, and

take d̃(n) = Nn and k̃(n) = 1 for n ∈ Z>0. Then

l̃(n) = Nn + 1, r̃(n) =

n∏
j=1

(N j + 1), and s̃(n) =

n∏
j=1

N j

for n ∈ Z>0. We obtain numbers as in Construction 3.3(2) (equivalently, Construc-
tion 1.1(3) and Construction 1.1(4)), which we call κ̃, ω̃, and ω̃′. Further, adopt

the definitions and notation of Construction 3.3, except that we use X̃n instead
of Xn and similarly throughout. That is, in Construction 3.3(3) we call the spaces

X̃n instead of Xn, the projection maps Q̃
(n)
j , in Construction 3.3(4) we call the

maps of algebras δ̃n and the maps of spaces T̃n,j : X̃n+1 → X̃n, in Construction

3.3(5) we call the algebras Ãn and the maps ∆̃n,m, and in Construction 3.3(6) we

call the direct limit Ã and the maps to it ∆̃∞,n. As in Construction 3.3(4), we

take T̃n,j = Q̃
(n)
j for j = 1, 2, . . . , d̃(n+ 1). For n ∈ Z≥0 choose an arbitrary point
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x̃n ∈ X̃n, and for j = d̃(n+ 1) + 1 let T̃n,j be the constant function on X̃n+1 with

value x̃n. (Note that d̃(n+ 1) + 1 = l̃(n+ 1).)
We claim that the conditions in Construction 1.1(3), Construction 1.1(4), and

Construction 1.1(5) are satisfied, and moreover that

1

1− 2ω̃
<

2κ̃− 1

2ω̃
.

For n ∈ Z>0 we have, using log(m+ 1)− log(m) < 1
m at the third step,

s̃(n)

r̃(n)
=

n∏
j=1

N j

N j + 1
= exp

(
n∑

j=1

−
[
log(N j + 1)− log(N j)

])

≥ exp

(
−

n∑
j=1

1

N j

)
> exp

(
− 1

N − 1

)
.

So κ̃ ≥ exp
(
− 1

N−1

)
> 3

4 by (3.6). Moreover,

ω̃ =
1

N + 1
<

1

4
and ω̃′ =

∞∑
j=2

1

N j + 1
<

∞∑
j=2

1

N j
=

1

N(N − 1)
,

so the conditions ω̃′ < ω̃ < 1
2 in Construction 1.1(4) and 2κ̃−1 > 2ω̃ in Construction

1.1(5) are satisfied. Moreover,

1

1− 2ω̃
=
N + 1

N − 1
<
N + 1

4
=

1

4ω̃
=

2
(
3
4

)
− 1

2ω̃
<

2κ̃− 1

2ω̃
.

The claim is proved.

Apply Proposition 2.14 with K = T
(
Ã
)
and with l̃(n) and r̃(n) in place of l(n)

and r(n), getting a strictly increasing sequence, which we call (ν(n))n=0,1,2,..., with
ν(j) = j for j = 0, 1, an AI algebra B0 (called A in Proposition 2.14) which is the
direct limit of a unital system

C([0, 1])⊗Mr(ν(0))
α1,0−→ C([0, 1])⊗Mr(ν(1))

α2,1−→ C([0, 1])⊗Mr(ν(2))
α3,2−→ · · ·

with injective diagonal maps αn+1, n given by

f ↦→ diag
(
f ◦Rn,1, f ◦Rn,2, . . . , f ◦Rn, r(νn+1)/r(νn)

)
for continuous functions

Rn,1, Rn,2, . . . , Rn, r(ν(n+1))/r(ν(n)) : [0, 1]→ [0, 1] ,

and an isomorphism T(B0)→ T
(
Ã
)
.

Apply Lemma 3.5 with this choice of ν. Define the sequences (d(n))n=0,1,2,... and
(k(n))n=0,1,2,... as in Lemma 3.5, and then make all the definitions in Construction
1.1 and 1.6. (Some are also given in the statement of Lemma 3.5.) Then, as

in the proof of Lemma 3.5, Xn = X̃ν(n). We make the following choices for the
unspecified objects in these constructions. We choose points xn ∈ Xn and yn ∈ [0, 1]
for n ∈ Z≥0 such that the conditions in Construction 1.6(16) and Construction
1.6(17) are satisfied. (It is easy to see that this can be done.) Use these points in
Construction 1.6(18b) and Construction 1.6(18d). Take the maps

Rn,1, Rn,2, . . . , Rn, d(n+1) : Yn+1 → Yn
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in Construction 1.6(18c) to be those from the application of Proposition 2.14 above.

For j = 1, 2, . . . , l(n + 1), let S
(0)
n,j |Xn+1 : Xn+1 → Xn be the maps in the system

obtained from Lemma 3.5, and take S
(0)
n,j |Yn+1

= Rn,j . The requirement S
(0)
n,j = Sn,j

for j = 1, 2, . . . , d(n + 1) in Construction 1.6(19) is then satisfied, so that the
condition in Construction 1.1(13) is also satisfied. Moreover, with these choices,
the conditions in Construction 2.17(20) are satisfied.

By Lemma 3.5, the numbers κ, ω, and ω′ from Construction 1.1(3) and Con-
struction 1.1(3) satisfy

κ = κ̃, ω = ω̃, and ω′ ≤ ω̃′.

Therefore κ > 1
2 , ω

′ < ω < 1
2 , and 2κ− 1 > 2ω, as required in Construction 1.1(3),

Construction 1.1(4), and Construction 1.1(5); moreover

(3.7)
1

1− 2ω
<

2κ− 1

2ω
.

The algebra C is simple by Lemma 1.7.

The algebras A and B of Lemma 2.18(1) are now A = Ã and B = B0, so

that C(0), as in Construction 1.1(11), is isomorphic to Ã ⊕ B0. The isomorphism

T(B0)→ T
(
Ã
)
gives an isomorphism ζ

(0)
0 : Aff(T(A))→ Aff(T(B)). This provides

an automorphism of Aff(T(A))⊕Aff(T(B)), given by

(f, g) ↦→
((
ζ
(0)
0

)−1
(g), ζ

(0)
0 (f)

)
.

Let ζ(0) be the corresponding automorphism of Aff(T(A ⊕ B)) = Aff
(
T
(
C(0)

))
gotten using Lemma 2.10. Clearly ζ(0) ◦ ζ(0) is the identity map on Aff

(
T
(
C(0)

))
.

Adopt the notation of Construction 2.17: C and C(0) are as already described,
D and D(0) are the AF algebras from Construction 2.17(21), µ : D → C and
µ(0) : D(0) → C(0) are the maps of Construction 2.17(22) (which are isomorphisms
on K-theory by Lemma 2.18(4)), and θ ∈ Aut(D) and θ(0) ∈ Aut

(
D(0)

)
are as in

Construction 2.17(23).
Define E = lim−→n

Mr(m), with respect to the maps a ↦→ diag(a, a, . . . , a), with a

repeated l(n) times. The direct system defining D(0) is the direct sum of two copies
of the direct system just defined, so

D(0) ∼= E ⊕ E and Aff
(
T
(
D(0)

)) ∼= Aff(T(E ⊕ E)).

Since E is a UHF algebra, we have Aff(T(E)) ∼= R with the usual order and

order unit 1. Using idAff(T(E)) in place of ζ
(0)
0 above, we get an automorphism of

Aff
(
T
(
D(0)

))
. But this automorphism is just θ̂(0).

We claim that ζ(0) ◦ µ̂(0) = µ̂(0) ◦ θ̂(0). To prove the claim, we work with

Aff(T(E))⊕Aff(T(E)) and Aff(T(A))⊕Aff(T(B))

in place of Aff
(
T
(
D(0)

))
and Aff

(
T
(
C(0)

))
, but keep the same names for the maps.

Since µ(0) : E ⊕ E → A ⊕ B is the direct sum of unital maps from the first

summand to A and the second summand to B, the map µ̂(0) is similarly a direct
sum of maps Aff(T(E)) → Aff(T(A)) and Aff(T(E)) → Aff(T(B)). Let e and f
be the order units of Aff(T(A)) and Aff(T(B)). The unique positive order unit
preserving maps Aff(T(E))→ Aff(T(A)) and Aff(T(E))→ Aff(T(B)) are α ↦→ αe



32 ILAN HIRSHBERG AND N. CHRISTOPHER PHILLIPS

and β ↦→ βf for α, β ∈ R. Therefore µ̂(0)(α, β) = (αe, βf). Since ζ
(0)
0 is order unit

preserving, we have ζ
(0)
0 (e) = f , so

ζ(0)(αe, βf) = (βe, αf) = µ̂(0)(β, α) =
(
µ̂(0) ◦ θ̂(0)

)
(α, β) .

The claim follows.
Using conditions (4) and (13) in Construction 1.1, Lemma 2.16, and Proposi-

tion 2.15, we get isomorphisms

ρ : Aff
(
T
(
D(0)

))
→ Aff(T(D)) and σ : Aff

(
T
(
C(0)

))
→ Aff(T(C))

such that µ̂ ◦ ρ = σ ◦ µ̂(0). Define

η = ρ ◦ θ̂(0) ◦ ρ−1 ∈ Aut
(
Aff(T(D))

)
and ζ = σ ◦ ζ(0) ◦ σ−1 ∈ Aut

(
Aff(T(C))

)
.

A calculation now shows that the claim above implies

(3.8) ζ ◦ µ̂ = µ̂ ◦ η.
We also have ζ ◦ ζ = idAff(T(C)).

We want to apply Proposition 2.15 withDn and φn,m as in Construction 2.17(21),

and φ
(0)
n,m as there in place of φ′

n,m, so that D and D(0) are as already given, with
Cn = Dn for all n ∈ Z≥0 and ψn,m = φn,m and ψ′

n,m = φn,m for all m and n, and

with θn, θ
(0)
n , θ, and θ(0) from Construction 2.17(23) in place of µn, µ

′
n, µ, and µ

′.
As before, this application is justified by conditions (4) and (13) in Construction 1.1,
and Lemma 2.16. The outcome is an isomorphism ρ′ : Aff

(
T
(
D(0)

))
→ Aff(T(D))

such that

(3.9) θ̂ = ρ′ ◦ θ̂(0) ◦ (ρ′)−1.

We claim that η = θ̂. The “right” way to do this is presumably to show that
ρ′ = ρ above, but the following argument is easier to write. We have

Aff(T(D)) ∼= Aff
(
T
(
D(0)

)) ∼= R2,

with order (α, β) ≥ 0 if and only if α ≥ 0 and β ≥ 0 and order unit (1, 1). Since
the state space S(R2) of R2 with this order unit space structure is an interval,
and automorphisms of order unit spaces preserve the extreme points of the state
space, there is only one possible action of a nontrivial automorphism of R2 on
S(R2). Theorem 2.4 implies that R2 ∼= Aff(S(R2)), so there is only one nontrivial

automorphism of R2. Since θ̂(0) is nontrivial, so is θ̂ by (3.9), and so is η by its
definition. The claim follows.

The claim and (3.8) imply

(3.10) ζ ◦ µ̂ = µ̂ ◦ θ̂.
Passing to state spaces and applying Theorem 2.4, we get an affine homeomor-

phismH : T(C)→ T(C) such that ζ(f) = f◦H for all f ∈ Aff(T(C)), and moreover
H ◦H = idT(C). By Lemma 2.18(4), the expression µ∗ ◦θ∗ ◦ (µ∗)

−1 is a well defined

automorphism of K∗(C), of order 2. We claim that F =
(
µ∗ ◦ θ∗ ◦ (µ∗)

−1, H) is an
order 2 automorphism of Ell(C). We use the notation of Definition 3.1 for the El-
liott invariant of a C∗-algebra; in particular, ρC and ρD are not related to the maps
ρ and ρ′ above. The only part needing work is the compatibility condition (3.1) in
Definition 3.1, which amounts to showing that

ρC ◦ µ∗ ◦ θ∗ ◦ (µ∗)
−1 = ζ ◦ ρC .
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To see this, we calculate, using at the second and last steps the notation of Defini-
tion 2.5 and the fact that the morphisms of Elliott invariants defined by µ and θ
satisfy (3.1) in Definition 3.1, and using (3.10) at the third step,

ζ ◦ ρC = ζ ◦ ρC ◦ µ∗ ◦ (µ∗)
−1 = ζ ◦ µ̂ ◦ ρD ◦ (µ∗)

−1

= µ̂ ◦ θ̂ ◦ ρD ◦ (µ∗)
−1 = ρC ◦ µ∗ ◦ θ∗ ◦ (µ∗)

−1 ,

as desired.
Thus, we have constructed an automorphism F of Ell(C) of order 2. It remains

to show that F is not induced by any automorphism of C.
Using (3.10) on the last components, one easily sees that F ◦µ∗ = µ∗ ◦ θ∗. Let q

and q⊥ be as in Notation 1.13. In the construction of D as in Construction 2.17(21),
set e = φ∞,1((1, 0)) and e

⊥ = 1− e = φ∞,1((0, 1)). Then θ(e) = e⊥, µ(e) = q, and
µ(e⊥) = q⊥. Therefore F ([q]) = [q⊥].

Suppose now that there exists an automorphism α such that α∗ = F . Then
[α(q)] = [q⊥]. By Lemma 1.17, α(q) is unitarily equivalent to q⊥. Let u be a
unitary such that uα(q)u∗ = q⊥. Thus, since α(qAq) = α(q)Aα(q) = u∗q⊥Aq⊥u,
it follows that the qAq and q⊥Aq⊥ have the same radius of comparison. By (3.7),
this contradicts Lemmas 1.15 and 1.16. □

Remark 3.6. One can easily check that, with C as in the proof of Theorem 3.2,
there is a unique automorphism of Ell(C) whose component automorphism of the
tracial state space is as in the proof. Therefore the conclusion can be slightly
strengthened: there is an automorphism of T(C) which is compatible with an au-
tomorphism of Ell(C) but which is not induced by any automorphism of C.

Question 3.7. Does there exist a compact metric space X and a minimal home-
omorphism h : X → X such that the crossed product C∗(Z, X, h) has the same
features as the example we construct here?

Our construction provides an example of an automorphism of order 2 of the
Elliott invariant which is not induced by any automorphism of the C*-algebra.
The question of whether there exists an example of such an automorphism of the
invariant which is induced by an automorphism of the algebra but not by one of
order 2 is an older question by Blackadar, which we record below. For Kirchberg
algebras in the UCT class, it is known that any order 2 automorphism of the Elliott
invariant is induced by an order 2 automorphism of the C*-algebra ([BKP03]); also
see [Kat08] for a generalization to actions of many other finite groups. However,
very little seems to be known in the stably finite case, even for classifiable C*-
algebras (and in fact even for AF algebras).

Question 3.8 (Blackadar). Does there exist a simple separable stably finite unital
nuclear C∗-algebra C and an automorphism F of Ell(C) such that:

(1) F ◦ F is the identity morphism of Ell(C).
(2) There is an automorphism α of C such that α∗ = F .
(3) There is no α as in (2) which in addition satisfies α ◦ α = idC .

Can such an algebra be chosen to be AH and have stable rank 1?

Our method of proof suggests that, instead of being just a number, the radius of
comparison should be taken to be a function from V (A) to [0,∞]. If one uses the
generalization to nonunital algebras in [BRT+12, Section 3.3], one could presumably
even get a function from Cu(A) to [0,∞].
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