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ABSTRACT

Learning multi-agent system dynamics has been extensively stud-
ied for various real-world applications, such as molecular dynamics
in biology, multi-body system in physics, and particle dynamics in
material science. Most of the existing models are built to learn single
system dynamics, which learn the dynamics from observed histori-
cal data and predict the future trajectory. In practice, however, we
might observe multiple systems that are generated across different
environments, which differ in latent exogenous factors such as
temperature and gravity. One simple solution is to learn multiple
environment-specific models, but it fails to exploit the potential
commonalities among the dynamics across environments and offers
poor prediction results where per-environment data is sparse or
limited. Here, we present GG-ODE (Generalized Graph Ordinary
Differential Equations), a machine learning framework for learning
continuous multi-agent system dynamics across environments. Our
model learns system dynamics using neural ordinary differential
equations (ODE) parameterized by Graph Neural Networks (GNNs)
to capture the continuous interaction among agents. We achieve
the model generalization by assuming the dynamics across different
environments are governed by common physics laws that can be
captured via learning a shared ODE function. The distinct latent ex-
ogenous factors learned for each environment are incorporated into
the ODE function to account for their differences. To improve model
performance, we additionally design two regularization losses to
(1) enforce the orthogonality between the learned initial states and
exogenous factors via mutual information minimization; and (2)
reduce the temporal variance of learned exogenous factors within
the same system via contrastive learning. Experiments over various
physical simulations show that our model can accurately predict
system dynamics, especially in the long range, and can generalize
well to new systems with few observations.
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1 INTRODUCTION

Building a simulator that can understand and predict multi-agent
system dynamics is a crucial research topic spanning over a variety
of domains such as planning and control in robotics [26], where the
goal is to generate future trajectories of agents based on what has
been seen in the past. Traditional simulators can be very expensive
to create and use [35] as it requires sufficient domain knowledge
and tremendous computational resources to generate high-quality
results'. Therefore, learning a neural-based simulator directly from
data that can approximate the behavior of traditional simulators
becomes an attractive alternative.

As the trajectories of agents are usually coupled with each other
and co-evolve along with the time, existing studies on learning
system dynamics from data usually view the system as a graph and
employ Graph Neural Networks (GNNs) to approximate pair-wise
node (agent) interaction to impose strong inductive bias [6]. As
a pioneering work, Interaction Networks (IN) [6] decompose the
system into distinct objects and relations, and learn to reason about
the consequences of their interactions and dynamics. Later work in-
corporates domain knowledge [27], graph structure variances [31],
and equivariant representation learning [11, 38] into learning from
discrete GNNS, achieving state-of-the-art performance in various
domains including mesh-based physical simulation [31] and molec-
ular prediction [10]. However, these discrete models usually suffer
from low accuracy in long-range predictions as (1) they approximate
the system by discretizing observations into some fixed timestamps
and are trained to make a single forward-step prediction and (2)
their discrete nature fails to adequately capture systems that are
continuous in nature such as the spread of COVID-19 [19] and the
movements of an n-body system [18, 24].

Recently, researchers propose to combine ordinary differential
equations (ODEs) - the principled way for modeling dynamical
systems in a continuous manner in the past, with GNNs to learn
continuous-time dynamics on complex networks in a data-driven
way [18, 19, 47]. These Graph-ODE methods have demonstrated
the power of capturing long-range dynamics, and are capable of
learning from irregular-sampled partial observations [18]. They
usually assume all the data are generated from one single system,

!To date, out of the 10 most powerful supercomputers in the world, 9 of them are used
for simulations, spanning the fields of cosmology, geophysics and fluid dynamics [1]
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and the goal is to learn the system dynamics from historical trajec-
tories to predict the future. In practice, however, we might observe
data that are generated from multiple systems, which can differ in
their environments. For example, we may observe particle trajecto-
ries from systems that are with different temperatures, which we
call exogenous factors. These exogenous factors can span over a
wide range of settings such as particle mass, gravity, and tempera-
ture [3, 4, 35] across environments. One simple solution is to learn
multiple environment-specific models, but it can fail to exploit the
potential commonalities across environments and make accurate
predictions for environments with sparse or zero observations. In
many useful contexts, the dynamics in multiple environments share
some similarities, yet being distinct reflected by the (substantial)
differences in the observed trajectories. For example, considering
the movements of water particles within multiple containers of
varying shapes, the trajectories are driven by both the shared pair-
wise physical interaction among particles (i.e. fluid dynamics) and
the different shapes of the containers where collisions can happen
when particles hit the boundaries. Also, the computational cost
for training multiple environment-specific models would be huge.
More challengingly, the exogenous factors within each environ-
ment can be latent, such as we only know the water trajectories
are from different containers, without knowing the exact shape
for each of them. Therefore, how to learn a single efficient model
that can generalize across environments by considering both their
commonalities and the distinct effect of per-environment latent
exogenous factors remains unsolved. This model, if developed, may
help us predict dynamics for systems under new environments with
very few observed trajectories.

Inspired by these observations, in this paper, we propose Gener-
alized Graph ODE (GG-ODE), a general-purpose continuous neural
simulator that learns multi-agent system dynamics across environ-
ments. Our key idea is to assume the dynamics across environments
are governed by common physics laws that can be captured via
learning a shared ODE function. We introduce in the ODE function
alearnable vector representing the distinct latent exogenous factors
for each environment to account for their differences. We learn the
representations for the latent exogenous factors from systems’ his-
torical trajectories through an encoder by optimizing the prediction
goal. In this way, different environments share the same ODE func-
tion framework while incorporating environment-specific factors
in the ODE function to distinguish them.

However, there are two main challenges in learning such latent
exogenous factor representations. Firstly, since both the latent ini-
tial states for agents and the latent exogenous factors are learned
through the historical trajectory data, how can we differentiate
them to guarantee they have different semantic meanings? Sec-
ondly, when inferring from different time windows from the same
trajectory, how can we guarantee the learned exogenous factors
are for the same environment?

Towards the first challenge, we enforce the orthogonality be-
tween the initial state encoder and the exogenous factor encoder
via mutual information minimization. For the second challenge, we
reduce the variance of learned exogenous factors within the same
environment via a contrastive learning loss. We train our model
in a multi-task learning paradigm where we mix the training data
from multiple systems with different environments. In this way,
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the model is expected to fast adapt to other unseen systems with
a few data points. We conduct extensive experiments over a wide
range of physical systems, which show that our GG-ODE is able to
accurately predict system dynamics, especially in the long range.
The main contributions of this paper are summarized as follows:

e We investigate the problem of learning continuous multi-
agent system dynamics across environments. We propose a
novel framework, known as GG-ODE, which describes the
dynamics for each system with a shared ODE function and
an environment-specific vector for the latent exogenous fac-
tors to capture the commonalities and discrepancies across
environments respectively.

e We design two regularization losses to guide the learning
process of the latent exogenous factors, which is crucial for
making precise predictions in the future.

o Extensive experiments verify the effectiveness of GG-ODE
to accurately predict system dynamics, especially in the long
range prediction tasks. GG-ODE also generalizes well to
unseen or low-resource systems that have very few training
samples.

2 PROBLEM DEFINITION

We aim to build a neural simulator to learn continuous multi-agent
system dynamics automatically from data that can be generalized
across environments. Throughout this paper, we use boldface up-
percase letters to denote matrices or vectors, and regular lowercase
letters to represent the values of variables.

We consider a multi-agent dynamical system of N interacting
agents as an evolving interaction graph G* = {V, &'}, where nodes
are agents and edges are interactions between agents that can
change over time. For each dynamical system, we denote e € E as
the environment from which the data is acquired. We denote X%¢ €
X as the feature matrix for all N agents and xl.t’e as the feature vector
of agent i at time ¢ under environment e. The edges between agents
are assigned if two agents are within a connectivity radius R based
on their current locations p?’e which is part of the node feature
vector, i.e. pf’e € xl.t’e. They reflect the local interactions of agents
and the radius is kept constant over time [35].

Our model input consists of the trajectories of N agents over
K timestamps X1K:¢ = {X"-€ X1€ XK€} ywhere the times-
tamps t1, 1y - - - tx can have non-uniform intervals and be of any
continuous values. Our goal is to learn a generalized simulator
sg : X1K:¢ — YIK+1T:€ that predicts node dynamics in the future
for any environment e. Here Y*¢ € Y represents the targeted node
dynamic information at time ¢, and can be a subset of the input
features. We use yf’e to denote the targeted node dynamic vector
of agent i at time ¢ under environment e.

3 PRELIMINARIES AND RELATED WORK

3.1 Dynamical System Simulations with Graph
Neural Networks (GNNs)

Graph Neural Networks (GNNs) are a class of neural networks that
operate on graph-structured data by passing local messages[17, 19,
25,41, 46]. They have been extensively employed in various applica-
tions such as node classification [45, 48], link prediction [7, 32], and
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recommendation systems [14, 20, 42, 43]. By viewing each agent as
anode and interaction among agents as edges, GNNs have shown
to be efficient for approximating pair-wise node interactions and
achieved accurate predictions for multi-agent dynamical systems
[8, 24, 35]. The majority of existing studies propose discrete GNN-
based simulators where they take the node features at time ¢ as
input to predict the node features at time t+1. To further capture
the long-term temporal dependency for predicting future trajecto-
ries, some work utilizes recurrent neural networks such as RNN,
LSTM or self-attention mechanism to make prediction at time ¢
+1 based on the historical trajectory sequence within a time win-
dow [12, 13, 16, 36]. However, they all restrict themselves to learn
a one-step state transition function. Therefore, when successively
apply these one-step simulators to previous predictions in order
to generate the rollout trajectories, error accumulates and impairs
the prediction accuracy, especially for long-range prediction. Also,
when applying most discrete GNNs to learn over multiple systems
under different dynamical laws (environments), they usually re-
train the GNNs individually for dealing with each specific system
environment [24, 35], which yields a large computational cost.

3.2 Ordinary Differential Equations (ODEs) for
Multi-agent Dynamical Systems

The dynamic nature of a multi-agent system can be captured by
a series of nonlinear first-order ordinary differential equations
(ODEs), which describe the co-evolution of states for a set of N
dependent variables (agents) over continuous time ¢ € R as [5, 33]:
.y dzi

Ry

able for agent i at timestamp t and g denotes the ODE function that
drives the system move forward. Given the initial states 20, ... z?\,
for all agents and the ODE function g, any black box numerical ODE
solver such as Runge-Kuttais [29] can solve the ODE initial-value
problem (IVP), of which the solution z7 can be evaluated at any

i
desired time as shown in Eqn 1.

T
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Traditionally, the ODE function g is usually hand-crafted based
on some domain knowledge such as in robot motion control [39]
and fluid dynamics [28], which is hard to specify without know-
ing too much about the underlying principles. Even if the exact
ODE functions are given, they are usually hard to scale as they
require complicated numerical integration [30, 35]. Some recent
studies [18, 19, 33] propose to parameterize it with a neural net-
work and learn it in a data-driven way. They combine the expressive
power of neural networks along with the principled modeling of
ODEs for dynamical systems, which have achieved promising re-
sults in various applications [18, 19, 33].

3.3 GraphODE for Dynamical Systems

To model the complex interplay among agents in a dynamical sys-
tem, researchers have recently proposed to combine ODE with
GNNs, which has been shown to achieve superior performance in
long-range predictions [18, 19, 47]. In [47], an encoder-processor-
decoder architecture is proposed, where an encoder first computes
the latent initial states for all agents individually based on their first
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observations. Then an ODE function parameterized by a GNN pre-
dicts the latent trajectories starting from the learned initial states.
Finally, a decoder extracts the predicted dynamic features based
on a decoding function that takes the predicted latent states as in-
put. Later on, a Graph-ODE framework has been proposed [18, 19]
which follows the structure of variational autoencoder [23]. They as-
sume an approximated posterior distribution over the latent initial
state for each agent, which is learned based on the whole histor-
ical trajectories instead of a single point as in [47]. The encoder
computes the approximated posterior distributions for all agents
simultaneously considering their mutual influence and then sample
the initial states from them. Compared with [47], they are able to
achieve better prediction performance, especially in the long range,
and are also capable of handling the dynamic evolution of graph
structures [19] which is assumed to be static in [47].

We follow a similar framework to this line but aim at generalizing
GraphODE to model multiple systems across environments.

4 METHOD

In this section, we present Generalized Graph ODE (GG-ODE ) for
learning complex system dynamics across environments. As de-
picted in Figure 1, GG-ODE consists of four main components that
are trained jointly: (1) an initial state encoder for inferring the la-
tent initial states for all agents simultaneously; (2) an environment
encoder which learns the latent representations for exogenous fac-
tors; (3) a generative model defined by a GNN-based ODE function
that is shared across environments for modeling the continuous
interaction among agents in the latent space. The distinct latent
exogenous factors learned for each environment are incorporated
into the ODE function to account for their discrepancies, and (4)
a decoder that extracts the predicted dynamic features based on a
decoding function. We now introduce each component in detail.

4.1 Initial State Encoder
Given the observed trajectories X*:X-¢, the initial state encoder com-

putes a posterior distribution of latent initial state g, (z?’e | Xtk ’e)

for each agent, from which z?’e is sampled. The latent initial state
z?’e for each agent determines the starting point for the predicted

trajectory. We assume the prior distribution p(z?’e) is a standard
normal distribution, and use Kullback-Leibler divergence term in
the loss function to add significant regularization towards how
the learned distributions look like, which differs VAE from other
autoencoder frameworks [19, 24, 33]. In multi-agent dynamical sys-
tems, agents are highly-coupled and influence each other. Instead of
learning such distribution separately for each agent, such as using
an RNN [33] to encode the temporal pattern for each individual
trajectory, we compute the posterior distributions for all agents
simultaneously (similar to [19]). Specifically, we fuse all trajectories
as a whole into a temporal graph to consider both the temporal
patterns of individual agents and the mutual interaction among
them, where each node is an observation of an agent at a specific
timestamp. Two types of edges are constructed, which are (1) spatial
edges V! that are among observations of interacting agents at each
timestamp if the Euclidean distance between the agents’ positions
rit}e = pf’e pj.’e |2 is within a (small) connectivity radius R; and
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Figure 1: The overall framework of GG-ODE consists of four modules. First, an initial state encoder computes the latent initial
states for all agents simultaneously by constructing a temporal graph from the input trajectories. Additionally, an environment
encoder computes the latent representations for exogenous factors that are distinct for each environment. Then, the generative
model defined by a GNN-based ODE function calls the solver to output the predicted latent states for agents in the future, where
the learned exogenous factors are incorporated into the ODE function. Finally, a decoder generates the predicted dynamics for
each agent based on the decoding likelihood determined by the latent states. Two regularization terms are added to preserve
the orthogonality of two encoders and the time-invariant property of the environment encoder.

(2) temporal edges that preserve the autoregressive nature of each
trajectory, defined between two consecutive observations of the
same agent. Note that spatial edges are bidirectional while tempo-
ral edges are directional to preserve the autoregressive nature of
each trajectory, as shown in Figure 1. Based on the constructed
temporal graph, we learn the latent initial states for all agents
through a two-step procedure: (1) dynamic node representation
learning that learns the representation hg’e for each observation
node whose feature vector is xf’e. (2) sequence representation learn-
ing that summarizes each observation sequence (trajectory) into a
fixed-dimensional vector through a self-attention mechanism.

4.1.1  Dynamic Node Representation Learning. We first conduct dy-
namic node representation learning on the temporal graph through
an attention-based spatial-temporal GNN defined as follows:

~I(t'e)

hl.ﬂ([’e) = hl.(t’e) +0 a?([/’e)_)j(t’e) X Wyh;,

J J i
i(t.e) e N(1€)
J

1

va

(¢ e)—j(t, ~1(te)\T e
ai(t e)—j(te) _ (thi(t e)) (thj(te)

) :

@
A AL )
At

At )
100002i/d 100002i/d
where o(-) is a non-linear activation function; d is the dimension
of node embeddings. The node representation is computed as a
weighted summation over its neighbors plus residual connection
where the attention score is a transformer-based [40] dot-product
of node representations by the use of value, key, query projection
matrices Wy, Wy, Wy. The learned attention scores are normalized
I(t.e)
J

TE(At)y; = sin ( ) , TE(At)2i+1 = cos (

via softmax across all neighbors. Here h is the representation
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of agent j at time ¢ in the [-th layer. hi.(t”e) is the general repre-
sentation for a neighbor which is connected either by a temporal
edge (where t’ < t and i = j) or a spatial edge (where ¢t = ¢’ and
i # j) to the observation RE5©) We add temporal encoding [33, 40]
to each neighborhood node representation in order to distinguish
the message delivered via spatial and temporal edges respectively.

Finally, we stack L layers to get the final representation for each
L(te)
=h; .

. te
observation node as : hl.’ ;

4.1.2  Sequence Representation Learning. We then employ a self-
attention mechanism to generate the sequence representation m‘l?
for each agent, which is used to compute the mean p(i)’e and variance
a(i)’e of the approximated posterior distribution of the agent’s initial
state. Compared with recurrent models such as RNN, LSTM [37], it
offers better parallelization for accelerating training speed and in
the meanwhile alleviates the vanishing/exploding gradient problem
brought by long sequences [36].
We follow [19] and compute the sequence representation m{ as
a weighted sum of observations for agent i:
Jwe
®)

_ z ﬁfe

t

e
m;

1 exTptepte e _ 1
EZU((ai) RRY*). af —tanh((l?

where af is the average of observation representations with a non-

linear transformation W, and ﬁ?’e = hlt.’e + TE(t). K is the number
of observations for each trajectory. Then the initial state is drawn
from the approximated posterior distribution as:

a4 (Z?’e | th’K’e) = N( ;),e, 0'?’8), ”?,e’ U?’e = ftrans mf)
0,e 0,e 0,e ti.x.e (4)
s pe) w0
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where firans is a simple Multilayer Perceptron (MLP) whose output
vector is equally split into two halves to represent the mean and
variance respectively.

4.2 Environment Encoder
The dynamic nature of a multi-agent system can be largely affected
by some exogenous factors from its environment such as gravity,
temperature, etc. These exogenous factors can span over a wide
range of settings and are sometimes latent and not observable. To
make our model generalize across environments, we design an
environment encoder to learn the effect of the exogenous factors
automatically from data to account for the discrepancies across envi-
ronments. Specifically, we use the environment encoder to learn the
representations of exogenous factors from observed trajectories and
then incorporate the learned vector into the ODE function which
is shared across environments and defines how the system evolves
over time. In this way, we use a shared ODE function framework to
capture the commonalities across environments while preserving
the differences among them with the environment-specific latent
representation, to improve model generalization performance. It
also allows us to learn the exogenous factors of an unseen environ-
ment based on only its leading observations. We now introduce the
environment encoder in detail.

The exogenous factors would pose influence on all agents within
a system. On the one hand, they will influence the self-evolution of
each individual agent. For example, temperatures would affect the
velocities of agents. On the other hand, they will influence the pair-
wise interaction among agents. For example, temperatures would
also change the energy when two particles collide with each other.
The environment encoder fio therefore learns the latent represen-
tation of exogenous factors u® by jointly consider the trajectories
from all agents, i.e. £S5 : XK€ — y°, Specifically, we learn an
environment-specific latent vector from the aforementioned tempo-
ral graph in Sec 4.1 that is constructed from observed trajectories.
The temporal graph contains both the information for each individ-
ual trajectory and the mutual interaction among agents through
temporal and spatial edges. To summarize the whole temporal graph
into a vector u®, we attend over the sequence representation m¢
for each trajectory introduced in Sec 4.1 as:

u® = % Z o ((be)Tmfmf) , b = tanh ((%

where Wj, is a transformation matrix and the attention weight
is computed based on the average sequence representation with
nonlinear transformation similar as in Eqn (3). Note that we use
different parameters to compute the sequence representation mf as
opposed to the initial state encoder. The reason is that the semantic
meanings of the two sequence representations are different: one is
for the latent initial states and another is for the exogenous factors.

me)wb), 5)

i

4.2.1 Time Invariance. A desired property of the learned represen-
tation for exogenous factors u® is that it should be time-invariant
towards the input trajectory time window. In other words, for the
same environment, if we chunk the whole trajectories into several
pieces, the inferred representations should be similar to each other
as they are describing the same environment.
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To achieve this, we design a contrastive learning loss to guide
the learning process of the exogenous factors. As shown in Figure 2,
we force the learned exogenous factor representations to be similar
if they are generated based on the trajectories from the same en-
vironment (positive pairs), and to be apart from each other if they
are from different environments (negative pairs). Specifically, we
define the contrastive leanring loss as follows:

exp sim feehncv thztz,e) ’f:i]ri:v th:t4,e)) /,[)
Yerzeexp sim fo Xhitee, fQ Xtstoc’) [r)
(6)
where 7 is a temperature scalar and sim(+, -) is cosine similarity
between two vectors. Note that the lengths of the observation
sequences can vary. The detailed generation process for positive
and negative pairs can be found in Appendix A.3.2.

log

-Econtra =

Similar Apart
ol e||e e o0 e o o
Oy 0y

Environment e Environment e’

Figure 2: Temporal properties of the environment encoder.
We use contrastive learning loss to force the latent exoge-
nous factors learned from different windows within the same
environment to be close to each other, and from different
environments to be apart from each other.

4.2.2  Orthogonality. GG-ODE features two encoders that take the
input of observed trajectories XK€ for learning the latent initial
states and the latent exogenous factors respectively. As they are
designed for different purposes but are both learned from the same
input, we disentangle the learned representations from them via a
regularization loss defined via mutual information minimization.

Mutual information measures the dependency between two ran-
dom variables X, Z [49]. Since we are not interested in the exact
value of the mutual information, a lower bound derived from Jensen
Shannon Divergence [15] could be formulated as

Iisp(X,Z) = Epy,[ sp( M(x,2))] Epyp,[sp(M(x,2))], (7)

where Px Pz is the product of the marginal distributions and Px 7 is
the joint distribution. sp(w) = log(1+¢e*) and M is a discriminator
modeled by a neural network to compute the score for measuring
their mutual information.

According to recent literature [15, 34, 49], the sample pair (posi-
tive pairs) (x, z) drawn from the joint distribution Py are different
representations of the same data sample, and the sample pair (neg-
ative pairs) drawn from Px P are different representations from
different data samples. We therefore attempt to minimize the mutual



KDD ’23, August 6-10, 2023, Long Beach, CA, USA

information from the two encoders as follows

La=Eeeril sp( ¥(zu))]  Beckxecrilsp(¥(z,u))]

®
where ¥ is a MLP-based discriminator. Specifically, we force the
latent initial states z?’e for all agents from environment e to be dis-
similar to the learned exogenous factors u®. And construct negative
pairs by replacing the learned exogenous factors from another en-
vironment as u¢ . The generation process for positive and negative
pairs can be found in Appendix A.3.2.

4.3 ODE Generative Model and Decoder

4.3.1 ODE Generative Model. After describing the initial state en-
coder and the environment encoder, we now define the ODE func-
tion that drives the system to move forward. The future trajectory
of each agent can be determined by two important factors: the
potential influence received from its neighbors in the interaction
graph and the self-evolution of each agent. For example, in the
n-body system, the position of each agent can be affected both
by the force from its connected neighbors and its current velocity
which can be inferred from its historical trajectories. Therefore,
our ODE function consists of two parts: a GNN that captures the
continuous interaction among agents and the self-evolution of the
node itself. One issue here is how can we decide the neighbors for
each agent in the ODE function as the interaction graph is evolving,
the neighbors for each agent are dynamically changing based on
their current positions, which are implicitly encoded in their latent
Le zj.’e. We propose to first decode the latent

i
te _t.
€ b

J

state representations z

node representations z ¢ with a decoding function fye. to ob-

P
tain their predicted positions pf’e, p4¢ at current timestamp. Then
we determine their connectivity based on whether their Euclidean
distance rl.t]ie =] pf’e p;’e ||2 is within the predefined radius R. This
can be computed efficiently by using a multi-dimensional index
structure such as the k-d tree. The decoding function fje. is the
same one that we will use in the decoder.

To incorporate the influence of exogenous factors, we further
incorporate u® into the general ODE function to improve model

generalization ability as:

te _te

=g(zl \Z,

) = D fonw G E) + fer )
JEN;
~te _ te e
z; = ﬂ:nv(zi [lu®)
©)

where || denotes concatenation and fgnn can be any GNN that
conducts message passing among agents. fself, feny are implemented
as two MLPs respectively. In this way, we learn the effect of latent
exogenous factors from data without supervision where the latent
representation u® is trained end-to-end by optimizing the prediction
loss.

4.3.2 Decoder. Given the ODE function g and agents’ initial states
z?’e fori = 1,2--- N, the latent trajectories for all agents are de-
termined, which can be solved via any black-box ODE solver. Fi-
nally, a decoder generates the predicted dynamic features based on
the decoding probability p(yf’e|zf’e) computed from the decoding
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function fge. as shown in Eqn 10. We implement fj.. as a simple
two-layer MLP with nonlinear activation. It outputs the mean of
the normal distribution p(yl?’e |zf’e), which we treat as the predicted
value for each agent.

te
i

tr.e _ 0,e 0.
~ziT = ODESolve(g, [z, 2, - -

Y~ Py 12 = faee(z)

4.4 Training

We now introduce the overall training procedure of GG-ODE . For
each training sample, we split it into two halves along the time,
where we condition on the first half [, tx] in order to predict dy-
namics in the second half [tk 1, t7]. Given the observed trajectories
XK€ we first run the initial state encoder to compute the latent

z czy ) (- 1))

(10)

initial state z?’e for each agent, which is sampled from the approxi-

mated posterior distribution g4 (z?’e | Xtk ’e). We then generate

the latent representations of exogenous factors u® from the envi-
ronment e via the environment encoder. Next, we run the ODE
generative model that incorporates the latent exogenous factors to
compute the latent states for all agents in the future. Finally, the
decoder outputs the predicted dynamics for each agent.

We jointly train the encoders, ODE generative model, and de-
coder in an end-to-end manner. The loss function consists of three
parts: (1) the evidence lower bound (ELBO) which is the addition of
the reconstruction loss for node trajectories and the KL divergence
term for adding regularization to the inferred latent initial states
for all agents. We use Z%¢ to denote the latent initial state matrix of
all N agents. The standard VAE framework is trained to maximize
ELBO so we take the negative as the ELBO loss; (2) the contrastive
learning loss for preserving the time invariance properties of the
learned exogenous factors; (3) the mutual information loss that
disentangles the learned representations from the two encoders.
A1, A2 are two hyperparameters for balancing the three terms. We
summarize the whole procedure in Appendix A.4.

L = Lr1po + M Leontra + A2 Lmr (11)
LeiBo(o.) = IE'Zo’e~l'[fil %(z(,»)’eIXfl:K’E) [log p (Y'<+17:4)]
N (12)
+KL[1_[ q¢ (Z?’e|Xt1:K,€) ”p(ZO,e)]
i=1

5 EXPERIMENTS
5.1 Experiment Setup

5.1.1 Datasets. We illustrate the performance of our model across
two physical simulations that exhibit different system dynamics
over time: (1) The Water dataset [35], which describes the fluid
dynamics of water within a container. Containers can have differ-
ent shapes and numbers of ramps with random positions inside
them, which we view as different environments. The dataset is sim-
ulated using the material point method (MPM), which is suitable
for simulating the behavior of interacting, deformable materials
such as solids, liquids, gases 2. For each data sample, the number of

Zhttps://en.wikipedia.org/wiki/Material_point_method
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Table 1: Mean Square Error (MSE) of rollout trajectories with varying prediction lengths. The transductive setting evaluates the
testing sequences whose environments are seen during training. The inductive setting evaluates new systems with unseen
environments during training. The best results are bold-faced.

Dataset Lennard-Jones potential | Lennard-Jones potential Water Water
Transductive MSE (10 2) | Inductive MSE (10 !) | Transductive MSE (10 3) | Inductive MSE (10 2)
Rollout Percentage | 30%  60% 100% 30% 60% 100% 30%  60% 100% 30% 60%  100%
LSTM 6.73  20.69 31.88 1.64 8.82 18.01 4.87  23.09 30.44 1.01 6.72 14.79
NRI 5.83  17.99 28.18 1.33  4.34 13.97 3.87 19.64 26.34 0.83 3.84 10.59
NDCN 5.99 17.54 27.06 135 4.27 12.37 3.95 18.76 24.33 0.85 3.79 10.11
CG-ODE 543 17.01 26.01 132  4.25 12.03 3.41 18.13 23.62 0.80 3.64 9.91
SocialODE 5.62 17.23 26.89 1.34 4.26 12.44 3.68 18.42 23.77 0.84 3.70 10.01
GNS 5.03 16.28 25.44 1.28 4.23 11.88 3.17 17.88 23.14 0.76  3.45 9.78
GG-ODE 5.18 16.03 24.97 1.10 3.98 10.77 3.20 16.94 22.58 0.63 3.11 8.02
-w/o Leontra 532 17.03 26,53 130 4.25 12.13 332 18.03  23.01 075 358  10.03
-w/oLmr 545 17.25 26.11 132 4.11 11.76 3.43 18.32 22.95 0.78 3.51 9.88
shared encoders 5.66 17.44 26.79 1.33  4.46 12.22 3.55 18.57 23.55 0.81 3.66 10.08

particles can vary but the trajectory lengths are kept the same as
600. The input node features are 2-D positions of particles, and we
calculate the velocities and accelerations as additional node features
using finite differences of these positions. The total number of data
samples (trajectories) is 1200 and the number of environments is
68, where each environment can have multiple data samples with
different particle initializations such as positions, velocities, and
accelerations. (2) The Lennard-Jones potential dataset [21], which
describes the soft repulsive and attractive interactions between sim-
ple atoms and molecules 3. We generate data samples with different
temperatures, which could affect the potential energy preserved
within the whole system thus affecting the dynamics. We view
temperatures as different environments. The total number of data
samples (trajectories) is 6500 and the number of environments is
65. Under each environment, we generate 100 trajectories with
different initializations. The trajectory lengths are kept the same
as 100. The number of particles is 1000 for all data samples. More
details about datasets can be found in Appendix A.1.

5.1.2  Task Evaluation and Data Split. We predict trajectory rollouts
across varying lengths and use Mean Square Error (MSE) as the
evaluation metric.

Task Evaluation. The trajectory prediction task is conducted un-
der two settings: (1) Transductive setting, where we evaluate the
test sequences whose environments are seen during training; (2)
Inductive setting, where we evaluate the test sequences whose en-
vironments are not observed during training. It helps to test the
model’s generalization ability to brand-new systems.

Data Split. We train our model in a sequence-to-sequence setting
where we split the trajectory of each training sample into two parts
[#1, tx] and [tx41, t7]. We condition on the first part of observations
to predict the second part. To conduct data split, we first randomly
select 20% environments whose trajectories are all used to construct
the testing set thgs‘iud in the inductive setting. For the remaining
trajectories that cover the 80% environments, we randomly split
them into three partitions: 80% for the training set Xiyain, 10% for

3https:// en.wikipedia.org/wiki/Lennard-Jones_potential
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the validation set X, and 10% for the testing set in the transduc-
tive setting Xttéstns. In other words, we have two test sets for the
inductive and transductive settings respectively, one training set
and one validation set. To fully utilize the data points within each
trajectory, we generate training and validation samples by splitting
each trajectory into several chunks that can overlap with each other,
using a sliding window. The sliding window has three hyperpa-
rameters: the observation length and prediction length for each
sample, and the interval between two consecutive chunks (samples).
Specifically, for the Water dataset, we set the observation length as
50 and the prediction length as 150. We obtain samples from each
trajectory by using a sliding window of size 200 and setting the
sliding interval as 50. For the Lennard-Jones potential dataset, we
set the observation length as 20, the prediction length as 50, and the
interval as 10. The procedure is summarized in Appendix A.1.1. Dur-
ing evaluations for both settings, we ask the model to roll out over
the whole trajectories without further splitting, whose prediction
lengths are larger than the ones during training. The observation
lengths during testing are set as 20 for the Lennard-Jones potential
dataset and 50 for the Water dataset across the two settings.

5.2 Baselines

We compare both discrete neural models as well as continuous neu-
ral models where they do not have special treatment for modeling
the influence from different environments. For discrete ones we
choose: NRI [24] which is a discrete GNN model that uses VAE to
infer the interaction type among pairs of agents and is trained via
one-step predictions; GNS [35], a discrete GNN model that uses
multiple rounds of message passing to predict every single step;
LSTM [37], a classic recurrent neural network (RNN) that learns the
dynamics of each agent independently. For the continuous models,
we compare with NDCN [47] and Social ODE [44], two ODE-based
methods that follow the encoder-processor-decoder structure with
GNN as the ODE function. The initial state for each agent is drawn
from a single data point instead of a leading sequence. CG-ODE [19]
which has the same architecture as our model, but with two coupled
ODE functions to guide the evolution of systems.
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Figure 3: Visualization of the transductive prediction results for the Water dataset. Black lines are ramps within the container.
The length of the observation sequence is set as 20. GNS makes less accurate predictions compared with GG-ODE.

5.3 Performance Evaluation

We evaluate the performance of our model based on Mean Square
Error (MSE) as shown in Table 1. As data samples have varying
trajectory lengths, we report the MSEs over three rollout percent-
ages regarding different prediction horizons: 30%, 60%, 100% where
100% means the model conditions on the observation sequence and
predicts all the remaining timestamps.

Firstly, we can observe that GG-ODE consistently outperforms all
baselines across different settings when making long-range predic-
tions, while achieving competitive results when making short-range
predictions. This demonstrates the effectiveness of GG-ODE in
learning continuous multi-agent system dynamics across environ-
ments. By comparing the performance of LSTM with other methods,
we can see that modeling the latent interaction among agents can
indeed improve the prediction performance compared with pre-
dicting trajectories for each agent independently. Also, we can
observe the performance gap between GG-ODE and other baselines
increase when we generate longer rollouts, showing its expressive
power when making long-term predictions. This may be due to the
fact that GG-ODE is a continuous model trained in a sequence-to-
sequence paradigm whereas discrete GNN methods are only trained
to make a fixed-step prediction. Another continuous model NDCN
only conditions a single data point to make predictions for the
whole trajectory in the future, resulting in suboptimal performance.
Finally, we can see that GG-ODE has a larger performance gain
over existing methods in the inductive setting than in the transduc-
tive setting, which shows its generalization ability to fast adapt to
other unseen systems with a few data points. Figure 3 visualizes
the prediction results under the transductive setting for the Water
dataset.

5.3.1 Ablation Studies. To further analyze the rationality behind
our model design, we conduct an ablation study by considering
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three model variants: (1) We remove the contrastive learning loss
which forces the learned exogenous factors to satisfy the time invari-
ance property, denoted as  w/0Lcontra; (2) We remove the mutual
information minimization loss which reduces the variance of the
learned exogenous factors from the same environment, denoted
as w/oLyy. (3) We share the parameters of the two encoders
for computing the latent representation m{ for each observation
sequence in the temporal graph, denoted as shared encoders. As
shown in Table 1, all three variants have inferior performance
compared to GG-ODE , verifying the rationality of the three key
designs. Notably, when making long-range predictions, removing
L7 would cause more harm to the model than removing Lcontra-
This can be understood as the latent initial states are more im-
portant for making short-term predictions, while the disentangled
latent initial states and exogenous factors are both important for
making long-range predictions.

5.3.2  Hyperparameter Study. We study the effect of A1 /A2, which
are the hyperparameters for balancing the two regularization terms
that guide the learning of the two encoders, towards making pre-
dictions under different horizons. As illustrated in Figure 4, the
optimal ratio for making 30%, 60%, 100% rollout predictions are 2,
1,0.5 respectively, under both the transductive and inductive set-
tings. They indicate that the exogenous factors modeling plays a
more important role in facilitating long-term predictions, which is
consistent with the prediction errors illustrated in Table 1 when
comparing w/oLyg with  w/0Lcontra- However, overly elevat-
ing Ly would also harm the model performance, as the time
invariance property achieved by Lcontra is also important to guar-
antee the correctness of the learned latent initial states, which
determines the starting point of the predicted trajectories in the
future.
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5.3.3  Sensitivity Analysis. GG-ODE can take arbitrary observa-
tion lengths to make trajectory predictions, as opposed to existing
baselines that only condition on observations with fixed lengths.
It allows the model to fully utilize all the information in the past.
We then study the effect of observation lengths on making pre-
dictions in different horizons. As shown in Figure 5, the optimal
observation lengths for predicting the rollouts with 20, 40, and 50
steps are 20, 25, 35 in the inductive setting, and 15, 25, 30 in the
transductive setting. When predicting long-range trajectories, our
model typically requires a longer observation sequence to get more
accurate results. Also, for making predictions at the same lengths,
the inductive setting requires a longer observation length compared
with the transductive setting.
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Figure 5: Effect of observation length on the Lennard-Jones
potential dataset.

5.4 Case Study

We conduct a case study to examine the learned representations
of the latent exogenous factors on the Lennard-Jones potential
dataset. We first randomly choose one data sample for each of the
65 temperatures and visualize the learned representations of ex-
ogenous factors. As shown in Figure 6 (a), the representations of
higher temperatures are closer to each other on the right half of the
figure, whereas the lower temperatures are mostly distributed on
the left half. Among the 65 temperatures, 20% of them are not seen
during training which we circled in black. We can see those unseen
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temperatures are also properly distributed, indicating the great gen-
eralization ability of our model. We next plot the representations
for all data samples under temperatures 2.5 and 3.5 respectively
as shown in Figure 6 (b). We can see that the learned represen-
tations are clustered within the two temperatures, indicating our
contrastive learning loss is indeed beneficial to guide the learning
process of exogenous factors.

=
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.
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(a) Exogenous Factors Across Environments (b) Exogenous Factors from two Environments
Figure 6: T-SNE visualization of the learned exogenous fac-
tors on the Lennard-Jones potential dataset. (a) We randomly
pick one data sample per temperature, where temperatures
tested in the inductive setting are circled in black. (b) Visual-
ization of data samples from two temperatures.

6 CONCLUSION

In this paper, we investigate the problem of learning the dynamics
of continuous interacting systems across environments. We model
system dynamics in a continuous fashion through graph neural
ordinary differential equations. To achieve model generalization,
we learn a shared ODE function that captures the commonalities
of the dynamics among environments while design an environ-
ment encoder that learns environment-specific representations for
exogenous factors automatically from observed trajectories. To dis-
entangle the representations from the initial state encoder and the
environment encoder, we propose a regularization loss via mutual
information minimization to guide the learning process. We addi-
tionally design a contrastive learning loss to reduce the variance
of learned exogenous factors across time windows under the same
environment. The proposed model is able to achieve accurate pre-
dictions for varying physical systems under different environments,
especially for long-term predictions. There are some limitations
though. Our current model only learns one static environment-
specific variable to achieve model generalization. However, the
environment can change over time such as temperatures. How
to capture the dynamic influence of those evolving environments
remain challenging.
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A APPENDIX
A.1 Datasets

We conduct experiments over two datasets: The Water dataset
and the Lennard-Jones potential dataset. As introduced in Sec 2,
the edges between agents are assigned if the Euclidean distance
between the agents’ positions rfj’.e = ||p§’e pj.’e||2 is within a
(small) connectivity radius R. The connectivity radius for the two
datasets is set as 0.015 and 2.5 respectively. The number of particles
is kept the same as 1000 for all trajectories in the Lennard-Jones
potential dataset, while in the Water dataset, each data sample can
have a varying number of particles, and the maximum number of
particles is 1000.

A.1.1 Data Split. Our model is trained in a sequence-to-sequence
mode, where we split the trajectory of each training sample into
two parts [#1, tx] and [tg41, t7]. We condition on the first part of
observations to predict the second part. To fully utilize the data
points within each training sample, we split each trajectory into
several chunks with three hyperparameters: the observation length
and prediction length for each sample, and the interval between
two consecutive chunks (samples). We summarize the procedure
in Algorithm 1, where K is the number of trajectories and d is the
input feature dimension.

Algorithm 1: Data Splitting Procedure.

Input: Original Training trajectories Xinput € RKXNXTxd,

Observation length O; Prediction length M; Interval I;
Trajectory length T.
Output: Training samples after splitting Xirain.

1 sample_length = O + M;

2 num_chunk = (T - sample_length )//interval + 1;

@

for i in range (0.K) do

4 for j in range(0,num_chunk,I) do
5 Generate the split training sample as
Xinput[i, s j : j + sample_length, :]
6 Add the training sample to the training set Xrain-
7 end
s end
A.1.2  Input Features and Prediction Target. For the Water dataset,

the input node features are 2-D positions pf’e, and we additionally
calculate the 2-D velocities and accelerations using finite differ-
ences of these positions as uit’e = pit’e pf Le, af = U:’e Uf Le
p;’e 2pf Le +pit ¢ For positions, velocities, and accelerations,
we precompute their mean and variance across all samples and nor-
malize them with z-score. For the Lennard-Jones potential dataset,
the input node features are 3-D positions, velocities, and accelera-
tions. We train the model to predict the future positions for each
agent along the time for both datasets.

A.2 Software and Experiment Environment

We implement our model in PyTorch. All experiments are con-
ducted on a GPU powered by an NVIDIA A100. For all datasets,
we train over 100 epochs and select the one with the lowest vali-
dation loss as the reported model. We report the average results
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over 10 runs. Encoders, the generative model, and the decoder are
jointly optimized using Adam optimizer [22] with a learning rate
0.005. The batch size for the Water dataset is set as 128, and for the
Lennard-Jones potential dataset. is set as 256. Note that the batch
size denotes the number of data samples generated as in Alg 1.

A.3 Implementation Details

We now introduce the implementation details of our model.

A.3.1 Initial State Encoder. The initial state encoder aims to infer
latent initial states for all agents simultaneously via a two-step pro-
cedure: Firstly, the encoder computes the structural representation
for each observation node by the use of a spatial-temporal GNN.
We set the number of GNN layers [ as 2 and the hidden dimension
as 64 across all datasets. LayerNorm [2] is employed to provide
training stability in our experiment. Next, a self-attention-based
sequence representation learning procedure computes the sequence
representation for each agent and samples the initial state from it.
We use a 2-layer MLP as firans in Eqn 4 with latent dimensions as
128 and activation function as Tanh.

A.3.2  Environment Encoder. The environment encoder learns the
latent representations of exogenous factors based on the observed
trajectories. The architecture is the same as the initial state encoder
but are using two sets are parameters with the same hyperparameter
settings introduced in Sec A.3.1.

Contrastive Learning Loss Sampling. The contrastive learning
loss Lcontra shown in Eqn 6 is designed to achieve the time in-
variance properties of the learned exogenous factors. Specifically,
we sample the positive pairs X'12:¢, X13:14.¢ ysing two strategies:
(1) The intra-sample generation, where 12, X%4:¢ are from the
same training sample but representing two different time windows.
We achieve this by randomly selecting two timestamps within each
training sample to serve as t1, t3 respectively, and then set the win-
dow size as the observation length L to get tp = t; + L, t4 = t3 + L.
(2) The cross-sample generation, where hitze x13:4.€ gre from two
different samples within the same environment e. Specifically, for
each training sample, we first randomly choose another sample
under the same environment. Then we generate t1, t3 by randomly
selecting one timestamp for each of them. Finally, we calculate t5, t4
by adding the observation length. To generate negative pair X tsite.€’
for each X!1:%2:€ e first randomly select one another environment
e/, from which we randomly pick one data sample. Similarly, we
then randomly select one timestamp within that data sample to
serve as t5 and then obtain tg as ts = t5 + L. The temperature scalar
7 in Eqn 6 is set as 0.05.

Mutual Information Minimization Loss Sampling. To disentan-
gle the representations of the latent initial states and the exogenous
factors, we design the mutual information minimization loss in
Eqn 8 as a regularization term during training. We conduct the
sampling procedure for positive and negative pairs as follows: For
each training sample, we pair the latent initial states z?’e of all the
N agents with the learned exogenous factors u®, thus constructing
N positive pairs. To generate negative pairs, we randomly select
another environment e’ and pair it with the latent initial states of
all agents within one training sample. Thus we obtain the same
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number of positive and negative pairs during training. The discrimi-
nator ¥ is implemented as a two-layer MLP with hidden dimension
and out dimension as 128 and 64 respectively.

A.3.3  ODE Function and Solver. The ODE function introduced in
Eqn 1 consists of two parts: the GNN fgnn that captures the mutual
interaction among agents and f5j¢ that captures the self-evolution
of agents. We use the following two-layer message passing GNN
function as foNN:

Lh(te) _rl tey te
v ee; ) =Je ([Zi llz; ])
e—0v :Z?(t’e) =fl el(li’(;;e) (13)
i#j

v—oe :z?(t’e) =f2 ([z?(t’e)||z?(t’e)])

where || denotes concatenation, £}, f1, £2 are two-layer MLPs with

hidden dimension size of 64. We use zl.2 (te)

as output representation
for agent j at timestamp t from fonN. The self-evolution function
fself and the transformation function feny are also implemented as
two-layer MLPs with hidden dimension of 64. We use the fourth-
order Runge-Kutta method from torchdiffeq python package [9] as
the ODE solver, which solves the ODE systems on a time grid that
is five times denser than the observed time points. We also utilize

the Adjoint method described in [9] to reduce memory usage.

A.4 Pseudo-Code of GG-ODE Training
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Algorithm 2: Generalized Graph ODE training procedure.

Input: Observed trajectories X :K:€,
Output: Model parameters ¢ and 6.
1 while model not converged do

2 for Each training sample do
3 Separate the sequence into observed half [Ty, T1]
and predicted half [T, T2];
4 //For the initial state encoder:
5 Generate the latent initial states z?’e for each agent
according to Eqn 4;
6 //For the environment encoder:
7 Compute the latent representation for exogenous
factors as in Eqn 5;
8 //For the generative model:
9 Given the latent initial states, the latent exogenous
factors, and timestamps to predict [T, Tz], solve
the ODE function in Eqn 9;
10 //For the decoder:
1 Compute predicted node dynamics based on the
decoding likelihood p(y*|z5€);

12 end

13 Update the parameters ¢ and 0 by optimizing loss term

defined in Eqn. 11;

14 end
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