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Abstract—The accurate prediction and estimation of annual
snow accumulation has grown in importance as we deal with the
effects of climate change and the increase of global atmospheric
temperatures. Airborne radar sensors, such as the Snow Radar,
are able to measure accumulation rate patterns at a large-scale
and monitor the effects of ongoing climate change on Greenland’s
precipitation and run-off. The Snow Radar’s use of an ultra-
wide bandwidth enables a fine vertical resolution that helps
in capturing internal ice layers. Given the amount of snow
accumulation in previous years using the radar data, in this
paper, we propose a machine learning model based on recurrent
graph convolutional networks to predict the snow accumulation
in recent consecutive years at a certain location. We found
that the model performs better and with more consistency than
equivalent nongeometric and nontemporal models.

Index Terms—deep learning, graph neural networks, ice thick-
ness, remote sensing

I. INTRODUCTION

As global atmospheric temperatures increase over time,
the accurate prediction of annual snow accumulation and
internal layers of ice sheets grows in importance. Tracking and
forecasting these internal ice sheet layers is important for cal-
culating snow mass balance, extrapolating ice age from direct
measurements of the subsurface, and inferring otherwise diffi-
cult to observe ice dynamic processes. Precise understanding
of the spatiotemporal variability of snow accumulation in the
Greenland ice sheet is important to reducing the uncertainties
in current climate model predictions and future sea level rise.

Measurements about the mass balance of ice sheets are
traditionally collected by drilling ice cores and shallow pits.
However, it is challenging to capture catchment-wide accu-
mulation rates due to inherent sparsity, access difficulty, and
high cost. Attempts to interpolate in-situ measurements further
introduce uncertainties due to the high variability in local
accumulation rate.

Airborne measurements collected over Greenland using
nadir-looking radar sensors is one of the complementing
methods of mapping topography and monitoring accumulation
rates with a broad spatial coverage that has the advantage of
revealing isochronous ice layers beneath the ice surface. Sub-
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surface ice layers that appear in snow radar echograms unveil
historic annual and multi-annual snow accumulation. Snow
Radar [1] provides a spatiotemporal accumulation map that
can help in quantifying the impact of atmospheric warming
on polar ice caps and project its contribution to future sea
level rise.

A large amount of airborne radar data from polar regions has
been collected over the past few decades. However, the com-
plexity, scale, and heterogeneity of the data has necessitated
advanced automatic solutions. In recent years, several deep
learning approaches [2]-[10] based on convolutional neural
networks (CNNs) have been proposed to track the internal
layers of ice sheets and calculate historic snow accumulation.
Snow Radar data, even after post-processing, contains a sig-
nificant amount of noise. In addition to being very sensitive
to noise, CNNs cannot be used for spatiotemporal tasks, such
as predicting snow accumulation of the future years based on
data from the past years.

Recent studies involving graph convolutional networks
(GCNs) [11] have shown promise in spatiotemporal tasks such
as traffic forecasting [12] [13] [14], wind speed forecasting
[15], and power outage prediction [16]. In this paper, we pro-
pose a geometric deep learning model that uses a supervised
multi-target long short-term memory graph convolutional net-
work (GCN-LSTM) [17] to predict the thickness of multiple
shallow ice layers at specific coordinates given the thicknesses
of multiple deep ice layers.

We focus on the Snow Radar [1] dataset collected by the
Center for Remote Sensing of Ice Sheets (CReSIS) as part of
NASA’s Operation IceBridge. The Snow Radar operates from
2-8 GHz and is able to track deep layers of ice with a high
resolution over wide areas of an ice sheet. The sensor produces
a two-dimensional grayscale profile of historic snow accumu-
lation over consecutive years (see the left image in Figure 1),
where the horizontal axis represents the along-track direction,
and the vertical axis represents layer depth. Pixel brightness
is directly proportional to the strength of the returning signal.
Pixels representing surface layers are generally brighter and
more well-defined due to high reflectance and snow density
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Fig. 1. Snow radar echogram (left) and its corresponding binary ground-truth
labelling (right) showing layers of the Greenland ice sheet and their respective
years.

variation, while pixels representing deeper layers are generally
darker and noisier due to increased density and a lower return-
signal strength. In our experiments, we use radar data from
selected Snow Radar flights over Greenland in the year 2012.
In many areas, each ice layer represents an annual isochrone
[18]. As such, we may refer to specific ice layers by their
corresponding year (see Figure 1).

In our experiments, we convert internal ice layer thickness
information in radar images into sequences of temporal graphs
to be used as input to our model. More specifically, we convert
ten deep ice layers (corresponding to annual snowfall from
1997 to 2006, respectively) into ten spatiotemporal graphs.
Our model then performs multi-target regression to predict the
thicknesses of the five shallow ice layers immediately below
the surface, corresponding to annual snow accumulation from
2007 to 2011, respectively.

Our contribution in this work includes the following:

1) A method of converting Snow Radar ice layer data into
sets of spatiotemporal graphs.

2) A generalizable machine learning model based on GCN-
LSTM that predicts the thicknesses of shallow ice layers.

Our proposed model was shown to perform better with more
consistency than equivalent non-geometric and non-temporal
models.

II. RELATED WORK

A. Deep Learning for the Calculation of Ice Layer Thickness
and Snow Accumulation

Automated techniques, such as [19]-[21], have been devel-
oped for detecting the surface and bottom layers of echograms
using radar depth sounder sensors. Tracking the internal layers
of an ice sheet is inherently more challenging due to the close
proximity of each layer. Due to its exceptional performance in
feature extraction, deep learning has been applied extensively
on remote sensing images, such as Snow Radar data, for
tracking the internal layers of ice sheets [2] [3] [7] [8]. [7] used
a multi-scale contour-detection CNN to segment the different
internal ice layers found in Snow Radar images. The authors of
this work also experimented with pretraining on the Berkeley
Segmentation Dataset and Benchmark (BSDS) dataset [22]
and found that this was not very effective due to the large
amount of noise in Snow Radar images. In [2], the authors
trained a multi-scale neural network on synthetic Snow Radar
images for more robust training. A multi-scale network was
also used in [8], where the authors trained a model on images
from the year 2012 and fine tuned it by training on a small
number of images from other years. [3] found that using
pyramid pooling modules, a type of multi-scale architecture,
helps in learning the spatio-contextual distribution of pixels
for a certain ice layer. The authors also found that denoising
the images prior to the CNN layer improved both the accuracy
and F-score. These works have all used multi-scale networks in
order to segment the ice layers within Snow Radar images, but
have commonly noted that the high amount of noise present
in Snow Radar images is an issue that must be addressed in
the future.

While these works have attempted to track and segment the
annual ice layers present within Snow Radar images, none
have yet attempted to use the spatiotemporal patterns of the
ice layers to predict the thicknesses of shallow ice layers given
the thicknesses of deeper ice layers.

B. Graph Convolutional Networks

Graph convolutional networks have had numerous real-
world applications in a vast array of different fields. In the
field of computer vision, recurrent GCNs have been used to
generate and refine “scene graphs”, where each node corre-
sponds to the bounding box of an object in an image and the
edges between nodes are weighted by a learned “relatedness”
factor that prunes unrelated edges [23] [24]. GCNs have also
been used to segment and classify point clouds generated
from LiDAR scans [25] [26]. Recurrent GCNs have been
used in traffic forecasting, such as in [12], where graph nodes
represented sensors installed on different roads, edges between
nodes were weighted by the distance between sensors, and
node features consisted of average detected traffic speed over
a certain period of time.

Some existing recurrent graph-based weather prediction
models, such as [15] and [27], have experimented with defin-
ing the edge weights in graph adjacency matrices as learnable
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TABLE I
KEY PARAMETERS OF THE SNOW RADAR USED DURING DATA
COLLECTION.

Snow Radar Parameters

Bandwidth 2-8 GHz
Pulse duration 250 ps

PRF 2 kHz
Transmit power 100 mW
Intermediate frequency range 62.5-125 MHz
Sampling frequency 125 MHz
Range resolution ~ 4 cm
Along-track footprint 145 m

parameters rather than static values. While this did show
slightly improved performance by allowing a model to learn
relationships between nodes more complex than simple geo-
graphic distance, it exponentially increases the computational
complexity of the model, making it considerably more difficult
to train and increasing its susceptibility to overfitting. While
it is possible to reduce the number of learnable parameters if
the adjacency matrix is low-rank, this is not always guaranteed
and the number of learnable parameters may remain very high.
This number may also be decreased by using a more sparse
graph structure, such as restricting a node’s neighborhood to
its k-nearest neighbors. This strategy can be applied for some
problems, but may not work for spatial tasks where most or
all nodes are in close proximity.

III. DATASET

In this study, we used Snow Radar data captured during
the NASA’s Operation Ice Bridge mission [1]. CReSIS has
made this data publicly available on their website (https:
/ldata.cresis.ku.edu/). The data gathered during each flight
was processed and separated into a series of grayscale radar
echogram images, each with a width of 256 pixels and a
height ranging between 1200 and 1700 pixels. Each pixel
in a column corresponds to approximately 4 cm of ice, and
each radar image has an along-track footprint of 14.5m (see
Table I). The value of each pixel is proportional to the relative
received power of the returning radar signal at that depth.
Accompanying each image was a 256 x 2 matrix specifying the
geographic latitude and longitude associated with each vertical
column of pixels. In order to gather ground-truth thickness
data, the images were manually labelled in a binary format
where white pixels represented the tops of each firn layer, and
all other pixels were black (see the right image in Figure 1).

In order to capture a sufficient amount of data, only radar
images containing a minimum of 16 ice layers were used: one
unused surface layer, five shallow layers for ground truths, and
ten deeper layers for use as node features (the surface sheet is
unused as it remains flat with constant height throughout all
images in the dataset). Ten deep layers and five shallow layers
were chosen in order to maximize the number of usable images
while also maintaining a reasonable amount of data per image.
This limitation reduced the total number of usable images
from 816 down to 568. Five different training and testing
sets were generated by taking five random permutations of

all usable images and splitting them at a ratio of 4:1. The five
training sets contained 454 images each, and the five testing
sets contained 114 images each.

IV. METHODS
A. Graph Convolutional Networks

Traditional CNNs use a matrix of learnable weights, often
referred to as a kernel or filter, as a sliding window across
pixels in an input image. This allows a model to automatically
extract image features that would otherwise need to be iden-
tified and inputted manually. Graph convolutional networks
apply similar logic to graphs, but rather than using a sliding
window of weights across an image, GCN performs weighted-
average convolution on each node’s neighborhood to extract
features that reflect the structure of a graph. The size of the
neighborhood on which convolution takes place is dictated
by the number of GCN layers present in the model (i.e. K
GCN layers result in K-hop convolution). In a sense, graph
convolutional networks are a generalized form of traditional
CNN’s that enable variable degree and weighted adjacency.

B. Recurrent Neural Networks

Recurrent neural networks (RNNs) are able to process a
sequence of data points as input, rather than a single static
data point, and learn the long-term relationships between them.
Many traditional RNN structures had issues with vanishing
and exploding gradients on long input sequences. Long short-
term memory (LSTM) attempts to mitigate those issues by
implementing gated memory cells that guarantee constant error
flow [28]. Applying LSTM to GCN using GCN-LSTM allows
for a model to learn not only the relationships between nodes
in a graph, but also how those relationships change (or persist)
over time.

C. Model Architecture

Our model uses ten consecutive GCN-LSTM layers (one
for each of the ten deep ice layers from 1997 to 2006), each
with 64 output channels, that lead into two fully-connected
layers. The first fully-connected layer has 32 output channels,
and the second fully-connected layer has five output channels.
The output of the model is the predicted thickness (in pixels) of
the five shallow ice layers (2007 to 2011) immediately beneath
the surface. Between each layer is the Hardswish activation
function [29], chosen due to its superior performance when
compared to ReLLU and its derivatives [30]. Between the two
fully-connected layers is Dropout [31] with p = 0.2. We use
the Adam optimizer [32] with a constant learning rate of 0.01,
and we train for 150 epochs using mean-squared error loss.
The structure of the model is shown visually in Figure 2.

D. Graph Generation

1) Model Input: Each radar image is converted into ten
graphs, each consisting of 256 nodes. Each graph corresponds
to a single ice layer for each year from 1997 to 2006.
Each node represents a vertical column of pixels in the radar
echogram image and has three features: two for the latitude
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Fig. 2. Architecture of the proposed model.

and longitude that correspond to that column, and one for
the thickness of the corresponding year’s ice layer within that
column.

2) Graph Adjacency: All graphs are fully connected and
undirected. All edges are inversely weighted by the geographic
distance between node locations using the haversine formula.
For a weighted adjacency matrix A:

1
2 arcsin (hav(qﬁj — ¢i) + cos(¢i) cos(¢p;) hav(r; — )\z))

hav(0) = sin® (g)

A; ; represents the weight of the edge between nodes ¢ and
j. ¢ and X represent the latitude and longitude features of a
node, respectively. Node features of all graphs are collectively
normalized using z-score normalization. Weights in the adja-
cency matrices of all graphs are collectively normalized using
min-max normalization.

Ai]':

)

where

V. RESULTS
A. Baselines

To highlight the performance of the GCN-LSTM model, as
well as verify that the temporal and geometric aspects of the
model serve to its benefit, we compared its performance with
equivalent models that utilize a traditional GCN as well as a
traditional, non-geometric LSTM.

For the GCN model, all hyperparameters remain the same,
but the GCN-LSTM layer sequence is replaced by a single
GCN layer. Rather than generating ten graphs for each of the
ten deep ice layers, we generate a single graph with each node
having 12 features: two for the latitude and longitude, and ten
for the thicknesses of the 1997 to 2006 deep ice layers. The

rest of the model, including the adjacency matrix generation,
is identical to the proposed model.

Fig. 3. Example radar images overlayed with predicted thicknesses from our
model. Green pixels are the ground truth, red pixels are the predicted value.
A poor-fitting example is shown in the bottom-right.

For the LSTM model, all hyperparameters remain the
same, but ten sequential LSTM layers are used, rather than
ten sequential GCN-LSTM layers. Since this model is non-
geometric, nodes are simply converted into rows in a feature
vector, and no adjacency information is supplied. The rest of
the model is identical to the proposed model.
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TABLE 11

RESULTS FROM THE LSTM, GCN, AND GCN-LSTM MODELS ON THE FIVE PREDICTED ANNUAL ICE LAYER THICKNESSES FROM 2007 TO 2011.
RESULTS ARE SHOWN AS THE MEAN + STANDARD DEVIATION OF THE RMSE OVER FIVE TRIALS (IN PIXELS).

2007 2008 2009 2010 2011 Total
LSTM 7.834 £ 1.050 8.620 + 3.392 7.243 +1.213 5.653 4+ 0.370 5.995 4+ 0.764 7.268 +1.162
GCN 6.165 4+ 0.431 6.458 4+ 0.866 6.376 4+ 1.381 5.267 +0.184 5.184 + 0.768 5.956 4 0.468
GCN-LSTM | 4.6144+0.504 | 4.733 +£1.111 | 5278 £1.074 | 4.4494+0.336 | 3.855 +0.272 | 4.651 +£0.414
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Fig. 4. Continuous real vs. predicted thicknesses for years 2007-2011. Ground truths are labelled in blue, predicted values are labelled in orange. The y-axis
represents ice layer thickness in pixels, and the z-axis represents the unsorted, randomized node index in the testing set.

B. Experimental Results

In each trial, the root mean squared error (RMSE) was taken
between the predicted and ground truth thicknesses for each
of the 2007-2011 ice layers among the entire testing set. The
mean RMSE and standard deviations were found for each year
over all five trials. These results are showcased in Table II.
Example well-fitting and poor-fitting results are overlayed on
their respective radar echogram images in Figure 3. Graphed
continuous results over all (unordered) testing samples for
years 2007-2011 are shown in Figure 4. The proposed GCN-
LSTM model performed significantly better than the baseline
GCN and LSTM models both in terms of mean RMSE and
consistency (shown by a lower standard deviation). The lack
of adjacency data in the LSTM model and complex temporal
learning in the GCN model may contribute to these results.

VI. CONCLUSION

In this work, we proposed a temporal, geometric, multi-
target machine learning model based on GCN-LSTM that

predicts the annual snow accumulation of Greenland from
2007 to 2011 given the annual snow accumulation from 1997
to 2006. Our proposed model was shown to perform better
and with more consistency than equivalent non-geometric and
non-temporal models. While our model succeeds at predicting
shallow layer thicknesses with reasonable accuracy, there are
opportunities for improvement and generalization, some of
which are outlined in the next section.

A. Generalizability and Future Work

1) Additional Ice Layers: While our model was restricted
to learning on only ten ice layers and predicting only five
ice layers, it is easily expandable to a higher number of both
feature and predicted layers. Future work may take advantage
of this expandability and test a similar model on a much larger
number of layers.

2) Additional Node Features: In our model, minimal node
features are present; only latitude, longitude, and layer thick-
ness are used as node features. It may be possible to improve
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performance by integrating additional node features, such as
physical properties of the ice at each layer.

3) Learnable Graph Adjacency: In our model, edge
weights between nodes are static values inversely proportional
to their geographic distance. It may be possible to improve
performance by defining edge weights as learnable parameters,
allowing the model to learn relationships between nodes more
complex than simple geographic distance.

4) Generalizing to Future Snow Accumulation: In these
experiments, our model is restricted to learning and predicting
on data gathered about existing ice layers. If radar image data
gathered over multiple years were used, our model could be
generalized to forecast future snow accumulation.

5) Generalizing to Deep Ice Layers: Since Snow Radar
echogram images inherently become noisier and more difficult
to track as depth and firn density increases, it may be useful
to attempt to reverse this model and use the thicknesses of
shallow ice layers to predict the thicknesses of deeper ice
layers.
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