K-THEORY AND THE UNIVERSAL COEFFICIENT
THEOREM FOR SIMPLE SEPARABLE EXACT
C*-ALGEBRAS NOT ISOMORPHIC TO THEIR

OPPOSITES

N. CHRISTOPHER PHILLIPS AND MARIA GRAZIA VIOLA

ABSTRACT. We construct uncountably many mutually nonisomorphic
simple separable stably finite unital exact C*-algebras which are not
isomorphic to their opposite algebras. In particular, we prove that there
are uncountably many possibilities for the Ko-group, the K;-group, and
the tracial state space of such an algebra. We show that these C*-
algebras satisfy the Universal Coefficient Theorem, which is new even
for the already known example of an exact C*-algebra nonisomorphic to
its opposite algebra produced in earlier work.

1. INTRODUCTION

In the last two decades there has been much interest in finding exam-
ples of simple C*-algebra not isomorphic to their opposite algebras. The
motivation for this work is the Elliott classification program for simple C*-
algebras, which shows that simple separable nuclear unital C*-algebras that
absorb the Jiang-Su algebra Z tensorially and satisfy the Universal Coeffi-
cient Theorem are classified up to isomorphism by an invariant consisting
of K-theory and tracial information. (See Corollary D in [5], or combine
Corollary 4.11 in [15] and Theorem A in [5].) For a unital C*-algebra A, the
Elliott invariant is given by

EH(A) = (KO(A)7 KO(A)+’ {114]7 Ky (A)v T(A)a P),

where (Ko(A), Ko(A)+,[1a], K1(A)) is the scaled ordered K-theory of A,
T(A) denotes the tracial state simplex, and p: Ko(A) x T(A) — R is the
natural pairing map, p([p|—[q], 7) = 7(p)—7(q) for projections p,q € My, (A)
and 7 € T(A). Since the Elliott invariant of a C*-algebra is the same as
that of its opposite algebra, simple C*-algebras which are not isomorphic to
their opposite algebra provide examples of simple C*-algebras that are not
isomorphic despite having the same Elliott invariant.

In [39] we constructed an example of a simple separable unital exact
C*-algebra A not isomorphic to its opposite algebra. The algebra A has a
number of nice properties: it is stably finite and approximately divisible, and
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it has real rank zero, stable rank one, and a unique tracial state. The order
on projections over A is determined by traces, and A tensorially absorbs the
Jiang-Su algebra Z. Its K-theory is given by Ky(A) = Z[%] and K;(A) = 0.
Its Cuntz semigroup is W (A) = Z[%]Jr I (0, 00).

The purpose of this article is to exhibit many examples of simple sepa-
rable exact C*-algebras not isomorphic to their opposite algebras, and to
prove that they satisfy the Universal Coefficient Theorem. (This is new even
for the example in [39].) In particular, we prove that there are uncountably
many possibilities for the K-theory of such an algebra, while still preserving
most of the good properties of the algebra in [39]. For any odd prime ¢ such
that —1 is not a square mod ¢, and for any UHF algebra B stable under ten-

oo

soring with the ¢* UHF algebra (the algebra ® M,), we produce a simple
n=1

separable exact C*-algebra D, not isomorphic to its opposite algebra, with
real rank zero and a unique tracial state, such that K,.(D) = K,.(B). For
any ¢ and B as above, and for any Choquet simplex A, we give a simple
separable exact C*-algebra D, not isomorphic to its opposite algebra, with
real rank one, such that K,(D) = K,.(B), and whose tracial state space is
isomorphic to A. For any ¢ and B as above, and for any countable abelian
group G, we give a simple separable exact C*-algebra D, not isomorphic
to its opposite algebra, with real rank zero and a unique tracial state, such
that Ko(D) = Ko(B) and Ki(D) = G ©z Z[;]. We show that all the
C*-algebras we construct satisfy the Universal Coefficient Theorem. We
give further information on the algebras described above, including showing
that the order on projections is determined by traces, computing the Cuntz
semigroups, and showing that the algebras have stable rank one and tenso-
rially absorb the ¢ UHF algebra and the Jiang-Su algebra. The examples
described above are not the most general that can be obtained with our
method, but are chosen to illustrate the possibilities. There are infinitely
many primes ¢ such that —1 is not a square mod ¢, so there are infinitely
many choices for ¢ covered by our examples.

Our results show an essential difference between the class of nuclear C*-
algebras absorbing the Jiang-Su algebra and the class of exact C*-algebras
absorbing the Jiang-Su algebra, and the importance of nuclearity for the
classication of simple C*-algebras.

Question 8.1 in [39] asked whether for any UHF algebra B there exists a
simple separable exact C*-algebra D not isomorphic to its opposite algebra
that has the same K-theory as B, and the same properties as the algebra
of [39]. Our results provide a partial positive answer to this question.

The paper is organized as follows. Section [2 contains preliminaries. In
particular, we recall some relevant definitions and constructions involving
von Neumann algebras and the Connes invariant. In Section [3| we recall the
definition of the continuous Rokhlin property for an action of a finite group
G on a separable unital C*-algebra. The model action of G on the UHF
algebra of type card(G)™ is an example of an action with this property.
Our main result is that if A is a separable, unital C*-algebra satisfying the
Universal Coefficient Theorem, and « is an action of a finite abelian group
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G on A with the continuous Rokhlin property, then the fixed point algebra
A% and the crossed product C*(G, A, «) satisfy the Universal Coefficient
Theorem. In Theorem 1.10 of [I9], Gardella has later extended this result
to actions of second countable compact groups. In Section [d] we construct
our basic example, one algebra D for each prime ¢ such that —1 is not a
square mod g, satisfying the same properties as the algebra in [39], and whose
K-theory is given by Ky(D) = Z[%] and K;(D) = 0. Moreover, we show
that D satisfies the Universal Coefficient Theorem. Section [§] contains the
main step towards the proof that these algebras are not isomorphic to their
opposites. Each of them has a unique tracial state. We prove that the weak
closure of D in the Gelfand-Naimark-Segal representation associated with
this tracial state is not isomorphic to its opposite algebra. In Section [6] we
tensor these basic examples with other simple separable nuclear unital C*-
algebras. The main result of Section [5| also applies to such tensor products,
and we thus obtain the examples described above. Section [7] contains some
open problems.

The authors would like to thank E. Gardella for useful discussions about
the Universal Coefficient Theorem and for suggesting the argument used
to show that the algebra D in Section [4 satisfies the Universal Coefficient
Theorem.

Throughout, we denote the circle {¢ € C: |¢| =1} by T. We also denote
the cyclic group Z/nZ by Z,; the p-adic integers will not be used in this

paper.

2. PRELIMINARIES

In this section, we provide some background material about opposite al-
gebras, automorphisms of II; factors, the Connes invariant, and the Cuntz
semigroup.

First we recall the definition of the opposite algebra and the conjugate
algebra of a C*-algebra A.

Definition 2.1. Let A be a C*-algebra. The opposite algebra A°P is the C*-
algebra which has the same vector space structure, norm, and adjoint as A,
while the product of x and y in A°P, which we denote by x*xy when necessary,
is given by z xy = yz. If w: A — C is a linear functional, then we let w°P
denote the same map but regarded as a linear functional w°P: A°? — C.
The conjugate algebra A° is the C*-algebra whose underlying vector space
structure is the conjugate of A, that is, the product of A € C and z € A€
is equal to Az (as evaluated in A), and whose ring structure, adjoint, and
norm are the same as for A.

Remark 2.2. The map x + x* is an isomorphism from A€ to A°P.

Notation 2.3. Let A be a C*-algebra, and let w be a state on A. We
denote the triple consisting of the Gelfand-Naimark-Segal representation,
its Hilbert space, and its standard cyclic vector by (7w, Hy, &w)-

Also, for any C*-algebra or von Neumann algebra A and any tracial state
7 on A, we denote the usual L?-norm by |z[a, = (7(z*2))"/? for z € A.
When no confusion can arise about the tracial state used, we write ||z||2.
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It seems useful to make explicit the following fact, which has been used
implicitly in previous papers.

Lemma 2.4. Let A be a C*-algebra, and let 7 be a tracial state on A.

Then 7°P is a tracial state on A°? and, as von Neumann algebras, we have
mrop (AP)" 22 [, (A)"]°P.

Proof. The functional 7°P is a state because A and A°P have the same norm
and positive elements. It is immediate that 7°P is tracial.

Next, we claim that |||z o0 = ||z|]2,- for all 2 € A. Indeed, using the
trace property at the third step,

(lzll2e0)? = 7 (2" % @) = 7(22") = 7(2"2) = (|2]|2,r)*.

We can identify m(A)” with the set of elements in the Hausdorff comple-
tion of A in ||-||2,r which are limits in ||-||2,- of norm bounded sequences in A,
and similarly with 7rop(A°P)”. It follows from the claim that the identity
map of A extends to a linear isomorphism m(A)” — 7 op(A°P)”, which is
easily seen to preserve adjoints and reverse multiplication. ([

To prove that our C*-algebras are not isomorphic to their opposite alge-
bras, we will need some terminology and results for the automorphisms of a
II; factor.

Definition 2.5. For any von Neumann algebra M, we denote by Inn(M)
the group of inner automorphisms of M, that is, the automorphisms of the
form Ad(u) for some unitary u € M. Let M be a II; factor with separable
predual. Denote by 7 the unique tracial state on M. An automorphism ¢
of M is approzimately inner if there exists a sequence of unitaries (un)nez-,

in M such that Ad(uy,) — ¢ pointwise in || -||2. Denote by Inn(M) the group
of approximately inner automorphisms of M.

Another important class of automorphisms consists of the centrally trivial
automorphisms of M.

Definition 2.6. Let M be a II; factor with separable predual. Let 7 be the

unique tracial state on M. Recall that a bounded sequence (2, )nez., in M

is central if lim ||zpa — azy|l2 =0 for all @ € M. An automorphism ¢ of
n—oo

M is said to be centrally trivial if li_}m llp(xn) — @y ||2 = 0 for every central
n oo

sequence (Zn)nez-, in M. Let Ct(M) denote the set of all centrally trivial
automorphisms of M.

By the comments following Definition 3.1 in [§], the set Ct(M) is a normal
subgroup of Aut(M). It is obviously closed.

We recall below from [7] the definition of Connes invariant x (M) of a II;
factor M. In [7], Connes uses centralizing sequences to define the centrally
trivial automorphisms. For w € M, and = € M, we define [w,z] € M, by
w,z](y) = w(ry —yx) for y € M. A sequence (xy)necz., is then said to
be centralizing if nh_)rr;o |[w, zn]|| = 0 for all w € M,. In general, centralizing
sequences are the right ones to use to define the Connes invariant.

A bounded sequence (z,)nez., in a II; factor M is central if and only
if for some (equivalently, for any) strong operator dense subset S C M,
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we have z,y — yr, — 0 in the strong operator topology for all y € S.
In a II; factor, we claim that the central sequences are the same as the
centralizing sequences. The implication from (3) to () in Proposition 2.8
of [6] shows that centralizing sequences in M are central. For the reverse,
in Proposition 2.8(«) of [6], we take ¢ there to be the tracial state 7. Since
[7,y] = 0 for all y € M, the implication from («) to () there shows that
central sequences in M are centralizing.

Definition 2.7. Let M be a II; factor with separable predual. The Connes
invariant x (M) is the subgroup of the outer automorphism group Out(M) =
Aut(M)/Inn(M) obtained as the center of the image under the quotient map
of the group of approximately inner automorphisms.

Remark 2.8. If M is isomorphic to its tensor product with the hyperfinite
I1; factor, then x(M) is the image in Aut(M)/Inn(M) of Ct(M) N Inn(M).
See [7].

In general it is not easy to compute the Connes invariant of a II; factor.
For the hyperfinite I1; factor R, every centrally trivial automorphism is inner
by Theorem 3.2 (1) in [10], so x(R) = {0}. Moreover, any approximately
inner automorphism of the free group factor on n generators £(F,,) is inner,
so x(L(F,)) = {0}. (See [30], or Lemma 3.2 in [52].)

A useful tool to compute the Connes invariant of some II; factors is the
short exact sequence introduced in [7]. Assume that N is a IT; factor without
nontrivial hypercentral sequences, that is, central sequences that asymp-
totically commute in the L?-norm with every central sequence of N. Let
G be a finite subgroup of Aut(N) such that G N Inn(N) = {1}, and let
0: G — Aut(N) be the inclusion, regarded as an action of G on N. Define
K =GN Ct(N) and let K+ C @ be its annihilator, that is,

K+ = {f G — T: f is a homomorphism and f|x = 1} CcG.

For any von Neumann algebra M, let {pr: Aut(M) — Out(M) denote the
quotient map. Let H C Aut(/V) be the subgroup

(2.1) H = {Ad(u): u € N is unitary and p(u) = u for all p € G}.

Let GV Ct(N) be the subgroup of Aut(N) generated by G U Ct(N). (It is
closed since G is finite and Ct(N) is closed and normal.) Taking the closure
in the topology of pointwise L?-norm convergence, let

L=¢nv((GVCH(N))NH) C Out(N).

Then the Connes short exact sequence (Theorem 4 of [7]) is

(2.2) 1y — K+ % (N xpG) 25 L — {1},

We briefly describe the maps 0 and II in this exact sequence. We follow
Section 5 in [31]. For g € G, let uy € N Xy G be the standard unitary in the
crossed product associated to g, so that 8, = Ad(ug)|n. Given an element x
in N xg G, write it as Zagug with ay € N for g € G. For each p: G — T

geG
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in K+, define A(p): N x5 G — N x9 G by

Alp) [ D agug | =D wlg)aguy.

geG geG

Then
A(QD) S Ct(N Xg G) N IHH(N Xg G),

and 0 = {ny,a) © A.

To define I1, for any o € x (N Xy G) choose an automorphism o € Ct(N g
G) NInn(N %y G) such that Enx,g(e) = 0. Since G N Inn(N) = {1}, by
Corollary 6 and Lemma 2 in [30] (or by Lemma 15.42 in [I6]) there exist a
sequence (Up)nez., of unitaries in N? and a unitary z € N x9 G such that

a=Ad(z)o [h%m Ad(un)] Set v, = Ad(z*) o a|ny. One can then show

that ¢, € (GV Ct(N)) N H, and that the map £y (¢,) does not depend on
the choice of the representative o but only on the class . Therefore the
map II: x (N %9 G) — L, given by (o) = {n (), is well defined.

To see that I is surjective, let ;4 € L and choose a € (G V Ct(N)) N H
such that {n(a) = p. Since « is the limit of automorphisms that commute
with G, it also commutes with G. It follows that the map

(2.3) n Z aglg | = Z a(ag)ug

geG geG

is an automorphism of N xy G. Moreover, n € Ct(N xp G) N Inn(N xy G)
and T(Exx,c(n)) = .

An important concept in the classification of automorphisms of the hy-
perfinite II; factor is the one of obstruction to lifting, defined by Connes in
Section 1 of [10]. It will play a key role in showing that our algebras are not
isomorphic to their opposites.

Definition 2.9. Let M be a II; factor and let o be an automorphism of M.
Let n be the smallest nonnegative integer such that there is a unitary v € M
with ™ = Ad(u). If no power of « is inner, we set n = 0. Since M is a factor,
it is easy to check that there is A € C such that A" =1 and a(u) = Au.
(Simply apply a"*! = aoa™ = a" o a to any element  in M.) We call
A the obstruction to lifting of a, and refer to the pair (n,\) as the outer
invariant of a.

Next, we recall what it means for the order on projections to be deter-
mined by traces. Let A be a C*-algebra and denote by M, (A) the n x n
matrices with entries in A. Let Mo (A) denote the algebraic direct limit of
the sequence (M, (A), ¢n)nez-,, in which ¢, : M, (A) = My11(A) is defined
by a — (&3). Denote by T(A) the set of tracial states of A.

Definition 2.10. We say that the order on projections over A is determined
by traces if whenever py, ps € My (A) are projections such that 7(p1) < 7(p2)
for every 7 in T(A), then p; is Murray-von Neumann subequivalent to ps.
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We conclude this section by recalling the definitions of Cuntz subequiva-
lence and the Cuntz semigroup. See Section 2 of [4] and the references there
for the definitions below and the proofs of the assertions made here.

Definition 2.11. Let A be a C*-algebra and let a,b € My (A)y+. We say

that a is Cuntz subequivalent to b, denoted a = b, if there exists a sequence

(Un)nez~, in Moo (A) such that ILm |lvpbvy —al| =0. Ifa T band b 3 a we
n o0

say that a is Cuntz equivalent to b and write a ~ b.

Cuntz equivalence is an equivalence relation, and we write (a) for the
equivalence class of a.

Definition 2.12. Let A be a C*-algebra. The Cuntz semigroup of A is
W(A) = Mx(A)+/~. We define a semigroup operation on W (A) by

R

and a partial order by (a) < (b) if and only if a <X b. With this structure
W (A) becomes a positively ordered abelian semigroup with identity.

Usually, it is hard to compute the Cuntz semigroup of a C*-algebra, but
the following remark computes W (A) for the C*-algebras A of interest here.

Remark 2.13. Denote the Jiang-Su algebra by Z. Assume that A is a
simple unital exact stably finite C*-algebra which is Z-stable, that is, Z ®
A= A. Let V(A) be the Murray-von Neumann semigroup of A. For any
compact convex set A, let LAff,(A);4+ denote the set of bounded strictly
positive lower semicontinuous affine functions on A. By Corollary 5.7 of [4],
we have
W(A) =2V (A) TILAff,(T(A))4+.

The addition and order on the disjoint union are defined as follows. On
each part of the disjoint union, the addition and order are as usual. For
the other cases, for x € V(A) define z: T(A) — [0,00) by Z(7) = 7(z) for
7 € T(A). Now let z € V(A) and y € LAff,(T(A))++. Then z + y is the
function = +y € LAff,(T(A))4++. Also, z <y if and only if Z(7) < y(7) for
all 7 € T(A), and y < z if and only if y(7) < Z(7) for all 7 € T(A).

3. THE CONTINUOUS ROKHLIN PROPERTY AND THE UNIVERSAL
COEFFICIENT THEOREM

We recall the definition of asymptotic homomorphism, and what it means
for an action of a finite group on a C*-algebra to have the continuous Rokhlin
property. The main result of this section is that if A is a separable unital
C*-algebra satisfying the Universal Coefficient Theorem, and « is an action
of a finite group G on A satisfying the continuous Rokhlin property, then
the fixed point algebra A% and the crossed product C*(G, A, «) satisfy the
Universal Coefficient Theorem. Gardella has later extended this result to
actions of second countable compact groups. (See Theorem 1.10 in [19].)

Definition 3.1. Let A be a separable, unital C*-algebra, and let a: G —
Aut(A) denote an action of a finite group G on A. We say that a has the
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continuous Rokhlin property if there exist continuous functions ¢t — egt) from
[0,00) to A, for g € G, such that:
¢
(1) For each t € [0,00), (e«g))geG
projections with Z egt) =1.
geG

is a family of mutually orthogonal

(2) tliglo Hag(eg)) - eét}ZH =0 for every g,h € G.
(3) For any g € G and a € A, we have tlim Heét)a — aeét)H =0.

Lemma 3.2. Let A and B be separable unital C*-algebras, let G be a finite
group, and let a: G — Aut(A) and : G — Aut(B) be actions of G on A
and B. Assume that a has the continuous Rokhlin property. Let A ® B be
any C* tensor product on which the tensor product action g — oy ® By is
defined. Then o ® 8 has the continuous Rokhlin property.

Proof. Let (eét) be a family of projections in A as in Defini-

)QEG’,tE[O,oo)
tion for the action a. Then (egt) ® 1)geG, 1€[0,00) is a family of projections
in A® B as in Definition for the action a ® . O

The following example of an action of a finite group with the continuous
Rokhlin property will be needed in Proposition [3.9

Example 3.3. Let G be a topological group, and let di,ds, ... € Z~qg. Let
p= (p(l), o ) be a sequence of unitary representations p*) : G — L(C%)

of G. Define actions v*): G — Aut(L(C%)) by Vék)(a) = p®)(g)ap® (g)*
for k € Z~g, g € G, and a € L(C%). Let B, be the UHF algebra

B, = @ L(C™),
k=1
and let p”: G — Aut(B,) be the product type action given by
Hy = Qv
k=1

For a fixed unitary representation p: G — L(C?), we abbreviate (p, p, . ..)
to p, so that B, is the d> UHF algebra, and the action is given by

g 1) =) Ad(p(g)) € Aut(B,).
k=1

When G is finite with card(G) = d, and p is the regular representation
A: G — L(I*(@)), we write
o o0
Be=@QQL(*G) and g pd =) Ad(A(g)) € Aut(Bg)
k=1 k=1

and when p is the direct sum A™ of m copies of A\, we write

Bam=@QQLI*G)™) and g pf™ =) AdA(g)) € Aut(Bem).
k=1 k=1
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These are product type actions of G on the d* and (md)> UHF algebras.

We fix some notation. For any index set S and s € S, we denote by
§s € 1?(9) the standard basis vector, determined by

O

Lemma 3.4. Let G be a finite group. Then the action u“™: G — Aut(Bg )
of Example [3.3] has the continuous Rokhlin property.

Proof. We use the notation above. Recall that A™ is the direct sum of m
copies of the regular representation of G, and define v: G — Aut(L(I1*(G)™))
by vy = Ad(A™(g)).
We begin with a construction involving just two tensor factors. Let
v: (A" G)" = B(O)" @ P(G)™
be the unitary determined by v(¢ ® n) = n ® ¢ for &, 1 € I2(G)™. Equip
LG @ P(G)™) = L(I*(G)™) ® L(I*(G)™)

with the action g — vy®@v,. Then v is G-invariant. Since L(I*(G)™ ® ZQ(G)m)G
is finite dimensional, there is a continuous path t — z; of G-invariant uni-
taries in L(I*(G)™ @ [*(G)™) such that zp = 1 and z; = v.

For every g € G, let 64 be the corresponding standard basis vector in
I?(G), and let p, € L(I*(G)™) be the projection on the m dimensional
subspace spanned by the standard basis vectors d,; = (0,...,0,d4,0,...,0)
for 1 < j < 'm, where d, is in the j-th position. Then v4(pp) = pgn for every
g,h € G, and Zpg = 1. For n € Z>¢, t € [n, n+ 1], and g € G, we define

geG
) =1018 - @102 .(py®1)7 , 8101811 € Bom,

with the expression z;_, (pg ® 1)z;_,, occupying the two positions n + 1 and
n + 2 in the tensor product. It is clear that egt) is a projection and that
Z egt) = 1for allt € [0,00). Since (vy®@vy)(2i—n) = Zi—n and v4(pr) = Pgh,
geG

one easily checks that u?’m(e,(f)) = eét}z for all g,h € G and t € [0,00).
Finally, if

N [e'e
ac@LIPG)™) cQLI*(G)™) and  t>N,
k=1 k=1

then eét) exactly commutes with a.
N
Now take b € Bg . For every e > 0 thereexist N > landa € ® L(I*(G)™)
k=1
such that b — al| < 5. Suppose t > N. Then egt)a = ae(gt) by the previous
paragraph, so

Heét)b — beét)H <2[|b—all + Hegt)a — aegt)H =2|b—al <e.
This completes the proof. O
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The following result will not be used, but it is easy to derive from known
results and provides motivation for the idea that the action we construct in
Section [4 should have the continuous Rokhlin property. The result we actu-
ally need is in Proposition [3.9 below. It is known that there are actions on
simple C*-algebras which have the Rokhlin property but not the continuous
Rokhlin property. Giving an example here would take us too far afield.

Proposition 3.5. Let GG be a finite group. Let A be a simple separable uni-
tal nuclear C*-algebra satisfying the Universal Coefficient Theorem which,
in addition, is either purely infinite or tracially AF in the sense of [37]. Let
a: G — Aut(A) be an action with the Rokhlin property. Assume that for
all g € G, the maps (ay), € Aut(K,(A)) are the identity maps. Then « has
the continuous Rokhlin property.

Proof. Apply Theorem 3.4 of [28] in the purely infinite case, and Theorem 3.5
of [28] in the tracially AF (tracial rank zero) case, to show that « is conjugate
to its tensor product with the action u& of Example Since p“ has the
continuous Rokhlin property (by Lemma , it follows from Lemma
that « has the continuous Rokhlin property. U

We now recall the definition of an asymptotic homomorphism.

Definition 3.6. Let A and B be C*-algebras. An asymptotic homomor-
phism from A to B is a family of maps ¢y: A — B, indexed by ¢ € [0, 00),
satisfying the following conditions:

(1) For all a € A the map t — v;(a), from [0, 00) to B, is continuous.
(2) For all a, b € A and X\ € C one has

Jim [[g1(a+b) = ila) = Ge(®)]| =0,
Jim [[9(Aa) = M (o)) =0,
Jim [[g2(ab) — Yula)u(d)] =0,

and
lim [[4(a”) — t(a)’]| = 0.

Next we show that, given a separable unital C*-algebra and an action of
a finite group G on A with the continuous Rokhlin property, there exists
a unital completely positive asymptotic homomorphism ¢ — 1, from A to
A% which is a left inverse for the inclusion. The following argument was
suggested by E. Gardella. It replaces an earlier argument in which v, was
not completely positive.

Proposition 3.7. Let A be a separable unital C*-algebra. Let G be a fi-
nite group and let av: G — Aut(A) be an action with the continuous Rokhlin
property. Denote by A® the fixed point algebra, and let ¢: A% — A be the
canonical inclusion. Then there exists a unital completely positive asymp-
totic homomorphism ¢+ ¢;: A — A® for ¢ € [0, 00) such that

lim |[(¢¢ 0 ¢)(a) —al =0

t—o00

for all a € A“.
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Proof. Given C*-algebras A and B and a map v¢: A
¥ the map from M, (A) to M, (B) defined by (™ (a) =
a= (aj,k)?,kzl € M,(A).

Let (e.gt))gEG,tE[0,00) be a family of projections as in Definition For
t € [0,00) define a map p: A — A by

a) = Z eét)ag(a)e(t)

geG

B, we denote by
( (a% ))j,k:1 for

for a € A. We claim that t — p; is a unital completely positive asymptotic
homomorphism from A to A such that

Jim [|(pe 0 1)(a) — af| =0

for all a € A%,
Obviously p; is unital. Moreover, p; is completely positive since if a =
(ajvk)?,kzl € Mn(A)+ and

()—dlag( ), (),...,eét))

€9
denotes the diagonal matrix with the element eg) everywhere on the diago-

nal, then
/(a) = > i (ag(asn) ) e 2 >0
geG

for every t € [0,00). To show that p = (p¢)ic[,00) 18 an asymptotic homo-
morphism, observe that ¢ — p;(a) is clearly continuous for every a € A, and
that for every a,b € A and A € C we have p;(Aa + b) = Api(a) + pi(b) and
pe(a*) = pi(a)*. Moreover,

tllglo | pt(ab) — pt(a)pe(D)]]

@ = Jim |5 (o))~ 37 et el
’ e geG
< lim Z g (@) [Jag(B)elf) — ePag (b)|| = 0.
gGG

Lastly, for every a € A® we have

tin [ efacf) = 3l

I [lpe(a) — afl = lim
geG geqG

(3.2)

< tllglo Z Haegt) - eét)aH =0.
geG

The claim is proved.
It follows from the definition of p; and the relation in Definition
that

(3.3) Jim [l (pu(a)) — pe(a) | = 0

foralla € A and g € G.
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Now let E: A — A“ be the conditional expectation given by

- Card Z (0

gEG

E(a)

for a € A. For t € [0,00) define a map 1p;: A — A® by ¥(a) = E(pi(a))
for a € A. Obviously ¢;(a) € A% for all a € A, and 1), is unital, linear, and
completely positive. Also, t — 9;(a) is clearly continuous for every a € A.
Since G is finite, it follows from qﬁP that lim llpe(a) — (a)|| = 0foralla €

A. Combining this relation with (3.1 glves hm l1e(ab) — P(a)e(b)|| =0
for all a,b € A. Combining it with J) glves hm |i(a) — al| =0 for all
a € A%. This completes the proof. O

Proposition 3.8. Let A be a separable unital C*-algebra, and let G be a
finite group. Let a: G — Aut(A) be an action with the continuous Rokhlin
property. Assume that A satisfies the Universal Coefficient Theorem. Then
A® and A %, G satisfy the Universal Coefficient Theorem.

If A is simple and nuclear, then one does not need the continuous Rokhlin
property; the Rokhlin property suffices. See Corollary 3.9 of [38] for the
crossed product and, for actions of second countable compact groups, see
Theorem 3.13 of [I8]. Moreover, Gardella, Hirshberg, and Santiago proved
(Theorem 4.17 in [20]) that if A is nuclear and satisfies the Universal Coeffi-
cient Theorem, G is a second countable compact group with finite covering
dimension, and a: G — Aut(A) has finite Rokhlin dimension with com-
muting towers, then A® and A %, G also satisfy the Universal Coeflicient
Theorem.

Proof of Proposition[3.8. Denote the suspension of a C*-algebra A by SA.
Let K be the algebra of compact operators. By Theorem 4.2 in [26], for ev-
ery pair of separable C*-algebras A and B, the group K K (A, B) is canon-
ically isomorphic to the group of homotopy classes of completely positive
asymptotic homomorphisms from K ® SA to K ® SB. Let t: A —» A
be the inclusion. Proposition implies that the group homomorphism
V*: KK(A% B) — KK(A, B) induced by the unital completely positive
asymptotic homomorphism (t)e[0,00) Obtained there satisfies :* o ¢* =
idg g (ae ). In particular, 9" is naturally split injective with left inverse
*: KK(A,B) - KK(A“, B).
By hypothesis, A satisfies the Universal Coefficient Theorem (Theorem 1.17

of [45]). That is, let B be any separable C*-algebra. Let

va,5: KK(A,B) — Hom(K,(A), K.(B))
and
kap: Ker(yap) = Ext(K.(A), Kiy1(B))

be as described before Theorem 1.17 of [45] (and called (A, B) and (A, B)
in [45] when A and B must be specified). Then d4p = KZ}B exists, and
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there is a (natural) short exact sequence

é
0 — Ext(K.(A), K,11(B)) =3 KK,(A, B)
2% Hom (K, (A), K.(B)) —> 0.
(Naturality is Theorem 4.4 of [45].)
Consider the commutative diagram

YA,B

KK(A, B) —2% Hom(K,(A), K.(B))

| |
KK(A% B) %% Hom(K,(A%), K,(B)),
in which the vertical maps are induced by ¢: A* — A and the horizontal
ones are from the Universal Coefficient Theorem. The map 4, p is surjective
because A satisfies the Universal Coefficient Theorem, and the right vertical
map is surjective because it is a left inverse of ¥*, so y4a p is surjective.
Now consider the following commutative diagram, in which the horizontal
maps are from the Universal Coefficient Theorem:

Ker(yap) ——2 Ext(K,(A), Kep1(B))

w*T w*

Ker(yae 5) ——8 Ext(K,(A%), K,11(B)).

The map k4, p is injective because A satisfies the Universal Coefficient The-
orem, and the left vertical map is injective since it has a left inverse *, so
KA« B is injective.

Lastly, the argument used to prove that y4a p is surjective, applied to
the commutative diagram

Ker(va,) —2s Ext(K.(A), K.t1(B))

| |

Ker(yae 5) ——8 Ext(K,(A%), K,11(B)),

shows that e p is surjective. Therefore A* satisfies the Universal Coeffi-
cient Theorem.

Now we consider the crossed product A x, G. By the Proposition in [44],
A% is isomorphic to a corner of A X, G. When « has the Rokhlin property,
Corollary 2.15 of [I8] implies that this corner is strongly Morita equivalent to
AxqoG. (This is saturation of the action, a weaker condition than hereditary
saturation as proved in [I§].) Since strong Morita equivalence preserves the
class of algebras satisfying the Universal Coefficient Theorem, we conclude
that A x, G satisfies the Universal Coefficient Theorem. O

The following argument was suggested by E. Gardella.

Proposition 3.9. Let G be a finite group. Let A be a unital separable
C*-algebra which absorbs the UHF algebra of type card(G)*°. Suppose the
action av: G — Aut(A) has the Rokhlin property. Then:
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(1) Taking u“ to be the product type action of Example we have
an equivariant isomorphism

(G, A, a) = (Ga ]Mcard(G)oo ® A, FLG ® a)'
2) The action « has the continuous Rokhlin property.
( y

Proof. We prove . We will need to cite theorems which use central se-
quence algebras, so we state notation for them. For a separable unital
C*-algebra A, we define A* = Cy(Zso, A)/Co(Z=0, A), and we regard A
as a subalgebra of A via its embedding in C},(Zsq, A) as the algebra of
constant sequences. Then A’ N A% is the relative commutant of this image
of A. (It is written A in [27]. See Section 2.1 there.) For w € Z~¢ \ Z>o,
if in place of Cy(Zso, A) we use
{a = (@nezag € ColZs0, 4): Tim ay =0},

—Ww

we call the quotient A“. The image of the constant sequences here can also
be identified with A, and we again get a relative commutant A’ N A¥. There
is an obvious surjective map A*° — A“, which gives a unital homomorphism
ATNA>® — AN Av.

We now fix any w € Zs¢ \ Z>o.

Since A absorbs Mcarq(g)~, Proposition 2.8 and the comment at the be-
ginning of the proof of Proposition 2.9 in [27] provide an injective unital
homomorphism M,pq(qye — A™ N A’. Since Meard(c)ye 1s simple, it follows
from the previous paragraph that there is an injective unital homomorphism
Meara(gy — A% N A’ Lemma 3.12, the proof of Proposition 3.13 in [35],
and the fact that in Lemma 0.5 in [35] the isomorphism is approximately
unitarily equivalent to the given homomorphism (see the proof of Proposi-
tion A in [43]), now provide a unital isomorphism ¢: Mgy ® A — A
and unitaries w, in A for n € Z~q such that

(3.4) le |lwnp(l @ a)w) —al| =0

for every a € A.

Define an action 8: G — Aut(A) by 8, =¢o (,ugG ® ay) oL for g € G.
We claim that 3, is approximately unitarily equivalent to oy for every g € G.
Set v, = wyPq(w;;) for n € Zso. Let g € G and a € A. For n € Z~o we have

[ong(a)vy, — agla)|| = [lwnBy(whawn)w;, — ag(a)
< Nwn By (wrawn Jwy, — wnfy(p(1 @ a))w, |
+ [[wnBy(p(1 © a))wy, — ag(a)]|
= [[wpawn — p(1 @ a)
+ [wnp(1 @ ag(a))w, —ag(a)ll.

Applying 1} to a and ag(a), we find that li_>m llonBg(a)vy, — ag(a)| = 0.
n oo
This proves the claim.

By Theorem 3.5 in [27], there exists an approximately inner automor-

phism 6 such that 0 o oy o =1 = B, for every g € G. Part (1)) follows.
Part is now immediate from Lemma [3.4] and Lemma O
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4. THE CONSTRUCTION

In this section we describe a method to construct simple separable C*-
algebras not isomorphic to their opposite algebras. We also show that these
C*-algebras satisfy the Universal Coefficient Theorem. Throughout this
section ¢ is a fixed integer with ¢ > 2. The construction is a generalization
of the construction of [39] for ¢ = 3. In Section [5| we will restrict ¢ to being
an odd prime such that —1 is not a square mod gq.

Definition 4.1. Let ¢ € {2,3,...}. Define the C*-algebra A, to be the
reduced free product of g copies of C(]0,1]) and the C*-algebra C?, amalga-
mated over C, taken with respect to the states given by Lebesgue measure
w on each copy of C([0,1]) and the state given by

1
w(cl,CQ,...,cq):5(614_624_..._’_%)

on CY. That is,
Ay =C([0,1]) # C([0,1]) *¢ - - - ¢ C([0,1]) ;- C1.

For k = 1,2,...,q we denote by ¢;: C([0,1]) — A, the inclusion of the
k-th copy of C([0,1]) in A,. Set

(4.1) v = (e%i/q7 1, eHla=Dmifa 2a=2)mifg e4ﬂi/q) €y,
and regard v as a unitary in A, via the obvious inclusion.

Lemma 4.2. There exists a unique automorphism o € Aut(A4,) such that
for all f € C([0,1]) we have

(4.2) alei(f)) = ea(f), ale2(f)) =ea(f), -y aleg-1(f)) = &(f),
(4.3) aleq(f)) = AdW)(=1(F)),

and

(4.4) a(v) = e 24y,

Moreover, with v as in (4.1)), we have a? = Ad(v).

Proof. The proof is the same as that of Lemma 4.6 of [39]. O

Remark 4.3. The C*-algebra A, is unital, separable, simple, exact, and
has a unique tracial state. Exactness follows from Theorem 3.2 of [12].
Simplicity and uniqueness of the tracial state follow by applying the corollary
on page 431 of [I] several times. Lastly, simplicity and the existence of a
faithful tracial state imply that A, is stably finite.

We also need an action on a UHF algebra. We use a different model
than in [39], which has the advantage that the computation of the Connes
invariant is more explicit. We start with some notation and a preliminary
lemma which we isolate from the main argument for convenience.

Notation 4.4. Let d € Z-o. Define ¢,: Mgn — Mgn+1 by @p(x) =
diag(x,z,...,x) for x € My. Denote by By the UHF algebra obtained
as the direct limit of the system (Mgn,@n)nez-,. We identify Mgn with

n o0
®Md and By with ® My.
k=1 k=1
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Lemma 4.5. Let n € Z>o, let (ejx)} -, be the standard system of matrix

units in My, and let s € M,, be the shift unitary s = e, + Zej,j,l. Let
j=2

v € M, be a diagonal unitary. Then there are v € T and a diagonal unitary

y € M, such that yvsy* = s.

Proof. Write v = diag(ﬁl, Bo, ... ,ﬁn) with 51, 82, ..., 0, € T. Choose vy € T

such that 4" = []B;. Define A; = 58; for j = 1,2,...,n. Then w =
j=1
diag()\l, Aoy, )\n) satisfies w = Av. Moreover,

(4.5) ﬂ A =

j=1
Define
G =\, G = Mg, Coe1 = AMA2 - Ap1, =1,
and y = diag(Cl, Coyen,y Cn). Using , one checks that ysy*s* = w*. So
ysy*s* = ~yv*. Since y commutes with v, this gives yvsy™ = vs. (|

In the next lemma, By and B, are of course isomorphic. But we find it
convenient to notationally distinguish them: B2 is the algebra in which we
carry out the construction, and B, is the subalgebra in @D

Lemma 4.6. Let ¢ € Zxq satisfy ¢ > 2. There exist unitaries g € B
and u € By for k = —1,0,1,2,... such that, taking £_; = C*(g) and
E, = C*(g,up,u1,...,uy,) for n € Z>¢, and using the unique tracial state
on B, the following hold:

(1) For k = —1,0,1,2,..., sp(ug) = {¢ € T: ¢ = 1}, and for every
¢ € sp(ug), the corresponding spectral projection of wuy has trace
1/¢%.

(2) sp(g) ={¢ € T: (=1}, and for every ¢ € sp(g), the corresponding

spectral projection of g has trace 1/q.

upgul = e2™g for k € { 1,0}.

ukguk:gfork—l 2,.

u]uk—uku] for j,k=-1,0,1,2,... with ]j—k|22.

> (M) for n=-1012...
If n € {-1,0,1,2,...} is odd, then the center Z(E,) is generated
by the order ¢ umtary wy, = gF(u)(uf)?- - (u))? (so w_y = g*),

and if n is even then Z(E,) is generated by the order ¢ unitary
wy, = ududud - ud.

(9) C*(g,uo,u1,uz,...) = By.

(3)
(4)
(5) upupt1uf =€~ 2mi/q* Ukt 1 for k=-1,0,1,2,.
(6)
(7) E
(8)

Proof. For k =1,2,... let ox: My — B2 be the map

op(z)=1®--- 111 -,
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with z in position k. (Thus, o1(z) =2 ®1®1®---.) Let p: B — By
denote the shift endomorphism of B2, determined by p(ox(x)) = op11(x)
for k € Z>o and x € M 2.

g%

2
Denote by (ej,k)? w—1 the standard system of matrix units in M. Define
unitaries z,s € Mg by

2
q
. ) 2 N2
z= dlag(l, e2mila L e2la=Dmi/g ) and s=egp+ E €jj—1-
j=2

Apply Lemma with n = ¢%, with s as given, and with v = z*, getting
v € T. Define unitaries in By by

g=(rrs)ielela.
and, for k=0,1,...,
Ugk—1 = op+1(s)  and  ugy = opp1(2)0p4a(27).
Thus, for example,
U_1=5sQ1R1®--- and UW=2R277R11Q -

Since s is unitarily equivalent to z, the choice of v using Lemma [4.5] implies
that (yz*s)? is unitarily equivalent to z%. So holds if one uses the nor-
malized trace on M 2. Therefore (2) holds using the tracial state on Bpe.
Similar reasoning shows that if k is odd, then holds. One readily checks
that 2®2* € Mg satisfies if one uses the normalized trace on M4, so
for even k follows in the same way.

A direct check shows that szs* = e=27/4° . Using this, it is easy to verify

the relations , , , and @ of the statement.

We claim that for n = —1,0,1,..., we have

E, = s.paun({gkuéoull1 T

n
(4.6) 0<k<g-land0<lpl,...,l <¢*—1}).

The claim follows from g? = 1 and u?f =1 (by (2) and ), and because,
given this, , , (5), and @ show that the product of any two of the
elements listed in (4.6]) is a scalar multiple of another of them.

Let m € {-1,0,1,...}, let n € Z>p, and let k,lo,l1,...,l, € Z. We
compute un(gkué"ulf -oculm)u¥ using , , 1' and @ To this end
observe that, by , we have upup_1uj = 2™/ for all k € Z>q. For
m > 1, we then get

k o 1 !
Un (g uguy -+ g )y,

e27ri[kq_l1}/q2 . gkuéoulll .. ui%{n n=>0
. 2
(4.7) e2milln-1=ln1l/a" . gkuéoull1 Cqybm n=12....m—1
e2miln-1/4" . gl"uf)oull1 e ui;;l n=m,m+1

gkuéoulf---uﬁgl n=m+2m+3,....
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The case m = —1 is
o2mik/q ok n=0

(4.8) ungtul = {gk I n=12. ..
and the case m =0 is

e2milkg—l]/q* . gkuéo n=0
(4.9) un(gkuéo)ufl = { e2milo/q® ‘gkug’ n=1

gkuéo n=2,3,....
Also,
(4.10) g(gkuéoulf b)) gt = e~ 2milo/a . gkué‘)ulf cabm,

For n = —1,0,1,..., let wy, be as in (§)). Then wy, is a unitary in E,,.

By and @, for both even and odd m, the factors in the definition of

wy, commute. Therefore wy, = 1 by and . The relations (4.7)), (4.8),
(4.9), and (4.10) show that w,, commutes with all the generators of E,,.

Therefore wy, is in the center Z(F,,). These relations also show that

e‘zm/‘lwm m is odd

* j—
(4.11) Hm A1 mtm 41 = {e2m/qw m is even
m .

Combined with wy, = 1, this shows that sp(w,,) = {¢ € T: ¢¢ = 1}. For
m e {-1,0,1,...} and j € {0,1,...,¢g — 1}, we now let p,, ; be the spectral
projection of w,, corresponding to the eigenvalue e2™9/4. For fixed m, the
projections py, ; are then all unitarily equivalent to each other in B2, central
in E,,, and sum to 1. In particular, they are all nonzero. It follows that

q
(4.12) B = @D pm i Empm.;-
j=1

For k € Z>( define
Dy, = C*(uous - - - U, Uzky1)-

We claim that Dy = M. To see this, use (4.7) (use (4.9) if & = 0) to see

that o
Unger1 (Uouz - - - Uk ) s = €T ugus - - - ugg.
Also, ug;_l =1by , and, using (/1)) and @), one checks that (ugusg - - ~u2k)q2 =
1. Tt is easily seen that the universal C*-algebra C' generated by unitaries v
and w satisfying
v = =1 and vwv* = 24y

is the transformation group C*-algebra of the action of Z2 on Z 2 by trans-
lation, which is isomorphic to M. Since this algebra is simple, the claim
follows.

We claim that if & # [, then Dy commutes with D;. For the proof, without
loss of generality k < [. It suffices to prove the following:

(10) woug - - - ug,, commutes with ugusg - - - ug;.

(11) woug - - - ug,, commutes with ugyq.

(12) uggy1 commutes with ugusg - - - ug;.
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(13) ugk4+1 commutes with ugy1.

Of these, , , and all follow from @, and follows from (|4.7)).

The claim is proved.

Let k € Z>o. Since Dg,D1,...,Dy C Esi4q, it follows that there is a
unital homomorphism from Dy ® D1 ® - - ® Dy, = M 2k42 to Fop1q. For j =
0,1,...,q — 1, recalling that par11; # 0 and using , we see that there
is a nonzero unital homomorphism Mq2k+2 — pPak+1,jE2k+1P2k+1,5. There-
fore dim(Fap,1) > ¢**5. Tt follows from that dim(Fag ) < ¢+,
Therefore dim(Fay11) = ¢***5 and the maps Mporv2 = pags1,jFoki1p2k41,5
are isomorphisms, that is, Fori1 = @7_; M pr+2. This is part @ of the
conclusion for odd n, and implies part of the conclusion for odd n.

From we also get dim(E,,11) < ¢*dim(E,,) for m = —1,0,1,....
We have just seen that dim(FE,,) = ¢*™2 when m is odd, so this relation
holds for all m € {-1,0,1,...}. In particular, the elements listed on the

right in are actually a basis for E,,.

This fact, and the form of the relations , , , and ,
implies that Z(E,,) is the linear span of the elements gkuooull1 coculm with
0<k<g—1and 0 <lp,ly,..., 0, < q2 — 1 which commute with all of
g, UQ, U1, . .., Un. Moreover, these relations imply that this happens exactly
when Iy € {0,¢,2q,...,¢* — q}, and

kq = ll, l(] = lg, ll = l3, ey lm_Q = lm, and lm—l =0.

If m is even, this says [; = 0 for all odd j and there is € {0,1,...,¢ — 1}
such that [; = rq for all even j. Therefore dim(Z(Ey,)) = ¢. It follows that

Z(Em) = Span(pm,mpm,l) <. 7pm,q—1) = C*(wm)7
just as we saw above for m odd. This implies part of the conclusion
for even n. Conjugation by u;,4+1 permutes the projections p,, ; cyclically
(by (4.11])) and is an automorphism of E,, (by (4.7), (4.8]), and (4.9)), so the
summands pp, jE,pm, ; are all isomorphic. Since they are simple, a dimen-
sion count shows that they are all isomorphic to Mym+1. This is part @ of
the conclusion for even n.
It remains to prove @ Let m € {-1,0,1,...}, and let p = (Mj7k);1',k:1 be
the matrix of partial embedding multiplicities of the inclusions

Ykt PmjEmPmj — Pma1kEms1Pmi1 k-
We claim that pj, = 1 for j,k = 1,2,...,q. To prove this, observe that
conjugation by ;2 permutes the projections py,+1 4 cyclically (by )
but is the identity on E,, (by ([4.7), (4.8), and (4.9)). Therefore, for fixed j,
the projections py, jpm+1, are all unitarily equivalent in Bz. Also, um+1 €
Er1 and W1 € Z(Emt1), S0 U1 commutes with the projections pp, 1.k,
while u,,4+1 permutes the projections p,, ; cyclically by . It follows
that the projections py, jpm+1 are all unitarily equivalent in B2 for j, k =
0,1,...,q — 1. Therefore pp, jpms1,k 7 0 for all j and k. Thus p;, > 1.

Also,

m+1  m+1 m+1 m+2  m+2 m—+2
M q b ) ) q ) )'

1 (q - q = (q - q
For j = 0,1,...,q9 — 1 we therefore have Zz;(l) pjkx = q. Since i > 1 for
all j and k, the claim follows.
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It is now easy to check, for example by computing the Ky-group, that

o

|J Em =B, Thisis (9). O
m=—1
Lemma 4.7. Let ¢ € Z> satisfy ¢ > 2. Let g,u_1,up,u1,u2,... € Bp
satisfy the conditions of Lemma Set £ = C*(g,uo,u1,uz,...) C Bgp.
Then 8 = Ad(u_1)|g is an automorphism of E such that:

(1) 81 = Ad(g).

(2) B(g) = e™i/1g.

(3) Blug) = e/ Ty,

(4) B(up) = uy, for n € Zy.

(5) B* is outer for k =1,2,...,q— 1.

Proof. It follows from , , and @ of Lemmathat u1Bu*; = E, so
that g is an automorphism, and that parts , , and of the conclusion
hold. From Lemma we get guog*® = e 2"/4. This, parts , ,
and , and the relations , , and @ in Lemma imply .

It remains to prove . Let k£ € {1,2,...,q — 1}. For n € Z>p, let

way, = ududud - ud | as in Lemma . Using Lemma and @, we

get BF(wap) = e~ 2R/ 1y, 50 limy, o0 || B (wan) — wap || = |1 —e~27H/4| £ 0.
However, by Lemmal4.6{[8]), for any unitary y € E, we have lim,,_,« ||ywany*—
wan| = 0. So B # Ad(y). O

Lemma 4.8. Let ¢ € Z~ satisfy ¢ > 2. Let A; and v be as in Deﬁnition
and let o € Aut(A,) be as in Lemma Let g,ug,u1,us,... be as in
Lemma and, following Lemma @D, identify B, with the algebra E =
C*(g,up,u1,u2,...). Let € Aut(B,) correspond to the automorphism
B € Aut(FE) of Lemma There exists a unitary w € C*(v® g) C A, ® By
with the following properties:

(1) wi=(v®g)*.

(2) (a®B)(w) = w.
(3) w commutes with 1 ® (ug)?g.
(4) If we set

v =Ad(w) o (e ® B) € Aut(4, ® By),
then v generates an action of Z; which has the Rokhlin property.

Proof. The construction of w satisfying (1) and ([2) is the same as in Lemma 4.8
of [39]. It follows from Lemma that v ® g commutes with 1 ® (uf)lg,
S0 follows from w € C*(v ® g). It is straightforward to show that
[Ad(w) o (e ® B)]? = ida,es,-

Next, we claim that for any ¢ > 0 and any finite subset F' C A; ® By,

there are projections eg, e1,...,e4—1 € Ay ® By such that:
(5) la®p)(er) —ert1]| <efork=0,1,...,¢g—2 and |[(a® B)(eg—1) —
el < e.

(6) llyer —eryl| <efor k=0,1,...,¢g—1and ally € F.
-1

(1) > er=1.
k=0
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To prove the claim, for n € Z>¢ let E, = C*(g,u0,u1,...,uy), as in
Lemmal4.6] By a standard approximation argument, it is enough to consider
finite subsets of A; ® By of the form

F={a®b:acSandbeT}
for n € Z>o and finite subsets S C A, and T' C FEy,. Let ¢ > 0. Let

woy, = uludud - ud . as in Lemma [£.6{[). By Lemma and (5)) and

the formula for 8 in Lemma |4.7]

(4.13) B(way) = =2 /4y, .

Let po,p1,...,pg—1 € Ea, be the spectral projections for wsy,, labelled so
q—1

that w = Zezmk/qpk. It follows from (4.13) that 8(px) = pry1 for k =
k=0

0,1,...,¢—2 and B(pg—1) = po. For k =0,1,...,9—1, set e, = 1 ® py.
These projections satisfy conditions and (7). Since py € Z(F2,) (by
Lemma [4.6[8))), we have ex(a ® b) = (a ® b)ey, for all a € S and b € T. So
(@ holds. This proves the claim.

To show that ~y satisfies the Rokhlin property, let F' C A, ® By be finite
and let ¢ > 0. Construct projections eg,e1,...,e4—1 as in the claim, with
FU{w} in place of F' and § in place of . We verify the analogs of , (6),
and with v = Ad(w) o (& ® ) in place of a ® 3. Only the analog of (5|
requires proof. For £k =0,1,...,q — 2 we have

Iv(er) — exrall < [[Ad(w)(a @ B)(er) — Ad(w)(eps1) || + [[wepr1w™ — exsi

9 9
< (@ ® B)(er) — ensall + lwerss — eprwl < S+ 5 =e.

The proof that |[(a ® 3)(eq—1) — eol| < € is essentially the same. O

Definition 4.9. Let A, be as in Definition and let B, be as in Nota-
tion [f.4} Set C; = A, ® By, and let v be the automorphism of Lemma
We also write v for the action of Z; generated by this automorphism, and
define the C*-algebra D, by Dy = Cy X Zq.

Proposition 4.10. Let ¢ € {2,3,...}. The C*-algebra D, = Cy %, Z, of
Definition [4.9|is simple, separable, unital, and exact. It tensorially absorbs
the ¢ UHF algebra B, and the Jiang-Su algebra Z. Moreover, D, is
approximately divisible, stably finite, has real rank zero and stable rank
one, and has a unique tracial state which determines the order on projections
over D,. Also,

Ko(Dg) 2 Z[;]  and  Ki(Dg) =0,

where the first isomorphism sends [1] to 1, and is an isomorphism of ordered
groups. Finally, letting Z [ﬂ n be the set of nonnegative elements in Z [%] -
R, the Cuntz semigroup of D, is given by

W(Dy) = Z[;] T1(0,00).

I+

Proof. We first consider the algebra C;, = A; ® B, in place of D, and we
prove that it has most of the properties listed for D,;. The exceptions are
that we do not prove stable finiteness or that the order on projections over
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Cy is determined by traces, the K-theory is different (and we postpone its
calculation), and we do not compute the Cuntz semigroup.

It is obvious that Cj is separable and unital. To prove simplicity of Cy,
use simplicity of A, (Remark , simplicity and nuclearity of the UHF
algebra By, and the corollary on page 117 of [47]. (We warn that [47] sys-
tematically refers to tensor products as “direct products”.) Exactness of C,
follows from exactness of A, (Remark , exactness of By, and Proposi-
tion 7.1(iii) of [34]. Since A, and B, have unique tracial states (the first by
Remark [4.3), Corollary 6.13 of [11] (or Lemma below) implies that C,
has a unique tracial state. Since A, is stably finite (Remark , and B,
is a UHF algebra, Corollary 6.6 of [42] implies that tsr(A, ® By) = 1. The
algebra By is approximately divisible by Proposition 4.1 of [2], so A, ® By is
approximately divisible. Since Cj is simple, approximately divisible, exact,
and has a unique tracial state, it has real rank zero by Theorem 1.4(f) of [2].
The algebra B, tensorially absorbs B,, and tensorially absorbs the Jiang-Su
algebra Z by Corollary 6.3 of [29]. Therefore C, tensorially absorbs both
algebras.

The algebra D, is separable and unital because C; is. Exactness of D,
follows from Proposition 7.1(v) of [34]. Parts and of Lemma
say that § has period ¢ in Out(By). So, by Theorem 1 in [53], for k =
1,2,...,q—1 the automorphism 7* is outer. Theorem 3.1 of [36] now implies
that D, is simple. Since « has the Rokhlin property by Lemma , D, has
a unique tracial state by Proposition 4.14 of [38], tsr(D,) = 1 by Proposition
4.1(1) of [38], D, is approximately divisible by Proposition 4.5 of [3§], and
D, has real rank zero by Proposition 4.1(2) of [38]. Combining Corollary
3.4(1) of [25] with the Rokhlin property, we see that D, absorbs both B, and
Z. Simplicity of D, and existence of a tracial state imply stable finiteness.

It now follows from Proposition 2.6 of [39] that the order on projections
over D, is determined by traces.

The computation of Ky(Dy) is done in the same way as in the proof of
Proposition 7.2 of [39], and we refer the reader to that article for the many
details we omit in the following computation. Here we have

Ko(Ag) 227, Ki(Ag) =0, Ko(By) =Z[], and Ki(By) =0,
so that the Kiinneth formula (see [40]) gives

K[)(Cq) = Z[%]q and Kl(Cq) =0.

Moreover, by the argument used in the proof of Proposition 7.2 of [39],
q—1
K.(Dg) = () Ker(id — K.(y™)).
m=0
For j =1,2,...,q, define r; = (0,...,0,1,0,...,0) € C? where 1 is in the
j-th position. Then the unitary v of (4.1)) is
v = €2y 4y 4 2ATVT Ay g AT

and
a(v) = ry 4+ XV ap, o 2Dy, 4y 2Ty
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This implies that a(r;) =r;_; for j = 2,3,...,¢ and that a(r1) = r,. Since
Ad(w) and S are trivial on K-theory, it follows that Ko(7v): Z[%]q — Z[ﬂq
is given by

KU(F}/)(nla n2;... 777l1) = (77277737 s 777(17771)'
Therefore id — Ky(7y) corresponds to the matrix

1 -1 0O --- 0 0
0 1 -1 --- 0 O
0 O 1 -+ 0 O
o o o0 --- 1 -1
-1 o 0 --- 0 1

The map n — (n,7m,...,n) is an isomorphism from Z[é] to Ker(id —
Ky(7)), and one checks that its image is contained in Ker(id — Ky(y™)) for

all m such that 0 < m < g — 1. Therefore this map is an isomorphism from
q—1

Z[%] to (1) Ker(id — Ko(y™)).

m=0
The computation of the Cuntz semigroup now follows from Remark
by observing that V' (D,) is the positive part of K¢(D,) and the uniqueness
of the tracial state on D, implies that LAff,(T(Dy))++ = (0, 00). O

Proposition 4.11. Let Cy and v: Zg — Aut(Cy) be as in Definition [£.9]
Then D, = Cy x4 Zg satisfies the Universal Coefficient Theorem.

Proof. By Theorem 1.1 in [24] (see also Theorem 4.1 in [21I]), the algebra
A, in Definition [4.1] is KK-equivalent to the full free product

E= C([O, 1]) *C * o kC C([O, 1]) *C Ca.

It is shown in the proof of Theorem 2.7 in [51] that if A and B are separable
unital C*-algebras, then the suspension S(A ¢ B) of the amalgamated free
product is KK-equivalent to the mapping cone of the inclusion C — A& B.
Therefore A x¢ B satisfies the Universal Coefficient Theorem when A and B
do. Arguing inductively, we see that E, and therefore also A, satisfies the
Universal Coefficient Theorem. Since Cj is the tensor product of A, with a
UHF algebra, it too satisfies the Universal Coefficient Theorem.

Observe also that C; = A,® B, absorbs the ¢°° UHF algebra. In addition,
by Lemma , the action v has the Rokhlin property, so Proposition
implies that v has the continuous Rokhlin property. Using Proposition
we conclude that C; x Z, satisfies the Universal Coefficient Theorem.

O

5. THE MAIN STEP

Let Dy = Uy x Zg be as in Definition @L and let 7 be its unique tracial
state. In this section we show that if ¢ is an odd prime such that —1 is not a
square mod ¢, then m(D;)" is not isomorphic to its opposite algebra. This
is the main step in proving that Dy, as well as the tensor product £ ® D,
for suitable F, is not isomorphic to its opposite algebra.
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The following result belongs to the theory of cocycle conjugacy, but we
have not found a reference in the literature.

Lemma 5.1. Let M be a factor and let n € Z~¢. Let «, 5: Z,, — Aut(M)
be actions of Z,, on M. Write the elements of Z,, as 0,1,...,n—1, so that, for
example, the automorphisms generating the actions are a; and 1. Suppose
that there is a unitary y € M such that 8; = Ad(y) o a;. Then there is an
isomorphism ¢: M xg Z, — M X, Z, which intertwines the dual actions,

that is, for all [ € Z:L we have googl = aj o .

Proof. For k € 7 we write ay = of and 8, = BY¥. (This agrees with the
notation in the statement when k € {0,1,...,n —1}.) For k € Z~( define a
unitary yr € M by

Yk = yar(y)az(y) - - ar—1(y).

Set yo = 1, and define y, = oy (y* ) for k < 0. Then one easily checks that
Ad(yx) o o, = By, for all k € Z, and moreover that y;ja;(yr) = yj+i for all
J, k€ Z.

Since o, = B, = idys and M is a factor, we have y, € C-1. So there is a
scalar ¢ with |[¢| = 1 such that 3, = ¢"-1. For k € Z define z;, = ( *y;. Then
2, is unitary, and we have Ad(zy)ooy, = By for all k € Z and zjoj(2k) = 2j+k
for all j,k € Z. Moreover, z; = 2, whenever n divides j — k.

Let ug, u1,...,u,_1 be the standard unitaries in the crossed product M X,
Zy, which implement «, so that for a € M C M x47Z,, we have uyau;, = oy(a)
and

n—1

M %, 2, = {Zakuk: ag, G, ...0ap—1 € M}
k=0

Similarly let vg,v1,...,v,-1 be the standard unitaries in M xg Z, which

implement 5. Then there is a unique linear bijection p: M xgZ, — M XoZy,

such that ¢(avg) = azgug for a € M and k = 0,1,...,n — 1. One checks,

using the properties of (zj)kez, that ¢ is a homomorphism. Moreover,

((p o B\Z)(ka) = cp(e%ikl/”avk) = e%ikl/"azkuk = qi(azpug) = (Qp o p)(avg)
for every a € M and k € {0,1,...,n — 1}. Therefore goofg\’l =q;op. O

Lemma 5.2. Let A and B be C*-algebras. Let p be a state on A and let w
be a state on B. Then 7ygw(A @min B)” = m,(A)"®@m,(B)".

Proof. The proof is straightforward (one starts by identifying H,g,, with
H,® H,), and is omitted. O

For g € {2,3,...} let Dy = Cy ., Z4 be the C*-algebra of Definition
Our next step is to show that D, is not isomorphic to its opposite alge-
bra whenever ¢ is an odd prime such that —1 is not a square mod g, by

associating to Dy a Il factor 75, and computing the Connes invariant of 75,
For q € {2,3,...}, set

Ng = [IL>([0,1])] * L(Z,),



OPPOSITE ALGEBRAS 25

and for k = 1,2,...,¢q denote by g,: L>([0,1]) — Ny the inclusion of the
k-th free factor L>°([0, 1]) in INy. Let v be the element of £(Z,) = C? defined
in (4.1) and let @ be the automorphism of N, given by

6.1 a@E(f) =2(f), a@Ef) =a(f), ..., alE-1(f) =2),
(5:2) (Eq(f)) = Ad(v)Ei(f))

for all f € L°°([0,1]), and

(5.3) a(v) = e 2™/,

Thus @? = Ad(v). Then Ny is the weak operator closure of the image of A,
under the Gelfand-Naimark-Segal representation coming from the unique
tracial state on A, (see Remark [4.3), and @ € Aut ) is an extension
of the automorphism « defined in (4.2)), ., and . Identify B, with
C*(g,up,u1,uz,...)asin Lemma . Let w be the unlque tracial State on
B, and let Ry be the weak operator Closure 7w(Bg)”. Then Ry is isomorphic
to the hyperfinite II; factor R. Denote by /3 the extension to Ry of the
automorphism S of Lemma Then, with ¢ € B, C m,(B,)” being as
in Lemma from Lemma [4.7((1)) and we get 67 = Ad(g) and B(g) =
e2™/4g. Tt is well known, and easy to see, that these relations imply that 3
has period ¢ in Out(Ry).

Let w be as in Lemma The automorphism 5 = Ad(w) o (@ @ f3)
generates an action, which we also call %, of Z, on N,®Ry. Since 3 has
period ¢ in Out(Rp), Corollary 1.14 in [33] (or Theorem 13.1.16 in [32])
implies that 7 is outer for k = 1,2,...,q — 1. By Proposition 13.1.5(ii)
of [32], the crossed product

(5.4) T, = (N,®Ro) %5 Z,

is a factor of type II;.

Remark 5.3. Let G be a discrete group containing a nonabelian free group
and such that its von Neumann algebra £(G) is a factor. Let R be the
hyperfinite II; factor. By the proof of Proposition 3.5 in [52], any central
sequence in £(G)®R has the form (1 ® zp)nez.y + (Yn)nez-, for a cen-
tral sequence (zp)nez., in R and a sequence (Yn)nez., in L(G)®R such
that nh_}rglo llynll2 = 0. Moreover, £L(G)®R has no nontrivial hypercentral

sequences, that is, any hypercentral sequence in £(G)®R has the form
(M - Dnezoy + (Un)nezo, for a sequence (Ap)nez., in C and a sequence
(Yn)nez-o in L(G)®R such that 711520 lynll2 = 0.

Using the Connes exact sequence in (2.2), we now compute the Connes in-
variant of 7j. The argument follows Section 5 in [52], with suitable changes.
We reproduce it here for the convenience of the reader.

Proposition 5.4. Let ¢ be an odd prime and let T, = (N;®Ry) x5 Zq be
the II; factor defined in (5.4). Then x(7;) = Z,. Moreover, the unique

subgroup of order ¢ in x(7}) is the image of the action o: Z] — Aut(T)
obtained as the dual action on T, = (N,®@Ry) X5 Z,.
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Proof. Denote by [F, the free group on g generators. For the first part of the
proof, we use the facts and notation in the discussion after Lemma By
abuse of notation, we write Z, for the image of Z, in Aut(N,®Ry) under 7.
Since Ny =2 L(Fy*Z) is full by Lemma 3.2 in [52] and & ¢ Inn(N,), Corollary
3.3 in [9] implies that Z, N Inn(N,®Rp) = {1}. Moreover, by Remark
the II; factor N,®Rp has no nontrivial hypercentral sequences.

To compute the Connes invariant of T,, we first compute the subgroups
K+ and L introduced after Remark [2.8]

By Remark any central sequence in N,® Ry has the form (10xy, )nez.,+
(Yn)nez~, for a central sequence (2, )nez., in Ro and a sequence (yn)nez-,
in N;®Rp such that lim ||y,|l2 = 0. Since the trace on N,®Ry is unique, it

n—oo
is y-invariant, so also lim ||7(yn)|l2 = 0. Therefore 7 € Ct(N,®Ry) if and
n—,oo
only if 3 € Ct(Rp). Since Ct(Rp) = Inn(Rp) by Theorem 3.2(1) in [10], and
B is outer, it follows that K = Z, N Ct(N,®@Ry) is trivial. Thus K+ = Z,.

We next compute L. Using the notation of Lemma we have Ry =
{g,u0,u1,ug,...}" and f = Ad(u_1). Let &: Aut(N,®Ry) — Out(N,®Ry)
denote the quotient map. We claim that L = Z, and that a generator of L
is given by B

i = £(id @ [Ad(u)  B)).

We prove the claim. Using (¢ ® 8)(w) = w (by Lemma[4.8|[2)) at the first
step,

7 o (id® [Ad(ug) 0 B]) = Ad(w*) o (@t @ 1) o (id @ [Ad(ug) o B])

= Ad(w*(1®@u)) o (@ ! ®id).
By Remark this automorphism is in Ct(N,®Ry), so that

id ® [Ad(ug) o ] € Zq V Ct(Ny®RRy).

For n € Z~( define y,, = upujuguj - - - ug,, which is a unitary in Ry. Using

Lemma and , we get Yngy; = e?™/4g. Using Lemma and @,

we get,
6*2”i/q2uk k=0
Uk k=1,2,...,2n—1
Ynuryy = 4 €27y, k=2n
6_2”/‘12% k=2n+1
U, k=2n+2,2n+3,....

\

(The calculation for k = 1,2, ..., 2n—1 depends on the parity of k.) Compar-

ing these formulas with Lemma we see that lim y,zy, = (z) forallz €
n—oo

{g,u0,u1,ug, ...}, and hence for all z € B,. Therefore lim [|Ad(y,)(z) — B(x)[2 =0
n—oo

for all x € Ry. Also, Lemma and 1} imply B(y,) = e 27/ qun for
n € Zso. Set zp, = ujy,. Then

id ® [Ad(uf) o B] = li_>rn Ad(1 ® zy) and B(zn) = zn.
It follows (recalling H from (2.1))) that
id ® [Ad(ud) o B] € (Zy v Ct(N,@Ro)) N H.
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So u=¢(id ® [Ad(ug) o B]) € L.

To finish the proof of the claim, since p has order ¢, we show that p
generates L. Given an automorphism ¢ € (Z, V Ct(N,®Rp)) N H, there
exists k € {0,1,...,q — 1} such that ¢ o 5* is centrally trivial. By the same
argument as used to prove Proposition 3.6 in [52], there are v € Aut(NN,)
and a unitary z € N,® Ry such that ¢ o 5% = Ad(z) o (v ® id). Thus, with
r = 2(v ®id)((w*)*), we have
¢ =Ad(z)o (v®id) o Ad(w*) o (@ *®BF) = Ad(z)o (voa " @B ).
Since ¢ € H C Inn(N,®Rp) and Ny is full, Corollary 3.3 in [9] implies that
voa * e Inn(Ny), so that voa ~* = Ad(c) for some unitary ¢ € N,. Thus
¢ =Ad(z(c®1))o (id® B F) differs from a power of id ® [Ad(ug) o 8] only
by an inner automorphism. This concludes the proof of the claim.

Next consider the Connes short exact sequence :

1 —z, -5 1) 5z, — {1}

Taking p = £(id®@[Ad(ug)o/]), let n € Ct(T,)NInn(
defined in . Since the only possibilities for x/(
to complete the proof it is enough to show that £(n
that is, n? ¢ Inn(7,).

By Lemma and , we have

(@® B)(1® (uf)’g) = ™11 @ (u)g).

Lemma gives Ad(w)(1® (u§)?g) = 1® (uj)?g. Hence, ¥(1® (uf)lg) =
/(1 ® (uf)9g). Let y be the standard unitary (of order ¢) implementing
the generating automorphism Ad(w) o (&@ ,3) of the action 7 in the crossed

product Ty = (Ng®Ry) X5 Zq, so that Ad(w) o (@ ® B) = Ad(y). Then
Ad(1® (ug)7g)(y) = e~y

Recall from Lemma [4.7 E and (1) that B(uo) = e 2/7yy (which implies
that B commutes with Ad(u$)) and B? = Ad(g). For ag,a1,...,0q—1 €
Ny®Ry, it follows that

q—1 qg—1 q—1
n’ (Z akyk) > (1@ [Ad(ug)? o B (ar)y" = D (1 © Ad((ug)?g))(ar)y"”

S

) be the automorphism
) are Zy and Zg © Zyg,
does not have order q,

S S

k=0 k=0 k=0

= Ad(1 ® (up)? (Z 47”k/qay>.

Since q is odd, we conclude that, up to an inner automorphism, 79 is the dual
action at a nontrivial element of the dual group. Therefore n? is outer. [

Using the Connes invariant, we can now show that the C*-algebra D is
not isomorphic to its opposite algebra whenever ¢ is an odd prime such that
—1 is not a square mod q.

Proposition 5.5. Let ¢ be any odd prime such that —1 is not a square
mod ¢. Let D, = Cy % Z, be the C*-algebra of Definition Let 7
be the unique tracial state on D, (Proposition [4.10), and let mr be the
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Gelfand-Naimark-Segal representation associated to 7. Then the von Neu-
mann algebra m,(D;)" is not isomorphic to its opposite algebra.

Proof. We claim that T, = m.(D,)”. Let o be the unique tracial state
on A, (Remark , and let w be the unique tracial state on the UHF
algebra B,. We have an obvious map C;, = A, ® B, — N,®Ry which
intertwines v and 7. Lemmal5.2|shows that this map induces an isomorphism
Toaw(Cq)” = Ny®Ry. Since the group is finite, taking crossed products
by Z4 gives an isomorphism T, = 7-(D,)", as claimed.

To show that Tj, is not isomorphic to its opposite algebra, we give a recipe
which starts with a factor P, just given as a factor of type II; with certain
properties (see , , , and below), and produces a subset S,(P) of
Zg, which we identify with {0,1,...,¢—1}. The important point is that this
recipe does not depend on knowing any particular element, automorphism,
etc. of P. That is, if we start with some other factor of type II; which is
isomorphic to P, then we get the same subset of {0, 1,...,q— 1}, regardless
of the choice of isomorphism. When —1 is not a square mod ¢, we will show
that the recipe also applies to P°P and gives a different subset, from which
it will follow that 75" % T,,.

We describe the construction first, postponing the proofs that the steps
can be carried out and the result is independent of the choices made. Let P
be a factor of type II; with separable predual. Let x(P) denote the Connes
invariant of P as in Definition [2.7] and assume that P satisfies the following
properties:

(1) x(P) = Zg.

(2) The unique subgroup of x(P) of order ¢ is the image of a subgroup
(not necessarily unique) of Aut(P) isomorphic to Zj.

(3) Let p: Zy — Aut(P) come from a choice of the subgroup and iso-

morphism in . Form the crossed product P x,Zg, and let p: Z] —
Aut(P x,Zg4) be the dual action. Then for every nontrivial element

P

l € Zg, the automorphism p; € Aut(P x, Z,) has a factorization
(o1, in which ¢ is an approximately inner automorphism and ¢ is
a centrally trivial automorphisrrl.\

(4) For any nontrivial element [ € Z, and any factorization p; = p o
as in , there is a unitary z € P x, Z, such that ¢ = Ad(z), and
there is k € {0,1,...,q — 1} such that ¢(z) = >/ (See the
obstruction to lifting of Definition [2.9])

For a type II; factor P which satisfies , , , and , we take Sy (P)
to be the set of all values of k € {0,1,...,q— 1} which appear in for any
choice of the action p: Z; — Aut(P), any nontrivial element [ € Z;, and
any choice of the factorization p; = ¢ o1 as in . We think of S,(P) as a
subset of Z, in the obvious way.

We claim that the crossed product P %, Z4 is uniquely determined up to

isomorphism and the dual action p: Z; — Aut(P X, Zg) is uniquely deter-
mined up to conjugacy and automorphisms of Z,. There are two ambiguities
in the choice of p. If we change the isomorphism of Z, with the subgroup of
X(P) of order ¢, we are modifying p by an automorphism of Z,. The crossed
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product M X, Z4 is the same, and the dual action is modified by the cor-

responding automorphism of z;. Now suppose that we fix an isomorphism
of Zq with the subgroup of x(P) of order ¢, but choose a different lift p to
a homomorphism Z, — Aut(P). Then Lemma implies that the crossed
products are isomorphic and the dual actions are conjugate. This proves
the claim.

Since if the dual action changes by conjugation by an automorphism, the
automorphisms in the decomposition of (3)) also change by conjugation by an
automorphism, and the obstruction to lifting is unchanged by conjugation, it
follows that changing the dual action by conjugation leaves S, (P) invariant.
This shows that S,(P) can be computed by fixing a particular choice of
p: Lq — Aut(P).

Next we check that if P satisfies , , , and , then so does P°P.
For this purpose, we use the von Neumann algebra P¢ described in Defini-
tion which is isomorphic to P°P by Remark Scalar multiplication
enters in the definition of S,(P) in only two places. The first is the defini-

tion of the dual action p: Z; — Aut(P x,Z,). However, the change is easily

undone by applying the automorphism [ +— —[ of Z,. The other place is in
the definition of the obstruction to lifting. So P¢ satisfies the conditions (1),

, , and , and we get
(5.5) Sq(P¢) ={—l:1€ 54P)},

where we are treating S,(-) as a subset of Z,.
In the rest of the proof, we show that the II; factor T;, = (N,®Rp) X5 Zq
satisfies , , , and , and that moreover S,(7;) can be computed

using, for each nontrivial element [ € Z, just one choice of the factorization
P = o1 in and one choice of the unitary z in . We then finish by
computing S, (7).

By Proposition we have x(Ty) = Zg,

qc
order ¢ in x(7}) is the image of the action o: Z; — Aut(T}) obtained as the
dual action on T, = (N,®Ry) x5 Zq. Thus, there exists at least one choice

and the unique subgroup of

for p, namely o composed with some isomorphism Z, — Z;. Therefore T},
satisfies property .

By Takesaki’s duality theory (see Theorem 4.5 of [48]), with A\(g) denoting
the left regular representation of Z, on 1?(Z,), there is an isomorphism

Ty Xy Zg = (Ng®Ro) ® B(lz(Zq))

which identifies g — p, with the tensor product g — 7, ® Ad(A(g)*).

Now let [ € z;. We claim that p; can be written as ¢ ot for an ap-
proximately inner automorphism ¢ and a centrally trivial automorphism ),
and that this factorization is unique up to inner automorphisms. This will
imply property . We first consider uniqueness, which is equivalent to
showing that every automorphism which is both approximately inner and
centrally trivial is in fact inner. Since N, is full by Lemma 3.2 n [52], the
decomposition described in the proof of Lemma 3.6 of [52] can be used to
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show that every automorphism of N,®Ry which is both approximately in-
ner and centrally trivial is in fact inner. Uniqueness now follows because
(N,Ro) ® B(A(Z,)) = N,BRo.

For existence, since the approximately inner automorphisms are a normal
subgroup of Aut (Tq Xp Zq), it suffices to take [ to be the standard generator

of Zq. Equivalently, consider ¥ ® Ad(A(1)*). We will take
p = (Ad(w)O(lqu ®B))®Ad()\(1)*) and 1/) = (a@idRo)@)idB(p(Zq)).

It is clear that ¥ ® Ad(A(1)*) = ¢ o1. The automorphism ¢ is approxi-
mately inner because, by construction, 3 is approximately inner. (In fact,
by Theorem XIV.2.16 of [49], every automorphism of R is approximately
inner.) To see that ¢ is centrally trivial, we observe that by Remark
every central sequence in N;®Ry has the form (1 ® ,)0%; + (yn)5e; for a
central sequence (z,,)52; in Ry and a sequence ()52, in Ny®Ry such that
nlgrolo lynll2 = 0. Since the trace on N,®Ry is unique, it is ¢-invariant, so
also nl;rlgo | (yn)|l2 = 0, which implies that 1) is centrally trivial. This proves
the claim.

The obstruction to lifting for ¢ (as in property ) is independent of the
choice of the unitary z implementing ¥9 because T, NUZ is a factor. By the
proof of Proposition 1.4 of [10] it is unchanged if ¢ is replaced by Ad(y)o for
any unitary y € Ty X, Z]. The centrally trivial factor in the decomposition
of any automorphism of Tj, X, Zp in particular, of (F ® Ad(A(1)*))!, is
determined up to inner automorphisms. Since, moreover, ¢ and ¢ commute
up to an inner automorphism, it follows that we can compute S, (T}) by

simply computing the obstructions to lifting for all powers 9! for a fixed
choice of v and for I =1,2,...,q — 1. We can take

¥ = (@®idg,) ®idp@2(z,)),

for which 2z = v ® 1 ® 1 has already been shown to be a unitary with

Y? = Ad(z) and ¢(z) = e ?™/9z. Now one uses Equations (5.1)), (5.2)),
and (5.3)) to check that

(pH? = Ad(2h) and  l(zh) = e 2/,

Therefore (identifying {0,1,...,¢ — 1} with Z, in the usual way)

Sq(Ty) = { = P: 1€ 2\ {0}}.
As observed in Equation (5.5) above, S;(T3") is then given by

Sq(TP) = {1?: 1 € Zg \ {0} }.
If ¢ is an odd prime such that —1 is not a square mod ¢, we have S, (T3%) #
S,(T,), whence Ty® % T,.

6. C*-ALGEBRAS NOT ISOMORPHIC TO THEIR OPPOSITE ALGEBRAS

We use the results of Section [5] to produce a number of examples of sim-
ple exact C*-algebras not isomorphic to their opposite algebras and which
satisfy the Universal Coeflicient Theorem.
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Lemma 6.1. Let A and B be unital C*-algebras and assume that B has
a unique tracial state 7. Then the map ¢ — o ® 7 is an affine weak™

homeomorphism from the tracial state space T(A) of A to the tracial state
space T(A® B) of A® B.

We can’t use Proposition 6.12 in [I1], because (see Proposition 2.7 in [11])
it assumes that T(A) is finite dimensional.

Proof. 1t is easy to check that the map ¢ — o ®7 is injective, by considering
(c@71)(a®1) for a € A.

We prove surjectivity. Let p be a tracial state on A ® B. Define a tracial
state o on A by o(a) = p(a® 1) for a € A. We claim that o @ 7 = p. It
suffices to verify equality on a @ b for a € Ay and b € B. So let a € A,.
Define a tracial positive linear functional v,: B — C by v,4(b) = p(a®b) for
b € B. By uniqueness of 7, there is A(a) > 0 such that v, = A(a)7. Then

AMa) =va(1) = pla® 1) = o(a).
Thus for all b € B, we have
(0 ®@7)(a®b) = Ma)T(b) = va(b) = pla ®b).

This completes the proof of surjectivity, and shows that the inverse map is
given by p = plagiy.

It is obvious that p — p|agi, is affine and is continuous for the weak*
topologies. Since both tracial state spaces are compact and Hausdorff, it
follows that o — o ® 7 is an affine homeomorphism. O

Proposition 6.2. Let ¢ be any odd prime such that —1 is not a square
mod ¢g. Let D, be the C*-algebra of Definition Let E be a simple
separable unital nuclear stably finite C*-algebra. Then F ® Dy is exact and
E® Dy % (E® Dg)P.

Proof. Exactness follows from Proposition 7.1(iii) of [34].
Let 7 be the unique tracial state on D, (Proposition 4.10). Let R be the
hyperfinite II; factor. We claim that

(6.1) R&m.(Dy)" = 1.(D,)".

To prove the claim, let w be the unique tracial state on B,. By Proposi-
tion there is an isomorphism ¢: Dy — B, ® D,. Since (W® 7)o ¢ is a
tracial state on D,, we have (w ® 7) o ¢ = 7. Therefore T,g,(By ® Dy)" =
7+ (Dg)”. Since mygr(Bg ® Dg)" = 7y (Bg)"®@m,(Dg)” by Lemma and
Tw(Bg)"” = R, the claim follows.

We now claim that we may assume that £ ® B, = E. Indeed, B, ® D, =
D, by Proposition so that (F ® By) ® Dy = E® D,. Accordingly, we
may assume that E is infinite dimensional. By Corollary 9.14 of [23], there
is a tracial state on E. So the Krein-Milman Theorem provides an extreme
tracial state on F.

For any extreme tracial state o on E, we have

(6.2) mo(E)" = R.
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Using Lemma at the first step, (6.2) at the second step, and (6.1)) at the
third step, we then get

(6.3)  Toar(E® D) = 1,(E)' @, (D,)" = Rom, (D) = m,(D,)".

Now suppose that there is an isomorphism 9: (F ® Dy)°® — E ® D,.
Let o be any extreme tracial state on E. It follows from Lemma that
o ® T is an extreme tracial state on £ ® D,. Therefore (o ® 7) o9 is an
extreme tracial state on (E ® D,)°P = E°P? ® Dg". Lemma|6.1{now provides
an extreme tracial state p on E°P such that (0 ® 7)o = p® 7°P. The state
p°P is clearly extreme. Using at the first step, Lemma at the fourth
step, Lemma at the fifth step, and with p°P in place of o at the
sixth step, we therefore get

mr(Dg)" 2= Toar (E @ Dg)" 2 (oar)op(E @ Dg)™)"
= Tperor (B ® Dg)P)" = [Tporgr (B ® Dg)"]
= [mpon (E)"@m7(Dg)"|°P 22 [1-(Dg)"] .
This contradicts Proposition O

We use Proposition [6.2] to give many examples of simple separable exact
C*-algebras not isomorphic to their opposite algebras. Many other varia-
tions are possible. The ones we give are chosen to demonstrate the pos-
sibilities of nontrivial K7, of Ky being the same as that of many different
UHF algebras, of real rank one rather than zero, and of having many tracial
states.

Theorem 6.3. Let ¢ be an odd prime such that —1 is not a square mod gq.
Then there exists a simple separable unital exact C*-algebra A not iso-
morphic to its opposite algebra which is approximately divisible and stably
finite, has stable rank one, tensorially absorbs the ¢°° UHF algebra and the
Jiang-Su algebra, and has the property that traces determine the order on
projections over A. In addition, A has the following properties:

(1) Ko(A) = Z[;] with [14] = 1 and Ko(A)+ — Z[¢] N[0, 00).

(2) Ki(A) =0.
(3) W(A) =Z[1], 11(0,00).
(4) A has real rank zero.
(5) A has a unique tracial state.
(6) A satisfies the Universal Coefficient Theorem.

Proof. Take A to be the C*-algebra D, of Definition Then A % A°P by
Proposition (or equivalently by Proposition with £ = C). All the
other properties follow from Proposition and Proposition [4.11 (|

Theorem 6.4. Let ¢ be an odd prime such that —1 is not a square mod gq.
Let B be any UHF algebra whose “supernatural number” is divisible by
arbitrarily large powers of q. Then there exists a C*-algebra A as in Theo-
rem except that (1)) and (3] are replaced by:

(1) Ky(A) = KO(B) as a scaled ordered group.
(3) W(A) = Ko(B), 11 (0, 50).
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Proof. Let Dy be as in Definition Take A = B® D,. Then exactness of
Aand A 2¢ A follows from Proposition[6.2] Since Dy satisfies the Universal
Coefficient Theorem, and B belongs to the nuclear bootstrap category, A
satisfies the Universal Coefficient Theorem.

The condition on B implies that Ky(B) ®z Z[%} =~ Ko(B). Moreover,
Tor%(K*(B), Z[%]) is clearly zero. Since B is in the bootstrap class, the
Kiinneth formula of [46] gives Ko(A) = Ko(B) and K;(A) = 0.

It is obvious that A is separable and unital. Simplicity of A follows from
simplicity of B and D, and nuclearity of B, by the corollary on page 117
in [47]. (We warn that this reference systematically refers to tensor prod-
ucts as “direct products”.) Since D, has a unique tracial state (by Proposi-
tion , Lemma implies that A has a unique tracial state. Combined
with simplicity, this gives stable finiteness. The algebra A absorbs both
the UHF algebra B, and Z because D, does (by Proposition . Since
A is stably finite, B, is a UHF algebra, and B, ® A = A, Corollary 6.6
of [42] implies that tsr(A) = 1. The algebra D, is approximately divisible
by Proposition So A = B ® D, is approximately divisible. Since A is
simple, approximately divisible, exact, and has a unique tracial state, it has
real rank zero by Theorem 1.4(f) of [2]. It follows from Proposition 2.6 of [39]
that the order on projections over A is determined by traces. The compu-
tation of W (A) follows from the computation of K(A) above, Z ® A = A,
and Remark 2.13] O

Theorem 6.5. Let g be an odd prime such that —1 is not a square mod gq.
Let G be any countable abelian group. Then there exists a C*-algebra A as
in Theorem except that is replaced by:

(2) Ki(A) =Gl

Proof. Choose, using Theorem 4.20 of [14], a simple unital AH algebra E
with a unique tracial state, such that Ko(E) = Z[1], with [1g] — 1, and
such that K(E) = G. Let D, be as in Definition Take A = E® D,.
Using F in place of B, proceed as in the proof of Theorem The only
difference is in the computation of K,(A). We have

Ro) 2 23] 2 2[2) o 203] 22,

and
Tor} (Ko(E), Z[1]) =0  and  Tor?(K:1(E), Z[1]) = 0.
So the Kiinneth formula of [46] implies that K,(A) is as claimed. O

Theorem 6.6. Let g be an odd prime such that —1 is not a square mod gq.
Let A be any Choquet simplex with more than one point. Then there exists
a C*-algebra A asin T heorem except that , , and are replaced
by:

(3) W(A) =Z[1], TILAff,(A) 4.

(4) A has real rank one.

(5) T(A) =2 A.
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Proof. Using Theorem 3.9 of [50], choose a simple unital Al algebra E such
that Ko(E) = Z[;], with [15] = 1, and T(E) = A. Let Dy be as in
Definition Take A = E ® Dy. Using E in place of B, proceed as in
the proof of Theorem (6.4, The differences are as follows. Here, since D,
has a unique tracial state (by Proposition , Lemma gives an affine
homeomorphism from T(E) = A to T(A). The computation of W (A) is
as before, but the answer is different because T(A) = A instead of being a
point. Since there is only one state on the scaled ordered group Ky(A), all
tracial states must agree on all projections in A. Since A has more than
one point, the projections in A do not distinguish the tracial states. So A
does not have real rank zero by Theorem 1.4(e) in [2] and Theorem 5.11
in [22]. However, we still get tsr(A4) = 1, so A has real rank at most 1 by
Proposition 1.2 of [3]. O

Remark 6.7. Each of Theorem Theorem and Theorem (sepa-
rately) gives uncountably many mutually nonisomorphic C*-algebras satis-
fying the Universal Coefficient Theorem.

7. OPEN QUESTIONS

Question 7.1. Let ¢ be an odd prime such that —1 is a square mod ¢q. Is
is still true that Dy, as in Definition is not isomorphic to its opposite
algebra?

The invariant we use, the obstruction to lifting, no longer distinguishes
D, and (D,)°P, but this does not mean that they are isomorphic.

Even if D, = (D,)°?, different methods might give a positive answer to
the following question.

Question 7.2. Let ¢ be an odd prime such that —1 is a square mod q. Does
there exist a simple separable unital exact stably finite C*-algebra A not

isomorphic to its opposite algebra such that Ky(A) = Z[%] and K;(A) =07

Of course, we would really like to get all the other properties in The-

orem [6.3] as well, in particular, unique tracial state, real rank zero, and
B,® A= A

Question 7.3. Does there exist a simple separable unital exact stably finite
C*-algebra A not isomorphic to its opposite algebra such that Ky(A) = Z,
with [14] — 1, and K;(A) =07

Such an algebra would have no nontrivial projections.

Question 7.4. Does there exist a simple separable unital purely infinite
C*-algebra A not isomorphic to its opposite algebra?

Question 7.5. Does there exist a simple separable unital nuclear C*-algebra
A not isomorphic to its opposite algebra?

Under an additional axiom of set theory, nonseparable examples are known
[17]. By classification, a separable example can’t both absorb the Jiang-Su
algebra tensorially and satisfy the Universal Coefficient Theorem.



OPPOSITE ALGEBRAS 35

ACKNOWLEDGMENTS

Some of this work was carried out during a summer school held at the
CRM in Bellaterra, during a visit to the Fields Institute in Toronto, and
during a visit by the second author to the University of Oregon. Both
authors are grateful to the CRM and the Fields Institute for their hospitality.
The second author would also like to thank the University of Oregon for its

hospitality.
REFERENCES

[1] D. Avitzour, Free products of C*-algebras, Trans. Amer. Math. Soc. 271 (1982),
423-435.

[2] B. Blackadar, A. Kumjian, and M. Rgrdam, Approzimately central matriz units and
the structure of non-commutative tori, K-Theory 6 (1992), 267-284.

[3] L. G. Brown and G. K. Pedersen, C'*-algebras of real rank zero, J. Funct. Anal. 99
(1991), 131-149.

[4] N. P. Brown, F. Perera, and A. S. Toms, The Cuntz semigroup, the Elliott conjecture,
and dimension functions on C*-algebras, J. Reine Angew. Math. 621 (2008), 191-211.

[5] J. Castillejos, S. Evington, A. Tikuisis, S. White, and W. Winter, Nuclear dimension
of simple C*-algebras, Invent. Math. 224 (2021), 245-290.

[6] A. Connes, Almost periodic states and factors of type 1111, J. Funct. Anal. 16 (1974),
415-445.

[7] A. Connes, Sur la classification des facteurs de type II, C. R. Acad. Sci. Paris Sér. A
281 (1975), 13-15.

[8] A. Connes, A factor not anti-isomorphic to itself, Ann. Math. (2) 101 (1975), 536—
554.

[9] A. Connes, Classification of injective factors: CasesII1, Ilo, III5, A # 1, Ann. Math.
(2) 104 (1976), 73-115.

[10] A. Connes, Periodic automorphisms of the hyperfinite factor of type 111, Acta Sci.
Math. (Szeged) 39 (1977), 39-66.

[11] J. Cuntz and G. K. Pedersen, Equivalence and traces on C*-algebras, J. Funct. Anal.
33 (1979), 135-164.

[12] K. Dykema, Ezactness of reduced amalgamated free product C*-algebras, Forum Math.
16 (2004), 161-180.

[13] K. J. Dykema and M. G. Viola Non-outer conjugate Z,2-actions on free product
factors, J. Operator Theory 57 (2007), 267-301.

[14] G. A. Elliott and G. Gong, On the classification of C*-algebras of real rank zero, 11,
Ann. Math. (2) 144 (1996), 497-610.

[15] G. A. Elliott, G. Gong, H. Lin, and Z. Niu, On the classification of simple amenable
C*-algebras with finite decomposition rank, II, preprint (arXiv: 1507.034379v3
[math.OA]).

[16] D. E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras, Ox-
ford Mathematical Monographs. Oxford Science Publications. The Clarendon Press,
Oxford University Press, New York, 1998.

[17] I. Farah and I Hirshberg, Simple nuclear C*-algebras not isomorphic to their oppo-
sites, Proc. Natl. Acad. Sci. USA 114 (2017), 6244-6249.

[18] E. Gardella, Crossed products by compact group actions with the Rokhlin property, J.
Noncommutative Geom. 11 (2017), 1593-1626.

[19] E. Gardella. Equivariant KK-theory and the continuous Rokhlin property, preprint
(arXiv:1406.1208v3 [math.OA]).

[20] E. Gardella, I. Hirshberg, and L. Santiago, Rokhlin dimension: duality, tracial prop-
erties, and crossed products, Ergodic Th. Dynam. Syst. 41 (2021), 408-460.

[21] E. Germain, KK-theory of reduced free product C*-algebras, Duke Math. J. 82 (1996),

707-723.



36
22]
23]
24]
[25]
[26]
27]
(28]
29]

(30]
(31]

32]
(33]
34]
(35]
(36]

37]
(38]

(39]

[40]

41]
[42]
(43]
(44]
[45]
[46]
(47]
(48]

(49]
[50]

N. CHRISTOPHER PHILLIPS AND MARIA GRAZIA VIOLA

U. Haagerup, Quasitraces on exact C*-algebras are traces, C. R. Math. Rep. Acad.
Sci. Canada 36 (2014), 67-92.

U. Haagerup and S. Thorbjgrnsen, Random matrices and K-theory for exact C*-
algebras, Documenta Math. 4 (1999), 341-450 (electronic).

K. Hasegawa, K K -equivalences for amalgamated free product C*-algebras, Int. Math.
Res.. Not. 2016 (2016), 7619-7636.

I. Hirshberg and W. Winter, Rokhlin actions and self-absorbing C*-algebras, Pacific
J. Math. 233 (2007), 125-143.

T. Houghton-Larsen and K. Thomsen, Universal (co) homology theories, K-theory
16 (1999), 1-27.

M. Izumi, Finite group actions on C*-algebras with the Rokhlin Property, I Duke
Math. J. 122 (2004), 233-280.

M. Izumi, Finite group actions on C*-algebras with the Rohlin property. II, Adv.
Math. 184 (2004), 119-160.

X. Jiang and H. Su, On a simple unital projectionless C*-algebra, Amer. J. Math.
121 (1999), 359-413.

V. F. R. Jones, Notes on the Connes invariant x(M ), unpublished notes.

V. F. R. Jones, A II; factor anti-isomorphic to itself but without involutory antiau-
tomorphism, Math. Scand. 46 (1980), 103-117.

R. V. Kadison and J R. Ringrose, Fundamentals of the Theory of Operator Algebras,
Vol. II. Advanced theory, Graduate Studies in Mathematics, 16, American Mathe-
matical Society, Providence, RI, 1997.

R. R. Kallman, 4 generalization of free action, Duke Math. J. 36 (1969), 781-789.
E. Kirchberg, Commutants of unitaries in UHF algebras and functorial properties of
exactness, J. reine angew. Math. 452 (1994), 39-77.

E. Kirchberg and N. C. Phillips, Embedding of exact C*-algebras in the Cuntz algebra
O, J. reine angew. Math. 525 (2000), 17-53.

A. Kishimoto, Outer automorphisms and reduced crossed products of simple C*-
algebras, Commun. Math. Phys. 81 (1981), 429-435.

H. Lin, Tracially AF C*-algebras, Trans. Amer. Math. Soc. 353 (2001), 693-722.

H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin
property, Math Z. 270 (2012), 19-42.

N. C. Phillips and M. G. Viola, A simple separable exact C*-algebra not anti-
isomorphic to itself, Math. Ann. 355 (2013), 783-799.

F. Radulescu, An invariant for subfactors in the von Neumann algebra of a free
group, pages 213-239 in: Free probability theory (Waterloo, ON, 1995), Fields Inst.
Commun. vol. 12, Amer. Math. Soc., Providence, RI, 1997.

M. Rgrdam, The stable and the real rank of Z-absorbing C*-algebras, Internat. J.
Math. 15 (2004), 1065-1084.

M. Rgrdam, On the structure of simple C*-algebras tensored with a UHF-algebra,
J. Funct. Anal. 100 (1991), 1-17.

M. Rgrdam, A short proof of Elliott’s Theorem: Oz ® Oz =2 Oy, C. R. Math. Rep.
Acad. Sci. Canada 16 (1994), 31-36.

J. Rosenberg, Appendix to O. Bratteli’s paper on “Crossed products of UHF algebras”,
Duke Math. J. 46 (1979), 25-26.

J. Rosenberg and C. Schochet, The Kiinneth theorem and the Universal Coefficient
Theorem for Kasparov’s generalized K-functor, Duke Math. J. 55 (1987), 431-474.
C. Schochet, Topological methods for C*-algebras II: geometric resolutions and the
Kinneth formula, Pacific J. Math. 98 (1982), 443-458.

M. Takesaki, On the cross-norm of the direct product of C*-algebras, T6hoku Math.
J. (2) 16 (1964), 111-122.

M. Takesaki, Duality for crossed products and the structure of von Neumann algebras
of type III, Acta Math. 18 (1973), 249-310.

M. Takesaki, Theory of Operator Algebras III, Springer-Verlag, Berlin, etc., 2003.
K. Thomsen, Inductive limits of interval algebras: The tracial state space, Amer. J.
Math. 116 (1998), 605-620.



OPPOSITE ALGEBRAS 37

[61] K. Thomsen, On the KK -theory and the E-theory of amalgamated free products of
C*-algebras, J. Funct. Anal. 201 (2003), 30-56.

[62] M. G. Viola, On a subfactor construction of a factor non-antiisomorphic to itself,
Internat. J. Math. 15 (2004), 833-854.

[63] S. Wassermann, Tensor products of *-automorphisms of C*-algebras, Bull. London
Math. Soc. 7 (1975), 65-70.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE OR 97403-1222,
USA

DEPARTMENT OF MATHEMATICAL SCIENCES, LAKEHEAD UNIVERSITY, 500 UNIVERSITY
AVENUE, ORILLIA ON L3V 0B9, CANADA
E-mail address: mviola@lakeheadu.ca



	1. Introduction
	2. Preliminaries
	3. The continuous Rokhlin property and the Universal Coefficient Theorem
	4. The construction
	5. The main step
	6. C*-algebras not isomorphic to their opposite algebras
	7. Open questions
	Acknowledgments
	References

