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The nature of the superconducting order parameter in Sr2RuO4 has generated intense interest in
recent years. Since the superconducting gap is very small, high resolution methods such as scanning
tunneling spectroscopy might be the best chance to directly resolve the gap symmetry. Recently, a
Bogoliubov quasiparticle interference imaging (BQPI) experiment has suggested that the dx2−y2 gap
symmetry is appropriate for Sr2RuO4. In this work, we use a material-specific theoretical approach
based on Wannier functions of the surface of Sr2RuO4 to calculate the continuum density of states
as detected in scanning tunneling microscopy experiments. We examine several different proposed
gap order parameters, and calculate the expected BQPI pattern for each case. Comparing to the
available experimental data, our results suggest that a s′ + idxy gap order parameter is the most
probable state, but the measured BQPI patterns still display features unaccounted for by the theory
for any of the states currently under discussion.

I. INTRODUCTION

Sr2RuO4
1–4 has once again been a topic of intense re-

search interest recently. For long time it was discussed
as a promising candidate for intrinsic topological super-
conductor in the light of arguments in favor of a p + ip
symmetry of the gap order, in particular early evidence
from NMR5. Muon-spin rotation6 and Kerr effect7 mea-
surements were argued to imply time-reversal symmetry
(TRS) breaking8 in the superconducting state, consistent
with this picture. However, a number of thermodynamic
measurements detected low-energy quasiparticle states,
hinting at the existence of nodes or deep minima in the
gap ∆(k)9–12.
Recently, strong evidence against the chiral p-wave

paradigm was provided by in-plane 17O nuclear mag-
netic resonance measurements13,14 that found a substan-
tial drop in the Knight shift below Tc. Arguments in favor
of spin-singlet pairing were then drawn from the field de-
pendence of the Knight shift in comparison to the change
of the entropy from earlier specific heat experiments15.
These measurements are complemented by observations
of shifts in the elastic constants16,17 together with ex-
periments under strain18 that indicate a two component
nature of the order parameter. All these findings have led
to a series of recent theoretical attacks on the question
of superconductivity in Sr2RuO4

19–35.
Sr2RuO4 is generally considered to be an unconven-

tional superconductor, where electron pairing is medi-
ated by the exchange of electronic excitations, so the-
ories typically attempt to model the low-energy effec-
tive pairing interaction. The Fermi surface is domi-
nated by three Ru d orbitals dxz, dyz that contribute

mostly to quasi-1D bands, and dxy states dominating a
2D band. Electrons in these states interact via intrasite
Coulomb U interactions and Hund’s coupling J , with the
dxy dominant bands thought to be more strongly corre-
lated.36,37 In addition, spin-orbit coupling plays a signif-
icant role38,39. Recent microscopic theories incorporate
many of these ingredients19–21,23–26,29,30,32,33,40,41, lead-
ing to a variety of predictions for ∆(k) depending on the
assumed model and the applied methodology. These cal-
culations point to a number of leading candidates which
currently consist of the even-parity 1D irreducible rep-
resentation B1g(dx2−y2), multi-component orders such
as dx2−y2 + igxy(x2−y2) and s′ + idxy, as well as the
2D irreducible representation E1g(dxz + idyz). A two-
component state is generally thought to be important to
explain the observation of time-reversal symmetry break-
ing, ultrasound17,42, and recent µSR experiments under
strain18. At zero strain, these can correspond either to
the 2D representation, or to accidental degeneracies of
two 1D representations.

Not all such proposals are consistent with existing ex-
perimental results, nor are all the interpretations of the
experimental literature apparently consistent with one
another4. In such a situation it would be very use-
ful to have a direct measurement of the superconduct-
ing gap to distinguish among theories and thereby con-
strain the possible pairing mechanisms. The tiny size
(|∆| ≤ 350µeV)43,44 of the superconducting order pa-
rameter ∆(k) in Sr2RuO4 has hindered such measure-
ments for a long time, as they require low tempera-
tures and fine energy resolution to detect spectral fea-
tures arising from the small gap. However, in principle
Bogoliubov quasiparticle interference (BQPI) imaging is

ar
X

iv
:2

10
9.

10
71

2v
3 

 [c
on

d-
m

at
.su

pr
-c

on
]  

18
 Ju

n 
20

23



2

a powerful technique capable of high-precision measure-
ment of multiband ∆(k)45–48. Interference of impurity-
scattered quasiparticles produces real space Friedel os-
cillations in the density of states (DOS) ρ(r, ω) within
the energy range of ∆(k), giving rise to complex pat-
terns in the spatial Fourier transform spectrum ρ(q, ω)
that can in principle be measured in an STM experiment
and interpreted in order to extract the gap structure.
The BQPI technique was recently implemented to ana-
lyze ∆(k) in Sr2RuO4

44. This analysis, motivated with
observations from recent work12,13,19–21,49, suggested a
dx2−y2 superconducting gap symmetry for Sr2RuO4 by
comparison with theoretical calculations of ρ(q, ω) using
simple low-harmonic gap candidates ∆(k). Such an ap-
proach is, however, limited by a) loss of q space resolution
when calculating BQPI on a simple Ru lattice system and
b) failure to include the rather complex gap structures,
including accidental nodes, anticipated by microscopic
theories19,29,33.

In this work, we will adopt the Wannier-based T -
matrix technique introduced in Refs. 50 and 51 through
which one obtains BQPI images for real materials in
its normal and superconducting states, that are directly
comparable to experiments. Unlike the theoretical ap-
proach used in Ref. 44 to obtain lattice DOS ρ(R, ω),
the Wannier-based T -matrix approach is used for eval-
uation of the continuum DOS ρ(r, ω) dressed by real-
space Wannier functions pertaining to the orbitals that
have dominant contribution around the Fermi level of the
material under consideration. These Wannier functions
substantially modify the continuum DOS patterns, bring-
ing in additional q(ω) features in its Fourier transformed
image. In addition, we take as representative of the var-
ious possible gap symmetries not only simple harmonics,
but gaps derived from microscopic spin fluctuation pair-
ing theory29. We find that definitive conclusions are dif-
ficult because of limited experimental tunneling spectra
exhibiting superconductivity on the surface (i.e. with ev-
idence of low-energy coherence peaks), and the fact that
BQPI features are remarkably nondispersive in this sys-
tem, even for highly anisotropic gap structures. The best
fit to the data currently available44 suggests a s′ + idxy
gap order parameter, but we discuss other alternatives in
detail.

This paper is organized as follows: in Sec II, we
introduce the multiorbital Hubbard Hamiltonian with
the pairing and impurity terms, and describe it using
the Bardeen-Cooper-Schrieffer (BCS) equations in the
Nambu spinor basis. We write down the equations for
computing the lattice DOS and continuum DOS50,51, in
the presence of impurities using the T -matrix approach.
In Sec III, we demonstrate our BQPI findings first in the
normal state, and second in the superconducting state of
the material for which we borrow the singlet and com-
posite gap order parameters as obtained in Refs. 19 and
29. Finally, we present our conclusions in Sec IV and
possible future directions of investigation in this context.

II. MODEL

In this section, we will lay out the theoretical frame-
work on how the surface of a material is imaged by STM.
The full Hamiltonian has four terms, namely the kinetic
energy termH0, the spin-orbit termHsoc, the BCS mean-
field term HMF and a single-impurity term Himp.

H = H0 +Hsoc +HMF +Himp, (1)

H0 =
∑

RR′mns

tmn
RR′c

†
RmscR′ns − µ0

∑
Rms

c†RmscRms,

HMF = −
∑

RR′mn

[∆mn
RR′c

†
Rm↑c

†
R′n↓ + h.c.],

Himp =
∑

R⋆mns

V mn
imp c

†
R⋆mscR⋆ns.

Hsoc will be introduced in the next subsection. Here,

c†Rms (cRms) is the creation (annihilation) operator for
an electron in the unit cell R, orbitalm with spin s. tmn

RR′

is the amplitude for hopping from unit cell R, orbital m
to the unit cell R′, orbital n. The pairing field is given by
∆mn

RR′ = V mn
RR′ ⟨cR′n↓cRm↑⟩, where V mn

RR′ is the effective
attraction between unit cellR, orbitalm and unit cellR′,
orbital n. R⋆ is the impurity site and V mn

imp is the (on-

site only) non-magnetic impurity potential responsible
for scattering of quasiparticles.

A. Non-interacting Hamiltonian

We will adopt the non-interacting tight-binding Hamil-
tonian model for Sr2RuO4 as used in Refs. 19, 27, and
29. It is composed of the three Ru orbitals: dxz, dyz and
dxy. Fourier transforming the real space hoppings from
H0 fitted to ARPES measurements52,53, one obtains the
dispersions given by ξxz(k) = −2t1 cos kx−2t2 cos ky−µ,
ξyz(k) = −2t2 cos kx − 2t1 cos ky − µ, and ξxy(k) =
−2t3(cos kx + cos ky)− 4t4 cos kx cos ky − 2t5(cos 2kx +
cos 2ky)−µ with {t1, t2, t3, t4, t5} = {88, 9, 80, 40, 5, 109}
meV with the inter-orbital hybridization g(k) set to 0 (see
Eq. (2) below) and the chemical potential µ = 109 meV.
Atomic SOC is parametrized by Hsoc = λsocL · S and
gives rise to orbital mixing on the Fermi surface sheets.
We include SOC of λsoc ≈ 40 meV (≈ 0.5t1)

19,27,29.
For the TRS-preserved normal state, we have doubly de-
generate Kramer’s eigenvalues and the non-interacting
Hamiltonian Ĥ in block-diagonal form can be repre-
sented in a pseudospin basis σ = +(−). Here Ĥ =∑

kσ Ψ
†(k, σ)(H0 +Hsoc(σ))Ψ(k, σ) where,

H0 =

 ξxz(k) g(k) 0
g(k) ξyz(k) 0
0 0 ξxy(k)

 , (2)

Hsoc(σ) =
1

2

 0 −iσλsoc iλsoc
iσλsoc 0 −σλsoc
−iλsoc −σλsoc 0

 , (3)
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FIG. 1. Isosurface plots of Ru dxy, dyz and dxz Wannier orbitals in Sr2RuO4. The atoms Sr, Ru and O are depicted by the
opaque spheres colored in green, white and pink, respectively. The Ru atom is positioned at the center of the unit cell which has
an in-plane lattice constant of a = 3.8644 Å as considered in the ab-initio calculations described in Appendix A. The Wannier
functions are depicted by the translucent red and blue colored lobes indicating opposite phases of the wave functions.

and Ψ(k,+) = [cxz↑(k), cyz↑(k), cxy↓(k)]
T and Ψ(k,−) =

[cxz↓(k), cyz↓(k), cxy↑(k)]
T .

B. Superconducting gap

The full BCS Hamiltonian (implied by the underscore)
is given by:

Ĥ =

(
Ĥ(k) ∆̂(k)

∆̂†(k) −ĤT (−k)

)
, (4)

written in the Nambu spinor basis (Φ†(k),ΦT (−k))
where Φ†(k) = (Ψ†(k,+),Ψ†(k,−)). The superconduct-
ing gap in momentum space in the homogeneous system
∆̂(k) is obtained from the spin-fluctuation pairing theory

evaluations19,29. Diagonalizing Ĥ yields the eigenvalues
{±Eµ(k)} and the unitary transformation matrix Û(k)

that diagonalizes Ĥ. The orbitally resolved-gap struc-
ture ∆̂mn(k) is also expressed in this Nambu basis51

[see Appendix B for theoretical details]. We evaluate
six different cases of pseudospin-singlet (| ↑↓⟩ − | ↓↑⟩)
gap order parameters: simple intra-band dSx2−y2 where

∆̂µ(k) = ∆0

2 (cos kx − cos ky), and the rest taken from
Refs. 19 and 29 dx2−y2 , s′, s′ + idx2−y2 and s′ + idxy.
The spin-fluctuation mediated pairing theory for weakly-
coupled systems (like Sr2RuO4) enables one to find the
phase diagram of the possible leading gap order param-
eters as a function of the on-site Coulomb repulsion U
and Hund´s coupling J interaction terms [19]. The gap
solutions dx2−y2 , s′ and s′ + idx2−y2 are the results of
such an analysis pertaining to different U and J values.
Furthermore, Ref. 29 also included the effect of nearest-
neighbor Coulomb repulsion V to investigate the fate of
the leading gap order which yields a robust s′ + idxy so-
lution.

The orbitally-resolved homogeneous DOS in the super-

conducting state is ρn(ω) = − 1
π Im

∑
k Ĝnn(k, ω) where

Ĝ(k, ω) = (ω − Ĥ(k) + iδ)−1, (5)

is the Green’s function for the BCS Hamiltonian. The
real-space bare lattice Green’s function is obtained from
the Fourier transform

Ĝ
0
(R,R′, ω) =

∑
k

e−ik.(R−R′)Ĝ
0
(k, ω) = Ĝ

0
(R−R′, ω).

(6)

C. Impurity states and T-matrix approach

With intra-orbital, on-site impurity potential terms
V nn
imp inHimp of Eq. (1), one constructs the lattice Green’s

function in the presence of the impurity via the T-matrix
approach:

Ĝ(R,R′, ω) =Ĝ
0
(R−R′, ω) + Ĝ

0
(R, ω)T̂ (ω)Ĝ

0
(−R′, ω).

(7)

The T-matrix is given by

T̂ (ω) = [1− V̂ impĜ(ω)]
−1V̂ imp, (8)

where the local Green’s function is Ĝ(ω) =
∑

k Ĝ(k, ω)

and the diagonal matrix V̂ imp = V mn
imp δmnτz, implying its

expression in the Nambu spinor basis with

τz =

(
1 0
0 −1

)
. (9)

D. Wannier functions to calculate continuum
density of states

For a given bias voltage V , the differential tunneling
conductance in an STM experiment is given by54:

dI

dV
(r, eV ) =

4πe

h̄
|M |2ρtip(0)ρ(r, eV ), (10)
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where r = (x, y, z) denote the coordinates of the tip,
ρ(r, eV ) is the continuum LDOS (cLDOS), ρtip(0) is the
DOS of the tip, and |M |2 is the square of the matrix ele-
ment for the tunneling barrier. The following methodol-
ogy to include the effect of Wannier functions in modify-
ing the cLDOS was introduced in Refs. 50 and 51. The
cLDOS can be calculated by

ρ(r, ω) = − 1

π
ImG11(r, r, ω), (11)

where G11(r, r, ω) =
∑

sGss(r, r, ω) is the normal
part of the Nambu continuum Green’s function de-
fined in a basis described by the field operators ψs(r).
These are related to the lattice operators cRms through
the Wannier functions matrix elements wRm(r) as
ψs(r) =

∑
Rm cRmswRm(r). Employing the Wannier

basis transformation50,51, we can obtain the continuum
Green’s function as:

Gss′(r, r
′, ω) =

∑
RR′mn

Ĝms,ns′(R,R
′, ω)wRm(r)wR′n(r

′)

(12)
and thereafter, evaluate the cLDOS from Eq. (11). A
simple Fourier transform of the cLDOS ρ(r, ω) gives the
Bogoliubov quasiparticle interference maps that can be
compared directly to experimental measurements.

III. RESULTS

The Sr2RuO4 crystal structure is composed of alternat-
ing layers of SrO and RuO2 planes. The cleaving of the
sample in ultrahigh vacuum at low temperatures is con-
sidered to reveal atomically flat SrO cleaved surface44.
However, an STM tip probing this surface is believed
to be sensitive to the atomic wave functions of the Ru
d−orbitals that dominate the Fermi level, while the other
atomic wave functions away from the Fermi level are
effectively invisible for STM. An illustration of the Ru
d−orbitals Wannier functions [as obtained from ab-initio
calculations described in Appendix A] is provided in
Fig. 1. Notice the smaller z-expanse of the dxy Wan-
nier orbitals compared to dxz, dyz orbitals, making dxy
orbital less likely to participate in tunneling through an
STM tip located at a certain z−height above the cleaved
surface. This property might be altered on reconstructed
surfaces55; in this work we concentrate on the spectro-
scopic features at low energies assuming no reconstruc-
tion and a negligible effect from the van Hove singular-
ities. Whether these effects are essential for the obser-
vation of superconductivity in Sr2RuO4 is not presently
clear, as the presence or absence of reconstruction is not
always examined in the experimental data43,44.

A. Homogeneous superconducting state

Figure 2(a) shows the Fermi surface (FS) for 2D
Sr2RuO4 with the corresponding dominant orbital contri-
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𝑦
𝜋
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(b) Normal-state BQPI map
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(a) Fermi surface
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𝜶
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FIG. 2. (a) Fermi surface of Sr2RuO4 for the model discussed
in Sec.IIA with patches showing the dominant orbital content
(dxz, dyz or dxy) as indicated by the color legend. The normal
state intra-band scattering vectors connecting patches with
similar orbital character are indicated by red, green, black and
blue arrows. (b) The QPI pattern for an impurity potential
Vimp = 0.05 eV and for ω = 0 eV in the normal state of
the system. The q-vectors corresponding to these red, green,
black and blue arrows as shown in (a) are highlighted as well.
Intensities in the central region surrounding q = (0, 0) have
been suppressed for visual clarity.

bution. There are three FS pockets: two quasi-1D bands
that originate from Ru dxz (purple) and dyz (yellow) or-
bitals, leading to the electron-like β band centered at the
Γ point and hole-like α band surrounding the M point;
and the Ru dxy (blue) orbital generates the electron-like
quasi-2D γ band centered at the Γ point. SOC lifts de-
generacy of the β and γ bands along the diagonals in the
first Brillouin zone (BZ) and introduces further inter-
orbital hybridization as seen in Fig. 2(a).

Figure 3 shows the orbitally-resolved homogeneous
DOS ρn(ω) in the superconducting state, with degener-
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FIG. 3. Homogeneous orbitally-resolved DOS in the superconducting state for six different gap order parameters: (a) dSx2−y2

which is a simple intra-band order parameter of ∆0
2
(cos kx − cos ky), and the rest taken from Refs. 19 and 29 (b) dx2−y2 , (c)

s′, (d) s′ + idx2−y2 , (e) s′ + idxy and (f) dx2−y2 + igxy(x2−y2). Notice the V-shaped DOS spectrum across all cases.

ate contributions from dxz and dyz orbitals depicted by
the dark-yellow line and dxy orbital contribution in blue.
Results are presented for six different pseudospin-singlet
gap order parameters: (a) purely intra-band dSx2−y2 =
∆0

2 (cos kx − cos ky) (the superscript ‘S’ denotes the sim-
ple cosine form of the order parameter), and the rest
adapted from Refs. 19 and 29 (b) dx2−y2 , (c) s′, (d)
s′ + idx2−y2 , (e) s′ + idxy and (f) dx2−y2 + igxy(x2−y2).
While the gap functions (b)-(f) correspond to specific
cases of microscopic parameters discussed in those refer-
ences, it was shown there that their structure was reason-
ably robust against changes of those parameters within
reasonable ranges. Thus we hope therefore to identify
qualitative BQPI structures that are driven by these fea-
tures. Case (a) with dSx2−y2 order parameter was evalu-
ated to compare directly with the BQPI analysis claims
of Ref. 44. The gap maximum value for all cases was
chosen as ∆0 = 3.5 meV, as required with the k-grid size
employed. A lower value of ∆0 would require a larger k-
grid size for converged calculations; we verified that the
qualitative features of computed BQPI patterns were ro-
bust against changes in the k-grid.

The gap functions studied here all possess nodes or ex-
tremely deep near-nodes on the Fermi surface19,29, such
that spectra in Fig. 3 are all roughly V-shaped, con-
sistent with STM measurements44,56. Certain small fea-
tures related to the multiband character of Sr2RuO4 are
clearly visible, however. One can clearly identify the co-
herence peaks appearing in the vicinity of ∆0 = ±3.5
meV. Although some cases, particularly (e) with s′+idxy
order parameter, show evidence of shoulders in the DOS
at energies less than ∆0, this is not captured in experi-
ments possibly due to: (1) the extremely low STM-bias
resolution required to differentiate such a feature occur-
ring below ±350µeV in the real system, and (2) smooth-
ing of the DOS spectrum due to convolution with Fermi
distribution function at finite temperatures as measured
in the dI/dV spectrum54. We have used 1000 × 1000
k-grid and a broadening parameter of 0.1 meV for the
above calculations.

B. Inhomogeneous superconducting state

To consider scattering from a single point-like impu-
rity, we introduce an impurity substituting one of the
atoms in the center of the cleaved surface and calcu-
late the cLDOS over an area of 51 × 51 lattice con-
stants. We consider a weak non-magnetic impurity scat-
terer (Born limit) that is purely intra-orbital, and diag-
onal in spin space, i.e. (V nn

imp)ss = 0.05 eV appearing

in Eq. (8). Modeling the disorder is the most uncer-
tain part of this analysis, since we do not have micro-
scopic knowledge of the sources of scattering. We there-
fore follow the simplest path by modeling impurities by
a single δ-function with a potential chosen to best re-
produce the simpler normal state QPI pattern. Thus,
here we do not consider various forms of dressed impu-
rity potentials arising from electronic correlations57–66.
We evaluate the Wannier function-modified cLDOS pat-
tern obtained from Eq. (11), first, for the normal state
and next, for the superconducting states discussed under
cases (a-f) in Sec.III A. The spatial cLDOS is calculated
on the xy-plane at a specific z-height above the cleaved
surface of the sample (here, z = 4.93Å is used for the
Wannier functions). The specific choice of Vimp produces
the QPI map of the normal state scattering processes
at ω = 0 eV as shown in Fig. 2(b) and shows qualita-
tive agreement with experimental results of Ref.[44 and
67]. The normal state intra-band scattering vectors con-
necting FS patches with similar orbital character across
neighboring BZ are indicated by the red, green, black
and blue arrows in Fig. 2(a). These specific q-vectors
are highlighted in Fig. 2(b) representing the normal state
QPI map. The specific double-cross feature was also ob-
served in earlier experimental work44,67, but an interpre-
tation of its origin was not discussed in those works. We
found that most of the prominent q-features, including
the sharp double-cross feature, arise from inter and intra-
band dxz/yz-scattering, as represented by the green, black
and blue arrows. One can notice less-intense q-features
corresponding to the suppressed tunneling matrix ele-
ments for dxy orbitals along the diagonals of the BZ indi-
cated by the red arrow (which has been shown separately
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FIG. 4. BQPI maps obtained in the superconducting state from: (top row) experimental data44 obtained at four different
STM bias values |ω|/∆ = [0, 0.26, 0.58, 0.84] as marked for each column, followed by our theoretical predictions for s′ + idxy,
s′ + idx2−y2 , s′, dx2−y2 , dSx2−y2 and dx2−y2 + igxy(x2−y2). The most noticeable q-features across all bias values are encircled in

red, green, blue and black. Intensities in the region surrounding q = (0, 0) have been suppressed for visual clarity.
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in Fig. 7(b)). We have provided our detailed discussion
about the dxz/yz/xy-orbital contributions, as evidenced
by the orbitally resolved normal state QPI maps, in Ap-
pendix C.

Next, we discuss the results for BQPI maps obtained
in the superconducting state as shown in Fig. 4 for cases
(a-f). The top row shows the experimental BQPI data44

obtained at four different STM bias values |ω| expressed
in units of the experimentally observed gap-maxima ∆ =
350µeV. For subsequent rows, |ω| is expressed in units
of theoretically observed coherence peak values. These
values correspond to: |ω|/∆ = [0, 0.26, 0.58, 0.84]. The
most consistently noticeable q(ω)-features across all bias
values are encircled in red, green, blue and black circles.
Small |q|-features in the experiments are believed to be
due to long-range disorder/drift in real space rather than
any scattering interference, and hence, are removed from
the plots. We compared these specific features appearing
in our theoretically evaluated BQPI maps corresponding
to the six different singlet and composite order parame-
ters.

Before proceeding, we note one salient aspect of the ap-
plication of the BQPI technique to SRO and other low-Tc
unconventional superconductors. While we have empha-
sized the utility of the technique to provide information
on the gap structure in superconductors with low Tc, such
systems often have much larger Dirac cone anisotropies
vF /v∆ ∼ EF /∆0 than, e.g., cuprates or Fe-based super-
conductors. As can be seen in the experimental data,
there is therefore virtually no dispersion of the BQPI
peak positions in the superconducting state, although
the weights of these peaks change with bias. Colloqui-
ally, this is because the contours of constant quasipar-
ticle energy are arcs rather than “bananas”. The dis-
persion takes place over a much smaller, and probably
un-resolvable range of q. An analysis based on an analog
of the “octet” model applied to cuprates68 is therefore
not possible, eliminating one of the most powerful tools
to identify the gap structure from BQPI.

We are therefore limited to comparing theoretical and
experimental QPI maps at different biases and attempt-
ing to identify the most qualitatively robust features. In
Fig. 4, we arranged the rows of BQPI maps below the
experimental data (first row) in a descending order start-
ing from the case showing the most to the least consis-
tency with the experimental patterns, i.e., second row for
s′+idxy, third for s′+idx2−y2 , fourth for dSx2−y2 , fifth for

s′, sixth for dx2−y2 and seventh for dx2−y2 + igxy(x2−y2).
In other words, the BQPI pattern for s′ + idxy order
parameter shows the closest similarity at the four q-
positions of the colored circles across all bias values,
whereas dx2−y2 + igxy(x2−y2) order parameter shows the
least correspondence with these four specific q-features.
These four q-positions were first identified from their
ubiquitous and robust presence across all bias values in
the experimental BQPI maps, and thereafter, their cor-
responding presence in the theoretically predicted BQPI
maps were investigated44. Furthermore, to quantify the

similarities, we evaluated the mean-squared deviation
(MSD) ∆y(j) of the integrated intensities around the
four specific q-points across all STM bias values for dif-
ferent order parameters (j), weighted inversely by their
extent of mismatch compared to their experimental coun-
terparts. A summary score chart of this correspondence
is quantified in Table I below and a more detailed descrip-
tion is given in Appendix D. Additionally, the experimen-
tal features at higher STM biases |ω|/∆ = [0.58, 0.84]
show enhanced intensities along the square edges posi-
tioned around (±1.5π/a), as opposed to the lower bi-
ases |ω|/∆ = [0, 0.26]. This trend is also observed in
the BQPI maps for the s′ + idxy and the s′ + idx2−y2 or-
der parameters, whereas the other order parameters tend
to exhibit this feature at other bias values, not aligning
with this trend. This enhanced square feature is believed
to be arising from increased scattering between gradu-
ally re-appearing normal-state-like Bogoliubov contours
at higher bias values.

As discussed in Ref. 44, the dxz/yz dominated α, β
bands are detected from the normal-state scattering in-
terference wave-vectors (blue, green and black arrows in
Fig. 2(a)) and subsequently, yield prominent signatures
in the superconducting state. With the knowledge that
our gap order parameter exhibits multiple nodes and/or
minima in the vicinity of (±π/a,±π/a) on α, β bands,
there could be numerous scattering wave-vectors connect-
ing these k-regions. This gives rise to the rich and intri-
cate BQPI patterns as observed in experiment and in our
theoretical evaluations as well. However, we note that the
most significant features highlighted by the blue, green
and black circles (in Fig. 4) correspond to major scat-
tering wave-vectors connecting the Bogoliubov contours
along the (±π/a,±π/a) on α and β bands. Detecting
BQPI intensities along the diagonal regions of the BZ is
somewhat challenging in our numerical evaluations. This
is because, in our current tight-binding model together
with ab-initio derived Wannier functions, the small value

Gap order Weighted Mean Squared
Deviation

s′ + idxy 2.79
s′ + idx2−y2 2.93

dSx2−y2 2.94

s′ 3.07
dx2−y2 3.17

dx2−y2 + igxy(x2−y2) 5.62

TABLE I. Score chart summarizing the weighted mean-
squared deviation ∆y(j) of the integrated BQPI intensity
around the four specific q-features at the colored circles
(see Fig. 4) between experimental and theoretically evalu-
ated BQPI maps, for various gap order parameters (j). The
numbers are sorted starting from the least (s′ + idxy) to the
highest (dx2−y2 + igxy(x2−y2)) MSD corresponding to various
order parameters. This score determines the ranking for the
correspondence of the individual gap order parameters when
matched with experimental BQPI patterns.
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of the dxy Wannier function significantly suppresses the
scattering matrix elements. Further details are discussed
in Appendix C.

IV. SUMMARY

The question of the gap structure of Sr2RuO4 in mo-
mentum space is difficult to address experimentally due
to the small superconducting energy scales in this sys-
tem. At present, Bogoliubov quasiparticle interference
measurements appear to be the only method of pin-
ning down the location of gap nodes. We have there-
fore performed 2D calculations of the real-space Wan-
nier function-modified continuum electronic density of
states for Sr2RuO4. Using the T-matrix approach in
combination with Wannier functions for analyzing scat-
tering effects from a single impurity, we evaluated the
real-space tunneling conductance map and displayed its
Fourier transformed BQPI image to compare with STM
measurements44. We have shown our evaluations for
six possible pseudospin-singlet and composite gap or-
der parameters: (a) purely intra-band dSx2−y2 parame-

ter (∆0

2 (cos kx − cos ky)), and the rest borrowed from
Refs. 19 and 29: (b) dx2−y2 , (c) s′, (d) s′ + idx2−y2 , (e)
s′ + idxy, and (f) dx2−y2 + igxy(x2−y2). We compared
the important features between our theoretical predic-
tions and the experimental measurements for the homo-
geneous DOS spectrum and the BQPI patterns, and con-
cluded that the s′ + idxy gap order parameter seems to
be the most consistent with our observations. However,
the analysis is at best quantitative; the overall agreement
with the measured patterns does not seem sufficiently im-
pressive at this time to make a strong case for any of the
above 2D states. Since the analysis of BQPI patterns is
a classic example of “pattern recognition” problem69, fu-
ture investigations in this context can be directed towards
training convolutional neural networks with theoretically
generated images of BQPI patterns labeled for various
STM biases and gap order parameters, and testing them
on experimental data sets. This will facilitate less manual
interference in analyzing complicated and rich patterns
in data, and will be less prone to bias and estimation
errors.
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Appendix A: First principles Wannier function
calculations

FIG. 5. (a) The cell (constituent atoms and vacuum) of
Sr2RuO4 depicted with black borders and constituent atoms
Sr (maroon), Ru (green) and O (blue) as indicated by the
color legend. The upper and lower extension of the cell into
vacuum has not been shown for brevity. Axis orientations
are shown in the left-bottom corner. (b) Surface geometry of
Sr2RuO4 when viewed above a certain height from the sur-
face, with the Sr (maroon) and O (blue) atoms on very similar
z-level. The bonds (in-plane and out-of-plane) between dif-
ferent atoms are depicted by the bi-colored lines.

The Wannier functions in this work were derived
following the same procedure as in Ref. 55. In this
work however, no octahedral rotations were incorporated.
Therefore, we could use the Sr2RuO4 normal cell instead
of a

√
2×

√
2 Sr4Ru2O8 supercell. As a first step, we per-

formed Density Functional Theory (DFT) calculations of
monolayer Sr2RuO4 with an in-plane lattice constant a =
3.8644 Å and a vacuum layer of roughly 20 Å. The corre-
sponding unit cell is depicted in Fig. 5. Including the vac-
uum in our calculations allowed us to simulate the Wan-
nier functions above the surface of Sr2RuO4 where the
STM tip resides. For the DFT calculations we employed
the Vienna ab initio simulation package (VASP)70,71. We
used the generalized gradient approximation of Perdew,
Burke and Ernzerhof72, a plane-wave energy cut-off of
650 eV and a 7 × 7 × 1 k-mesh. In the second step,
we derived the Wannier functions with the Wannier90
software73. Specifically, we projected the Ru-t2g orbitals
on the bands roughly within [−9.55, 1.45] eV. Further-
more, we set num iter = 0 and dis num iter = 10000,
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and took the inner frozen energy window to be roughly
equal to [−1.65, 1.45] eV.

Appendix B: Representing pairing functions in
orbitally-resolved Nambu basis

The gap function obtained from Refs. 19 and 29 and
illustrated in Fig. 6 are expressed as a function of the
normal state Fermi surface (FS) ∆µ(kF), where the gap
magnitude tends to be the largest compared to the rest
of the BZ. To obtain the gap function over the full BZ
as required in Eq. (4), one can extrapolate its value from
the µ-th Fermi band ∆µ(kF) as it falls off away from the
FS, a behavior which can be parametrized in terms of a
Gaussian-cutoff:

∆µ(k) = ∆µ(kF
nn.) exp

(
− (|Eµ(k)|/∆C)

2
)
, (B1)

where ∆C = 10∆0 and kF
nn. refers to nearest-neighbor

kF from k. This provides a local picture of the internal
orbital structure of a pair which continues out to a radius
set by the coherence length ξ0. While implementing this
extrapolation, one should keep in mind the translational
invariance condition for the BZ, i.e, to obtain ∆µ(k) val-
ues in the 1st BZ (−π/a : π/a), contributions of ∆µ(kF)
values from the neighboring BZs (−2π/a : 2π/a) should
also be taken into account. The gap maxima value of
|∆µ(k)| in the BZ can also be set to a chosen ∆0, for in-
stance, 3.5 meV for our numerical purpose. The follow-
ing describes the next steps of basis transformation from
bands to orbital basis, for representing the gap (pairing)
functions.

1. Tight-binding Hamiltonian

The non-interacting Hamiltonian Ĥ(k) as in Eq. (2)
and (3), has the block diagonal structure:

Ĥ(k) =

(
H0(k) +Hsoc(+) 0

0 H0(k) +Hsoc(−)

)
, (B2)

Since Hsoc(σ = ±) has imaginary components, diago-

nalization of Ĥ(k) can yield eigenvectors that are linear
combination of Kramer’s degenerate eigenstates owing to
gauge-independence. To circumvent this, one can diago-
nalize H+(k) = H0(k)+Hsoc(+), and obtain the unitary
matrix U (+)(k) and then H−(k) = H0(k) + Hsoc(−),
to obtain U (−)(k), and form the unitary matrix U (0)(k)
such that:

U (0)(k) =

(
U (+)(k) 0

0 U (−)(k)

)
, (B3)

U (0)†(k)Ĥ(k)U (0)(k) =

(
E(+)(k) 0

0 E(−)(k)

)
, (B4)

U (0)(k) diagonalizes Ĥ(k) to yield Kramer’s degenerate
pairs of eigenvalues E(+)(k) = E(−)(k).

2. Pairing function

The gap part of the BCS Hamiltonian ∆̂(k) is con-

structed in the same basis as the Ĥ(k). However, the
gap values obtained from Eq. (B1) are represented in
band pseudospin basis. For the three bands present in
the Sr2RuO4 system and for pseudospin-singlet pairing
with the Cooper-pair structure: | ↑↓⟩ − | ↓↑⟩, we con-
struct the gap matrix in this band pseudospin basis as
∆pseudo(k):

. . . ∆1(k) . .

. . . . ∆2(k) .

. . . . . −∆3(k)
−∆1(k) . . . . .

. −∆2(k) . . . .

. . ∆3(k) . . .

 ,

(B5)
where the pseudospin-structure of the basis is
(↑, ↑, ↓, ↓, ↓, ↑). One constructs the gap part of the
Hamiltonian in the Nambu basis as

Ĥ∆ =

(
0 ∆pseudo(k)(

∆pseudo(k)
)†

0

)
. (B6)

The unitary matrix in this Nambu basis

UN (k) =

(
U (0)(k) 0

0
(
U (0)(−k)

)∗ )
, (B7)

that diagonalizes the non-interacting part of the Nambu
Hamiltonian

ĤN =

(
Ĥ(k) 0

0 −ĤT (−k)

)
, (B8)

can be applied on Ĥ∆ for unitary transformation from
the band to orbital basis:

UN (k)Ĥ∆(k)U
†
N (k) =

(
0 ∆̂(k)

∆̂†(k) 0

)
. (B9)

The matrix elements ∆mn(k) of the block ∆̂(k) are the
orbitally resolved gap structure in the Nambu basis. Its
real-space representation is obtained by a simple Fourier
transformation:

∆mn(R) =
1

Nk

∑
k

∆mn(k)e
−ik.R, (B10)

where R refers to different lattice sites centered around
(0,0). The amplitude ∆mn(R) encodes the internal spa-
tial and orbital structures of the electron pair. With the
information of ∆mn(R) and its simple inverse Fourier
transformation back to momentum space, one can set up
the full BCS Hamiltonian of Eq. (4) in combination with
any tight-binding parameters.
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FIG. 6. Depictions of gap order parameters as a function of the Fermi surface for dSx2−y2 order parameter (simple intra-band

form-factor of ∆0
2
(cos kx − cos ky)), and the rest borrowed from Refs. 19 and 29 dx2−y2 , s′, dxy and gxy(x2−y2). The red

(blue) color denotes positive (negative) values of the order parameter and marker-size of each kF point is proportional to the
gap magnitude |∆(kF)|. Composite order parameters like s′ + idx2−y2 , s′ + idxy and dx2−y2 + igxy(x2−y2) were obtained from
complex combinations of the corresponding individual order parameters.
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FIG. 7. Orbitally-resolved normal state QPI map for
Sr2RuO4 at ω = 0 for (a) dxz and (b) dxy orbitals. Notice
that the QPI intensity magnitude are different for the two or-
bitals, with the dxy orbital intensity being ∼ 10 times weaker
than the dxz orbitals. The dyz-orbital QPI map is same as in
dxz, but rotated by π/2.

Appendix C: Orbital contribution to the normal
state QPI patterns

Here, we discuss the individual orbital contributions
towards the normal state QPI pattern as shown in Fig. 7,
evaluated as per the following equation for m-th orbital:

ρm(r, ω) = − 1

π
Im

∑
RR′s

Ĝms,ms(R,R
′, ω)wRm(r)wR′m(r)

(C1)

where Ĝms,ms(R,R
′, ω) is the lattice Green’s function

in the presence of impurities (Eq. (7)) and wRm(r) are
the Wannier functions matrix elements. First, we at-
tribute the double-cross feature seen in Fig. 2(b) to
intra- and inter-band scattering between the dxz/dyz-
dominated Fermi pockets in neighboring BZ. This can
be verified from the dxz-resolved QPI map in Fig. 7(a).
These intraband scattering vectors have already been de-
picted in Fig. 2(a) by the green, blue and black arrows.
We have not marked the interband scattering vectors,
but they can be visualized as vectors connecting the dxz-

dominated parts of the β and the α pockets, closely
aligned along the black arrow in Fig. 2(a). The less-
intense q-features along the diagonals of the BZ, corre-
spond to the suppressed tunneling matrix elements for
dxy orbitals as shown in Fig. 7(b). One of these fea-
tures is marked by the red arrow in Fig. 2(b). Notice
that the dxz(= dyz) features are ∼ 10 times stronger
than the dxy features. Note that the partial contribution
to the density of states is given by the product of the
lattice Green’s function and the Wannier functions (see
Eq.C1). To understand the difference in the intensities
of the QPI maps, one needs to analyze the modulation
of the lattice Green’s function in conjunction with the
Wannier wave functions. In Fig. 8, we show a log10-plot
of the orbitally-resolved x, y-integrated ruthenium Wan-
nier wave function amplitude as a function of the z-value
of the unit cell representing Sr2RuO4. The integrated
Wannier function amplitude is symmetric around the Ru
atoms for both the orbitals, as expected. However, the
dxz(= dyz) orbitals (yellow line) expand beyond the unit
cell along the z-direction with a larger magnitude com-
pared to the restricted spread of the dxy orbitals (blue

line). At a distance of 4.93Å above the surface, i.e. at
z = 13.93Å, where we carry out our calculations, the
dxz(= dyz) orbital integrated Wannier function ampli-
tude is ∼ 10 times stronger than the dxy orbital. This
ratio is exactly what we observe in the orbitally-resolved
QPI intensity differences in Fig. 7. This difference be-
tween the orbital wave function intensity washes out most
of the dxy features and enhances the dxz/yz features in
our BQPI maps.

Appendix D: Detailed description of the analysis of
the BQPI patterns for ranking the different gap

order parameters

In this section, we describe the score assignment pro-
cedure for ranking the different order parameters as per
their BQPI pattern matching with the experiments. As
mentioned earlier, we identified four q-positions from
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FIG. 8. A log10-plot of the orbitally-resolved x, y-integrated
ruthenium Wannier wave function amplitude as a function of
the z-value of the unit cell representing Sr2RuO4. The center
of the unit cell containing the Ru atom has been marked by
zRu in the figure. The top surface of the unit cell is denoted by
ztop. The Wannier wave functions for the dxz(= dyz) orbitals
(yellow line) expand beyond the unit cell along the z-direction
with a larger magnitude compared to the restricted spread of
the dxy orbitals (blue line).

their ubiquitous and robust presence across all STM bias
values in the experimental BQPI maps and marked them
in red, green, blue and black colored circles (see Fig. 4,
first row).

Next, we evaluate the integrated intensities of the
BQPI maps around these four specific q-points, as a func-
tion of different STM bias values and for different order
parameters along with the experimental data, as shown
in Fig. 9. This was done by selecting a patch of 15 × 15
pixels centered at each colored circle. These intensities
were normalized by the total integrated intensity over the
full extended BZ at each STM bias for each order pa-
rameter. Next, we evaluate the mean-squared deviation
(MSD) ∆y(j, i) of the integrated BQPI intensity between
experimental and numerically evaluated BQPI maps for
the 4 specific q-features centered inside the colored circles
(i) for various gap order parameters (j). Table II quan-
tifies the details of this analysis with rankings shown in
descending order as before. The deviations are summed
across all STM bias values. Since some q-points (exam-
ple, red circle) tend to display a higher mean squared-
deviation from the experimental counterpart than the
other q-points, therefore, we assign a weight w(i) cor-

responding to each colored circle to reflect the nature of
this discrepancy. To evaluate this weight w(i), first, we
find the cumulative deviation corresponding to each col-
ored circle across all order parameters. We pick the circle
corresponding to the minimum of this cumulative devia-
tion weight, i.e., the green point in this case. Next, we
find normalized weights in units of this minimum cumula-
tive weight by dividing the total weights by this minimum
cumulative weight = 5.13 (written in bold in Table II).

When we re-evaluate the weighted MSD ∆y(j), we mul-

tiply the normalized weights w(i) with the MSD ∆y(j, i)
corresponding to each circle i for a specific order parame-
ter j, to find the ∆y(j). This ∆y(j) score determines the
ranking for the correspondence of the individual gap or-
der parameters when matched with experimental BQPI
patterns:

∆y(j) =
∑

point i=1,2,3,4

∆y(j, i) w(i) (D1)

as provided in Table I in the main text. An additional
experimental feature is the enhanced intensities along the
square edges positioned around (±1.5π/a) at higher STM
biases |ω|/∆ = [0.58, 0.84] as opposed to the lower biases
|ω|/∆ = [0, 0.26]. We observe that the s′ + idxy order
parameter also displays a similar trend in its BQPI map,
while other order parameters display different trends.
Our approach is based on the choice of dominant q-
features and results might change if different choices were
made. Unfortunately, we do not have a more robust way
to approach this pattern-matching problem. We are re-
stricted by the limited availability of experimental data
at ultra-low temperatures.

MSD ∆y(j, i) from exp. intensity data
Gap order Red point Blue point Green

point
Black
point

s′+idx2−y2 6.12 1.81 0.74 0.98
dx2−y2 4.63 1.70 0.82 1.94

dSx2−y2 3.45 1.31 0.62 3.72

dx2−y2 +
igxy(x2−y2)

4.37 3.41 1.72 4.42

s′ 6.13 2.24 0.68 0.65
s′ + idxy 5.99 1.15 0.55 1.93

Total w(i) 30.69 11.62 5.13 13.64
Normalized

w(i)
0.17 0.44 1.0 0.38

TABLE II. Table displaying the mean-squared deviation
∆y(j, i) of the integrated BQPI intensity between experimen-
tal and numerically evaluated BQPI maps, around the four
specific q-features at the colored circles (i) (see Fig. 4) for
various gap order parameters (j). The last two rows show the

summed total weights w(i) and the normalized weights w(i),
as described in the text above in Appendix D.
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FIG. 9. Left to right: Normalized integrated intensities around each q-point, encircled in red (point 1), blue (point 2), green
(point 3) and black (point 4) colors in Fig. 4, as a function of STM bias values ω/∆, for different gap order parameters as
indicated by the legend on top. The normalization was done with respect to the fully integrated BQPI intensity over the
extended BZ at each bias value for each order parameter.
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