
Generalizing Graph ODE for Learning Complex System
Dynamics across Environments

Zijie Huang
University of California, Los Angeles

Los Angeles, CA

zijiehuang@cs.ucla.edu

Yizhou Sun
University of California, Los Angeles

Los Angeles, CA

yzsun@cs.ucla.edu

Wei Wang
University of California, Los Angeles

Los Angeles, CA

weiwang@cs.ucla.edu

ABSTRACT

Learning multi-agent system dynamics has been extensively stud-

ied for various real-world applications, such as molecular dynamics

in biology, multi-body system in physics, and particle dynamics in

material science. Most of the existingmodels are built to learn single

system dynamics, which learn the dynamics from observed histori-

cal data and predict the future trajectory. In practice, however, we

might observe multiple systems that are generated across different

environments, which differ in latent exogenous factors such as

temperature and gravity. One simple solution is to learn multiple

environment-specific models, but it fails to exploit the potential

commonalities among the dynamics across environments and offers

poor prediction results where per-environment data is sparse or

limited. Here, we present GG-ODE (Generalized Graph Ordinary

Differential Equations), a machine learning framework for learning

continuous multi-agent system dynamics across environments. Our

model learns system dynamics using neural ordinary differential

equations (ODE) parameterized by Graph Neural Networks (GNNs)

to capture the continuous interaction among agents. We achieve

the model generalization by assuming the dynamics across different

environments are governed by common physics laws that can be

captured via learning a shared ODE function. The distinct latent ex-

ogenous factors learned for each environment are incorporated into

the ODE function to account for their differences. To improve model

performance, we additionally design two regularization losses to

(1) enforce the orthogonality between the learned initial states and

exogenous factors via mutual information minimization; and (2)

reduce the temporal variance of learned exogenous factors within

the same system via contrastive learning. Experiments over various

physical simulations show that our model can accurately predict

system dynamics, especially in the long range, and can generalize

well to new systems with few observations.
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1 INTRODUCTION

Building a simulator that can understand and predict multi-agent

system dynamics is a crucial research topic spanning over a variety

of domains such as planning and control in robotics [26], where the

goal is to generate future trajectories of agents based on what has

been seen in the past. Traditional simulators can be very expensive

to create and use [35] as it requires sufficient domain knowledge

and tremendous computational resources to generate high-quality

results1. Therefore, learning a neural-based simulator directly from

data that can approximate the behavior of traditional simulators

becomes an attractive alternative.

As the trajectories of agents are usually coupled with each other

and co-evolve along with the time, existing studies on learning

system dynamics from data usually view the system as a graph and

employ Graph Neural Networks (GNNs) to approximate pair-wise

node (agent) interaction to impose strong inductive bias [6]. As

a pioneering work, Interaction Networks (IN) [6] decompose the

system into distinct objects and relations, and learn to reason about

the consequences of their interactions and dynamics. Later work in-

corporates domain knowledge [27], graph structure variances [31],

and equivariant representation learning [11, 38] into learning from

discrete GNNs, achieving state-of-the-art performance in various

domains including mesh-based physical simulation [31] and molec-

ular prediction [10]. However, these discrete models usually suffer

from low accuracy in long-range predictions as (1) they approximate

the system by discretizing observations into some fixed timestamps

and are trained to make a single forward-step prediction and (2)

their discrete nature fails to adequately capture systems that are

continuous in nature such as the spread of COVID-19 [19] and the

movements of an n-body system [18, 24].

Recently, researchers propose to combine ordinary differential

equations (ODEs) - the principled way for modeling dynamical

systems in a continuous manner in the past, with GNNs to learn

continuous-time dynamics on complex networks in a data-driven

way [18, 19, 47]. These Graph-ODE methods have demonstrated

the power of capturing long-range dynamics, and are capable of

learning from irregular-sampled partial observations [18]. They

usually assume all the data are generated from one single system,

1To date, out of the 10 most powerful supercomputers in the world, 9 of them are used
for simulations, spanning the fields of cosmology, geophysics and fluid dynamics [1]
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and the goal is to learn the system dynamics from historical trajec-

tories to predict the future. In practice, however, we might observe

data that are generated from multiple systems, which can differ in

their environments. For example, we may observe particle trajecto-

ries from systems that are with different temperatures, which we

call exogenous factors. These exogenous factors can span over a

wide range of settings such as particle mass, gravity, and tempera-

ture [3, 4, 35] across environments. One simple solution is to learn

multiple environment-specific models, but it can fail to exploit the

potential commonalities across environments and make accurate

predictions for environments with sparse or zero observations. In

many useful contexts, the dynamics in multiple environments share

some similarities, yet being distinct reflected by the (substantial)

differences in the observed trajectories. For example, considering

the movements of water particles within multiple containers of

varying shapes, the trajectories are driven by both the shared pair-

wise physical interaction among particles (i.e. fluid dynamics) and

the different shapes of the containers where collisions can happen

when particles hit the boundaries. Also, the computational cost

for training multiple environment-specific models would be huge.

More challengingly, the exogenous factors within each environ-

ment can be latent, such as we only know the water trajectories

are from different containers, without knowing the exact shape

for each of them. Therefore, how to learn a single efficient model

that can generalize across environments by considering both their

commonalities and the distinct effect of per-environment latent

exogenous factors remains unsolved. This model, if developed, may

help us predict dynamics for systems under new environments with

very few observed trajectories.

Inspired by these observations, in this paper, we propose Gener-

alized Graph ODE (GG-ODE), a general-purpose continuous neural

simulator that learns multi-agent system dynamics across environ-

ments. Our key idea is to assume the dynamics across environments

are governed by common physics laws that can be captured via

learning a shared ODE function. We introduce in the ODE function

a learnable vector representing the distinct latent exogenous factors

for each environment to account for their differences. We learn the

representations for the latent exogenous factors from systems’ his-

torical trajectories through an encoder by optimizing the prediction

goal. In this way, different environments share the same ODE func-

tion framework while incorporating environment-specific factors

in the ODE function to distinguish them.

However, there are two main challenges in learning such latent

exogenous factor representations. Firstly, since both the latent ini-

tial states for agents and the latent exogenous factors are learned

through the historical trajectory data, how can we differentiate

them to guarantee they have different semantic meanings? Sec-

ondly, when inferring from different time windows from the same

trajectory, how can we guarantee the learned exogenous factors

are for the same environment?

Towards the first challenge, we enforce the orthogonality be-

tween the initial state encoder and the exogenous factor encoder

via mutual information minimization. For the second challenge, we

reduce the variance of learned exogenous factors within the same

environment via a contrastive learning loss. We train our model

in a multi-task learning paradigm where we mix the training data

from multiple systems with different environments. In this way,

the model is expected to fast adapt to other unseen systems with

a few data points. We conduct extensive experiments over a wide

range of physical systems, which show that our GG-ODE is able to

accurately predict system dynamics, especially in the long range.

The main contributions of this paper are summarized as follows:

• We investigate the problem of learning continuous multi-

agent system dynamics across environments. We propose a

novel framework, known as GG-ODE, which describes the

dynamics for each system with a shared ODE function and

an environment-specific vector for the latent exogenous fac-

tors to capture the commonalities and discrepancies across

environments respectively.

• We design two regularization losses to guide the learning

process of the latent exogenous factors, which is crucial for

making precise predictions in the future.

• Extensive experiments verify the effectiveness of GG-ODE

to accurately predict system dynamics, especially in the long

range prediction tasks. GG-ODE also generalizes well to

unseen or low-resource systems that have very few training

samples.

2 PROBLEM DEFINITION

We aim to build a neural simulator to learn continuous multi-agent

system dynamics automatically from data that can be generalized

across environments. Throughout this paper, we use boldface up-

percase letters to denote matrices or vectors, and regular lowercase

letters to represent the values of variables.

We consider a multi-agent dynamical system of 𝑁 interacting

agents as an evolving interaction graph G𝑡 = {V, E𝑡 }, where nodes
are agents and edges are interactions between agents that can

change over time. For each dynamical system, we denote 𝑒 ∈ 𝐸 as

the environment from which the data is acquired. We denote𝑿𝑡,𝑒 ∈
X as the featurematrix for all𝑁 agents and 𝒙𝑡,𝑒𝑖 as the feature vector

of agent 𝑖 at time 𝑡 under environment 𝑒 . The edges between agents

are assigned if two agents are within a connectivity radius 𝑅 based

on their current locations 𝒑𝑡,𝑒𝑖 which is part of the node feature

vector, i.e. 𝒑𝑡,𝑒𝑖 ∈ 𝒙𝑡,𝑒𝑖 . They reflect the local interactions of agents

and the radius is kept constant over time [35].

Our model input consists of the trajectories of 𝑁 agents over

𝐾 timestamps 𝑋 𝑡1:𝐾 ,𝑒 = {𝑿𝑡1,𝑒 ,𝑿𝑡2,𝑒 , . . . ,𝑿𝑡𝐾 ,𝑒 }, where the times-

tamps 𝑡1, 𝑡2 · · · 𝑡𝐾 can have non-uniform intervals and be of any

continuous values. Our goal is to learn a generalized simulator

𝑠𝜃 : 𝑋 𝑡1:𝐾 ,𝑒 → 𝑌 𝑡𝐾+1:𝑇 ,𝑒 that predicts node dynamics in the future

for any environment 𝑒 . Here 𝒀 𝑡,𝑒 ∈ Y represents the targeted node

dynamic information at time 𝑡 , and can be a subset of the input

features. We use 𝒚𝑡,𝑒𝑖 to denote the targeted node dynamic vector

of agent 𝑖 at time 𝑡 under environment 𝑒 .

3 PRELIMINARIES AND RELATEDWORK

3.1 Dynamical System Simulations with Graph
Neural Networks (GNNs)

Graph Neural Networks (GNNs) are a class of neural networks that

operate on graph-structured data by passing local messages[17, 19,

25, 41, 46]. They have been extensively employed in various applica-

tions such as node classification [45, 48], link prediction [7, 32], and

799
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recommendation systems [14, 20, 42, 43]. By viewing each agent as

a node and interaction among agents as edges, GNNs have shown

to be efficient for approximating pair-wise node interactions and

achieved accurate predictions for multi-agent dynamical systems

[8, 24, 35]. The majority of existing studies propose discrete GNN-

based simulators where they take the node features at time 𝑡 as

input to predict the node features at time 𝑡+1. To further capture

the long-term temporal dependency for predicting future trajecto-

ries, some work utilizes recurrent neural networks such as RNN,

LSTM or self-attention mechanism to make prediction at time 𝑡

+1 based on the historical trajectory sequence within a time win-

dow [12, 13, 16, 36]. However, they all restrict themselves to learn

a one-step state transition function. Therefore, when successively

apply these one-step simulators to previous predictions in order

to generate the rollout trajectories, error accumulates and impairs

the prediction accuracy, especially for long-range prediction. Also,

when applying most discrete GNNs to learn over multiple systems

under different dynamical laws (environments), they usually re-

train the GNNs individually for dealing with each specific system

environment [24, 35], which yields a large computational cost.

3.2 Ordinary Differential Equations (ODEs) for
Multi-agent Dynamical Systems

The dynamic nature of a multi-agent system can be captured by

a series of nonlinear first-order ordinary differential equations

(ODEs), which describe the co-evolution of states for a set of 𝑁

dependent variables (agents) over continuous time 𝑡 ∈ R as [5, 33]:

¤𝒛𝑡𝑖 :=
𝑑𝒛𝑡𝑖
𝑑𝑡

= 𝑔
(
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
. Here 𝒛𝑡𝑖 ∈ R𝑑 denotes the state vari-

able for agent 𝑖 at timestamp 𝑡 and 𝑔 denotes the ODE function that

drives the system move forward. Given the initial states 𝒛01, · · · 𝒛
0
𝑁

for all agents and the ODE function𝑔, any black box numerical ODE

solver such as Runge-Kuttais [29] can solve the ODE initial-value

problem (IVP), of which the solution 𝒛𝑇𝑖 can be evaluated at any

desired time as shown in Eqn 1.

𝒛𝑇𝑖 = 𝒛0𝑖 +
∫ 𝑇

𝑡=0
𝑔

 
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
𝑑𝑡 (1)

Traditionally, the ODE function 𝑔 is usually hand-crafted based

on some domain knowledge such as in robot motion control [39]

and fluid dynamics [28], which is hard to specify without know-

ing too much about the underlying principles. Even if the exact

ODE functions are given, they are usually hard to scale as they

require complicated numerical integration [30, 35]. Some recent

studies [18, 19, 33] propose to parameterize it with a neural net-

work and learn it in a data-driven way. They combine the expressive

power of neural networks along with the principled modeling of

ODEs for dynamical systems, which have achieved promising re-

sults in various applications [18, 19, 33].

3.3 GraphODE for Dynamical Systems

To model the complex interplay among agents in a dynamical sys-

tem, researchers have recently proposed to combine ODE with

GNNs, which has been shown to achieve superior performance in

long-range predictions [18, 19, 47]. In [47], an encoder-processor-

decoder architecture is proposed, where an encoder first computes

the latent initial states for all agents individually based on their first

observations. Then an ODE function parameterized by a GNN pre-

dicts the latent trajectories starting from the learned initial states.

Finally, a decoder extracts the predicted dynamic features based

on a decoding function that takes the predicted latent states as in-

put. Later on, a Graph-ODE framework has been proposed [18, 19]

which follows the structure of variational autoencoder [23]. They as-

sume an approximated posterior distribution over the latent initial

state for each agent, which is learned based on the whole histor-

ical trajectories instead of a single point as in [47]. The encoder

computes the approximated posterior distributions for all agents

simultaneously considering their mutual influence and then sample

the initial states from them. Compared with [47], they are able to

achieve better prediction performance, especially in the long range,

and are also capable of handling the dynamic evolution of graph

structures [19] which is assumed to be static in [47].

We follow a similar framework to this line but aim at generalizing

GraphODE to model multiple systems across environments.

4 METHOD

In this section, we present Generalized Graph ODE (GG-ODE ) for

learning complex system dynamics across environments. As de-

picted in Figure 1, GG-ODE consists of four main components that

are trained jointly: (1) an initial state encoder for inferring the la-

tent initial states for all agents simultaneously; (2) an environment

encoder which learns the latent representations for exogenous fac-

tors; (3) a generative model defined by a GNN-based ODE function

that is shared across environments for modeling the continuous

interaction among agents in the latent space. The distinct latent

exogenous factors learned for each environment are incorporated

into the ODE function to account for their discrepancies, and (4)

a decoder that extracts the predicted dynamic features based on a

decoding function. We now introduce each component in detail.

4.1 Initial State Encoder

Given the observed trajectories𝑋 𝑡1:𝐾 ,𝑒 , the initial state encoder com-

putes a posterior distribution of latent initial state𝑞𝜙

(
𝒛0,𝑒𝑖 | 𝑋 𝑡1:𝐾 ,𝑒

)
for each agent, from which 𝒛0,𝑒𝑖 is sampled. The latent initial state

𝒛0,𝑒𝑖 for each agent determines the starting point for the predicted

trajectory. We assume the prior distribution 𝑝 (𝒛0,𝑒𝑖 ) is a standard
normal distribution, and use Kullback–Leibler divergence term in

the loss function to add significant regularization towards how

the learned distributions look like, which differs VAE from other

autoencoder frameworks [19, 24, 33]. In multi-agent dynamical sys-

tems, agents are highly-coupled and influence each other. Instead of

learning such distribution separately for each agent, such as using

an RNN [33] to encode the temporal pattern for each individual

trajectory, we compute the posterior distributions for all agents

simultaneously (similar to [19]). Specifically, we fuse all trajectories

as a whole into a temporal graph to consider both the temporal

patterns of individual agents and the mutual interaction among

them, where each node is an observation of an agent at a specific

timestamp. Two types of edges are constructed, which are (1) spatial

edgesV𝑡 that are among observations of interacting agents at each

timestamp if the Euclidean distance between the agents’ positions

𝑟𝑡,𝑒𝑖 𝑗 = | |𝒑𝑡,𝑒𝑖 − 𝒑𝑡,𝑒𝑗 | |2 is within a (small) connectivity radius 𝑅; and
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Initial State

Encoder

𝑡" 𝑡# 𝑡$

𝑂&
𝑂'

𝑂(

𝑡)

𝑿: Node Trajectory Inputs

(Augmented with bidirectional spatial edges

and directional temporal edges)

ODE

Generative

Model

Decoder

𝒀: Predicted Dynamics

Environment

Encoder

𝑢.

𝑧'0,.
2𝑧'3,. = 𝑓676(𝑧'3,.||𝑢.)

𝑑𝑧'3,.
𝑑𝑡 = <

(∈>?
𝑓. 2𝑧'3,. , 2𝑧(3,. , 𝑒'(3,. + 𝑓6.BC( 2𝑧'3,.)

𝑦'3,.

𝑦&3,.

𝑦(3,.
𝑳𝑴𝑰: Orthogonality

𝑳𝒄𝒐𝒏𝒕𝒓𝒂: Time Invariance

Figure 1: The overall framework of GG-ODE consists of four modules. First, an initial state encoder computes the latent initial

states for all agents simultaneously by constructing a temporal graph from the input trajectories. Additionally, an environment

encoder computes the latent representations for exogenous factors that are distinct for each environment. Then, the generative

model defined by a GNN-based ODE function calls the solver to output the predicted latent states for agents in the future, where

the learned exogenous factors are incorporated into the ODE function. Finally, a decoder generates the predicted dynamics for

each agent based on the decoding likelihood determined by the latent states. Two regularization terms are added to preserve

the orthogonality of two encoders and the time-invariant property of the environment encoder.

(2) temporal edges that preserve the autoregressive nature of each

trajectory, defined between two consecutive observations of the

same agent. Note that spatial edges are bidirectional while tempo-

ral edges are directional to preserve the autoregressive nature of

each trajectory, as shown in Figure 1. Based on the constructed

temporal graph, we learn the latent initial states for all agents

through a two-step procedure: (1) dynamic node representation

learning that learns the representation 𝒉𝑡,𝑒𝑖 for each observation

node whose feature vector is 𝒙𝑡,𝑒𝑖 . (2) sequence representation learn-

ing that summarizes each observation sequence (trajectory) into a

fixed-dimensional vector through a self-attention mechanism.

4.1.1 Dynamic Node Representation Learning. We first conduct dy-

namic node representation learning on the temporal graph through

an attention-based spatial-temporal GNN defined as follows:

𝒉
𝑙+1(𝑡,𝑒 )
𝑗 = 𝒉

𝑙 (𝑡,𝑒 )
𝑗 + 𝜎

©­­«
∑︁

𝑖 (𝑡 ′,𝑒 ) ∈N (𝑡,𝑒 )
𝑗

𝛼
𝑙 (𝑡 ′,𝑒 )→𝑗 (𝑡,𝑒 )
𝑖 ×𝑾𝑣𝒉̂

𝑙 (𝑡 ′,𝑒 )
𝑖

ª®®¬
𝛼
𝑙 (𝑡 ′,𝑒 )→𝑗 (𝑡,𝑒 )
𝑖 =

(
𝑾𝑘 𝒉̂

𝑙 (𝑡 ′,𝑒 )
𝑖

)𝑇 (
𝑾𝑞𝒉

𝑙 (𝑡,𝑒 )
𝑗

)
· 1
√
𝑑

(2)

𝒉̂
𝑙 (𝑡 ′,𝑒 )
𝑖 = 𝒉

𝑙 (𝑡 ′,𝑒 )
𝑖 + TE(𝑡 ′ − 𝑡)

TE(Δ𝑡)2𝑖 = sin

(
Δ𝑡

100002𝑖/𝑑

)
, TE(Δ𝑡)2𝑖+1 = cos

(
Δ𝑡

100002𝑖/𝑑

)

where 𝜎 (·) is a non-linear activation function; 𝑑 is the dimension

of node embeddings. The node representation is computed as a

weighted summation over its neighbors plus residual connection

where the attention score is a transformer-based [40] dot-product

of node representations by the use of value, key, query projection

matrices𝑾𝑣,𝑾𝑘 ,𝑾𝑞 . The learned attention scores are normalized

via softmax across all neighbors. Here 𝒉
𝑙 (𝑡,𝑒 )
𝑗 is the representation

of agent 𝑗 at time 𝑡 in the 𝑙-th layer. 𝒉
𝑙 (𝑡 ′,𝑒 )
𝑖 is the general repre-

sentation for a neighbor which is connected either by a temporal

edge (where 𝑡 ′ < 𝑡 and 𝑖 = 𝑗 ) or a spatial edge (where 𝑡 = 𝑡 ′ and
𝑖 ≠ 𝑗 ) to the observation 𝒉

𝑙 (𝑡,𝑒 )
𝑗 . We add temporal encoding [33, 40]

to each neighborhood node representation in order to distinguish

the message delivered via spatial and temporal edges respectively.

Finally, we stack 𝐿 layers to get the final representation for each

observation node as : 𝒉𝑡,𝑒𝑖 = 𝒉
𝐿 (𝑡,𝑒 )
𝑖 .

4.1.2 Sequence Representation Learning. We then employ a self-

attention mechanism to generate the sequence representation 𝒎𝑒𝑖
for each agent, which is used to compute themean 𝝁0,𝒆

𝒊
and variance

𝝈0,𝒆

𝒊
of the approximated posterior distribution of the agent’s initial

state. Compared with recurrent models such as RNN, LSTM [37], it

offers better parallelization for accelerating training speed and in

the meanwhile alleviates the vanishing/exploding gradient problem

brought by long sequences [36].

We follow [19] and compute the sequence representation 𝒎𝑒𝑖 as

a weighted sum of observations for agent 𝑖:

𝒎𝑒𝑖 =
1

𝐾

∑︁
𝑡

𝜎
(
(𝒂𝑒𝑖 )

𝑇 𝒉̂𝑡,𝑒𝑖 𝒉̂𝑡,𝑒𝑖

)
, 𝒂𝑒𝑖 = tanh

((
1

𝐾

∑︁
𝑡

𝒉̂𝑡,𝑒𝑖

)
𝑾𝑎

)
,

(3)

where 𝒂𝑒𝑖 is the average of observation representations with a non-

linear transformation𝑾𝑎 and 𝒉̂𝑡,𝑒𝑖 = 𝒉𝑡,𝑒𝑖 + TE(𝑡). 𝐾 is the number

of observations for each trajectory. Then the initial state is drawn

from the approximated posterior distribution as:

𝑞𝜙

(
𝒛0,𝑒𝑖 | 𝑋 𝑡1:𝐾 ,𝑒

)
= N

(
𝝁0,𝑒𝑖 ,𝝈0,𝑒

𝑖

)
, 𝝁0,𝑒𝑖 ,𝝈0,𝑒

𝑖 = 𝑓trans
 
𝒎𝑒𝑖

)
𝒛0,𝑒𝑖 ∼ 𝑝

(
𝒛0,𝑒𝑖

)
≈ 𝑞𝜙

(
𝒛0,𝑒𝑖 | 𝑋 𝑡1:𝐾 ,𝑒

) (4)
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where 𝑓trans is a simple Multilayer Perceptron (MLP) whose output

vector is equally split into two halves to represent the mean and

variance respectively.

4.2 Environment Encoder
The dynamic nature of a multi-agent system can be largely affected

by some exogenous factors from its environment such as gravity,

temperature, etc. These exogenous factors can span over a wide

range of settings and are sometimes latent and not observable. To

make our model generalize across environments, we design an

environment encoder to learn the effect of the exogenous factors

automatically from data to account for the discrepancies across envi-

ronments. Specifically, we use the environment encoder to learn the

representations of exogenous factors from observed trajectories and

then incorporate the learned vector into the ODE function which

is shared across environments and defines how the system evolves

over time. In this way, we use a shared ODE function framework to

capture the commonalities across environments while preserving

the differences among them with the environment-specific latent

representation, to improve model generalization performance. It

also allows us to learn the exogenous factors of an unseen environ-

ment based on only its leading observations. We now introduce the

environment encoder in detail.

The exogenous factors would pose influence on all agents within

a system. On the one hand, they will influence the self-evolution of

each individual agent. For example, temperatures would affect the

velocities of agents. On the other hand, they will influence the pair-

wise interaction among agents. For example, temperatures would

also change the energy when two particles collide with each other.

The environment encoder 𝑓 envenc therefore learns the latent represen-

tation of exogenous factors 𝒖𝑒 by jointly consider the trajectories

from all agents, i.e. 𝑓 envenc : 𝑋 𝑡1:𝐾 ,𝑒 → 𝒖𝑒 . Specifically, we learn an

environment-specific latent vector from the aforementioned tempo-

ral graph in Sec 4.1 that is constructed from observed trajectories.

The temporal graph contains both the information for each individ-

ual trajectory and the mutual interaction among agents through

temporal and spatial edges. To summarize thewhole temporal graph

into a vector 𝒖𝑒 , we attend over the sequence representation 𝒎𝑒𝑖
for each trajectory introduced in Sec 4.1 as:

𝒖𝑒 =
1
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)
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)
, (5)

where 𝑾𝑏 is a transformation matrix and the attention weight

is computed based on the average sequence representation with

nonlinear transformation similar as in Eqn (3). Note that we use

different parameters to compute the sequence representation𝒎𝑒𝑖 as

opposed to the initial state encoder. The reason is that the semantic

meanings of the two sequence representations are different: one is

for the latent initial states and another is for the exogenous factors.

4.2.1 Time Invariance. A desired property of the learned represen-

tation for exogenous factors 𝒖𝑒 is that it should be time-invariant

towards the input trajectory time window. In other words, for the

same environment, if we chunk the whole trajectories into several

pieces, the inferred representations should be similar to each other

as they are describing the same environment.

To achieve this, we design a contrastive learning loss to guide

the learning process of the exogenous factors. As shown in Figure 2,

we force the learned exogenous factor representations to be similar

if they are generated based on the trajectories from the same en-

vironment (positive pairs), and to be apart from each other if they

are from different environments (negative pairs). Specifically, we

define the contrastive leanring loss as follows:

Lcontra = − log
exp
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(6)

where 𝜏 is a temperature scalar and sim(·, ·) is cosine similarity

between two vectors. Note that the lengths of the observation

sequences can vary. The detailed generation process for positive

and negative pairs can be found in Appendix A.3.2.
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Figure 2: Temporal properties of the environment encoder.

We use contrastive learning loss to force the latent exoge-

nous factors learned from different windowswithin the same

environment to be close to each other, and from different

environments to be apart from each other.

4.2.2 Orthogonality. GG-ODE features two encoders that take the

input of observed trajectories 𝑋 𝑡1:𝐾 ,𝑒 for learning the latent initial

states and the latent exogenous factors respectively. As they are

designed for different purposes but are both learned from the same

input, we disentangle the learned representations from them via a

regularization loss defined via mutual information minimization.

Mutual information measures the dependency between two ran-

dom variables 𝑋,𝑍 [49]. Since we are not interested in the exact

value of the mutual information, a lower bound derived from Jensen

Shannon Divergence [15] could be formulated as

𝐼JSD (𝑋,𝑍 ) = 𝐸𝑃𝑋𝑍 [− sp(− 𝑀 (𝑥, 𝑧))] − 𝐸𝑃𝑋 𝑃𝑍 [sp(𝑀 (𝑥, 𝑧))], (7)

where 𝑃𝑋𝑃𝑍 is the product of the marginal distributions and 𝑃𝑋𝑍 is

the joint distribution. 𝑠𝑝 (𝑤) = 𝑙𝑜𝑔(1+𝑒𝑤) and𝑀 is a discriminator

modeled by a neural network to compute the score for measuring

their mutual information.

According to recent literature [15, 34, 49], the sample pair (posi-

tive pairs) (𝑥, 𝑧) drawn from the joint distribution 𝑃𝑋𝑍 are different

representations of the same data sample, and the sample pair (neg-

ative pairs) drawn from 𝑃𝑋𝑃𝑍 are different representations from

different data samples.We therefore attempt tominimize themutual
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information from the two encoders as follows

LMI = E𝑒∈𝐸,𝑖 [− 𝑠𝑝 (− Ψ(𝒛0,𝑒𝑖 , 𝒖𝑒 ))] − E𝑒∈𝐸×𝑒′∈𝐸,𝑖 [𝑠𝑝 (Ψ(𝒛0,𝑒𝑖 , 𝒖𝑒
′ ))]
(8)

where Ψ is a MLP-based discriminator. Specifically, we force the

latent initial states 𝒛0,𝑒𝑖 for all agents from environment 𝑒 to be dis-

similar to the learned exogenous factors 𝒖𝑒 . And construct negative

pairs by replacing the learned exogenous factors from another en-

vironment as 𝒖𝑒
′
. The generation process for positive and negative

pairs can be found in Appendix A.3.2.

4.3 ODE Generative Model and Decoder

4.3.1 ODE Generative Model. After describing the initial state en-

coder and the environment encoder, we now define the ODE func-

tion that drives the system to move forward. The future trajectory

of each agent can be determined by two important factors: the

potential influence received from its neighbors in the interaction

graph and the self-evolution of each agent. For example, in the

n-body system, the position of each agent can be affected both

by the force from its connected neighbors and its current velocity

which can be inferred from its historical trajectories. Therefore,

our ODE function consists of two parts: a GNN that captures the

continuous interaction among agents and the self-evolution of the

node itself. One issue here is how can we decide the neighbors for

each agent in the ODE function as the interaction graph is evolving,

the neighbors for each agent are dynamically changing based on

their current positions, which are implicitly encoded in their latent

state representations 𝒛𝑡,𝑒𝑖 , 𝒛𝑡,𝑒𝑗 . We propose to first decode the latent

node representations 𝒛𝑡,𝑒𝑖 , 𝒛𝑡,𝑒𝑗 with a decoding function 𝑓dec to ob-

tain their predicted positions 𝒑𝑡,𝑒𝑖 ,𝒑𝑡,𝑒𝑗 at current timestamp. Then

we determine their connectivity based on whether their Euclidean

distance 𝑟𝑡,𝑒𝑖 𝑗 = | |𝒑𝑡,𝑒𝑖 − 𝑝𝑡,𝑒𝑗 | |2 is within the predefined radius 𝑅. This

can be computed efficiently by using a multi-dimensional index

structure such as the 𝑘-𝑑 tree. The decoding function 𝑓dec is the

same one that we will use in the decoder.

To incorporate the influence of exogenous factors, we further

incorporate 𝒖𝑒 into the general ODE function to improve model

generalization ability as:

𝑑𝒛𝑡,𝑒𝑖
𝑑𝑡

= 𝑔
(
𝒛𝑡,𝑒1 , 𝒛𝑡,𝑒2 · · · 𝒛𝑡,𝑒

𝑁

)
=

∑︁
𝑗∈N𝑖

𝑓GNN (𝒛̃𝑡,𝑒𝑖 , 𝒛̃𝑡,𝑒𝑗 ) + 𝑓self (̃𝒛𝑡,𝑒𝑖 )

𝒛̃𝑡,𝑒𝑖 = 𝑓env (𝒛𝑡,𝑒𝑖 | |𝒖𝑒 )
(9)

where | | denotes concatenation and 𝑓GNN can be any GNN that

conducts message passing among agents. 𝑓self, 𝑓env are implemented

as two MLPs respectively. In this way, we learn the effect of latent

exogenous factors from data without supervision where the latent

representation 𝒖𝑒 is trained end-to-end by optimizing the prediction

loss.

4.3.2 Decoder. Given the ODE function 𝑔 and agents’ initial states

𝒛0,𝑒𝑖 for 𝑖 = 1, 2 · · ·𝑁 , the latent trajectories for all agents are de-

termined, which can be solved via any black-box ODE solver. Fi-

nally, a decoder generates the predicted dynamic features based on

the decoding probability 𝑝 (𝒚𝑡,𝑒𝑖 |𝒛𝑡,𝑒𝑖 ) computed from the decoding

function 𝑓dec as shown in Eqn 10. We implement 𝑓dec as a simple

two-layer MLP with nonlinear activation. It outputs the mean of

the normal distribution 𝑝 (𝒚𝑡,𝑒𝑖 |𝒛𝑡,𝑒𝑖 ), which we treat as the predicted
value for each agent.

𝒛
𝑡1,𝑒
𝑖 · · · 𝒛𝑡𝑇 ,𝑒𝑖 = ODESolve(𝑔, [𝒛0,𝑒1 , 𝒛0,𝑒2 · · · 𝒛0,𝑒

𝑁
], (𝑡1 · · · 𝑡𝑇 ))

𝒚𝑡,𝑒𝑖 ∼ 𝑝 (𝒚𝑡,𝑒𝑖 |𝒛𝑡,𝑒𝑖 ) = 𝑓dec (𝒛𝑡,𝑒𝑖 )
(10)

4.4 Training

We now introduce the overall training procedure of GG-ODE . For

each training sample, we split it into two halves along the time,

where we condition on the first half [𝑡1, 𝑡𝐾 ] in order to predict dy-

namics in the second half [𝑡𝐾+1, 𝑡𝑇 ]. Given the observed trajectories
𝑋 𝑡1:𝐾 ,𝑒 , we first run the initial state encoder to compute the latent

initial state 𝒛0,𝑒𝑖 for each agent, which is sampled from the approxi-

mated posterior distribution 𝑞𝜙

(
𝒛0,𝑒𝑖 | 𝑋 𝑡1:𝐾 ,𝑒

)
. We then generate

the latent representations of exogenous factors 𝒖𝑒 from the envi-

ronment 𝑒 via the environment encoder. Next, we run the ODE

generative model that incorporates the latent exogenous factors to

compute the latent states for all agents in the future. Finally, the

decoder outputs the predicted dynamics for each agent.

We jointly train the encoders, ODE generative model, and de-

coder in an end-to-end manner. The loss function consists of three

parts: (1) the evidence lower bound (ELBO) which is the addition of

the reconstruction loss for node trajectories and the KL divergence

term for adding regularization to the inferred latent initial states

for all agents. We use 𝒁0,𝑒 to denote the latent initial state matrix of

all N agents. The standard VAE framework is trained to maximize

ELBO so we take the negative as the ELBO loss; (2) the contrastive

learning loss for preserving the time invariance properties of the

learned exogenous factors; (3) the mutual information loss that

disentangles the learned representations from the two encoders.

𝜆1, 𝜆2 are two hyperparameters for balancing the three terms. We

summarize the whole procedure in Appendix A.4.

L = LELBO + 𝜆1Lcontra + 𝜆2L𝑀𝐼 (11)

LELBO(𝜃,𝜙 ) = − E
𝒁 0,𝑒∼∏𝑁

𝑖=1 𝑞𝜙

(
𝒛
0,𝑒
𝑖 |𝑋 𝑡1:𝐾 ,𝑒

) [log 𝑝𝜃 (𝑌 𝑡𝐾+1:𝑇 ,𝑒 )]

+KL[
𝑁∏
𝑖=1

𝑞𝜙 (𝒛0,𝑒𝑖 |𝑋 𝑡1:𝐾 ,𝑒 )∥𝑝 (𝒁0,𝑒 )]
(12)

5 EXPERIMENTS

5.1 Experiment Setup

5.1.1 Datasets. We illustrate the performance of our model across

two physical simulations that exhibit different system dynamics

over time: (1) The Water dataset [35], which describes the fluid

dynamics of water within a container. Containers can have differ-

ent shapes and numbers of ramps with random positions inside

them, which we view as different environments. The dataset is sim-

ulated using the material point method (MPM), which is suitable

for simulating the behavior of interacting, deformable materials

such as solids, liquids, gases 2. For each data sample, the number of

2https://en.wikipedia.org/wiki/Material_point_method
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Table 1: Mean Square Error (MSE) of rollout trajectories with varying prediction lengths. The transductive setting evaluates the

testing sequences whose environments are seen during training. The inductive setting evaluates new systems with unseen

environments during training. The best results are bold-faced.

Dataset
Lennard-Jones potential

Transductive MSE (10 − 2)
Lennard-Jones potential

Inductive MSE (10 − 1)
Water

Transductive MSE (10 − 3)
Water

Inductive MSE (10 − 2)
Rollout Percentage 30% 60% 100% 30% 60% 100% 30% 60% 100% 30% 60% 100%

LSTM 6.73 20.69 31.88 1.64 8.82 18.01 4.87 23.09 30.44 1.01 6.72 14.79

NRI 5.83 17.99 28.18 1.33 4.34 13.97 3.87 19.64 26.34 0.83 3.84 10.59

NDCN 5.99 17.54 27.06 1.35 4.27 12.37 3.95 18.76 24.33 0.85 3.79 10.11

CG-ODE 5.43 17.01 26.01 1.32 4.25 12.03 3.41 18.13 23.62 0.80 3.64 9.91

SocialODE 5.62 17.23 26.89 1.34 4.26 12.44 3.68 18.42 23.77 0.84 3.70 10.01

GNS 5.03 16.28 25.44 1.28 4.23 11.88 3.17 17.88 23.14 0.76 3.45 9.78

GG-ODE 5.18 16.03 24.97 1.10 3.98 10.77 3.20 16.94 22.58 0.63 3.11 8.02

-w/o Lcontra 5.32 17.03 26.53 1.30 4.25 12.13 3.32 18.03 23.01 0.75 3.58 10.03

-w/oL𝑀𝐼 5.45 17.25 26.11 1.32 4.11 11.76 3.43 18.32 22.95 0.78 3.51 9.88

shared encoders 5.66 17.44 26.79 1.33 4.46 12.22 3.55 18.57 23.55 0.81 3.66 10.08

particles can vary but the trajectory lengths are kept the same as

600. The input node features are 2-D positions of particles, and we

calculate the velocities and accelerations as additional node features

using finite differences of these positions. The total number of data

samples (trajectories) is 1200 and the number of environments is

68, where each environment can have multiple data samples with

different particle initializations such as positions, velocities, and

accelerations. (2) The Lennard-Jones potential dataset [21], which

describes the soft repulsive and attractive interactions between sim-

ple atoms and molecules 3. We generate data samples with different

temperatures, which could affect the potential energy preserved

within the whole system thus affecting the dynamics. We view

temperatures as different environments. The total number of data

samples (trajectories) is 6500 and the number of environments is

65. Under each environment, we generate 100 trajectories with

different initializations. The trajectory lengths are kept the same

as 100. The number of particles is 1000 for all data samples. More

details about datasets can be found in Appendix A.1.

5.1.2 Task Evaluation and Data Split. We predict trajectory rollouts

across varying lengths and use Mean Square Error (MSE) as the

evaluation metric.

Task Evaluation. The trajectory prediction task is conducted un-

der two settings: (1) Transductive setting, where we evaluate the

test sequences whose environments are seen during training; (2)

Inductive setting, where we evaluate the test sequences whose en-

vironments are not observed during training. It helps to test the

model’s generalization ability to brand-new systems.

Data Split. We train our model in a sequence-to-sequence setting

where we split the trajectory of each training sample into two parts

[𝑡1, 𝑡𝐾 ] and [𝑡𝐾+1, 𝑡𝑇 ]. We condition on the first part of observations

to predict the second part. To conduct data split, we first randomly

select 20% environments whose trajectories are all used to construct

the testing set 𝑋 Induct
test in the inductive setting. For the remaining

trajectories that cover the 80% environments, we randomly split

them into three partitions: 80% for the training set 𝑋train, 10% for

3https://en.wikipedia.org/wiki/Lennard-Jones_potential

the validation set 𝑋val and 10% for the testing set in the transduc-

tive setting 𝑋 trans
test . In other words, we have two test sets for the

inductive and transductive settings respectively, one training set

and one validation set. To fully utilize the data points within each

trajectory, we generate training and validation samples by splitting

each trajectory into several chunks that can overlap with each other,

using a sliding window. The sliding window has three hyperpa-

rameters: the observation length and prediction length for each

sample, and the interval between two consecutive chunks (samples).

Specifically, for the Water dataset, we set the observation length as

50 and the prediction length as 150. We obtain samples from each

trajectory by using a sliding window of size 200 and setting the

sliding interval as 50. For the Lennard-Jones potential dataset, we

set the observation length as 20, the prediction length as 50, and the

interval as 10. The procedure is summarized in Appendix A.1.1. Dur-

ing evaluations for both settings, we ask the model to roll out over

the whole trajectories without further splitting, whose prediction

lengths are larger than the ones during training. The observation

lengths during testing are set as 20 for the Lennard-Jones potential

dataset and 50 for the Water dataset across the two settings.

5.2 Baselines

We compare both discrete neural models as well as continuous neu-

ral models where they do not have special treatment for modeling

the influence from different environments. For discrete ones we

choose: NRI [24] which is a discrete GNN model that uses VAE to

infer the interaction type among pairs of agents and is trained via

one-step predictions; GNS [35], a discrete GNN model that uses

multiple rounds of message passing to predict every single step;

LSTM [37], a classic recurrent neural network (RNN) that learns the

dynamics of each agent independently. For the continuous models,

we compare with NDCN [47] and Social ODE [44], two ODE-based

methods that follow the encoder-processor-decoder structure with

GNN as the ODE function. The initial state for each agent is drawn

from a single data point instead of a leading sequence. CG-ODE [19]

which has the same architecture as our model, but with two coupled

ODE functions to guide the evolution of systems.
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(a) Ground Truth

(b) Predictions of GNS

(c) Predictions of GG-ODE

Figure 3: Visualization of the transductive prediction results for the Water dataset. Black lines are ramps within the container.

The length of the observation sequence is set as 20. GNS makes less accurate predictions compared with GG-ODE.

5.3 Performance Evaluation

We evaluate the performance of our model based on Mean Square

Error (MSE) as shown in Table 1. As data samples have varying

trajectory lengths, we report the MSEs over three rollout percent-

ages regarding different prediction horizons: 30%, 60%, 100% where

100% means the model conditions on the observation sequence and

predicts all the remaining timestamps.

Firstly, we can observe that GG-ODE consistently outperforms all

baselines across different settings when making long-range predic-

tions, while achieving competitive results whenmaking short-range

predictions. This demonstrates the effectiveness of GG-ODE in

learning continuous multi-agent system dynamics across environ-

ments. By comparing the performance of LSTMwith other methods,

we can see that modeling the latent interaction among agents can

indeed improve the prediction performance compared with pre-

dicting trajectories for each agent independently. Also, we can

observe the performance gap between GG-ODE and other baselines

increase when we generate longer rollouts, showing its expressive

power when making long-term predictions. This may be due to the

fact that GG-ODE is a continuous model trained in a sequence-to-

sequence paradigmwhereas discrete GNNmethods are only trained

to make a fixed-step prediction. Another continuous model NDCN

only conditions a single data point to make predictions for the

whole trajectory in the future, resulting in suboptimal performance.

Finally, we can see that GG-ODE has a larger performance gain

over existing methods in the inductive setting than in the transduc-

tive setting, which shows its generalization ability to fast adapt to

other unseen systems with a few data points. Figure 3 visualizes

the prediction results under the transductive setting for the Water

dataset.

5.3.1 Ablation Studies. To further analyze the rationality behind

our model design, we conduct an ablation study by considering

three model variants: (1) We remove the contrastive learning loss

which forces the learned exogenous factors to satisfy the time invari-

ance property, denoted as − 𝑤/𝑜Lcontra; (2) We remove the mutual

information minimization loss which reduces the variance of the

learned exogenous factors from the same environment, denoted

as − 𝑤/𝑜L𝑀𝐼 . (3) We share the parameters of the two encoders

for computing the latent representation 𝒎𝑒𝑖 for each observation

sequence in the temporal graph, denoted as shared encoders. As

shown in Table 1, all three variants have inferior performance

compared to GG-ODE , verifying the rationality of the three key

designs. Notably, when making long-range predictions, removing

L𝑀𝐼 would cause more harm to the model than removing Lcontra.

This can be understood as the latent initial states are more im-

portant for making short-term predictions, while the disentangled

latent initial states and exogenous factors are both important for

making long-range predictions.

5.3.2 Hyperparameter Study. We study the effect of 𝜆1/𝜆2, which
are the hyperparameters for balancing the two regularization terms

that guide the learning of the two encoders, towards making pre-

dictions under different horizons. As illustrated in Figure 4, the

optimal ratio for making 30%, 60%, 100% rollout predictions are 2,

1,0.5 respectively, under both the transductive and inductive set-

tings. They indicate that the exogenous factors modeling plays a

more important role in facilitating long-term predictions, which is

consistent with the prediction errors illustrated in Table 1 when

comparing − 𝑤/𝑜L𝑀𝐼 with − 𝑤/𝑜Lcontra. However, overly elevat-

ing L𝑀𝐼 would also harm the model performance, as the time

invariance property achieved by Lcontra is also important to guar-

antee the correctness of the learned latent initial states, which

determines the starting point of the predicted trajectories in the

future.
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Figure 4: Effect of 𝜆1/𝜆2 on the Lennard-Jones potential

dataset. Best results are circled in red for each setting.

5.3.3 Sensitivity Analysis. GG-ODE can take arbitrary observa-

tion lengths to make trajectory predictions, as opposed to existing

baselines that only condition on observations with fixed lengths.

It allows the model to fully utilize all the information in the past.

We then study the effect of observation lengths on making pre-

dictions in different horizons. As shown in Figure 5, the optimal

observation lengths for predicting the rollouts with 20, 40, and 50

steps are 20, 25, 35 in the inductive setting, and 15, 25, 30 in the

transductive setting. When predicting long-range trajectories, our

model typically requires a longer observation sequence to get more

accurate results. Also, for making predictions at the same lengths,

the inductive setting requires a longer observation length compared

with the transductive setting.

(a) Inductive Setting (b) Transductive Setting

(1
0
$
%
)

(1
0
$
'
)

Observation Length Observation Length

Figure 5: Effect of observation length on the Lennard-Jones

potential dataset.

5.4 Case Study

We conduct a case study to examine the learned representations

of the latent exogenous factors on the Lennard-Jones potential

dataset. We first randomly choose one data sample for each of the

65 temperatures and visualize the learned representations of ex-

ogenous factors. As shown in Figure 6 (a), the representations of

higher temperatures are closer to each other on the right half of the

figure, whereas the lower temperatures are mostly distributed on

the left half. Among the 65 temperatures, 20% of them are not seen

during training which we circled in black. We can see those unseen

temperatures are also properly distributed, indicating the great gen-

eralization ability of our model. We next plot the representations

for all data samples under temperatures 2.5 and 3.5 respectively

as shown in Figure 6 (b). We can see that the learned represen-

tations are clustered within the two temperatures, indicating our

contrastive learning loss is indeed beneficial to guide the learning

process of exogenous factors.

(a) Exogenous Factors Across Environments (b) Exogenous Factors from two Environments

Figure 6: T-SNE visualization of the learned exogenous fac-

tors on the Lennard-Jones potential dataset. (a) We randomly

pick one data sample per temperature, where temperatures

tested in the inductive setting are circled in black. (b) Visual-

ization of data samples from two temperatures.

6 CONCLUSION

In this paper, we investigate the problem of learning the dynamics

of continuous interacting systems across environments. We model

system dynamics in a continuous fashion through graph neural

ordinary differential equations. To achieve model generalization,

we learn a shared ODE function that captures the commonalities

of the dynamics among environments while design an environ-

ment encoder that learns environment-specific representations for

exogenous factors automatically from observed trajectories. To dis-

entangle the representations from the initial state encoder and the

environment encoder, we propose a regularization loss via mutual

information minimization to guide the learning process. We addi-

tionally design a contrastive learning loss to reduce the variance

of learned exogenous factors across time windows under the same

environment. The proposed model is able to achieve accurate pre-

dictions for varying physical systems under different environments,

especially for long-term predictions. There are some limitations

though. Our current model only learns one static environment-

specific variable to achieve model generalization. However, the

environment can change over time such as temperatures. How

to capture the dynamic influence of those evolving environments

remain challenging.
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A APPENDIX

A.1 Datasets
We conduct experiments over two datasets: The Water dataset

and the Lennard-Jones potential dataset. As introduced in Sec 2,

the edges between agents are assigned if the Euclidean distance

between the agents’ positions 𝑟𝑡,𝑒𝑖 𝑗 = | |𝒑𝑡,𝑒𝑖 − 𝒑𝑡,𝑒𝑗 | |2 is within a

(small) connectivity radius 𝑅. The connectivity radius for the two

datasets is set as 0.015 and 2.5 respectively. The number of particles

is kept the same as 1000 for all trajectories in the Lennard-Jones

potential dataset, while in the Water dataset, each data sample can

have a varying number of particles, and the maximum number of

particles is 1000.

A.1.1 Data Split. Our model is trained in a sequence-to-sequence

mode, where we split the trajectory of each training sample into

two parts [𝑡1, 𝑡𝐾 ] and [𝑡𝐾+1, 𝑡𝑇 ]. We condition on the first part of

observations to predict the second part. To fully utilize the data

points within each training sample, we split each trajectory into

several chunks with three hyperparameters: the observation length

and prediction length for each sample, and the interval between

two consecutive chunks (samples). We summarize the procedure

in Algorithm 1, where 𝐾 is the number of trajectories and 𝑑 is the

input feature dimension.

Algorithm 1: Data Splitting Procedure.

Input: Original Training trajectories 𝑋input ∈ R𝐾×𝑁×𝑇×𝑑 ;
Observation length 𝑂 ; Prediction length𝑀 ; Interval 𝐼 ;

Trajectory length 𝑇 .

Output: Training samples after splitting 𝑋train.

1 sample_length = 𝑂 +𝑀 ;

2 num_chunk = (𝑇 - sample_length )//interval + 1;

3 for i in range (0,K) do

4 for j in range(0,num_chunk,I) do

5 Generate the split training sample as

𝑋input [𝑖, :, 𝑗 : 𝑗 + sample_length, :]
6 Add the training sample to the training set 𝑋train.

7 end

8 end

A.1.2 Input Features and Prediction Target. For the Water dataset,

the input node features are 2-D positions 𝑝𝑡,𝑒𝑖 , and we additionally

calculate the 2-D velocities and accelerations using finite differ-

ences of these positions as 𝑣𝑡,𝑒𝑖 = 𝑝𝑡,𝑒𝑖 − 𝑝𝑡 − 1,𝑒𝑖 , 𝑎𝑡𝑖 = 𝑣
𝑡,𝑒
𝑖 − 𝑣𝑡 − 1,𝑒𝑖 =

𝑝𝑡,𝑒𝑖 − 2𝑝𝑡 − 1,𝑒𝑖 + 𝑝𝑡 − 2,𝑒𝑖 . For positions, velocities, and accelerations,

we precompute their mean and variance across all samples and nor-

malize them with z-score. For the Lennard-Jones potential dataset,

the input node features are 3-D positions, velocities, and accelera-

tions. We train the model to predict the future positions for each

agent along the time for both datasets.

A.2 Software and Experiment Environment

We implement our model in PyTorch. All experiments are con-

ducted on a GPU powered by an NVIDIA A100. For all datasets,

we train over 100 epochs and select the one with the lowest vali-

dation loss as the reported model. We report the average results

over 10 runs. Encoders, the generative model, and the decoder are

jointly optimized using Adam optimizer [22] with a learning rate

0.005. The batch size for the Water dataset is set as 128, and for the

Lennard-Jones potential dataset. is set as 256. Note that the batch

size denotes the number of data samples generated as in Alg 1.

A.3 Implementation Details

We now introduce the implementation details of our model.

A.3.1 Initial State Encoder. The initial state encoder aims to infer

latent initial states for all agents simultaneously via a two-step pro-

cedure: Firstly, the encoder computes the structural representation

for each observation node by the use of a spatial-temporal GNN.

We set the number of GNN layers 𝑙 as 2 and the hidden dimension

as 64 across all datasets. LayerNorm [2] is employed to provide

training stability in our experiment. Next, a self-attention-based

sequence representation learning procedure computes the sequence

representation for each agent and samples the initial state from it.

We use a 2-layer MLP as 𝑓trans in Eqn 4 with latent dimensions as

128 and activation function as Tanh.

A.3.2 Environment Encoder. The environment encoder learns the

latent representations of exogenous factors based on the observed

trajectories. The architecture is the same as the initial state encoder

but are using two sets are parameters with the same hyperparameter

settings introduced in Sec A.3.1.

Contrastive Learning Loss Sampling. The contrastive learning

loss Lcontra shown in Eqn 6 is designed to achieve the time in-

variance properties of the learned exogenous factors. Specifically,

we sample the positive pairs 𝑋 𝑡1:𝑡2,𝑒 , 𝑋 𝑡3:𝑡4,𝑒 using two strategies:

(1) The intra-sample generation, where 𝑡1:𝑡2,𝑒 , 𝑋 𝑡3:𝑡4,𝑒 are from the

same training sample but representing two different time windows.

We achieve this by randomly selecting two timestamps within each

training sample to serve as 𝑡1, 𝑡3 respectively, and then set the win-

dow size as the observation length 𝐿 to get 𝑡2 = 𝑡1 + 𝐿, 𝑡4 = 𝑡3 + 𝐿.
(2) The cross-sample generation, where 𝑡1:𝑡2,𝑒 , 𝑋 𝑡3:𝑡4,𝑒 are from two

different samples within the same environment 𝑒 . Specifically, for

each training sample, we first randomly choose another sample

under the same environment. Then we generate 𝑡1, 𝑡3 by randomly

selecting one timestamp for each of them. Finally, we calculate 𝑡2, 𝑡4
by adding the observation length. To generate negative pair𝑋 𝑡5:𝑡6,𝑒

′

for each 𝑋 𝑡1:𝑡2,𝑒 , we first randomly select one another environment

𝑒′, from which we randomly pick one data sample. Similarly, we

then randomly select one timestamp within that data sample to

serve as 𝑡5 and then obtain 𝑡6 as 𝑡6 = 𝑡5 + 𝐿. The temperature scalar

𝜏 in Eqn 6 is set as 0.05.

Mutual InformationMinimization Loss Sampling. To disentan-

gle the representations of the latent initial states and the exogenous

factors, we design the mutual information minimization loss in

Eqn 8 as a regularization term during training. We conduct the

sampling procedure for positive and negative pairs as follows: For

each training sample, we pair the latent initial states 𝒛0,𝑒𝑖 of all the

𝑁 agents with the learned exogenous factors 𝒖𝑒 , thus constructing

𝑁 positive pairs. To generate negative pairs, we randomly select

another environment 𝑒′ and pair it with the latent initial states of

all agents within one training sample. Thus we obtain the same
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number of positive and negative pairs during training. The discrimi-

nator Ψ is implemented as a two-layer MLP with hidden dimension

and out dimension as 128 and 64 respectively.

A.3.3 ODE Function and Solver. The ODE function introduced in

Eqn 1 consists of two parts: the GNN 𝑓GNN that captures the mutual

interaction among agents and 𝑓self that captures the self-evolution

of agents. We use the following two-layer message passing GNN

function as 𝑓GNN:

𝑣 → 𝑒 :e
𝑙1 (𝑡,𝑒 )
(𝑖, 𝑗 ) = 𝑓 1𝑒

( [
z
𝑡,𝑒
𝑖 | |z𝑡,𝑒𝑗

] )

𝑒 → 𝑣 :z
𝑙1 (𝑡,𝑒 )
𝑗 = 𝑓 1𝑣

©­
«
∑︁
𝑖≠𝑗

e
𝑙1 (𝑡,𝑒 )
(𝑖, 𝑗 )

ª®
¬

𝑣 → 𝑒 :z
𝑙2 (𝑡,𝑒 )
𝑗 = 𝑓 2𝑒

( [
z
𝑙1 (𝑡,𝑒 )
𝑖 | |z𝑙1 (𝑡,𝑒 )𝑗

] )
(13)

where | | denotes concatenation, 𝑓 1𝑒 , 𝑓 1𝑣 , 𝑓 2𝑒 are two-layer MLPs with

hidden dimension size of 64.We use z
𝑙2 (𝑡,𝑒 )
𝑗 as output representation

for agent j at timestamp t from 𝑓GNN. The self-evolution function

𝑓self and the transformation function 𝑓env are also implemented as

two-layer MLPs with hidden dimension of 64. We use the fourth-

order Runge-Kutta method from torchdiffeq python package [9] as

the ODE solver, which solves the ODE systems on a time grid that

is five times denser than the observed time points. We also utilize

the Adjoint method described in [9] to reduce memory usage.

A.4 Pseudo-Code of GG-ODE Training

Algorithm 2: Generalized Graph ODE training procedure.

Input: Observed trajectories 𝑋 𝑡1:𝐾 ,𝑒 .

Output: Model parameters 𝜙 and 𝜃 .

1 while model not converged do

2 for Each training sample do

3 Separate the sequence into observed half [𝑇0,𝑇1]
and predicted half [𝑇1,𝑇2];

4 //For the initial state encoder :

5 Generate the latent initial states 𝑧0,𝑒𝑖 for each agent

according to Eqn 4;

6 //For the environment encoder :

7 Compute the latent representation for exogenous

factors as in Eqn 5;

8 //For the generative model:

9 Given the latent initial states, the latent exogenous

factors, and timestamps to predict [𝑇1,𝑇2], solve
the ODE function in Eqn 9;

10 //For the decoder :

11 Compute predicted node dynamics based on the

decoding likelihood 𝑝 (𝒚𝑡,𝑒𝑖 |𝒛𝑡,𝑒𝑖 );
12 end

13 Update the parameters 𝜙 and 𝜃 by optimizing loss term

defined in Eqn. 11;

14 end
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