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ABSTRACT: Visualizing atomic-orbital degrees of freedom is a frontier challenge in
scanned microscopy. Some types of orbital order are virtually imperceptible to
normal scattering techniques because they do not reduce the overall crystal lattice
symmetry. A good example is dxz/dy: (n,n) orbital order in tetragonal lattices. For
enhanced detectability, here we consider the quasiparticle scattering interference
(QPI) signature of such (m,n) orbital order in both normal and superconducting
phases. The theory reveals that sublattice-specific QPI signatures generated by the
orbital order should emerge strongly in the superconducting phase. Sublattice-
resolved QPI visualization in superconducting CeColns then reveals two orthogonal
QPI patterns at lattice-substitutional impurity atoms. We analyze the energy
dependence of these two orthogonal QPI patterns and find the intensity peaked near
E=0, as predicted when such (rn,n) orbital order is intertwined with d-wave
superconductivity. Sublattice-resolved superconductive QPI techniques thus

represent a new approach for study of hidden orbital order.

Introduction:



In a crystalline metal, strong electronic correlations occurring between electrons
derived from different orbitals in the same atom can yield an orbital-selective Hund’s metal
statel2, or even orbital-selective superconductivity34>. Similarly, symmetry breaking orbital
order may occur, with one of the most famous cases being in the Fe-based high temperature
superconductors®’. However, some types of orbital order are almost indiscernible because
they do not occur with any lattice distortion which reduces the overall crystal lattice
symmetry. For example, (7,t) orbital order in a tetragonal array of transition-metal atoms
occurs when the degeneracy of dx and dy: orbitals is lifted and each predominates
energetically over the other at alternating lattice sites (Fig. 1a). This subtle state does not
alter the crystal lattice symmetry meaning that it is virtually invisible to normal photon and
neutron scattering techniques, since these techniques are mainly sensitive to the core
electron scattering and the nuclear scattering, respectively8.2. By contrast, conventional
scanning tunneling microscopy (STM) has reported evidence for (n,n) orbital order on the
surface of CeColns10 revealing an opportunity for quasiparticle scattering interference (QPI)

imaging , a powerful technique for detecting subtle orbital selective effects311.

The QPI effect12.13 occurs when an impurity atom/vacancy scatters quasiparticles
which then interfere to produce characteristic modulations of the density-of-states 6N (r, E)
surrounding each impurity site. Impurity scattering is usually studied by using |6N(q, E)|,
the square root of the power-spectral-density Fourier transform of the perturbation to the

density of states by the impurity
SN(q,E) = —=Tr(ImZy (GO, E + in) T(EYG (K + @, E +in))) (1)

Here Gk E + in) is the electron propagator GKE+ in) =
1/(E + in —Ey(k) — 2(K,E + in)) of a quasiparticle state | k) with momentum k, and
X(K E + in) = ReZ(K,E + in) + ilmX(K, E + in) is the self-energy of interacting electrons.
T(E) is the so-called T-matrix, representing the possible scattering processes between states
|k) and |k + q) for a point like s-wave scatterer. Atomic scale imaging of these interference

patterns SN (r,E) is achieved using spatial mapping of the differential conductance,

g (r,E)%



Results
Modeling the (n,7) orbital order

As a concrete model, we consider orbital order of dxz/dy--orbitals on a 2D square-lattice
(Fig. 1a). To accommodate the (7,n) orbital order, the unit cell is enlarged to a two-sublattice
basis allowing for the incorporation of a staggered, nematic orbital order preserving the
translational and global C,-symmetry. Including superconductivity the model Hamiltonian

takes the form,

Ho(K) + H,o (K Agq(k
+< 0 () + Hp (K) a(K) >¢k’ )

H=3% . .
el a5k - Hay(R)
where the Nambu spinor is defined as

Y =

T
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with ¢, , ;(K) annihilating an electron with momentum k and spin oat sublattice v in orbital
d, Here H,(Kk) contains intra- and interorbital nearest- and next-nearest-neighbour
hoppings allowed by the d-wave symmetry of the orbitals, H,, (k) introduces the on-site
anti-ferro-orbital order and Ag4(K) contains nearest- and next-nearest-neighbour
intraorbital d-wave pairings as introduced in Ref. 15. Here for generality we consider the
simplest model Hamiltonian (#,(Kk), H,,(K)) rather than specific Hamiltonian of CeColns. As
the model is spin-independent we suppress the spin index below. To separate the energy
scales of the orbital and superconducting orders, the orbital order is introduced at an energy
scale well above the superconducting gap, i.e. A,, > Ag4. The Hamiltonian in (2) is chosen as
aminimal model approach where H,, (k) describes the simplest band dispersion allowing for
the implementation of local C,-symmetry breaking. A detailed description of the model and

parameters can be found in SI Section 1.



To simulate QPI, a non-magnetic impurity is introduced as a point-like potential. We
choose an on-site impurity as the scattering center, because this kind of impurity widely
exists in the crystals and is located at a high symmetry point required to detect the local
symmetry breaking caused by the orbital order. The impurity, either a different element or
lattice vacancy, is assumed to exhibit a trivial spatial structure leading to identical potential
strengths in the orbital degree of freedom. The local density of states (LDOS) is computed

using a T-matrix approach as

N(R.Y,E) = — =Im(GR(0,E) + G (R, E)T(0, E)G (~R, E) ) 3)
T 144

where R is the real-space position of the two-ion unitcell,y € {v= A,B; u= xz,yz}, the
T-matrix is given by T(0,E) =[1— Hyy,,(0)GR(0, E)]_lHl-mp(O) and GR(RE) =
G°(Riw, = E +in) = Y e™RG(K,iw,) is the bare, retarded Greens function obtained
from (2). We always insert the impurity at one of the two sites in the unit cell positioned at
R = 0 for simplicity. Note that N(R,y, E) contains four components for the unit cell at R,
corresponding to the orbital and sublattice degrees of freedom. The position of a single
lattice site, 1, is uniquely mapped from the set {R, v} enabling a straightforward transition to
the site-resolved LDOS. To allow for reliable comparison to experimental data, we calculate
the local density of states above the surface of the material following a simplified method
that takes the Wannier orbitals into account!®17 and basically weigh the computed N(r, E)
by atomic-like dxz/dy- orbitals. To account for the experimental resolution of 100 peV, we
perform an additional Gaussian energy convolution, details on these calculations can be

found in SI Section 2.

Consequences for QPI of (n,7) orbital order

The consequences of this (n,m) orbital order for QPI experiments are intriguing.
Surprisingly, theoretical modeling for the r-space QPI patterns, N(r, E), around the impurity
at sublattice a (Fig. 2a) and sublattice b (Fig. 2d) at energy |E| > A well outside the
superconducting gap, show almost identical N(r,E). At energies |E| < A, however, the
situation is radically different. Here N(r, E) around chemically identical impurity atoms at

sublattice a (Fig. 2b) and sublattice b (Fig 2e) are vividly different. The key consequence is
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that the amplitude of scattering interference is far more intense along one axis than along

the other axis, depending on which sublattice the impurity atom resides. The interference

pattern breaks Cs-rotational symmetry, indicating the existence of the hidden (w,n) orbital
order which breaks C4-symmetry locally. We stress that the impurity potential itself is point-
like and of identical strength on both orbitals. The C4-symmetry breaking takes place because
the impurity chooses a specific sublattice, in conjunction with the underlying orbital order.
To quantify this local symmetry breaking effect, we define a dimensionless value A(r,E) =
(N(r,E) — N°9°(r,E))/(N(r,E) + N°°°(r,E)) as the local anisotropy, in which N°°(r, E)
is 90-degree anti-clockwise-rotated N (r, E) surrounding the impurity site at sublattice a/b.
The A(r,E) maps (Fig. 2¢,f) at energies |E| < A explicitly demonstrate the Cs-symmetry
breaking for both impurity positions. The maximum A(r, E) value approaches 20%.
Meanwhile, at the energy |E| > A, still within the energy scale of the orbital order (4,,),
A(r, E) is less than 2% (Fig.S2). Thus, the orbital order can be clearly unraveled below the
energy scale of the superconducting order parameter because of the opening of the
superconducting gap selectively enhances its visibility. For comparison, the QPI simulation
of the normal-state model at the energies |E| < A can be seen Fig.S3, which is equivalent to

the |E| > A case of the superconducting model.

QPI signature of (n,7) orbital order in CeColns

To explore these predictions we studied CeColns, a prototypical heavy-fermion
superconductor, whose crystal unit cell has dimensions a=b=4.6A, ¢=7.51A and with
superconducting critical temperature Tc=2.3K (Ref. 18). As revealed by heavy-fermion
scattering interference imaging, its Fermi surface is formed by two heavy bands (a and 8
bands in Fig. 1b) due to the hybridization of a conventional light conduction band and the
localized f-electrons?®. In the superconducting state, the Cooper pairs are spin-singlets20.21
and a Cooper pairing energy gap with apparent nodes |A,(K)| = 0 oriented along the k =
[(1,1); (1, —1)]2m/a directions21.22,23.24.25 and a nodal, V-shaped N(E)«E with gap edges
600+50 peV. The |A,(K) | measured in K-space with QPI is shown in Fig. 1c1%. Our CeColns
single crystal samples are inserted into the spectroscopic imaging STM, cleaved in cryogenic

ultra-high vacuum, inserted into the STM head and cooled to T=280 mK.
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A standard Co terminated surface topography T(r) is shown in Fig. 3a with
sublattices marked by red dots and blue dots, respectively. The Co terminated surface is
identified from both the tunneling conductance spectrum and the domain boundaries (SI
section4). In this field of view (FOV), we find two single atom defects allocated at sublattice
a and b, respectively. These two defects are nearly identical in topography image (Fig. 3a).
Figure 3b shows simultaneously measured differential conductance map g(r, E)at E=-0.94
meV (|E| > A). Virtually, no difference in scattering interferences from defects in the
different sublattices can be detected. In contrast, the simultaneously measured differential
conductance map g(r, E) at E=0 in the same FOV shown in Fig. 3c reveals highly distinct
interference patterns. The scattering interference of one defect is far more intense along the
a axis than the b axis, and vice versa. Indeed, they appear to be rotated by 90-degrees relative
to each other, in agreement with the theoretical prediction in Fig. 2. Furthermore, Fig. S5
gives the comparison of A(r, E') surrounding the same defect in the superconducting state
(T <T.,) (Fig. S5a,b,c) and in the normal state( T > T, ) (Fig. S5d,ef). The local
anisotropy A(r, E) is only enhanced at E=0 in the superconducting state while has no
apparent change at E=0 in the normal state, in agreement with the theoretical prediction in

Fig. S4.

Next, we study the local anisotropy A(r, E) around the defects at the two sublattices.

Figure 4a,d contain the measured local anisotropy A(r, E) at E=0 around the defects at

sublattice a (Fig. 4a) and sublattice b (Fig. 4d). Obviously, the conductance anisotropy is

rotated by 90-degrees for scattering centres at the different sublattice sites. To analyse the
energy-dependence of A(r, E)we plot in Fig. 4b,e, the line profiles of A(r, E) along the high
symmetry directions (0,1) and (1,0) versus bias. The anisotropy is very weak (light blue and
light red) at the energies outside the superconducting gap, while, inside the superconducting
gap, the anisotropy rapidly increases (dark blue and dark red) and its maxima are
indistinguishable from E~0. Moreover, the curves of A(r, E) at the second atom site away
from the defect center (region marked by black squares in Fig. 4a,d) also exhibits this

property (Fig. 4c, f). For comparison, we plot the theoretical curve of A(r, E) along the same
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high symmetry directions at each energy in Fig. S4. The theory curve features the same
tendency as the experimental curve that A(r, E) is significantly enhanced inside the

superconducting gap and the maximum of A(r, E) is indistinguishable from E~0.

Finally, we use a multi-atom (MA) averaging technique resolved by sublattice to
establish the repeatability of these phenomena for all equivalent impurity atoms. Figure 5a,b
and 5e,f indicate the scattering centers at sublattice a (Fig. 5a,b) and sublattice b (Fig. 5e,f)
marked by red circles that are involved in the MA analysis. The MA technique averages the
mapping data over several defects located at the same sublattice 26
Since multiple sites are averaged, the random local distortion and noise are suppressed, and
the common feature surrounding the defects is enhanced (SI Section 3). Figures 5c,g present
the MA-averaged topography and differential conductance map gp,(r,E) at E=0 for
impurity atoms on sublattice a and b, respectively. The similar features seen in MA-averaged
differential conductance map gy 4 (1, E) (Fig. 5c,g) and single-defect differential conductance
map g(r, E) (Fig. 3c) reveals that the scattering interferences from the two sublattices are
highly distinct and repeatably rotated by 90-degrees relative to each other. One advantage
of the MA process is that, since the random features in the mapping image are suppressed,
the averaged image can be regarded as a single defect that resides in a defect-free large FOV,
even though the actual sample is defective. This advantage allows us to Fourier transform
the interference signal surrounding the single defect with high resolution in q-space. We set
the real-space origin (r = 0) at the defect site and focus on the real part of Fourier
transformed map gy4(q, E) (Fig. 5d,h), as our defects are symmetric under the inversion
operation and the real part of Fourier terms represent centrosymmetric cosine waves in r-
space. Again, Re(gy4(q, E)) of the defects at different sublattice a/b is also related to each
other by a 90-degree rotation. Remarkably, several features of Re(gy4(q, E)), for example
the distribution of the positive (blue) and negative (red) values, are reproduced by our
theory (Fig. S7). Note that our theoretical model is based on a simple band dispersion, as

described in SI Section 1.

Discussion



In this work we have explored the QPI signatures of (w,n) orbital order in CeColns. The
subtlety of such orders is in their preservation of crystal lattice symmetries which makes
them undetectable by traditional scattering techniques®®. On the other hand, pioneering
STM visualization studies of anisotropic electron density due to orbital order has been
reported2”.10, Such experiments must be carried out under extreme tunneling conditions, for
example at currents >10nA that, according to the Tersoff-Hamann theory?28, require a
miniscule tip-sample distance. Such tip-surface distances usually challenge the stability of
the STM junction and, moreover, the tip-sample interaction may then become so intense as
to alter the sample properties. By contrast, taking CeColns (7, ) orbital order as an example,
we have explored the possibility of using conventional junction QPI to detect the local
symmetry breaking orbital order. From theory, it was predicted that, even with an isotropic
impurity, the underlying orbital order should reveal itself as a sublattice-selective
anisotropy in the surrounding QPI pattern, due to the different effective
coupling of the impurity to the two orbitals. This is because although the impurity is
described as a simple point like potential with no spatial or orbital structure, the scattering
T-matrix reflects the orbital order. This suggests strongly that the specific type of impurity
is irrelevant to the overall conclusions. While the anisotropy of the scattering interferences
is found to be essentially indiscernible in the normal electron state outside the
superconducting gap, itis significantly enhanced at energies within the superconducting gap.
This finding suggested an interesting effect where the energy scale of QPI experiments used
in detection of hidden orbital order is governed by the superconducting gap energy, despite
the energy scale of the underlying orbital being much larger. To investigate the prediction
experimentally, we performed STM measurement on CeColns, which yields remarkable
agreement with the theory. Given our minimal model approach, where only dxz/y--orbitals
are considered alongside the anti-ferro-orbital order, superconductivity and a point like
impurity, the agreement with the experimental data is striking and suggests that the
methods may be applicable to a range of superconducting materials exhibiting hidden

order?2°,



Methods

Experiments:

Single crystals of CeColns were synthesized from an In flux by combining stoichiometric
amounts of Ce and Co with excess In an alumina crucible and encapsulating the crucible in
an evacuated quartz ampoule(details in ref. 30 ). Its superconductivity and electronic
structure were studied in the previous work with T, = 2.3K and A = 600meV 1°. The
samples were cleaved in ultrahigh vacuum at 10K before inserted into STM. All data are
measured by etched tungsten tips with an energy-independent density of states. A standard
lock-in amplifier was used for measuring scanning tunneling spectra. See Supplementary

Information for additional details on data treatment and extraction.

Theory:

The two-dimensional square lattice including staggered orbital order and
superconductivity has been modelled by the Bogoliubov-de Gennes Hamiltonian in Equation
(1). Simulations of the sublattice-selective Bogoliubov quasiparticle interference have been
performed using a T-matrix approach, where a Fourier transformation of (1) allows for a

computation of the real-space local density of states (LDOS) in the presence of an impurity
using N(R,v,E) = —%Im(GR(O, E) + GR(R,E)T(0,E)GR(—R, E))vv . The impurity was

assumed to be non-magnetic with a trivial spatial structure (i.e. point-like). For comparison
to experiment all computed N(r,E) are weighed by atomic-like dxz/dy- orbitals and an
energy convolution was performed to model the finite experimental energy resolution.
Finally, the quasiparticle interference anisotropy was obtained as A(r,E) = (N(r,E) —
N°%(r,E))/(N(@r,E) + N°°°(r,E)). The LDOS anisotropy is strongly enhanced within the
superconducting gap as evident from Fig. S4. The full model, all input parameters and further

details of the calculations can be found in Supplementary Information Sections 1 and 2.

Data Availability All data are available in the main text on Zenodo3!. Additional

information is available from the corresponding author upon reasonable request.


https://www.nature.com/articles/nphys2671#MOESM13
https://www.nature.com/articles/nphys2671#MOESM13

Code availability The simulation code are provided on Zenodo3l. The data analysis
codes used in this study are available from the corresponding author upon reasonable

request.

Author Information Correspondence and requests for materials should be addressed

to B.M.A. bma@nbi.ku.dk and ].C.S.D. jcseamusdavis@gmail.com.
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Figure Legends:
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Figure 1. (n, n) orbital order on the surface of CeColns
a. Schematic of (, m) orbital order on the surface of CeColns. Two sublattices are

introduced by the dx-/dyz orbital order.

b. The Fermi surface of CeColns measured by heavy-fermion quasiparticle
interference®.
C. Superconducting energy gap structure of CeColns measured about the (&, )

point'®. The order parameter is believed to exhibit d,>_,- symmetry.
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Figure 2. Bogoliubov quasiparticle interference from (x, nt) orbital order

calculated by the theoretical models

a,d. Theoretical results for BQPI pattern N(r, E) with the impurity atom at sublattice
a (a) and sublattice b (d) at the energy well outside the superconducting gap E > |4|.
b,e. Theoretical results for BQPI pattern N(r, E) with the impurity atom at sublattice

a (b) and sublattice b (e) at the energy well below the superconducting gap edge E <

|A].c.f.

The local anisotropy A(r, E) with the impurity atom at sublattice a (c) and

sublattice b (f) at the energy well below the superconducting gap edge E < |4].
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Figure 3. Example of QPI imaging resolved sublattices in CeColns

a. Atomic resolved topography image around two sublattices. Two sublattices
are indicated schematically by red dots and blue dots, respectively. (setpoint: V =
—10meV,I = 800 pA)

b. Simultaneous measured differential conductance map g(r,E) at E =

—0.94 meV in the FOV of image (a).

C. Simultaneous measured differential conductance map g(r,E) at E = 0 in the
FOV of image (a).The BQPI patterns on the two sublattices are clearly distinct and

appear to be rotated by 90-degrees relative to each other.
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Figure 4. Local anisotropy A(r, E) around defects in two sublattices.
a,d, Measured local anisotropy A(r, E) around the defects at sublattice a (a) and
sublattice b (e). The length scale of a, e is in the unit of lattice constant ao.
b,c, Measured local anisotropy A(r, E) around the defects at sublattice a (b) and
sublattice b (f) along the high symmetry direction (1,0) and (0,1) versus energy.
c,f,  Averaged local anisotropy A(r, E') around the defects at sublattice a (d) and
sublattice b (f) in region marked as black square in a and e and as black dashed
lines in b,c,f,g versus energy. The energy maxima of the anisotropy are
indistinguishable from E~0.
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Figure 5. Multi-atom QPI analysis sampled by sublattice.

a,e, Topography of the surface of CeColns. (setpoint: V = -10 meV,| = 800 pA)

b,f Differential conductance map g(q, E) of the surface of CeColns. The scattering
centers at sublattice a (a,b) and sublattice b (e,f) are marked by red circles which are
involved in the multi-atom analysis.

c,g, Simultaneous MA-averaged differential conductance map gy4(r,E) at E~0
around the defects at sublattice a (c) and sublattice b (g).

d.h, Real components of Fourier transformed MA-averaged differential conductance

map Re(gua(q, E)) at E~0 around the defects at sublattice a (e) and sublattice b (h).
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Supplementary information for
Interplay of Hidden Orbital Order and Superconductivity in

CeColns
Weijiong Chen, Clara Neerup Breig, Freek Massee, M.P. Allan, C. Petrovic, ].C. Séamus
Davis, P.J. Hirschfeld, B.M. Andersen and Andreas Kreisel

1. Theoretical Model of (r, ) Orbital Order.

Our minimal 2D square-lattice model Hamiltonian %, (k) includes only electronic
states of dxz/dy--orbitals on each lattice point. The assumed band structure is similar to
the one used in Ref. 1. We enlarge the unit cell to a two-ion basis allowing for the
incorporation of a staggered, nematic orbital order ((rn,n) orbital order) preserving the
translational and global rotational symmetries as it can be seen in Fig. 1a. Defining the

two-ion(sublattice), two-orbital basis as

T
Cko = (CA,XZ,J (K), cay2,06(K), Cpxz6(K), Cpyz0 (k)) , where ¢, (k) annihilates an electron

in orbital du on sublattice v with momentum k and spin o, we can write

e3(k) —u €4(k) €,(K) + €,(k) 0 \
_ €4(K) e3(K) —u 0 €1(K) — €,(K)
W= Gt g o & (K) — g 4 (k) (S1)
0 e1(K) — €3(K) €4(K) e3(K) —u
with

e,(K) = —%(t1 +65)(1 + ethx 4 e7tky 4 eillrky)) (S2)

e,(K) = — % (ty — tp)(1 — ethx — e~y 4 oilkx—hy)) (S3)

e3(K) = —2t; (cos(kx) + cos(ky)) (54)

€4(K) = —2t, (cos(kx) — cos(ky)) (S5)

We adopt the hopping parameters {t;, t,,t3,t,} = {—1.0,1.3,—0.85, —0.85} from Ref. 1
and set the chemical potential p = 2.25]|t,| in all computations. In this basis, the (m,7)
orbital order can formally be written as

Hoo(k) = Do CLU $303 Ck,o (S6)

where s; and o; (i =1,2,3) are the Pauli matrices in sublattice and orbital space,
respectively, and A,, = 0.25|t,| is the orbital order parameter. Note that because of the

s3 in (S6), exchanging the sign of A,, amounts to interchanging the sublattices.



To include superconductivity of d,2_,2-symmetry in a multi-orbital setting, we
follow the work performed by Graser et al. in Ref. 1, where the real space pairings arising
from spin-fluctuations in the basis of the two relevant orbitals are computed. In the
single-ion unit cell picture, the largest pairing amplitudes are the two nearest-neighbor
(NN) bonds along the y-axis (x-axis) for the dy,-orbital (dy,-orbital) as well as all four
NNN bonds in both orbitals. Interorbital pairings are negligible. Rewriting these six
pairing terms of each orbital channel in momentum space and setting these identical on

the sublattices yields
Ag(K) = =44 ((eikx +e )Cz,xz,T(k)C;,xz,l(_k) + (e7tx + ethy )Cg,xz,T(k)CI,xz,l(_k)
— (14 el 00, ()
-1+ e—i(kx—ky))cg’yz’,r(k)cz'yz'l(—k))

— 24, (cos(kx)

+05(y)) D (61 (0] (10 = €100, (—10)

v=4,B

(87)
where {A;,A,} ={0.025,0.02} is the pairing amplitude between first and second
neighbors, respectively, and the spin-singlet structure is implicit. In this model, A,,~3Ay,
is estimated from the experimental fact that orbital order on the surface of CeColns exists
even at 6 K while the superconducting temperature of CeColns is 2.3K. We also calculate
the anisotropy for A,, = 0.1 |t;| ~Aq (Fig. S8). The results are qualitatively identical to
the results shown in Fig. S4 for A, = 0.25 |t4].

Defining the Nambu spinor as

i = (exr €' in)

T
= (CA,xz,T (k), CA,yz,T (k), CB,xz,T (k), CB,yz,T (k): CII,XZ,J« (_k)' C,jl-,yz_l (_k)' Cg,xz_l (—k), C;,yz,l (_k))

(58)
and neglecting the spin degree of freedom, we can write the full Hamiltonian as
Ho(K) + Hoo(K) Aq(K)
= Z Ui ( Iy (k)oo _ 3 (—K) — (=K ) VK (59
K d 0 0o

This minimal model Hamiltonian only includes the key ingredients of the orbital order,

Co dxz/dyz orbits.



In this work, we only consider the simplest model Hamiltonian including
staggered orbital order and it is not identical to the real Fermi surface of CeColns. We do
not discuss a more complete model including both Ce and In atoms and the
superconductivity originating from Ce atoms, since such issues are both beyond the scope
of our current work and not relevant to its conclusions. Nevertheless, as shown in Fig. S7,
the overall pattern of the real part of BQPI is still present in a good agreement between
the calculation and the experiment except some inconsistencies in the exact period of the
Friedel oscillations. This implies that our model indeed captures the key ingredients of

symmetry-breaking QPI induced by the orbital order.

2. Quasiparticle Interference Simulation of Two Sublattice Scatterings

The local density of states (LDOS) is computed using a T-matrix approximation as
1
N(R,y,E) = —;Im(GR(O, E) + GR(R,E)T(0,E)GR(—R, E))W (510)
where R is the real-space position of the two-ion unitcell,y € {v = A,B; u= xz,yz},

the T-matrix is given by T'(0,E) = [1 — Hipp(0)GR(0,E)]” Himp(0) with

Himp(o) = Vimp 1113 T3 % (so £53)00 Yo = Vimp z lp;{ T3 % (so £ 53)00 Py (s11)

Kk’

where 1; (i = 1,2,3) are the Pauli matrices in Nambu space, s, and o, are identity
matrices in sublattice and orbital space, respectively, and the sign refers to the impurity
position at sublattice a(+) or b(-) , and G®R,E)=G°(R,iw, > E+in) =
Y e RGO(K, iw,). We set Vimp = 10[t;| and n = 0.001|¢;| in all simulations. The
sublattice site resolved local density of state (LDOS), N(¥, E), is uniquely mapped from
the set {R, v}.

To improve the direct comparison to experiment we implement two modifications
to the calculated LDOS. First, we take into account that the tunnelling process to the STM
tip is in the exponential limit, i.e. the STM tip is several A above the surface and the
tunnelling conductance is proportional to the local density of states at that position. For

our model, we use extended, atomic-like orbitals to calculate the local density of states?3
N 2
N(EE) = ) NG i, B)|wi (D)) (512)
Fu

xz(yz) _
Y )e ar
r

where Wiy, (yz (1) = are hydrogen-like d,;,, ) orbitals and 4 = xz,yz. Note

that we perform the F-summation over a 5x5 grid and this approximation neglects off-



diagonal and non-local contributions of the lattice Green function which are expected to
be small2. The vector r = (X,y, z) is defined on this 5x5 grid for each atomic site and we
use the parameters {z,a} = {1.05a4,1/a,}. Second, to account for the finite energy

resolution in experimental data, we introduce a Gaussian energy convolution

N(rE) = Z N(rENf(E — E',0) (s13)
El

1(E'-E
with f(E — E',0) = 0—%9_5(7) .0 = A/12 corresponds to the experimental energy

resolution ~100meV. Fig. S1 gives the direct comparison between calculated LDOS N (E)
and measured density of state g(E) far from the impurities and at the impurity/defect
site to reveal that our choice of model parameters allows to describe the spectral
properties of the impurities in the experiment. In Fig. S2 we present the anisotropy in
real space (see main text) as calculated in the superconducting state showing that the
anisotropy at zero energy (E=0) is much larger than at a finite energy above the
superconducting gap. In contrast, Fig. S3 shows the corresponding result as obtained
without superconducting order (normal state) where the anisotropy is very small for
both E = 0 and at finite energy. As a consequence, the orbital order would be difficult to
detect in this local probe. The same conclusions can be read off from Fig. S4 where the

anisotropy is plotted as function of energy with and without superconducting order.

We point out that the authors of Ref. [4] report a similar symmetry-breaking QPI
caused by the nematicity in the FeSeTe system. Their observation is distinct from our result
in two aspects. First, the global QPI analysis they perform discovers the order that breaks
overall crystal lattice symmetry but should not yield anti-ferro-orbital order which
perserves the global C4 symmetry as in CeColns. Second, the nematicity they discover is
only observed in the non-superconductive state at high energy beyond the coherence peak.
This is also distinct from our present picture where the anisotropy from orbital order is
significantly enhanced within the superconductive quasiparticles below the

superconducting gap.

3. Multi-atom Technique
The multi-atom technique® is overlapping and averaging the same type of defects
to suppress the random noise and highlight the common features of the defects. we first

identify the coordinates R; of the centers of the defects from the topography. The defects



are chosen in the topography by eye selecting only those of the same type as in Fig. 3 and
4, since they are well allocated at sublattice site a/b. Then, the selected defects at
sublattice a/b are distinguished by the surrounding scattering pattern in g(q,E = 0)
map.

Here we choose one defect as example. The chosen defects are marked by a red
circle in Fig. 5a,e (topography) and 5b,f (g(q, E = 0)). The exact coordinate R; = (x;, ;)
for the center of the defect is figured out by calculating the center of mass of with intensity
as the weights in the subsidence region around the impurity as seen in the topography.
The shift operation is done in the q-space on Fourier transformed map T(q) and
9(q,E) by

TS (q) = e"9RiT(q) (S14)

97(q,E) = e'"ig(q, E) (515)
This step executes a shift with periodic boundary conditions. After the inverse Fourier
transformation, the shifted data are shown in Fig. S6b,f. The defect is shifted to the center

of the map. Finally, we overlap and average the shifted g; (r, E) of all defects and get MA-

averaged image g, 4(1, E).

N S
Tya(r) = Ziza T(r) (516)
N
N
Iua@E) = ) gf (5, E) /N (517)
i=1

Ty 4(r) and gy 4 (1, E) at sublattice a(b) are shown in Fig. S6c,g(d,h).

4. lIdentification of Termination Surface

As reported by Ref. [6], three different cleaved surfaces can be found in CeColns:
Co surface, Celn surface and Inz surface. We first rule out the Inz surface because this
surface is reconstructed. Both Co surface and Celn surface show the same lattice constant
~4.6A. Here, we identify our measured surface as Co surface by two observations.

First, Fig. S8 shows the measured scanning tunneling spectrum on our sample
surface. The spectrum presents a dip at ~5meV corresponding to the heavy-fermion
hybridization gap. This spectrum is exactly the same as the spectrum measured on Co
surface in Ref. [7], except that our energy resolution is better. However, the spectrum of
the Celn surface in Ref. [7] displays that the density of states at -30meV is larger than that

at 30meV, different from what we observed.



Second, since the orbital order breaks the equivalence of Co sites in sublattice a
and b, two degenerate states should appear on the surface. At the interface of these two
degenerate states, domain boundaries should form. Ref. [7] reports that the domain
boundaries only appear on Co surface, implying that the orbital order occurs only on Co
surface. We also observe many domain boundaries on our measured surface (Fig. S9),
indicating our cleaved surface is Co-terminated.

Furthermore, Fig. S10 shows two nearby domains with several defects close to the
domain boundary. In the g(r, E = 0) map (Fig. S10c) in the same field of view in Fig. S10a,
we choose the same type of defects as in Figs. 3 and 5 (of the main text), which apparently
break the local C4 symmetry in the superconducting state at E=0, two in the left domain
(domain 1) and one in the right domain (domain 2). According to their local anisotropy,
we can distinguish at which sublattice sites these defects are located, and extract the
sublattice a/b site order in each domain (red and blue dot in Fig. S10d). On the other hand,
in Fig. S10b, the arrangement of Co atoms near the domain boundary can be directly
visualized after we adjusted the colormap limits. Finally, in Fig. S10d, we draw a
schematic diagram of sublattice a/b orders near the domain boundary, combining both
the arrangement of the atoms shown in Fig. S10b and the sublattice a/b site order in each
domain extracted by Fig.S10c. It clearly shows that the sublattice a/b site order in the
two domains are opposite. This confirms that the domain boundary indeed forms at the

interface of two degenerate orbital order states.
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Figure S1. Simulated and measured spectra on the surface of CeColns

a,b Homogeneous spectra showing the V-shape signature of a d,z_,2 superconducting
gap obtained from the simulation of our model with Vimp = 0.0 (a) and measurement (b)
at a site far from any impurities.

¢, d Simulated (c) and measured (d) spectra obtained at the impurity site positioned at

either sublattice a or b.
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Figure S2. Local anisotropy obtained from the theoretical model

a,b The local anisotropy A(r, E) with the impurity atom at sublattice a (a) and sublattice
b (b) at the energy well above the superconducting gap E > |A|. The local anisotropy
A(r, E) is no more than 2%.

¢,d The local anisotropy A(r, E) with the impurity atom at sublattice a (c) and sublattice
b (d) at the energy well below the superconducting gap E < |A|. Identical to Fig. 2¢,f. The

local anisotropy A(r, E) approaches 20%.
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Figure S3. Local anisotropy obtained from the theoretical model in the normal
state.

a,b The local anisotropy A(r, E) in the normal state with the impurity atom at sublattice
a (a) and sublattice b (b) at E > |A|. Simulations computed by setting {A;,A,} =
{0.0, 0.0}

¢,d The local anisotropy A(r, E) in the normal state with the impurity atom at sublattice
a (c) and sublattice b (d) at E = 0. Simulations computed by setting {A; ,A,} = {0.0, 0.0}.
The local anisotropy A(r, E) is less than 2% at both energies, similar to the simulation of

the superconducting state at E > |A| (Fig. S2 a,b).



a
0.15 :
_ i ——SC (0,2a,)
| —— SC (2a,,0)
0.10f | —— NS (0.2a,)
i | —— NS (2a,0)
0.05 | |
- _ | / ~ |
< 0.00 1
| | |
0.05 | i
| |
L | |
0.10F | i
_ | I
I~ 1 Al 1 " ! + L L ;
0157510 005 000 005 010
w(lt,[)
b o015
[ i ——SC (0,2a,)
| —— SC (2a,,0)
0.10r | ——NS (0,2a,)
_ i —— NS (2a,,0)
0.05 | |
< o.00f ; —f—
‘\/ |
-0.05 | i
, i |
-0.10" | i
_ J |
= 1 " 1 . L * L L ;
015590 005  0.00 0.05 0.10

w(lt,))
Figure S4. Local anisotropy as a function of energy along high symmetry directions

(1,0) and (0,1) with the parameters described in section 1.

a,b Local anisotropy A(r, E) at two sites away from the impurity along (1,0) (red curve)
and (0,1) (black curve) with the impurity positioned at sublattice a (a) and sublattice b
(b). Green (blue) curve is the local anisotropy A(r, E) of the model in the normal state
along (1,0) ((0,1)) obtained by setting {A; ,A,} = {0.0, 0.0}. Black dashed lines indicate
the energy of superconducting gap A.
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Figure S5. Local anisotropy around the same defect in superconducting state and

in normal state

a,b,c Local anisotropy A(r, E) around the

defect at sublattice a at E=-0.55 meV(a),

E=0(b) and E=0.55meV(c) at T=280mK well below the superconducting temperature

T, = 2.3K.



d,e,f Local anisotropy A(r, E) around the same defect in a,b,c at E=-0.5 meV(a), E=0(b)
and E=0.5meV(c) at T=4.2K well above the superconducting temperature 7, = 2.3K.






Figure S6. Multi Atom Analysis of Experimental Data in large FOV

a,e CeColns topography (a) and g(r, E = 0)(e) with a defect (shown by red circle) not at
the center of the FOV.

b,f Inverse Fourier transform after applying shift theorem (Eqn. S14,S15) to the Fourier
transform of a(b) and e(f) with the defect position marked by the red circle. The defect is
shifted to the center of the FOV with periodic boundary conditions.

¢,g The MA-averaged topography (c) and g(r, E = 0)(g) of the defects at sublattice a
d,h The MA-averaged topography (d) and g(r, E = 0)(h) of the defects at sublattice b
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Figure S7. Fourier transformed BQPI N(q,E) atE = 0

a Fourier transformation of the theoretical BQPI pattern N(q, E')) with the impurity atom
at sublattice a at E = 0. The r-space center of the transformation is set at the impurity
site.

b  Real parts of Fourier transformed MA-averaged differential conductance map
Re(g'(q,E)) at E~0 around the defects at sublattice a. Identical to Fig. 5e included here

for comparison.
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Figure S8. Local anisotropy as a function of energy along high symmetry directions

(1,0) and (0,1) with A,, = 0. 1]¢|

| L
-0.10

a,b Local anisotropy A(r, E) at two sites away from the impurity along (1,0) (red curve)
and (0,1) (black curve) with the impurity positioned at sublattice a (a) and sublattice b
(b). Green (blue) curve is the local anisotropy A(r, E) of the model in the normal state
along (1,0) ((0,1)) obtained by setting {A; ,A,} = {0.0, 0.0}. Black dashed lines indicate
the energy of superconducting gap A.
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Figure S9. Determining cleaved surface

a Typical measured tunneling spectrum on cleaved surface.

b,c,d CeColns topography with domain boundaries (marked by red arrows).
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Figure S10. Orbital order domains near the domain boundary

a CeColns topography with two domains near a domain boundary.

b The same topography in a with adjusted colormap limit to show the atom sites.

¢ CeColns g(r, E = 0) in the same field of view in a.

d The schematic diagram of the arrangement of atoms with orbital order marked by red
dots (a site) and blue dots (b site), according to b,c. The atoms at the domain boundary
are marked by gray dots. The hollow circles show the position of the defects,

corresponding to the defects marked in a,b,c by blue (a site) or red circles (b site).
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