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ABSTRACT. We construct an example of a simple approximately homogeneous
C*-algebra such that its Elliott invariant admits an automorphism which is
not induced by an automorphism of the algebra.

Classification theory for simple nuclear C*-algebras reached a milestone recently.
The results of [EGLNT5] and [TWWT7], building on decades of work by many
authors, show that simple nuclear unital C*-algebras satisfying the Universal Co-
efficient Theorem are classified via the Elliott invariant, Ell(-), which consists of
the ordered Ky-group along with the class of the identity, the K;-group, the trace
simplex, and the pairing between the trace simplex and the Ky-group. Earlier
counterexamples due to Toms and Rgrdam ([Tom08, [Rer03]), related to ideas of
Villadsen ([Vil98]), show that one cannot expect to be able to extend this clas-
sification theorem beyond the case of finite nuclear dimension, at least without
either extending the invariant or restricting to another class of C*-algebras. An
important facet of the classification theorems is a form of rigidity. Starting with
two C*-algebras A and B and an isomorphism &®: Ell(A) — ElI(B), one not only
shows that A and B are isomorphic, but rather that there exists an isomorphism
from A to B which induces the given isomorphism ® on the level of the Elliott
invariant, and furthermore that the isomorphism on the algebra level is unique up
to approximate unitary equivalence.

The goal of this paper is to illustrate how this existence property may fail in
the infinite nuclear dimension setting, even when restricting to a class consisting of
a single C*-algebra. Namely, we construct an example of a simple unital nuclear
separable AH algebra C, along with an automorphism of ElI(C), which is not
induced by any automorphism of C'. This can be viewed as a companion of sorts to
[TomO08, Theorem 1.2], where it was shown that when such automorphisms exist,
they need not be unique in the sense described. The mechanism of the example is
that if there were such an automorphism ¢, there would be projections p,q € C
such that p(p) = ¢ but such that the corners pCp and ¢qCq have different radii
of comparison ([Tom06]; the definition is recalled at the beginning of Section [1]).
This further shows that simple unital AH algebras can be quite inhomogeneous.
In particular, extending the Elliott invariant by adding something as simple as the
radius of comparison will not help for the classification of AH algebras which are
not Jiang-Su stable.
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We now give an overview of our construction. We start with the counterexample
from [TomO8, Theorem 1.1]. We consider two direct systems, described diagram-
matically as follows:

0.1) (X)) ==E C(X1) ® Myo) ==E C(Xo) © M) =% -

>

C([0,1]) == C([0,1]) ® My(1) == C([0,1]) ® My(9) =% -

The ordinary arrows indicate a large (and rapidly increasing) number of embeddings
which are carefully chosen, and the dotted arrows indicate a small number of point
evaluation maps, thrown in so as to ensure that the resulting direct limit is simple.
The spaces in the upper diagram are contractible CW complexes whose dimension
increases rapidly compared to the sizes of the matrix algebras. (Toms uses cubes;
in our construction we found it easier to use cones over products of spheres, but the
underlying idea is similar.) The direct system is constructed so as to have positive
radius of comparison. We use [Tho94] to choose the lower diagram so as to mimic
the upper diagram, and produce the same Elliott invariant. As the resulting algebra
on the bottom is Al, it has strict comparison, and therefore is not isomorphic to
the one on the top. (In [Tom08] it isn’t important for the two diagrams to match
up nicely in terms of the ranks of the matrices involved. However, we will show
that it can be done, as it is important for us.)

Our construction involves moving the point evaluations across, so as to merge
the two systems, getting:

(02)  C(Xo) ==FC(X1) & Mty =5 C(X3) ® M) =—F - -

C([0,1]) 3 C([a 1)) ® M(l) —= C([07 1))@ Mr(z) = 2

With care, one can arrange for the flip between the two levels of the diagram to
make sense as an automorphism of the Elliott invariant. The resulting C*-algebra
has positive radius of comparison and behaves roughly as badly as Toms’ example.
Nevertheless, we can distinguish a part of it which roughly corresponds to the rapid
dimension growth diagram on the top from a part which roughly corresponds to
the AI part on the bottom. Namely, if at the first level C(Xy) 4 C([0,1]) we denote
by ¢ the function which is 1 on X, and 0 on [0, 1], and we denote ¢* = 1 — g, then
the Ko-classes of ¢ and ¢ will be switched by the automorphism of the Elliott
invariant we construct. However, we can tell apart the corners ¢qCq and ¢-Cq* by
considering their radii of comparison.

Section [1| develops the choices needed to get different radii of comparison in
different corners of the algebra we construct. Section [2| contains the work needed to
assemble the ingredients of the construction into a simple C*-algebra whose Elliott
invariant admits an appropriate automorphism. The main theorem is in Section [3]

The second author is grateful to M. Ali Asadi-Vasfi for a careful reading of
Section [} and in particular finding a number of misprints.
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1. UPPER AND LOWER BOUNDS ON THE RADIUS OF COMPARISON

We recall the required standard definitions and notation related to the Cuntz
semigroup. See Section 2 of [Rgr92] for details. For a unital C*-algebra A, we denote
its tracial state space by T(A). We take M. (A) = U,—, M,,(A), using the usual
embeddings M,,(A) < M,11(A). For 7 € T(A), we define d,: My (A4); — [0,00)
by d,(a) = lim, o 7(a'/™). If a,b € Mo (A),, then a 3 b (a is Cuntz subequiva-
lent to b) if there is a sequence (v,,)52; in M (A) such that lim, . vpbvk = a.

Following [Tom06, Definition 6.1], for p € [0, 00), we say that A has p-comparison
if whenever a,b € My, (A)4 satisfy d-(a) + p < d,(b) for all 7 € T(A), then a X b.
The radius of comparison of A, denoted rc(A), is

rc(A) = inf ({p € [0,00) | A has p-comparison}) .

We take rc(A) = oo if there is no p such that A has p-comparison. Since AH algebras
are nuclear, all quasitraces on them are traces by [Haal4l Theorem 5.11]. Thus, we
ignore quasitraces. Also, by Proposition 6.12 of [Phil4], the radius of comparison
remains unchanged if we replace M, (A4) by K ® A throughout. Thus, we may work
only in My (A).

Our construction uses a specific setup, with a number of parameters of various
kinds which must be chosen to satisfy specific conditions. Construction [I.]] lists
for reference many of the objects used in it, and some of the conditions they must
satisfy. It abstracts the diagram . Construction specifies the choices of
spaces and maps needed for the results on Cuntz comparison, and Construction 2.1
together with the additional maps in parts 7 , and of Construction
is used to arrange the existence of a suitable automorphism of the tracial state space
of the algebra we construct. Because of the necessity of passing to a subsystem at
one stage in this process, we must start the proof of the main theorem with a
version of just the top row in the diagram ; this is Construction Many of
the lemmas use only a few of the objects and their properties, so that the reader
can refer back to just the relevant parts of the constructions. In particular, many
details are used only in this section or only in Section [2] Some of the details are
used for just one lemma each.

Construction 1.1. For much of this paper, we will consider algebras constructed
in the following way and using the following notation:

(1) (d(n))n=0,1,2,... and (k(n))n=0,1,2,... are sequences in Zxg, with d(0) = 1 and
k(0) = 0. Moreover, for n € Zxq,

I(n)=dn)+kn), rn)=][1G), and s(n)=]]d0).
j=0 j=0

Further define t(n) inductively as follows. Set ¢(0) = 0, and
tn+1) = d(n+ 1t(n) + k(n + 1)[r(n) —t(n)].

(See Lemma for the significance of t(n).)
(2) We will assume that k(n) < d(n) for all n € Z>o.
(3) We define
k= inf s(n)

n€Zso r(n)

For estimates involving the radius of comparison, we will assume x > %
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The numbers w,w’ € (0, 00] are defined by

_ k(W) R (D)
YD tdn w4 e = 2 k(n) +d(n)

We will require w’ < w < % In particular,

—  k(n)
; k) +dn) =

We will also eventually require that « as in and w as in are related
by 2k — 1 > 2w. This can easily be arranged with a suitable choice of d(1)
and k(1).

(Xn)n=01,2,... and (Y;,)n=01,2,... are sequences of compact metric spaces.
(They will be further specified in Construction [1.6])

For n € Z>¢, the algebra C,, is

Cp = My(n) ® (C(Xpn) ® C(Yy)) .

We further make the identifications:

C(Xn+1, Mr(nt1)) = Mint1) @ C(Xny1, Mr(n)),

C(Yoi1, My(ns1)) = Ming1) @ C(Yni1, Mygny),

C(X,)@®CY,) =C(X,11Y,),

C(Xn, My(n)) @ C(Yn, My (n)) = C(Xp, 1Y, M) -
For n € Z~(, we are given a unital homomorphism

Yo C(Xp) & C(Yn) = Mygns1)(C(Xny1) @ C(Yaia)),
and the homomorphism

Thti,n: Cp = Crya

is given by I'y 41,0 = idMT(n) ® ¥n. Moreover, for m,n € Z>¢ with m < n,

Lom =Tnn-10Tn 1 n20-0lmi1m: Cp — Cp.

In particular, Iy, ,, = id¢,, .
We require that the maps

Yt C(Xp TY,,) = My 41y (C(X g1 Y1)
in be diagonal, that is, that there exist continuous functions
Sn1y Sn2s -+ Oning1): Xnp1 Y — X, Y,
such that for all f € C(X,, I1Y},), we have
Y (f) = diag(f 0Sp1, foSna, ..., fo n,l(n+1)) .

(These maps will be specified further in Construction )
We set C' = hﬂn Cy, taken with respect to the maps I'y, ,,,. The maps
associated with the direct limit will be called I'g 1, : Cp, = C for m € Z>y.

As we need to work with two diagrams which are similar in most positions, as
in diagrams (0.1)) and (0.2)), we sometimes use additional objects and conditions in
the construction, as follows:
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(11) For n € Z~o, we may be given an additional unital homomorphism
Y1 C(Xn) & C(Yn) = Mygns) (C(Xng1) @ C(Viga)) -

Then the maps Fill nt Cn = Cry1, Fg%: C,, — C,, are defined anal-
ogously to @i the algebra C(©) is given as C(©) = hﬂn C,, taken with

respect to the maps 1"532”, and the maps Pé‘i{m: C,, = CO are defined

analogously to .
(12) In (1), analogously to (9), we may require that there be

50,8 o 8yt X MYy = X, 1Y,

such that for all f € C(X, 11Y,,), we have

77(10)(f) = diag(f © Sr(zozv 7(10%’ . fo Sr(LOl n+1))

(These maps will be specified further in Construction [1.6])

(13) Assuming diagonal maps as in @, we may require that they agree in the
coordinates 1,2,...,d(n+1), that is, forn € Zsgand k = 1,2,...,d(n+1),
we have Sff,l = Sn k-

Lemma 1.2. In Construction , the sequence (:EZ;) 1s strictly de-
n=1,2,...

creasing.

Proof. The proof is straightforward. O
Lemma 1.3. In Construction , and assuming Construction (@, we have
_H0) _ 1) _#2) 1
S r(0) T (1) T r(2) 2"

Proof. We have t(0) = 0 by definition. We prove by induction on n € Z~( that

ttn—1) tn) 1

1.1 —_— =< =

(1.1) r(n—1)<r(n)<2
This will finish the proof. For n = 1, we have

t(1) k(1)

r(1) k(1) +d(1)’

which is in (07 2) by Construction 1. Now assume 1) we prove this relation
with n 4+ 1 in place of n. We have r(n) — t(n) > t(n), so

t(n+1) dn+1t(n)+k(n+1)[r(n) —t(n)]

[
(1.2) rn+1) [d(n+1) + k(n + 1)]r(n)
_ dln+ Dt(n) + k(n+ Dt(n) _ t(n)
[d(n+1) +k(n+Dlr(n) — r(n)’
Also, with
 dn+1) (n)
CCUmryiknrn 7T rin)’

starting with the first step in 1) and at the end using o > 3 (by Construction
|| and 8 < % (by the induction hypothesis), we have

t(n+1)

S —ag (-0 - )= 51— a- D= 29)] < 5.



6 ILAN HIRSHBERG AND N. CHRISTOPHER PHILLIPS

This completes the induction, and the proof. ([

Lemma 1.4. With the notation of Construction and Construction [1.1){),
and assuming the conditions in Construction 2) and Construction , for
alln € Zy we have
t
wgﬂ§w+w’<2w.
r(n)

Proof. The third inequality is immediate from Construction .

By Lemma the sequence (:((Z))) is strictly increasing. Also,
n=1,2,...

t(1) k(1)
1.3 — = =w
(13) r(l) k(1) +d(1)
The first inequality in the statement now follows.
Next, we claim that

tn) _ N\~ k()
<
) = 2 5 +d0)
for all n € Z~g. The case n = 1 is (|1.3). Assume this inequality is known for n.
Then
tin+1) ( din+1) ) (t(n))
rin4+1)  \k(n+1)+dn+1) r(n)
( k(n+1) ) (r(n) —t(n))
_l’_
kE(n+1)+d(n+1) r(n)
n+1 .
< t(n) N k(n+1) < Z k:(j) .
r(n)  k(n+1)+dn+1) =~ k(j) +d(5)
as desired.
The second inequality in the statement now follows. O

Notation 1.5. For a topological space X, we define
cone(X) = (X x [0,1])/(X x {0}).

Then cone(X) is contractible, and cone(+) is a covariant functor: if T: X — Y is a
continuous map, then it induces a continuous map cone(7T): cone(X) — cone(Y).
We identify X with the image of X x {1} in cone(X).

Construction 1.6. We give further details on the spaces X,, and Y,, in Construc-

tion [LT[E).
(14) The space X,, is chosen as follows. First set Zy = S%. With (d(n))n=0.1.2,...
and (s(n))n=0,1,2,... as in Construction [1.1|{1)), define inductively

Zn =2, = (%)™,
Then set X,, = cone(Z,). (In particular, X,, is contractible, and Z, C X,
as in Notation ) Further, for n € Z>p and j = 1,2,...,d(n + 1),
we let Pj(n): Zn+1 — Zp be the j-th coordinate projection, and we set
Q§-n) = cone(Pj(")) : Xn+1 — Xo.
(15) Y,, = [0,1] for all n € Z~¢. (In particular, Y,, is contractible.)
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(16) We assume we are given points z,, € X,, for m € Z>¢ such that, using the
notation in , for all n € Z>g, the set

{(Ql(jll) OQL(/ZH) O...le(Zji))(xm) |
m=n+1,n+2,...and v; =1,2,...,d(n+j) forj:l,Q,...,m—n}
is dense in X,,.

(17) We assume we are given a sequence (yi)r=o0,1,2.... in [0,1] such that for all

sLybyee

n € Zxo, the set {yx | K > n} is dense in [0, 1].
(18) The maps

Yn : O(Xn II Yn) — Ml(n+1) (C(Xn+1 I Yn+1))

will be as in Construction [1.1{[9), with the maps S, ;: Xpyp1 O Yy —
X, 11Y,, appearing there defined as follows:
: (n) ; , _ )
(a) With @, as in (14), we set S, ;(z) = Q; () for x € X,41 and
j=1,2,....d(n+1).
(b) Spj(x) =y for

x € Xnt1 and j=dn+1)+1,dn+1)+2,...,l(n+1).
(¢) There are continuous functions
Rn,lv Rn,27 B Rn,d(n+1): Yn+1 — Yn

(which will be taken from Proposition below) such that S, ;(y) =
R, ;(y) fory € Y4 and j =1,2,...,d(n+1).
(d) Sn,j (y) =z, for

y € Yo and j=dn+1)+1,dn+1)+2,...,l(n+1).
(19) The maps
YO C(Xn 1T Yy) = Myng1) (C(Xng1 T Yp1))

will be as in Construction 1) with the maps 5. Xpr1 Y, 11 —

n,j "
X, 11Y,, appearing there given by Sff;- =S, forj=1,2,...,d(n+1) and
to be specified later for j =d(n+ 1)+ 1,dn+1)+2,...,l(n+1).
With the choices in Construction [1.6{[L8]), the map
Tn O(Xn) S C(Yn) — C(Xn+17 Ml(n—i—l)) 2] C(Yn+17 Ml(’rL+1))

in Construction [I.I|(8), as further specified in Construction [L.1][9), is given as fol-
lows. With C4") viewed as embedded in Mgy as the diagonal matrices, there is
a homomorphism

On: C(Yn) = C(Yopa, CU) C C(Yai1, Myny1))
such that

(fr9) = (diag(fo Q. FoQF, o, FoQW 1) glun)s 9lun), - glun) ),
k(n+ 1) times

(1.4) diag (3n(9), f(n), S(@n); -, f<zn>)> .

k(n+ 1) times
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For the purposes of this section, we need no further information on the maps ¢,,
except that they send constant functions to constant functions.

Lemma 1.7. Assume the notation and choices in parts , (@, (@, and (@)
of Construction and in Construction (except part (19)) and the parts of
Construction [I.1) referred to there. Then the algebra C' is simple.

Proof. Using Construction [L.6{[16]), this is easily deduced from Proposition 2.1
of [DNNP92]. O

Notation 1.8. Let p € C(S?, My) denote the Bott projection, and let L be the
tautological line bundle over S2 = CP!. (Thus, the range of p is the section space
of L.) Recalling that Xq = cone(S?), parametrized as in Notation define
be C(Xg, Mz) by b(A) = A-p for A € [0,1]. Assuming the notation and choices in
parts , @, , , and of Construction and in Construction for
n e ZZO set b, = (ld]\/[2 ® Fn,O)(ba 0) € MQ(Cn)

We require the following simple lemma concerning characteristic classes. It gives
us a way of estimating the radius of comparison which is similar to the one used in
[Vil98, Lemma 1], but more suitable for the types of estimates we need here.

Lemma 1.9. The Cartesian product L** does not embed in a trivial bundle over
(S?)% of rank less than 2k.

Proof. We refer the reader to [MS74, Section 14] for an account of Chern classes.
The Chern character ¢(L) is of the form 1+ ¢, where € is a generator of H?(S?,Z),
and the product operation satisfies €2 = 0. Let Py, Ps,..., Py: (S?)F — S? be
the coordinate projections. For j = 1,2,...,k, set ¢; = Pj(¢). The elements
€1,€2,...,ex € H2((S?)¥,Z), along with 1 € H°((S?)*,Z) (the standard generator)
generate the cohomology ring of (S2)F, and satisfy E? =0for j=1,2,...,k. By
naturality of the Chern character ([MS74, Lemma 14.2]) and the product theorem

([MST74, (14.7) on page 164]), we have ¢(L**) = Hle(l +¢;). Now, suppose L**
embeds as a subbundle of a trivial bundle E. Let F' be the complementary bundle,
so that L** @ F = E. By the product theorem, c(L**)c(F) = ¢(L** @ F) =
¢(E) = 1. Thus, ¢(F) = ¢(L*F)~1 = H;?:l(l — ¢5). Since ¢(F') has a nonzero term
in the top cohomology class H2¥((S2)F), it follows that rank(F) is at least k. Thus,
rank(E) = rank(L**) + rank(F) > 2k, as required. O

Lemma 1.10. Adopt the assumptions and notation of Notation[I.8 Let n € Zq.
Then by|z, is the orthogonal sum of a projection p, whose range is isomorphic to
the section space of the Cartesian product bundle L**™) and a constant function
of rank at most r(n) — s(n) — t(n).

We don'’t expect by,|z, to be a projection, since some of the point evaluations
occurring in the maps of the direct system will be at points « € cone(Z,,) \ Z, for
values of m < n, and b, () is not a projection for such z.

We don’t need the estimate on the rank of the second part of the description
of by|z,; it is included to make the construction more explicit. If there are no
evaluations at the “cone points”

(Zm x{0})/(Zm x {0}) € (Zm x [0,1])/(Zm x {0})
(following the parametrization in Notation , then this rank will be exactly

r(n) — s(n) — t(n).
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Proof of Lemma[I.10. For n € Z>( write b, = (¢, gn) With
Cp € MZ(C(Xna Mr(n))) and gn € MQ(C(YnaMr(n))) .

Further, for j = 1,2,...,s(n) let Tj(n) : (582)5(™) — $2 be the j-th coordinate projec-
tion. We claim that ¢, is an orthogonal sum ¢, 9 + ¢y 1, in which ¢, o is the direct

sum of the functions b o cone(Tj(")) for j = 1,2,...,s(n) and ¢y, is a constant
function of rank at most r(n) — s(n) — ¢(n), and moreover that g, is a constant
function of rank at most t(n). The statement of the lemma follows from this claim.

The proof of the claim is by induction on n. The claim is true for n = 0, by the
definition of b and since s(0) = 1, ¢(0) = 0, and r(0) — s(0) — ¢(0) = 0.

Now assume that the claim is known for n, recall that I'y 1 », = idas, w @M
(see Construction), and examine the summands in the description (|1.4)) of the
map 7, (after Construction [L.6]). With this convention, first take (f,g) in (1.4) to
be (¢n,0,0). The first coordinate I';, 11 5,(¢n 0, 0)1 is of the form required for ¢,41,0,
while I'j, 41,0 (¢n 0, 0)2 is a constant function of rank k(n+1)s(n) unless ¢, (z,) = 0,
in which case it is zero. In the same manner, we see that:

Tpt1,n(cn,1,0)1 is constant of rank at most d(n + 1)[r(n) — s(n)
Int1n(cn1,0)2 is constant of rank at most k(n + 1)[r(n) — s(n)
I'yt1.1(0,9n)1 is constant of rank at most k(n + 1)t(n).
I'y11.1(0, gn)2 is constant of rank at most d(n + 1)¢(n).

—t .
— t(n)].

Putting these together, we get in the first coordinate of I'y,11 5, (by) the direct sum
of ¢p41,0 as described and a constant function of rank at most

d(n+1)[r(n) — s(n) —t(n)] + k(n + 1)t(n).

A computation shows that this expression is equal to r(n+1) —s(n+1) —t(n+1).
In the second coordinate we get a constant function of rank at most

kE(n+ 1Ds(n) + k(n+ 1)[r(n) —s(n) —t(n)] + d(n+ 1)t(n) = t(n+1).

This completes the induction, and the proof. O

Corollary 1.11. Adopt the assumptions and notation of Notation [I.8 Let n €
Z>o. Let e = (e1,e2) be an element in My (Cp) = Mo (C(X,) & C(Y,,)) such
that ey is a projection which is equivalent to a constant projection. If there exists
z € Mso(Cy) such that ||zex* — by || < & then rank(e1) > 2s(n).

Proof. Recall from Construction and Notation that
Zp=(8%)*™  and  Z, Ccone(Z,) =X, C X, 11Y,.

Also recall the line bundle L and the projection p from Notation [I.§

It follows from Lemmam that there is a projection g € My, (,)(C(Z,)) whose
range is isomorphic to the section space of the s(n)-dimensional vector bundle
L**() and such that q(b,|z,)q = q. Now ||zex* — b,| < % implies [|q(zex*|z, )q —

gl < %. Since €|z, and q|z, are projections, it follows that ¢|z, is Murray-von
Neumann equivalent to a subprojection of e|z, = e1|z,. Therefore rank(e|z,) >
2s(n) by Lemma [1.9] So rank(e;) > 2s(n). O

Although not strictly needed for the sequel, we record the following.
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Corollary 1.12. Assume the notation and choices in parts , (@ including
k> 3), @, (@), and @) of Constructzon and in Construction (except
part ) and the parts of Construction referred to there. Then the algebra C
satisfies re(C) > 2k — 1 > 0.

Proof. Suppose p < 2k — 1. We show that C does not have p-comparison. Choose
n € Zso such that 1/r(n) < 26 —1 — p. Choose M € Zx( such that p+1 <
M/r(n) < 2k. Let e € Mo (Cy,) be a trivial projection of rank M. By slight abuse
of notation, we use I'y, ,, to denote the amplified map from My (Cy) to Moo (Cry)

as well. For m > n, the rank of I'y,, ,,(e) is M - :((ZL))
that this rank is strictly less than 2s(m). Now, for any trace 7 on Cy, (and thus
for any trace on C), and justifying the last step afterwards, we have

1 r(m)
d‘l’ Fm n = Fm n = . PR
(T €)= 7{T(e) = s M-

To explain the last step, recall b,, from Notation [I.8] and use Lemma to
see that the ranks of its components (by,)1 € M2 (C(Xp, My(my)) and (by)2 €
M3 (C (Yo, My(m))) are both less than r(m), while the identity element has rank
r(m).

On the other hand, if T'w o(b) = ' n(e) then, in particular, there exists some
m > n and © € M (Cp,) such that ||y, ,(e)z* — by || < 3, which contradicts

Corollary |

Notation 1.13. We assume the notation and choices in parts , @, @, ,
and of Construction In particular, Cy = C(Xp) ® C(Yp). Define gy =
(1,0) € C(Xy) ® C(Yp) and g5 = 1 — qo. For n € Z~ define ¢, = T’ 0(q0) € Chn,
and ¢ = 1 — gy, and finally, define ¢ = T'os 0(g0) € C and ¢+ =1 —gq.

, and the choice of M guarantees

>1+p>di(bm) +p.

Lemma 1.14. Make the assumptions in Notation[I.13 Further assume the nota-
tion and choices in C’onstructz’on (except part @) Then the projection

1- qn € Ml(n)(C(Xn)) S Ml(n)(C(Yn))
has the form (e, f) for a constant projection e € M) (C(Xyn)) = C(Xn, M)
of rank t(n) and a constant projection f € M) (C(Yy)) = C(Yn, My()) of rank
r(n) —t(n).

From Construction we don’t actually need to know anything about the
spaces X,, and Y,,, we don’t need to know anything about the points z, and y,
except which spaces they are in, and we don’t need to know anything about the
maps Q;") and R, ; except their domains and codomains.

Proof of Lemma[I.1j} The proof is an easy induction argument, using the fact
that the image of a constant function under a diagonal map is again a constant
function. 0

Lemma 1.15. Assume the notation and choices in parts 7(@ of Construction
Construction[1.6] (except part (19)), and Notation including k(n) < d(n)
foralln € Z>go, k> %, w>w', and 2k — 1 > 2w. Then

2k —1

re(qtCqt) > 5
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Proof. We proceed as in the proof of Corollary although the rank computa-
tions are somewhat more involved. The difference is in the definition of d,. In this
corner, d, is normalized so that d,(¢) = 1 for all 7 € T(C). To avoid redefining
the notation, we will use 7 to denote a tracial state on C, and therefore our dimen-
sion functions will be of the form a + d.(a)/7(¢"), noting that 7(¢*) = d,(¢*)
since ¢ is a projection.

It suffices to show that for all p € (1, 2’;;1

Fix § € (0,w) such that

(1.5) p<(1-90) (2“2_1> .

w

) N Q, we have rc(qg-Cqt) > p.

Set

)
(1.6) €= 20 =0) > 0.

Since the sequence (:EZ%) is nonincreasing and converges to a nonzero
n=0,1,2,...

limit ~, there exists ng € Zx>¢ such that for all n and m with m > n > ng, we have

rw) s(m)
0<1 s(n) r(m)

<e

This implies that
rm) _ s(m) ___r(m)
(.7 ) s )

Using (1.5 and § < w at the first step, we get

2k — 1
w

1—w+2pw<1—6+2(1—(5)< )w:Qn(l—é).

Now write p = /8 with «, 8 € Z~q. Choose n > ng such that

7@<2ﬁ(1—5)—(1—w+2pw).

Then there exists Ny € Z~ such that pN; € Z~o and

Ny
(1.8) 2/{(1—6)>@>1—w+2pw.
Set

Using p > 1 at the last step, we have

% = % >p(l—w+2pw)>p(l —w)+2w.

Now suppose e € My (Cy) = Moo (C(X,,) @ C(Yy,)) is an ordered pair whose
first component is a trivial projection on X, of rank N7 and whose second com-
ponent is a (trivial) projection on Y, of rank Ny. Let m > n, and let f be the
first component of Ty, ,,(€); we estimate rank(f). (The second component is a
trivial projection over Y;, whose rank we don’t care about.) Now f is the direct
sum of 7(m)/r(n) trivial projections, coming from C(X,, M, (,)) and C(Yy,, M,(,)).
At least s(m)/s(n) of these summands come from C(Xp, M,)). So at most
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r(m)/r(n) — s(m)/s(n) of these summands come from C(Yy, M,(,)). The sum-
mands coming from C(X,,, M,,)) have rank N; and the summands coming from
C(Yy, My () have rank Ny. Since No > Ny, we get

r(m)  s(m) s(m)
rank(f) < (r(n) — s(n)>N2+s(n) 1
_r(m) . r(m)  s(m) B
‘rm>A“+(mm 4@)““ ).

at the third step, at the fifth step, and Construction |1.1{(3)) at the sixth step,

Combining this with (|1.7) at the first step, and using (|1.9) at the second step, (|1.6))
(L.-8)

we get
rank(f) < :’f(f)) (N, +eNp) = ’;((’;)) “(1+ep)- N
_r(m) 2-90 r(m) Np
=T ~m~N1 < W - < 2kr(m) < 2s(m).

So Corollary implies that there is no © € My (C,y,) for which ||z, ,(€)z* —
bm|| < 1. Since m > n is arbitrary,
(1.10) Loon(e) 2.

Now let 7 be a trace on C, and restrict it to Cp, = M, (C(Xn) ® C(Y2)).
Denote by tr the normalized trace on M, (,). There is a probability measure y on
X, 1Y, such that 7(a) = fXHYn tr(a) dp for all a € C,,. Define A = u(X,), so
1—X=pu(Y,). Then, using (1.9) at the second step,

r(n) r(n) '

Using Lemma m to calculate the ranks of the components of ¢;-, we get
_ At(n) + (1 = N)[r(n) —t(n)]

- r(n)

(1.11) 7(g)

n

and
112) ) — 1 () = M) —Hm)] + (1= A)i(r)
' W= r(n) '

It follows from Lemma [1.10| and Lemma [1.14] that d,(b,) < 7(g,). Using this at
the first step, and ([1.11]) and (1.12)) at the second step, we get

dr(bn) _ 7(an) _ Alr(n) —t(n)] + (1 = Nt(n)

m(gw) ~ Tlaw)  At(n) + (1= A)[r(n) —t(n)]

So
7(e) —dr(by) _ (A +p(1 = N))Ny — (A[r(n) —t(n)] + (1 — N)t(n))
(ot N(m) + (L= N [r(n) — £
The last expression is a fractional linear function in A, and is defined for all
values of A in the interval [0,1]. Any such function is monotone on [0,1]. In the

>

following calculations, we recall from Lemma that w < % < 2w. If we set
A =1 and use (|1.8)), the value we obtain is
Nijr(n) = A —tn)/r(n)) _ (1-w+2w) - (1 -w)
t(n)/r(n) 2w

:p'
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If we set A = 0, we get, using ([1.8)) at the first step and p > 1 at the last step,

pNi/r(n) —t(n)/r(n) _ p(1 —w+2pw) — 2w 2p%w — 2w
1—1t(n)/r(n) ” 1—w B ST

Therefore

dT(FOO,n(e)) > d-(b)
d-(g*) d-(q*)

for all traces 7 on C, so rc(qtCqt) > p, as required. O

+p

We now turn to the issue of finding upper bounds on the radius of comparison.
For this, we appeal to results of Niu from [Niul4]. Niu introduced a notion of mean
dimension for a diagonal AH-system, |[Niul4, Definition 3.6]. Suppose we are given
a direct system of homogeneous algebras of the form

Ap=C(Kn1)@M;, , @ C(Kpn2) @M, , @ @©C(Ky mn)) @ M;

n,2 n,m(n) ?

in which each of the spaces involved is a connected finite CW complex, and the
connecting maps are unital diagonal maps. Let v denote the mean dimension of
this system, in the sense of Niu. It follows trivially from [Niul4l Definition 3.6]

that
v < lim max ({dlm(Kn’l) l:l,2,...,m(n)}> .

n—oo jn,l

Theorem 6.2 of [Niuld] states that if A is the direct limit of a system as above, and
A is simple, then re(A) < /2. Since the system we are considering here is of this
type, Niu’s theorem applies. With that at hand, we can derive an upper bound for
the radius of comparison of the complementary corner.

Lemma 1.16. Under the same assumptions as in Lemma|1.15, we have
rc(qCq) < .
(@Cq) < 75

Proof. The algebra C is simple by Lemma[I.7] so ¢Cq is also simple. This fact and
Lemma allow us to apply the discussion above, getting

dim(X,,) dim(Y;,) )
rank(g,|x, )’ rank(qnly,)

1
<1y
rc(qCq) < 5 nll_}I{.lo max (

As dim(Y;,) =1 for all n, the second term converges to 0. As for the first term, by

Construction|1.6{|L4)), we have dim(X,,) = 2s(n)+1. Also, rank(q,|x, ) = r(n)—t(n)
by Lemma Thus, using Construction [LI|{I), Lemma and d(n) — oo
(which follows from Construction [[.|{))) at the last step,

lim dim(X,,) ~ lim 2s(n) +1 < i 2r(n)+1 < 2 .
n—oo rank(gy|x,) n—ocr(n)—t(n) T nocor(n) —t(n) T 1—2w

This gives us the required estimate. O

Lemma 1.17. Let the assumptions and notation be as in Notation[I.13, Construc-
tion , and Construction. If e € C is a projection which has the same

same Ko-class as q then e is unitarily equivalent to q. The same holds with ¢+ in
place of q.
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Proof. This can be seen directly from the construction. For each n € Zxq, since

X, and Y, are contractible (Construction |1.6|{14) and Construction |1.6{|15])), if

e € M« (C,) is a projection which has the same Ky-class as ¢, then e is actually
unitarily equivalent to ¢,. The same holds for ¢;. It follows that this is the case
in C as well. O

We point out that this lemma can also be deduced using cancellation. By
[EHT09, Theorem 4.1], simple unital AH algebras which arise from AH systems
with diagonal maps have stable rank 1. Rieffel has shown that C*-algebras with
stable rank 1 have cancellation; see [Bla98, Theorem 6.5.1].

2. THE TRACIAL STATE SPACE

For a compact Hausdorff space X, we will need all of C(X,R) (the space of
real valued continuous functions on X), the tracial state space of C(X) (and of
C (X, M,)), and the space of affine functions on the tracial state space. This last
space is an order unit space, and much of our work will be done there.

For later reference, we recall some of the definitions, and then describe how to
move between these spaces. We begin with the definition of an order unit space
from the discussion before Proposition I1.1.3 of [AIf71]. We suppress the order unit
in our notation, since (except in several abstract results) our order unit spaces will
always be sets of affine continuous functions on compact convex sets with order
unit the constant function 1.

Definition 2.1. An order unit space V is a partially ordered real Banach space
(see page 1 of [Goo86] for the axioms of a partially ordered real vector space) which
is Archimedean (if v € V and {Av | A € (0,00)} has an upper bound, then v < 0),
with a distinguished element e € V' which is an order unit (that is, for every v € V
there is A € (0, 00) such that —Ae < v < Ae), and such that the norm on V satisfies

[|v]| = inf ({X € (0,00) | =Xe < v < Ae})

forallveV.
The morphisms of order unit spaces are the positive linear maps which preserve
the order units.

The morphisms of compact convex sets (compact convex subsets of locally convex
topological vector spaces) are just the continuous affine maps.

Definition 2.2. If K is a compact convex set, we denote by Aff(K) the order unit
space of continuous affine functions f: K — R, with the supremum norm and with
order unit the constant function 1.

If K and L are compact convex sets and A\: K — L is continuous and affine, we
let A*: Aff(L) — Aff(K) be the positive linear order unit preserving map given by
X(f) = foXfor f e Aff(L).

This definition makes K — Aff(K) a functor.

Definition 2.3. If V is an order unit space with order unit e, we denote by S(V)
(or S(V,e) if e is not understood) its state space (the order unit space morphisms
to (R, 1)), which is a compact convex set with the weak* topology.

If W is another order unit space and ¢: V — W is positive, linear, and order
unit preserving, we let S(¢): S(W) — S(V') be the continuous affine map given by
S(p)(w) =wop for we S(W).
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This definition makes V — S(V') a functor.

Theorem 2.4 (Theorem 7.1 of [Goo86]). There is a natural isomorphism S(Aff(K))
K for compact convex sets K, given by sending v € K to the evaluation map
ev,: Aff(K) — R defined by ev,(f) = f(z) for f € Aff(K).

Definition 2.5. For a unital C*-algebra A, we denote its tracial state space by
T(A).

If A and B are unital C*-algebras and ¢: A — B is a unital homomorphism, we
let T(p): T(B) — T(A) be the continuous affine map given by T(¢)(7) = 70 ¢ for
T € T(B). Welet p: Aff(T(A)) — Aff(T(B)) be the positive order unit preserving
map given by G(f) = f o T(p) for f € Af(T(A)). (Thus, 3= T(p)".)

Lemma 2.6. Let X be a compact Hausdorff space. Then C(X,R), with the supre-
mum norm and distinguished element the constant function 1, is a complete order
unit space. Restriction of tracial states on C(X) is an affine homeomorphism from
T(C(X)) to S(C(X,R)). The map from X to S(C(X,R)) which sends x € X
to the point evaluation ev,: C(X,R) — R is a homeomorphism onto its image,
and the map Rx: Aff(S(C(X,R))) — C(X,R), given by Rx(f)(z) = f(evy) for
f € Aff(S(C(X,R))) and = € X, is an isomorphism of order unit spaces.

If Y is another compact Hausdorff space, then the function which sends a positive
linear order unit preserving map Q: C(X,R) — C(Y,R) to S(Q): S(C(Y,R)) —
S(C(X,R)), as in Deﬁm’tion s a bijection to the continuous affine maps from
S(C(Y,R)) to S(C(X,R)). Its inverse is the map E given as follows. For a contin-
uous affine map A: S(C(Y,R)) = S(C(X,R)), using the notation of Definition[2.3,
define EQ\): C(X,R) — C(Y,R) by E(\) = Ry o \* o R!.

A positive linear order unit preserving map from C(X,R) to C(Y,R) is called a
Markov operator.

Proof of Lemma[2.6 It is immediate that C'(X,R) is a complete order unit space.
The identification of S(C(X,R)) is also immediate. The fact that Ry is bijective
follows from [Goo86, Corollary 11.20] using the identification of X with the extreme
points of S(C(X,R)).

For the second paragraph, it is immediate that S sends positive linear order unit
preserving maps to continuous affine maps, and that E does the reverse. For the
rest, we must show that So E and E o S are the identity maps on the appropriate
sets.

We first claim that for g € Aff(S(C(X,R))) and p € S(C(X,R)) we have

(2.1) g(p) = p(Rx(g))-

This formula is true by definition when p = ev, for some x € X. Since, for fixed g,
both sides of are continuous affine functions of p, and since S(C(X,R)) is the
closed convex hull of {ev, | x € X}, the claim follows.

We next claim that if A: S(C(Y,R)) — S(C(X,R)) is continuous and affine,
w € S(C(Y,R)), and g € Aff(S(C(X,R))), then

(2.2) (wo Ry)(goA) = (Aw) o Rx)(g)-

To prove this claim, for the same reasons as in the proof of the first claim, it
suffices to prove this when there is y € Y such that w = ev,. In this case, using

>~
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the definition of Ry at the second step and the previous claim with p = A(ev,) at
the third step,

(evy o Ry)(goA) = Ry(goA)(y) = (g0 A)(evy) = (AMevy) o Rx)(g),
as desired.

Now let A\: S(C(Y,R)) — S(C(X,R)) be continuous and affine; we prove that
S(E(N) = A\ Let w € S(C(X,R)) and let f € C(Y,R). Working through the
definitions gives

S(EM)(@)(f) = (wo Ry)(RX'(f) o N).
By with g = Ry (f), the right hand side is A(w)(f), as desired.

Finally, let Q: C(X,R) — C(Y,R) be a positive linear order unit preserving
map; we show that E(S(Q)) = Q. Let f € C(X,R) and let y € Y. Working
through the definitions gives

E(S(@)(f)(y) = Rx' (f)(evy 0 Q).

Applying (2.1) with ¢ = Ry'(f) and p = ev, o Q, we see that the right hand
side is (evy 0 Q)(f) = Q(f)(y). This proves that E(S(Q)) = @, and the proof is
complete. ([l

Direct limits of direct systems of order unit spaces are constructed at the begin-
ning of Section 3 of [Tho94], including Lemma 3.1 there.

Proposition 2.7. Let ((Dn)n:071,27___, (@n,m)ogmgn) be a direct system of unital
C*-algebras and unital homomorphisms. Set D = @n D,,. Then there are a

natural homeomorphism
D) — @T(D

and a natural isomorphism
AE(T(D)) — lim A (T(D,.))
n
of order unit spaces.

Proof. The first part is Lemma 3.3 of [Tho94].
The second part is Lemma 3.2 of [Tho94], combined with the fact (Theorem [2.4)
that the state space of Aff(K) is naturally identified with K. O

Definition 2.8. Let V' and W be order unit spaces, with order units e € V' and
f € W. We define the direct sum V @ W to be the vector space direct sum
V @ W as a real vector space, with the order (vi,w;) < (vg,ws) for vy, v € V and
wy,wy € W if and only if v1 < ve and w; < wq, with the order unit (e, f), and the
norm [|(v, w)|| = max(|[v]], [[w]]).

Lemma 2.9. Let V and W be order unit spaces. Then V& W as in Definition[2.8
is an order unit space, which is complete if V. and W are.

Proof. The proof is straightforward. ([

Lemma 2.10. Let A and B be unital C*-algebras. Then, taking the direct sum on
the right to be as in Definition[2.8, there is an isomorphism

Aff(T(A® B)) = Aff(T(A)) @ AH(T(B)),
given as follows. Identify T(A) with a subset of T(A @& B) by, for 7 € T(A),
defining i(7)(a,b) = 7(a) for alla € A and b € B, and similarly identify T(B) with
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a subset of T(A® B). Then the map AT(T(A® B)) — A(T(A)) ® AE(T(B)) is
I = (flray, flom))-

Proof. 1t is clear that if f € Aff(T(A® B)), then f|pa) € Aff(T(A)) and f|p(p) €
Aff(T(B)), and moreover that the map of the lemma is linear, positive, and pre-
serves the order units. One easily checks that every tracial state on A @ B is a
convex combination of tracial states on A and B, from which it follows that if
f|T(A) =0 and f|T(B) =0 then f =0.

It remains to prove that the map of the lemma is surjective. Let g € Aff(T(A))
and h € Aff(T(B)). Define f: T(A® B) — R by, for 7 € T(A® B),

f(r) =7(1,0)g(7(1,0) " 7] 4) +7(0,1)g(7(0,1) "' 7| )
(taking the first summand to be zero if 7(1,0) = 0 and the second summand to be

zero if 7(0,1) = 0). Straightforward but somewhat tedious calculations show that
[ is weak™ continuous and affine, and clearly f|pa) = g and f|p(p) = h. O

The following result generalizes Lemma 3.4 of [Tho94]. It still isn’t the most
general Elliott approximate intertwining result for order unit spaces, because we
assume that the underlying order unit spaces of the two direct systems are the
same. The main effect of this assumption is to simplify the notation.

Proposition 2.11. Let (V;,)m=0,1,2,... be a sequence of separable complete order
unit spaces, and let

((Vm)m:O,l,Z...; (San,m)ogmgn) and ((Vm)m:O,l,Q,,..a (@;7m)0§m§n)

be two direct systems of order unit spaces, using the same spaces, and with maps
Onms <p’n’m: Vin = Vi, which are linear, positive, and preserve the order units. Let
V and V' be the direct limits

|4

*|E

((Vm)m:0,1,2,...a (@n,m)OSmSn)

and

V/ =1 ((Vm)m=0,1,2,...7 (‘p{n,m)oﬁmﬁn) 5

—_

3

with corresponding maps
Yoo Vn =V and @l i Va2V
forn € Zxqy. Forn € Zxq further let
v(()"), u§”), .EV,
be a dense sequence in the closed unit ball of V,,, and define F,, C V,, to be the finite

set
n

Fo= J [(nm@l™): 0 <k <n}U{ghn(@l™):0<k<n}] .

m=0

Suppose that there are dg,01, ... € (0,00) such that

(2.3) D 6 < o0
n=0
and for alln € Z>o and all v € F,, we have

lent1,n(v) = @nyr n (V)] < 0n.
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Then there is a unique isomorphism p: V. — V' such that for all m € Z>o and all
v €V, we have

p(‘/)oo,m(v)) = lim (‘pgo,n 0 <pn,m)(v) .

n—oo
Its inverse is determined by

P (Phem () = 1 (Vo000 @), 1) (V)

n—roo

form € Z>g and v € V.

Proof. We first claim that for m € Zso and v € F,,, the sequence ((¢.,,, ©
@n.m)(v)), - isa Cauchy sequence in V'. For n > m, we estimate, using ||/, .|| <
1, lv|l €1, and @, m(v) € F, at the last step:

H(sogo,n—i-l © Sﬁn+1,m)(v) - ((p:)o,n © ‘Pn,m)(v)H
= H(sago,n—i-l O ¥n+1,n O @n,m)(v) - (Sagc,n-i-l © 90/n+1,n © @n,m)(v)H
< ko sl @1, 0(@nm(©)) = @it n(Pnm (V)] < 6n
The claim now follows from .

Next, we claim that for m € Z>¢ and k € Z¢, the sequence ((Sﬁgo,nOQOn,m) (v]im)))n>m
is a Cauchy sequence in V’. Indeed, taking mo = max(m, k), this follows from the
previous claim and the fact that ¢, m (v,(cm)) € Fpy-

Now we claim that for m € Z> and v € V,,,, the sequence ((¢% ,,©¢n,m)(V))n>m

is a Cauchy sequence in V'. Without loss of generality ||v|| < 1. This claim follows
from a standard £ argument: to show that

H(SO:)o,nl © Pnym) (V) — (‘p:x:,m © ‘pnz,m)(v)H <eg

for all sufficiently large n; and ns, choose k € Z~ such that Hv - v,gm) || < g, and
use the previous claim.

Since V' is complete, it follows that lim, oo (05, © @n,m)(v) exists for all m €
Z>o and k € Z~q. Since ||, ,, © @nml < 1 whenever m,n € Zx satisfy m < n, it
follows that for m € Z~( there is a unique bounded linear map p,,: V;, — V' such
that [|pm|l <1 and py,(v) = limy, 0o (Pho,n © Pnm) (V) for all k € Zso.

It is clear from the construction that p, o ¢, m = pm wWhenever m,n € Zxg
satisfy m < n. By the universal property of the direct limit, there is a unique
bounded linear map p: V' — V' such that p o @oom = pm for all m € Zsg. It is
clearly contractive, order preserving, and preserves the order units, and is uniquely
determined as in the statement of the proposition.

The same argument shows that there is a unique contractive linear map \: V' —
V' determined in the analogous way. For all m € Z>, we have

)‘Opo(poo,m :)\o@go,m = Poo,m 5
so the universal property of the direct limit implies A o p = idy. Similarly po A =
idy. O

Proposition 2.12. The isomorphism of Proposition has the following natu-
rality property. Let the notation be as there, and suppose that, in addition, we are
given separable complete order unit spaces W, for n € Z>q, direct systems

((Wm)m:O,l,Z...a (wn,m)ogmgn) and ((Wm)m:O,l,Q,...a (QP;,m)ogmgn)
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using the same spaces, with positive linear order unit preserving maps, with direct
limits W and W', and with corresponding maps

Voo Wy, = W and Vo Wy = W'
forn € Z>q. Also suppose that for n € Zw there is a sequence
w(()"), wgn), ...eW,
which is dense in the closed unit ball of W,,, and that there is a sequence (€n)pn=012,...
in (0,00) such that > " &, < 0o and, with

n

G = U [{nm(™) [0 <k <} U {0 (™) [0<k<n}],

m=0

foralln € Z>o and all w € G, we have

a1, n(w) =y 1 (W) < éen.

Let o: W — W’ be the isomorphism of Proposition . Suppose further that we
have positive linear order unit preserving maps i, p,: Vo, — Wy, forn € Zsq such
that

Hn © Pnm = wn,m O tUm and /’L{n © (P{n,m = wiz,m © :U’;n
for all m,n € Z>o withm <n. Let p: V.— W and p': V' — W' be the induced
maps of the direct limits. Then p' o p =0 o pu.

Proof. By construction, p: V' — V’ and o: W — W’ are determined by

(2:4) p(#oo,m(v)) = Tm (P, © nm)(v)
for m € Z>o and v € V,,,, and
(2.5) 0 (e () = T (1, © W ) ()

for m € Z>o and w € W,,,. Using (2.4) at the first step and (2.5)) at the last step,
for m € Z>o and v € V,,, we therefore have

(' © ) (Poom(©)) = 1/ ( 1m0 (¢ © Prm) (v)) = lim (' 0 @l 1, © P (0)

n—oo n—oo
/

= lim (1#00)71 ° Yp,m © Mm)(v) = (U o U)(‘POO,m@)) .

n—oo

Since Uss_o @oo,m (Vi) is dense in V, the result follows. O

Proposition below can essentially be extracted from the proof of Lemma 3.7
of [Tho94]. We give here a precise formulation which is needed for our purposes.
The difference between our formulation and that of [Tho94] is that we need more
control over the matrix sizes in the construction. In the argument, the following
result substitutes for Lemma 3.6 there.

Lemma 2.13 (Based on [Tho94]). Let X and Y be compact Hausdorff spaces,
with X path connected. Let X\: T(C(Y)) — T(C(X)) be affine and continuous. Let
E(\): C(X,R) — C(Y,R) be as in Lemma[2.6, Then for every ¢ > 0 and every
finite set F C C(X,R) there exists Ny € Z~qo such that for every N € Z~q with
N > Ny there are continuous functions gi,9ga,...,gn: Y — X such that for every
f € F we have

<eg.

o0

1 N
B -5 D Fou
j=1
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Proof. Tt suffices to prove the result under the additional assumption that || f]] <1
for all f € F.

Let e > 0. Since E()) is a Markov operator, Theorem 2.1 of [Tho94] provides n €
Z~¢, unital homomorphisms 91,%s,...,¢,: C(X) — C(Y), and a1, as,...,a, €
[0,1] with ;" ; a; = 1 such that

EN(f) =Y authu(f)
=1

<E
2
e

for all f € F. Note that if 81, 82,..., 8, € [0,1] satisfy >, |y — ] < 5 then

<e€

EMN() = Bin(f)
1=

forall f € F. Choose Ny € Z~q such that Ny > 4dn/e. Let N € Z~¢ satisfy N > Nj.
For 1 =1,2,...,n — 1 choose 3 € (q — &, au] N %£Z, and set B, =1 — Z;:ll Bi.
Then

n

1 - €
ﬁ17627"'3ﬁn€N2207 ;61217 and Z|al_ﬁl‘<§

=1
Set m; = Np; for I =1,2,...,n. Then for all f € F we have

<eg.

1 n
EN(f) - N ;mllbl(f)
Now for I = 1,2,...,n let h;: Y — X be the continuous function such that
Pi(f) = fohforall feC(X),and for j =1,2,...,N define g; = h; when

-1 l
ka <3< ka
k=1 k=1
Then
1< 1 &
szl¢l(f> = NZfogj
1=1 j=1
for all f € C(X). O

Proposition 2.14. Let K be a metrizable Choquet simplez, and let (I(n))n=0,12,...
be a sequence of integers such that l(n) > 2 for alln > 0. For n € Zx set
r(n) = H?le(j), Then there exist ng < n; < ng < -+ € Zsg, with ng = 0 and
n1 =1, and a direct system

C([0,1])) & Myng) =5 C([0,1]) @ Myny) =3 C((0,1]) © My =3 -+
with injective maps which are diagonal (in the sense analogous to Construction
[1.1]{9)) and such that the direct limit A satisfies T(A) = K.

It is easy to arrange that the algebra A in this proposition be simple: by Propo-
sition replacement of a small enough fraction of the maps g;; in the proof
with suitable point evaluations does not change the tracial state space. However,
doing so at this stage does not help with later work.

The conditions ng = 0 and ny; = 1 are needed because we will later need to pass
to a corresponding subsystem of a system as in Construction (more accurately,
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Construction [3.3] below), and we want to avoid later complexity of the argument
by preserving the value of w.

Proof of Proposztwn . We mostly follow the proof of Lemma 3.7 of [Tho94],
using Lemma in place of Lemma 3.6 of [Tho94], and slightly changing the
order of the steps to accommodate the difference between our conclusion and that
of Theorem 3.9 of [Tho94]. For convenience, we will use Proposition in place
of Lemma 3.4 of [Tho94].

For convenience of notation, and following [Tho94], set P = T(C([0,1])). Lemma
3.8 of [Tho94|] provides an inverse system ((P;f)k:(nw7 ()\j,k)ogjgk) with continu-
ous affine maps A;: P, — P; such that P, = P for all k£ € Z>( and

(2.6) lim ((Pe)r=o,1,.... (Ajk)o<j<k) = K.

Choose fo, f1,... € C(]0,1], R) such that {fo, f1,...} is dense in C([0,1], R).

We now construct numbers ny, € Zsq for k € Z>, finite subsets Fj, C C([0, 1], R)
for k € Z>o, positive unital linear maps 941 x: C([0,1], R) — C([0,1], R) for
k € Z~g, and continuous functions

G 15Gk.25 -+ -5 G, r(nern)/r(n) - 10, 1] = [0, 1]
such that the following conditions are satisfied:
(1) Fy= {fo} and for k € ZZ()?
Fipr = Fr U{frr1} U Bk 1) (Fre U{fe413) U ksr, 6 (Bl U { frta }) -

(2) no =0,n; =1, and ny = 2, and for k € Z~ with k > 2 we have ng1 > ng
and r(ngy1)/r(ng) > 2%,
(3) For k € Z>¢ and f € C([0,1], R),

r(ng) r(nky1)/r(nK)
= o .
Y1,k (f) (i) ; fogk

) ||E(/\k,k+1)(f) — warl,k(f)H < 2=k for k > 2 and f € Fj.

We carry out the construction by induction on k. Define Fy = {fo}, no = 0, and
ny = 1. Take go,: [0,1] — [0,1] to be the identity map for I =1,2,...,7(1). Then
define 91, by and define F; by .

Now suppose k > 1 and we have Fj, and ng; we construct

Fet1, Met1s k196255 Ok r(npg) /r(ng) s and  Ypi1 k-

Apply Lemma with A = A 41, with e = 27% and with F = F},, obtaining
Ny € Zsgo. Choose niy1 > ny and so large that

WGISSY > max (NO, 2’“) .
r(ng)
This gives (2). Apply the conclusion of Lemma with N = r(ngs1)/r(n),
calling the resulting functions gk 1,9k.2;, -+, 9k, r(nps1)/r(n,)- Lhen define i1k

by . This gives (). Finally, define Fyy1 by . This completes the induction.
For j, k € Z>o with j <k, define ¢y, ;: C([0,1], R) — C([0, 1], R) by

1/)k,j = 1/)k,k—1 o 1/)k—1,k—2 ©:-+0 7/1j+1,j .

An induction argument shows that for j, k € Z>¢ with j < k, we have
E\jk)(fj) € F  and 4y (f;) € F.
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This condition, together with Proposition [2:11] allows us to conclude that, as order
unit spaces, we have
(2.7) limy ((C([0, 1], R))p=0,1,.... (E(Njr))o<j<k)
= limy ((C([0, 1], R))k=0,1,..., (¥.)o<j<k) -
For k € Z>( define

g1,k C([0,1], My(ny)) = C([0,1], Mygny1)) = Myt 1y yrin) (C([0, 1], My,)
by
g1, k(f) = diag(f o g1, fO gr2s -+ J O Gk, r(nsr)/r(ne))
for f € C([0,1], M,(n,)). Let A be the resulting direct limit C*-algebra.
It is easy to check, and is stated as Lemma 3.5 of [Tho94], that a1 = Yk+1.k-

Letting V and W be the order unit spaces

V =lim ((C([0, 1], R))r=o,1,.... (E(XNjk))o<j<k)
and

W= hﬂ ((C([O, 1], R))k=0.1,..., (@)Oéjﬁk) )

(2.7) now says V= W. Lemma 3.2 of [Tho94] and (2.6) imply that V = Aff(K).
Proposition implies that Aff(T(A)) = W. So Aff(T(A4)) = Aff(K), whence
T(A) 2 K by Theorem O

Proposition 2.15. Let (Dy)n=0.12,.. and (Cp)n=0.1,2,... be sequences of unital C*-
algebras. Let
((Dn)n=0,1,2,...a (@n,m)ogmgn) and ((Dn)n=0,1,2,4..a (@;L,m)OSmgn)

and

((Cn)n=0,1,2,.4.7 (wn,m)ogmgn) and ((Cn)n=0,1,2,..47 (d);,m)OSmSn)

be direct systems with unital homomorphisms, and call the direct limits (in order) D,
D', C, and C'. Suppose further that we have unital homomorphisms pu,, pl,: Dy —
Cy, for n € Z>q such that

o / / Y /
Hn © Pnm = wn,m O fm and Hn © Pnm = 1Z)n,m O Ho

for all m,n € Zx>o withm < n. Let p: D — C and /: D' — C’ be the induced
maps of the direct limits. Assume that for all m € Z>¢ we have

oo o0
.~ —
E ||90n,m — S%,m” < 00 and E Hﬁ’n,m — nm” < 00.
n=m

n=m

Then there exist isomorphisms
p: Aff(T(D)) — Aff(T(D")) and o: Aff(T(C)) — AE(T(C))

such that /I’ op=o0op. Moreover, if C, = D,, for alln € Z>o and Ynm = @n,m
and Yy, = Pnm for all m and n, then we can take o = p.

Proof. We can apply Proposition [2.11] and Proposition [2.12| using arbitrary count-
able dense subsets of the closed unit balls of Aff(T(D,)) and Aff(T(C,)) for
n € Zsg. Under the hypotheses of the last statement, the uniqueness statement in
Proposition [2.11] implies that o = p. [
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Lemma 2.16. Adopt the notation of Construction including (a sec-
ond set of maps), and @ and (diagonal maps, agreeing in the coordinates
1,2,...,d(n+1)). Then

Proof. For a compact metrizable space Z, let M(Z) be the real Banach space
consisting of all signed Borel measures on Z. (That is, M(Z) is the dual space of
C(Z,R).) Identify Z with the set of point masses in M(Z). For n € Z>(, we can
identify T(C),) with the weak* compact convex subset of M (X,,11Y;,) consisting of
probability measures. Thus X, I1Y,, C T(C,,). For every function f € Aff(T(C,)),
the function ¢, (f)(2) = f(2) - 1m,,,, for 2 € X, 11V, is in C(X, 1Yy, M,(n)) = Ch,
and 7(t,(f)) = f(7) for all 7 € X, 1Y,, C T(C,), hence also all 7 € T(C,) by
linearity and continuity.

For f € Aff(T(C,)) and 7 € T(Cp+1), we can apply the formula in Construction

@[) to ¢, (f) and apply 7 to everything, to get

2k(n+1)

SO
T <
“dn+1)+k(n+1)

—
n+l,n Fn+17n

for alln € Z>y.

1 I(n+1)
FgLOJ)rl n(f)(T) = m Z T(fo Sﬂ)
k=1
and
o 1 I(n+1)
Log1,n(f)(7) = it D) ; 7(foSn1).
Using , we get
- 1 I(n+1)
T (N =T (N = | > [F(fo S = 7(f o Su)]
l(?’l T 1) k=d(n+1)+1
Iln+1)—dn+1)
S ==y S
The conclusion follows. O

We add additional parts to Construction and Construction

Construction 2.17. Adopt the assumptions and notation of all parts of Con-
struction [L.1] (except (13)), and in addition make the following assumptions and
definitions:

(20) For all m € Z>, the maps 5L

mJ, Sm,jt Xm1 LYy — X5, IT'Y,, satisfy
SO (Xms1) and SO (Yii1) C Vin
for j =1,2,...,1(m),
(Xm+1) C Xm and Sm,j (Ym+1) CYn
for j=1,2,...,d(m), and
Sm,j(Xerl) C Ym and Sm,j(Yerl) - Xm
for j =d(m)+ 1, d(m) + 2 , L(m).
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(21) Form € Zso, define Dy, = My () &M,y Define (0 oot n: Dy —
Dm+1 bYa for aab € Mr(m),

¢£13)+17m(a, b) = (diag(a, a,...,a), diag(b,b,..., b))
and
Om+1,m(a,b) = (diag(a, a,...,a,b,b, ... b), diag(bb,...,b,a,a,... ,a)) ,

in which a occurs d(m) times in the first entry on the right and k(m) times
in the second entry, while b occurs k(m) times in the first entry and d(m)
times in the second entry. For m,n € Z>¢ with m < n, define

Pnm = Pnn—1°Pn-1,n-20°0"""0Pmi1m: Dm — Dn y

and define Lp%%: D,,, — D,, similarly. Define the following AF algebras:

0
(Dma 8057111,771) ’

=)

D= hg(Dﬂ% (pm-‘rl,m) and D(O) =1

|

and for m € Zsg let 9o m: Dy, — D and <p§>?3,m: D,,, — D be the maps
associated to these direct limits.

(22) For m € Zxq, define p,,: Dy, — Cy as follows. For a,b € M,y let
f € C(Xom, My(s)) and g € C(Yy, My()) be the constant functions with
values a and b. Then set p,,(a,b) = (f,g). Further, following Lemma
below, let y1: D — C and u®: D© — C(© be the direct limits of
the maps i, .

(23) For m € Z>g, define 60,,: Dy, — Dy, by 0,(a,b) = (b,a) for a,b €
M,y Further, following Lemma below, let § € Aut(D) and
6 ¢ Aut (D(O)) be the direct limits of the maps 6,,.

Lemma 2.18. Under the assumptions of Construction (except ), Construc-
tion[1.6, and Construction[2.17, the following hold:

(1) The direct system ((C’T(lo))n=071727,,_, (F%O}n)ogmgn) is the direct sum of two
direct systems

((C(Xnv Mr(n)))n:O,l,Z,...y (F%?Zn\(}(xm, Mr(m)))OSmSn)
and
(C(Yn, My(n)))n=0,1.2...., (FS),MC(YW,M,.m)))ogmgn) ;

and C©) is isomorphic to the direct sum of the direct limits A and B of
these systems.
(2) For all m,n € Z>¢ with m < n,

th(?m O lm = fn © ngfym and Lom © i = tn © Onym -

Moreover, the maps jiy, induce unital homomorphisms p®: DO — C©)
and p: D — C, and for all m € Z>,

IO opm=pPop®  and  Tocm O fm = O Poom -
(3) For all m,n € Z>¢ with m < n,

<p£3) 00, =60,0 cpglo,zn and On,m ©0m = 0n,00p m .

m
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The maps 0,, induce automorphisms 0: D — D and 0(©): D) — DO) gych
that

Poo,m © Om =00 Poo,m and © 4 0, = 9(0) o <p(0)

<)Ooc,m co,m

for allm € Z>y.
(4) For allm € Z>o, (tm)«: Ki(Dp,) = K. (Cy) is an isomorphism, and

pe: K(D) = K (C)  and () : K. (DY) — K, (C)
are isomorphisms.

Proof. The fact that all the maps in are isomorphisms on K-theory comes from
the assumption that the spaces X,, and Y,, are contractible ( and in
Construction [1.6)). Everything else is essentially immediate from the constructions.

|

3. THE MAIN THEOREM

We now have the ingredients to deduce the main theorem of this paper, Theorem

To state the theorem, we first need to define automorphisms of Elliott invariants,
so we need a category in which they lie. For convenience, we restrict to unital C*-
algebras, and we give a very basic list of conditions.

Definition 3.1. An abstract unital Elliott invariant is a tuple G = (Go, (Go)+,9,G1, K, p)
in which (Go, (Go)+,9) is a preordered abelian group with distinguished positive
element g which is an order unit, G; is an abelian group, K is a Choquet simplex
(possibly empty), and p: Gy — Aff(K) is an order preserving group homomorphism
such that p(g) is the constant function 1. (If K = @, we take Aff(K) = {0}, and
we take p to be the constant function with value 0.)

If

GO — (G60)7 (Géo)) ’9(0),G§0)’K(0)7p(0))

4
and
o — (Gél), (Gél))Jr,g(l),Ggl),K(l),p(l))
are abstract unital Elliott invariants, then a morphism from G© to G is a triple
F = (Fy, F1,S) in which Fy: G(()O) — Gél) is a group homomorphism satisfying
Fo((G((JO))+) C (G(()I))Jr and  Fy(g) =g,

Fy: Ggo) — Ggo) is a group homomorphism, and S: K — K(© is a continuous
affine map satisfying

(3.1) PNV (Fo(m) = p@ () o S
for all € Géo).
If

FO. g0 5ag®  ana  FO = (M, FY sW). gW 5 @)
are morphisms of abstract unital Elliott invariants, then define
F) o plo) — (Fo(l) OFO(O), Fl(l) oFl(O), ISON 5(1)) .
(Note: S© 0.8M not SM o 50)))
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The Elliott invariant of a unital C*-algebra A is
Ell(A) = (Ko(A4), Ko(A)+, [1], K1(4), T(A), pa),

in which pa: Ko(A) — Aff(T(A)) is given by pa(n)(7) = 7(n) for n € Ko(A) and
T € T(A).

If A and B are unital C*-algebras and ¢: A — B is a unital homomorphism,
then we define @, : Ell(4) — Ell(B) to consist of the maps ¢, from K(A) to Ky(B)
and from K;(A) to K1(B), together with the map T(y) of Definition 2.5 We write

it as (¢«,0, ©x,1, T(¢)).

Definition is enough to make the abstract unital Elliott invariants into a
category such that Ell(-) is a functor from unital C*-algebras and unital homomor-
phisms to abstract unital Elliott invariants.

Theorem 3.2. There exists a simple unital separable AH algebra C' with stable
rank 1 and with the following property. There exists an automorphism F of ENl(C)
such that there is no automorphism « of C' satisfying a, = F. Moreover, the auto-
morphism F in this example can be chosen so that F o F is the identity morphism
of ElI(C).

We outline the proof. We make a first pass through Construction [1.1] and Con-
struction without the spaces Y,,, and without specifying the point evaluation
maps. This is Construction [3.3 below. We get a direct system; call its direct
limit C. Apply Proposition using the sequence of matrix sizes in this sys-
tem and K = T(é) Doing so requires passing to a subsequence of the sequence
of matrix sizes. Replace the original system with the corresponding subsystem:;
Lemma 3.5 below justifies this. Then make a second pass through Construction
and Construction [I.6] taking the spaces X,, and the maps between them from this
subsystem and the spaces Y,, and the maps between them from the system got-
ten from Proposition [2.14] as needed substituting appropriate point evaluations for
the diagonal entries of the formulas for the maps. This requires sufficiently few
changes that, by our work in Section [2] the tracial state space remains the same.
Therefore the algebra obtained from these constructions has an order two auto-
morphism of its tracial state space which corresponds to exchanging the two rows
in the diagram . The constructions have been designed so that there is also
a corresponding automorphism of the K-theory. Our work in Section [I| rules out
the possibility of a corresponding automorphism of the algebra, because such an
automorphism would necessarily send a particular corner of the algebra to another
one with a different radius of comparison.

We start with the following construction, which is “half” of Construction (1.1
and gives just the top row of the diagram .

Construction 3.3. We will consider direct systems and their associated direct
limits constructed as follows.

(1) The sequences (d(n))n=0,1,2,... and (k(n))n=0,12,.. in Z>o are as in Con-
struction and satisfy the condition of Construction|l.1)|2)). We further
define (I(n))n=0,1.2..... (r(n))n=0,1,2,..., (5(n))n=0,1,2,..., and (t(n))n=0,1.2....

as in Construction [1.1{{1f).
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(2) Following Construction [L.1|[3) and Construction [1.1}{4)), we define

sk TR S ()
A m YT R vany M _;k(n)—i—d(n)'

R =

(These will not be used directly in connection with this direct system.)
(3) As in Construction [1.6[|14)), we define compact metric spaces by X,, =

cone((SQ)S(")) for n € Z>p, and we define maps Q;n): Xni1 — X, for
n € Zsoand j =1,2,...,d(n+1) to be the cones over the projection maps
(52)s(n+1) — ((SQ)S(n)>d(n+l) N (52)3(11)

(4) We are given maps 6,,: C(X,) = C(Xpny1, Myns1y) (as in Construction
1.1)(8), but with only one summand) which are diagonal, that is, there are
continuous maps

Tty Tos s Tottnsn): Xnp1 — Xn
such that
n(f) = diag(f oTp1, foTha, ..., fo Tn,l(n+1))
for f € C(X,). (Compare with Construction [L.I|{9).) Moreover, T, ; =
le) for j = 1,2,...,d(n +1). The maps T, ; are unspecified for j =
dn+1)+1,dn+1)+2,...,l(n+1).

(5) Set A, = M,y ® C(X,) (like in Construction [1.1}[7) but with only one
summand). Following Construction , set

An—‘,—l,n = idM,r(,,L) & 5n: An — An+1 )
and for m,n € Z>¢ with m < n, we take
An,m = An,nfl o Anfl,an 0:--0 Am+1,m: Am — An .

(6) Define A = hgn Ay, taken with respect to the maps A, ,,. For n € Z>,
let Aso i Ap — A be the map associated with the direct limit.

To avoid confusing notation, we isolate the following computation as a lemma.

Lemma 3.4. Let n € Z~g and let K1,K2, ..., Kn,01,02,...,0, € (0,00). Then

"k >.II?:1(51+‘ﬂj)-II?:15j
0j + k5 IT;=1 (65 + £;)

=1
Proof. For j =1,2,...,n define
P
A= .
Tdi

Then A; € (0,1). Some calculation shows that the conclusion of the lemma becomes
(3.2) S z1-JJa=x).
j=1 j=1
We prove ([3.2) by induction on n. For n = 1 it is trivial. Suppose (3.2)) is known
for some value of n. Given A1, Ag, ..., App1 € (0,1),set p=1—(1—=X,)(1—Apg1)-
Then
e (0,1) and =An+ At — AnAnar < A+ A
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Applying the induction hypothesis on A1, Ao, ..., A\p_1, 1 at the second step, we
then have

n+1 n—1 n—1 n+1
DD N Fpz=1- [H(l—&')}(l—u)Zl— [Ta-x).

j=1 j=1 j=1 j=1
This completes the induction, and the proof of the lemma. (Il

Lemma 3.5. Let a direct system as in Construction be given, but using se-
quences (d(n))n:0,1,2,... and (kz(n))n:O’uw in place of (d(n))n=0,1,2,... and (k(n))n=012,...-
Denote the additional sequences analogous to those in Construction by l~, T,
and s. Denote the numbers analogous to those in ~Construction 2) by K, ©,

and &'. Denote the spaces used in the system by X,,. Let v: Z>o — Z>o be a
strictly increasing function such that v(0) = 0 and v(1) = 1. Then the direct sys-

tem (C(f(l,(m), MF(V(m))))mZO,l,Z,... is isomorphic to a system as in Construction
with the choices d(0) =1, k(0) =0,

(3.3) d(m) = d(v(m — 1) + 1)d(v(m — 1) + 2) ---d(v(m))
and

(3.4) k(m) =1(v(m — 1) + 1)I(v(m — 1) + 2) - {(v(m)) — d(m)
for m € Zsq. Moreover, following the notation of Construction[3.3,
(3.5) I(m) = I(v(m — 1)+ 1)I(v(m — 1) +2) ---1(v(m)),

r(m) = 7(v(m)), and s(m) = 3(v(m))
form € Z>g, and

", W=, and w <&

K

Proof. Given the definitions of d and k, the proofs of the formulas for [, r, and s
are easy.
Using Lemma[T.2] at the first and fourth steps, we now get
) Fem) L s(m)

k= nhﬁngo % T o §(1/(m)) T m—oo T(m) -

We have w = @ because v(1) = 1.
Using Lemma [3.4] at the second step and (3.3), (3.4) and (3.5) at the third step,

we have
S k(j)
mzzj V(;l) k(j) + d(5)
e () + k() =TT 1) 00 40G)

> Z j=r(m—1)+1 - =
101 [dG) + R (G))

B Km)
‘,;:zk(m)w(m) Y

Define X,,, = )N(,,(m) for m € Zso. Clearly X,, = cone((S?)*(™), as required.
Denote the maps in the system of the hypotheses by

On: C(Xn) = C(Xut1, My,,p))  and Ay G — Gy,
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with gn being built using maps

Tn,h fn,% ey Tn,l(n+1) : jzn«kl — )va
as in Construction [3.3({4). For p =v(m), v(m)+1, ..., v(m+1) — 1, set

ip) = % = I(v(m) + 1)I(v(m) +2) -~ 1(p).
Then define B
57(2) C(Xu(m)) - O(Xu(m-‘rl)a Ml(n-‘rl))
by

o) = 1A g1y -1y @ SV(erl)*l ©1dM; (y ny1y-2) @ Ov(mt1)—20 - 0 gtl(m)'
since j(v(m)) = 1.) With this definition,
@ Om = Ay(m+1),v(m), S0 that the direct system gotten

(In the last term we omit ide<l,(m))

one checks that idar, .,

using the maps 5,(,?) in Construction is a subsystem of the system given in the
hypotheses.

We claim that 652 is unitarily equivalent to a map d,,: C(X,,) = C( X1, Ml(n+1))
as in Construction[3:3] This will imply isomorphism of the direct systems, and com-
plete the proof of the lemma. First, 57(7?) is given as in Construction using

some maps from )z,,(m_H) to )?,,(m), namely all possible compositions

Ty(m)viu(m,) © Tv(m)-i-l,iu(m)ﬂ -0 Ty(m+1)_17iu(m+l)71
with i, = 1,2,...,1(p + 1) for p = v(m), v(m) + 1, ...,v(m + 1) — 1. More-
over, since the composition of projection maps is a projection map, restricting to

iy = 1,2,...,£lv(p + 1) for all p gives exactly all the maps Q§m): Xma1 — X

for j = 1,2,...,d(n + 1). Therefore 5,(,?) is unitarily equivalent to a map as in
Construction [3.3 by a permutation matrix. O
Proof of Theorem[3.3 Choose N € Zsq such that

1 3
3.6 N >5 d Y S —.
(3.6) > an exp( N1>>4

(For example, N = 6 will work.) We make preliminary choices of the numbers d(n)
etc. in Construction , calling them d(n) etc. Take d(0) =1 and k(0) = 0, and
take d(n) = N™ and k(n) =1 for n € Z~¢. Then
in)=N"+1, ) =J[W+1), and 3n)=][N
Jj=1 Jj=1

for n € Z~o. We obtain numbers as in Construction (equivalently, Construc-
tion and Construction [1.1){4)), which we call K, @, and @’. Further, adopt
the definitions and notation of Construction , except that we use X,, instead
of X,, and similarly throughout. That is, in Construction we call the spaces
X, instead of X,, the projection maps Q§-n), in Construction we call the
maps of algebras 6, and the maps of spaces Tnyj: Xn—&-l — X’n, in Construction
we call the algebras A,, and the maps A,, ,,, and in Construction 1@ we

call the direct limit A and the maps to it Ay ,. As in Construction [3.3(4), we
take 1), ; = Q§”) for j=1,2,...,d(n+1). For n € Z>( choose an arbitrary point
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Ty, € )?n, and for j = J(n +1)+1let fw- be the constant function on )N(nH with
value Z,,. (Note that d(n+1)+1=1I(n+1).)
We claim that the conditions in Construction , Construction , and
Construction |1.1{[5) are satisfied, and moreover that
1 < 2k —1
1-2w 20
For n € Z=o we have, using log(m + 1) — log(m) < - at the third step,

= M1 = o35 st v

j=1 j=1
"1 1
Z eXp(Z]W> > exp (]\H)
j=1
So Kk > exp (7%) > % by 1) Moreover,

1 1 =1 =1 1
W= — d o = —_ —_ =
“TNF1 Sz M ;NJ+1<;NJ NN -1

so the conditions @' < @ < % in Construction|1.1{{4)) and 25—1 > 2@ in Construction
1.1)(5) are satisfied. Moreover,

1 N+1 N+1 1 2(3)-1 2-1
-2 N-1° 4 4@ 22w - 2w
The claim is proved.

Apply Proposition with K = T(g) and with I(n) and 7(n) in place of I(n)
and r(n), getting a strictly increasing sequence, which we call (v(n))n=01,2,..., with
v(j) =j for j = 0,1, an Al algebra By (called A in Proposition which is the
direct limit of a unital system

C([0,1]) ® M0y =3 C([0,1]) ® Myu1y) =3 C([0,1]) @ My(pzy) =3 -
with injective diagonal maps ou,+1,, given by

f = dlag(f © Rn,la f © Rn,Qa ERRE) f © Rn,r(un+1)/r(vn))

for continuous functions
Rua, Rugs s By rwing 1) /rwin)) ¢ [0,1] = [0,1],

and an isomorphism T(Bg) — T(zzlv)

Apply Lemmawith this choice of v. Define the sequences (d(n))n=0,1,2,... and
(k(n))n=0,12,... as in Lemma and then make all the definitions in Construction
and (Some are also given in the statement of Lemma [3.5]) Then, as
in the proof of Lemma X, = )?,,(n). We make the following choices for the
unspecified objects in these constructions. We choose points z,, € X,, and y,, € [0, 1]
for n € Z>o such that the conditions in Construction and Construction
are satisfied. (It is easy to see that this can be done.) Use these points in
Construction [L.6{|18b)) and Construction [1.6)|18dl). Take the maps

Rn,h Rnyz, ey Rn,d(n+1): Yn+1 — Yn
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in Construction [1.6{|18¢)) to be those from the application of Proposition above.
Forj=1,2,...,l(n+1), let S(0)|XW+1. Xp+t1 — X, be the maps in the system
obtained from Lemma|3.5] and take S(O) il¥ni1 = Rn ;. The requirement Sff;. =Snj
for j = 1,2,...,d(n + 1 in Construction 1.6{{19) is then satisfied, so that the

condition in Construction 1.1J(13) is also satisﬁed Moreover, with these choices,
the conditions in Construction 2.17] are satisfied.

By Le the numbers K, W, and w’ from Construction [1.1)(3)) and Con-
L1}

struction [L.1{(3) satisfy

k=R, w=0, and W <.

Therefore k > 2, W' <w < %, and 2k — 1 > 2w, as required in Construction 1 ,

Construction |1.1{}4)), and Construction |1.1{[5); moreover
1 2k — 1
3.7 .
(37) 1-2w < 2w
The algebra C' is simple by Lemma
The algebras A and B of Lemma (Ii are now A = A and B = By, so
that C(9, as in Construction l.b is 1s0n10rph1c to A ® By. The isomorphism

T(By) — T(A) gives an 1sornorph1sn1 Cé . Aff(T(A)) — Aff(T(B)). This provides
an automorphism of Aff(T(A4)) ® Aff(T(B)), given by

(f.9) = (&) @), &) -

Let ¢(® be the corresponding automorphism of Aff(T(A & B)) = Aff(T(C®))
gotten using Lernrna Clearly ¢(© 0 ¢(© is the identity map on Aff (T (C(O))).

Adopt the notation of Construction C and C© are as already described,
D and D© are the AF algebras from Construction 2.17121), u: D — C and
p@: DO 5 0O are the rnaps of Construction [2.17} 1.) which are isomorphisms
on K-theory by Lemma , and 6 € Aut(D ) and 9(0) € Aut(D®) are as in
Construction

Define E = hgn Mr(m), with respect to the maps a — diag(a,a,...,a), with a

repeated [(n) times. The direct system defining D) is the direct sum of two copies
of the direct system just defined, so

DO=E@E and Af(T(DY)) = Af(T(E® E)).

Since E is a UHF algebra, we have Aff(T ( )) = R with the usual order and
0)

above, we get an automorphism of
Aff(T(D©)). But this automorphism is just 6(°).
We claim that ¢(9 o () = (9 0 9(0). To prove the claim, we work with
Aff(T(E)) ® Aft(T(E)) and Aff(T(A)) @ AE(T(B))
in place of Aff (T (D(O))) and Aff (T (C(O))), but keep the same names for the maps.
Since ul9: E@® E — A& B is the direct sum of unital maps from the first

summand to A and the second summand to B, the map u(9 is similarly a direct
sum of maps Aff(T(E)) — Aff(T(A)) and Aff(T(E)) — Aff(T(B)). Let e and f
be the order units of Aff(T(A)) and Aff(T(B)). The unique positive order unit
preserving maps Aff(T(E)) — Aff(T(A)) and Aff(T(FE)) — Aff(T(B)) are a — ae

order unit 1. Using idag(r(g)) in place of Co
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and B +— Bf for «, f € R. Therefore ;]0\)(0175) = (ae, Bf). Since CéO) is order unit
preserving, we have Céo) (e)=f, so

(O (ae, 1) = (Be,af) = n0 (8,0) = (1® 060)(a, ).
The claim follows.

Using conditions and in Construction Lemma and Proposi-
tion we get isomorphisms

p: AE(T(D?)) —» A(T(D)) and  o: AF(T(CV)) — Af(T(C))
such that top =00 /]0\). Define
n=po0®op~t e Aut(AF(T(D))) and ¢ =00¢@ oot € Aut(AF(T(C))).
A calculation now shows that the claim above implies
(3.8) Cofi=fion.

We also have ¢ o ¢ = idag(r(c))-

We want to apply Proposition with D,, and ¢y, ., as in Construction|2.17|[21]),

and Lpslo,)m as there in place of ¢, ,,, so that D and D©) are as already given, with

C,, = D, for all n € Z>¢ and ¥ m = @n,m and Y., .. = ©n.m for all m and n, and
with 6, 0%0), 6, and 6(© from Construction |D in place of fi, pn,, p, and p'.
As before, this application is justified by conditions (4l and in Construction
and Lemma The outcome is an isomorphism p’: AH(T(D(O))) — Aff(T(D))
such that

(3.9) 6=po 60 o ()t

We claim that n = 9. The “right” way to do this is presumably to show that
p' = p above, but the following argument is easier to write. We have

Aff(T(D)) = Aff(T (D)) = R?,

with order (o, 8) > 0 if and only if & > 0 and 8 > 0 and order unit (1,1). Since
the state space S(R?) of R? with this order unit space structure is an interval,
and automorphisms of order unit spaces preserve the extreme points of the state

space, there is only one possible action of a nontrivial automorphism of R? on
S(R?). Theorem implies that R? =2 Aff(S(R?)), so there is only one nontrivial

automorphism of R2. Since (0 is nontrivial, so is 0 by 1) and so is n by its
definition. The claim follows.

The claim and (3.8 imply
(3.10) Cofi=fiof.

Passing to state spaces and applying Theorem we get an affine homeomor-
phism H: T(C) — T(C) such that {(f) = foH for all f € Aff(T(C)), and moreover
HoH =idp(c). By Lemma [2.18[4)), the expression /i, 06, o (p,) ! is a well defined
automorphism of K, (C), of order 2. We claim that F = (p, 06, 0 (p,)~*, H) is an
order 2 automorphism of Ell(C). We use the notation of Definition for the El-
liott invariant of a C*-algebra; in particular, pc and pp are not related to the maps

p and p’ above. The only part needing work is the compatibility condition (3.1)) in
Definition which amounts to showing that

pc o w0 bu 0 ()t = (o pe.
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To see this, we calculate, using at the second and last steps the notation of Defini-
tion [2.5| and the fact that the morphisms of Elliott invariants defined by p and 6

satisfy (3.1 in Definition and using (3.10]) at the third step,

Cope=Copoopmo(n) "t =Cofioppo ()]

=fioboppo ()™t =pcopobio(u)t,

as desired.

Thus, we have constructed an automorphism F' of Ell(C) of order 2. It remains
to show that F' is not induced by any automorphism of C.

Using on the last components, one easily sees that F'o i, = ps060,. Let g
and ¢+ be as in Notation In the construction of D as in Construction ,
set e = 9o0,1((1,0)) and et =1 — € = 00.1((0,1)). Then (e) = e*, p(e) = g, and
u(et) = g*. Therefore F([q]) = [¢t].

Suppose now that there exists an automorphism « such that o, = F. Then
[a(q)] = [¢*]. By Lemma a(q) is unitarily equivalent to ¢g*. Let u be a
unitary such that ua(q)u* = ¢=. Thus, since a(qAq) = a(q)Aa(q) = u*qtAqtu,
it follows that the gAg and ¢ Ag™ have the same radius of comparison. By (3.7),
this contradicts Lemmas and O

Remark 3.6. One can easily check that, with C' as in the proof of Theorem
there is a unique automorphism of Ell(C') whose component automorphism of the
tracial state space is as in the proof. Therefore the conclusion can be slightly
strengthened: there is an automorphism of T(C') which is compatible with an au-
tomorphism of Ell(C) but which is not induced by any automorphism of C.

Question 3.7. Does there exist a compact metric space X and a minimal home-
omorphism h: X — X such that the crossed product C*(Z, X, h) has the same
features as the example we construct here?

Our construction provides an example of an automorphism of order 2 of the
Elliott invariant which is not induced by any automorphism of the C*-algebra.
The question of whether there exists an example of such an automorphism of the
invariant which is induced by an automorphism of the algebra but not by one of
order 2 is an older question by Blackadar, which we record below. For Kirchberg
algebras in the UCT class, it is known that any order 2 automorphism of the Elliott
invariant is induced by an order 2 automorphism of the C*-algebra ([BKP03]|); also
see [Kat08] for a generalization to actions of many other finite groups. However,
very little seems to be known in the stably finite case, even for classifiable C*-
algebras (and in fact even for AF algebras).

Question 3.8 (Blackadar). Does there exist a simple separable stably finite unital
nuclear C*-algebra C' and an automorphism F' of Ell(C) such that:

(1) F o F is the identity morphism of Ell(C).

(2) There is an automorphism « of C such that a,, = F.

(3) There is no « as in ([2)) which in addition satisfies « o @ = idc.
Can such an algebra be chosen to be AH and have stable rank 17

Our method of proof suggests that, instead of being just a number, the radius of
comparison should be taken to be a function from V(A) to [0,00]. If one uses the
generalization to nonunital algebras in [BRT™12, Section 3.3], one could presumably
even get a function from Cu(A4) to [0, o0].
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