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ndividuals with autism spectrum disorder (ASD) often

face barriers in accessing opportunities across a range

of educational, employment, and social contexts. One of
these barriers is the development of effective communication
skills sufficient for navigating the social demands of every-
day environments. Fortunately, researchers have established
evidence-based practices (EBP) for teaching critical commu-
nication skills to individuals with ASD [1]. One EBP that has
received a great deal of attention over the last few decades is
technology-aided instruction and intervention (TAII) [1],[2].
TAII is an instructional practice in which technology is an es-
sential component and is used to facilitate behavior change.
Further, it encompasses a wide range of applications including
computer-assisted instruction, virtual and augmented reality,
augmentative and alternative communication, and robot-as-
sisted intervention [2].

Over the last two decades, there has been increased inter-
est in the application of robot-assisted interventions (RAI) for
teaching social skills to learners with ASD [3]. RAI involves
the use of robots to deliver, augment, or support intervention
practices. Researchers have employed robots to teach a myr-
iad of social skills including joint attention [4], text messaging
[5], interpreting and making gestures [4], and emotion recog-
nition [6]. During RAI, robots can serve as direct instructional
agents, emitting directives or modeling targeted behaviors.
For example, Pennington and colleagues used an autonomous,
programmable humanoid (NAO) robot to verbally direct stu-
dents how to generate text messages [5]. The robot provided
a directive to the participant, waited for the participant to in-
dicate they were finished prior to emitting the next directive,
and then offered to perform a dance at the end of the session.
Similarly, another study used an NAO robot to assist in facil-
itating game scenarios during pivotal response training [7].
During sessions, therapists controlled the robot to present
stimuli, prompt participants to respond, and provide rein-
forcing feedback. The application of robots as change agents
during social skills intervention may offer several benefits in-
cluding increasing the reinforcing properties of intervention
packages, limiting human errors in implementation fidelity,
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and reducing social requirements of interpreting subtle social
cues emitted by the human instructors (e.g., facial expression,
changes in intonation).

The majority of investigations in which a robot served as
an instructor involved the programming of one-way (e.g., ro-
bot presents a directive and the child responds) and two-way
(e.g., robot presents a vocal directive, the child responds, the
robot detects response and provides feedback or emits next di-
rective) interactions, or a Wizard of Oz approach in which the
instructor directs the actions of the robot. These approaches are
limited in that they rely on an external human change agent to
observe, detect, and respond to subtle changes in the learner’s
attention; attention is essential to skill acquisition and may be
difficult for some learners with ASD. This reliance on an ad-
ditional human change agent to facilitate attention during
robot-learner interactions ultimately serves as a barrier to the
autonomous application of robots to support student learning.

A way to address this issue is by incorporating software
to detect and respond to physiological correlates for atten-
tion within RAI packages. Physiological signals can be an
especially useful communication link for children with ASD,
whose outward expressions of affect may not be as apparent
as developmentally typical children [8]. However, the im-
plicit physiological signals of children with ASD do indicate
emotional changes to stimuli, including during social inter-
actions [8].

Researchers in affective computing have reported physio-
logical signals to be a reliable source of objective information
related to users” emotional reactions, because of the signals’
connections to the autonomic nervous system [8]-[12]. How-
ever, conducting affective computing research presents
challenges in data collection. For example, although com-
puter vision could be used to process video streams of users
and their reactions [13], this signal presents privacy issues and
poses a challenge of collecting video from certain (e.g., prefer-
ably head-on) angles at all times [13],[14], whereas privacy is
less of a concern with wrist-worn devices [15]. Additionally,
some physiological signals are more cumbersome to collect
than others and lead to less adoption rates by users [16], such
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as electroencephalogram which can involve skull caps and
conductive gel on a user’s head or respiratory data collected
from a strap wrapped around a user’s upper chest. Some sig-
nals may be slow to change as compared to others, such as
respiratory signals compared to heart rate variability, and
therefore limit a closed-looped system’s ability to respond
quickly to a user’s change in emotion [14]. Although these
signals may provide informative data that can be related to
emotions [11],[14], their data collection techniques may limit
the type of natural user interactions that can be studied [15]
and may preclude the adoption of these sensors in a user’s
daily life [13],[16], thus limiting the future capacity of affective
computing to be applied to everyday life. Therefore, ambula-
tory measurement from sensors with a high adoption rate by
users is preferable [8],[17]. Collecting physiological signals
from a wristband device addresses many of the data collection
challenges in affective computing research.

Empatica’s E4 is a commercially available wearable device
with embedded sensors that was developed by affective com-
puting researchers [18] and has been used in several studies
to examine affect and physiological signals [11],[19]. The E4 is
one example of how much physiological-sensing equipment
has evolved in the last decade [8],[16] and matches the char-
acteristics of an appropriate wearable sensor suggested for
use with the ASD population [20]. Wires have been reduced
or eliminated, and sensors covering several fingertips (which
limited the types of activities a user could do and therefore an
experimenter could study) have been rendered unnecessary
with advancements in the ability to collect robust data from
the wrist and transmit it wirelessly. These improvements have
greatly increased our capacity for measuring on-the-go.

The E4 collects signals produced by the body’s electro-
dermal activity (EDA), skin temperature (SKT), and blood
volume pulse (BVP) and provides a feature calculated from
BVP as a continuous signal: heart rate (HR) [11]. These signals
have been studied in related research [10], [20]. Based on pre-
vious research [9],[12], we extract several features from these
four signals, as described further in the feature extraction pro-
cess section.

Analyzing physiological correlates requires the use of ma-
chine learning algorithms that can detect changes in these
correlates with high levels of accuracy. Direct correlation anal-
ysis that detects only linear relationships between signals and
affect, and static rules defining when a threshold is crossed,
limit the type of patterns that can define an affective state of
interest [17]. However, machine learning algorithms can rec-
ognize non-linear patterns and leverage high-dimensional
dataspaces [9],[10],[13],[17]. An effective algorithm would:
predict between affective states of interest with accuracy bet-
ter than chance; have an area under the curve (AUC) as close
to one as possible; and have a variance between training and
testing results as close to zero as possible. The purpose of the
current case study was to evaluate algorithms in the context of
RAI to determine their potential efficacy in determining when
students are attentive during RAl-related tasks. We addressed
the following two research questions: Do physiological signals
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indicate different affective states of children with ASD dur-
ing RAI? And How accurate are machine learning algorithms,
built from physiological signals, at matching expert coders
when differentiating between levels of attention by children
with ASD?

In this investigation, we sought to evaluate algorithms
in the context of RAI to determine their potential efficacy in
determining when students with ASD are attentive during
RAl-related tasks. We calculated features from physiological
signals collected by an E4 and compared the performance of
four machine learning algorithms commonly used in affective
computing. Our findings indicated the E4 data were useful for
categorizing states of attentiveness in children with ASD.

Method

Participants and Setting
We recruited participants through a university-affiliated au-
tism clinic that regularly conducted social skills groups for
children with ASD. We obtained parental consent and partic-
ipant assent prior to the study. Two children with ASD (i.e.,
Cody and Max), age 11 years, participated in the investigation.
Both participants were diagnosed as having ASD, using the
Autism Diagnosis Observation Schedule-2, and identified to have
difficulties in initiating and maintaining social interactions.
Both participated in a social skills group at the autism clinic.
We observed and collected data samples during 5-min ob-
servations of social skills group activities that took place over
several weeks. Due to the availability of only two E4s, we only
included two participants in the study. Specifically, we col-
lected data during a pilot evaluation of RAI and unstructured
social interaction probes. During RAI, the children with ASD
were seated in front of an NAO robot (Fig. 1) and directed to
engage in scripted interactions. During the social interaction
probes (SIP), the children with ASD were seated around a table
and directed to talk with each other.

Fig. 1. An NAQ robot sits on a cart, ready to interact with children during the
social skills intervention.
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Materials and General Procedures

During the investigation, the participants wore the E4 on their
nondominant wrist, with the EDA electrodes on the underside
of the wrist and in line between the middle and ring fingers.
We used the E4 to collect data during RAI and SIP that oc-
curred at the onset of each meeting of a 12-week social skills
group. Upon arrival at the autism center, social skills group
members, including the two participants, were brought to a
multipurpose room. We placed the E4s on the participants’
wrists and similar but nonfunctional devices on the other chil-
dren’s wrists. Next, we implemented RAI and SIP sessions,
and then the children attended their social skills group. At
the end of each group meeting, we collected E4 data during a
3-min period of quiet sitting. This daily baseline recording was
gathered for use in the normalization step of processing the
physiological signals. We also collected behavioral observa-
tion data from video recordings of the sessions.

Measurement

We collected data on whether participants were attentive or
inattentive during sessions using both behavioral observa-
tion and physiological signals. For behavioral observations,
attentiveness was defined as on-task, attending to the activ-
ity, and responding to directions. Inattentive was defined as
the subject being off-task, inattentive to the activity at hand,
and not responding to directions. We divided observation pe-
riods into 20-s intervals of our video recordings, and observers
scored participants as being attentive or inattentive for each
interval collected. They based their score on their observa-
tion for the majority of each 20-s interval. For example, for a
given 20-s video clip, if a participant exhibited a moment of be-
ing on-task but was otherwise not responding to directions for
the majority of the 20-s interval, then the sample was scored
as inattentive. Observers were trained coders from a univer-
sity research center with extensive experience in classroom
observation of children with disabilities. In addition, the first
author also coded a sample of 30% of the intervals to assess
interrater reliability. These randomly selected intervals were
selected from an equal number of samples across participants
and sessions. We used Cohen’s Kappa to calculate reliability.
The Cohen’s Kappa statistic is commonly used to test interra-
ter reliability and is advantageous in that it accounts for chance
agreement between raters [21]. We calculated interrater reli-
ability to be 81.7%.

Feature Extraction Process and Data Analysis

Using the E4, we processed 20-s intervals to extract features
that could indicate changes in affect. The features are derived
from physiological signals using signal-processing tech-
niques employed in previous work [12]. Data vectors were
made of 12 normalized physiological features extracted from
four signals. The peaks of the BVP signal were detected, and
two features were calculated: mean of the peak amplitudes
and maximum peak amplitude. Two features, the mean and
standard deviation of HR, were calculated. For EDA, the
tonic and phasic components were processed [22], and five

May 2023

features extracted: mean of tonic skin activity, slope of tonic
activity, peak rate of phasic activity as peaks per minute,
mean of phasic peak amplitudes, and maximum peak am-
plitude of phasic activity. Three features from SKT are mean,
standard deviation, and slope of SKT. These features showed
significant responses in previous research [9],[11],[19], and
are therefore well vetted in the study of physiological signals
in relation to affective computing. Moreover, previous re-
search included social interaction activities for children with
ASD [12], and therefore, these features are likely for consider-
ation to indicate affective states during similar activities and
populations.

The feature extraction process provides feature vectors,
each a length of 12 features. To account for day variability in
physiological signals, the intervals were adjusted using the
baseline from each meeting. After calculating the mean abso-
lute deviation, the interval with the least variability for a given
meeting day, per signal, was chosen to serve as the baseline re-
cording for day variability correction of the feature vectors.
The feature vectors were then min-max normalized across vec-
tors, per subject and feature-wise. After accounting for day
variability and normalizing the data, subject Cody had 293 fea-
ture vectors, and subject Max had 250 feature vectors. These
feature vectors were sent to machine learning algorithms for
classification.

The feature vectors for each subject were used as inputs into
machine learning algorithms, which were trained to differenti-
ate between the affective states of attentive and inattentive. We
compared four algorithms commonly used in affective com-
puting: Logistic Regression (LR), Support Vector Machines
(SVM), ensemble-based Random Forest (RF), and ensemble-
based Gradient Boosted Regression Trees (GBRT) algorithms.
All of the machine learning models were implemented in Py-
thon using scikit-learn 0.24.2.

Before we built models, we split the dataset into separate
training and test sets. We created sets of a typical percent-
age split of 80/20 for training/test sets, after taking steps to
maintain as much of the natural data as possible while also
over-sampling with synthetic data to balance the classes. The
test set was created by randomly shuffling and selecting 50% of
the data points from the minority class, in this case the inatten-
tive class. Another random shuffle selected an equal amount
of data points from the majority class, in this case the atten-
tive class, to create a balanced test set with natural data. Table 1
summarizes the class distributions between the original, train-
ing, and test sets sent to the algorithms.

The four models were fit to the training data, and we used a
stratified 5-fold cross-validation scheme to prevent overfitting
the model and ensuring generalization to the test data. To com-
bat the class imbalance, we applied the Smote+Tomek-link
(Smote+TL) over- and under-sampling technique to the train-
ing split. We fit the model to the resampled training split and
measured the performance using the validation split. We re-
peated this process k times (i.e., 5) and averaged the results to
get a performance metric. Smote+TL was implemented in Py-
thon using the imbalanced-learn 0.8.0 package [23].
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Table 1 - Class distributions in the data sets are described for each subject

Class
Data Set Cody Max
Attentive Inattentive Attentive Inattentive
Original 222 71 197 58
Test 35 35 26 26
187 27
Training sets available 8 36 171
140 140 104 104
Over- and Under- li
Tr:?;i;n setsntoer SAmping (140 Natural (36 Natural (104 Natural (27 Natural
8 0 Synthetic) 104 Synthetic) 0 Synthetic) 77 Synthetic)
balance classes . . . .
under-sampling over-sampling under-sampling over-sampling
80/20
/, . 140/35 140/35 104/26 104/26
Training / Test
T
otal data sets 175 175 130 130
sent to algorithms

Several performance metrics can be used in a binary clas-
sification problem, but it was important to use a metric that
would capture the performance of both classes. The receiver
operating characteristic (ROC) is a common method to visu-
alize the performance of a binary classifier and is a reliable
measure when dealing with imbalanced data. The area under
the ROC curve (AUC) is a way to summarize its performance
in a scalar value. AUC ranges between zero and one and indi-
cates how well a classifier can separate between two classes,
with closer to one indicating more accurate separation. We
used AUC to evaluate the four models. Additionally, we re-
ported Fl-scores for each class, along with percent variance
to illustrate individual class performance as well as general
performance.

Results
The classification performances of the four models are shown
in Table 2. Each was evaluated following the criteria of
choosing the model with the highest AUC and with the low-
est percent variance, as well as with high Fl-scores for both
classes. Based on these criteria, results from the best perform-
ing models are shown in bold, namely LR for Cody and SVM
for Max.

Unfortunately, due to the low amount of data, it was not
possible to create a model that was able to perform better than

71.4% on at least one subject, represented by the LR model of
Cody’s data. Max has two models with an AUC of 0.712, LR
and SVM; however, the SVM model is chosen over the other
due to the lower variance of 2.979%.

In general, the highest AUC will correlate with high
F1-scores; however, it may not be indicative of acceptable per-
formance for both classes. For example, looking at the results
from the RF model for Cody, the AUC is higher than that of
the SVM model due to the higher Fl-score of 0.74 for the at-
tentive class. Conversely, the Fl-score for the inattentive class
is 0.5, which is not accurate enough to be useful in practice.
Model performance is specific to each subject since they were
analyzed independently. Testing multiple models also proved
advantageous since different models performed better for
each subject.

Discussion

Overall, our findings indicated that E4 data are useful in cat-
egorizing states of attentiveness in children with ASD and
extend the available literature by evaluating the predictive
effectiveness of several algorithms when applied to RAI Fur-
ther, our findings suggest that a one size fits all approach may
not be effective when selecting algorithms for use with phys-
iological signals. The best performing model varied across
participants, highlighting the need for individualization when

Table 2 - Performance outcomes are given for four different machine learning models

Cody Max
Model Attentive Inattentive AUC %% Variance Attentive Inattentive AUC %% Variance
Fl-score Fl-score Fl-score Fl-score

LR 0.74 0.69 0.714 6.060 0.69 0.73 0.712 36.378
SVM 0.72 0.51 0.643 -5.007 0.73 0.69 0.712 2.979

RFE 0.74 0.50 0.657 -3.547 0.70 0.40 0.596 -18.106
GBRT 0.71 0.43 0.614 -4.176 0.64 0.37 0.538 -24.464
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processing a subject’s physiological data as well as selecting
classifying algorithms.

In the current investigation, we studied 12 features ex-
tracted from signals collected by the E4. This approach
balances between extracting over 100 features [9] and study-
ing a single feature [10],[20] and is grounded in years of study
supporting that these 12 are significant to affective computing
research applied to children with ASD [8],[12]. Further anal-
ysis, such as principal component analysis, could be used to
test how much each feature impacts the classification metrics.
The current offline analysis did not have to face bandwidth
constraints that may arise with real-time transmission and
processing of data; thus, reducing the number of signals col-
lected and/ or features extracted may be necessary as we move
to real-time processing and closed-loop feedback during RAI
Therefore, ranking features will be part of our future work.

Challenges remain for collecting enough samples, and
accurate samples, for the algorithms to learn more precise
thresholds between one affective state and another. Since in-
dividually-designed models are often shown to outperform
group-designed models, we would like to continue to collect
data with these subjects. However, a limitation is the models
trained for an individual can only assist that subject.

The algorithms were able to produce better-than-chance
accuracy for our affective states of interest. Furthermore, the
models have Fl-scores > 0.67 for both classes; therefore, these
models would match a human coder on predicting attentive-
ness or inattentiveness over two-thirds of the time. During
future interventions, the models could be used by a robot to
test a new sample of physiological data, return a prediction of
affect (e.g., attentiveness or inattentiveness), and make a de-
cision about actions to take during RAIL For example, if the
model predicts the subject’s signals indicate attentiveness,
the robot can choose to continue with practicing a social skill.
However, if the model predicts inattentiveness, the robot can
remind the subject about the directions and about staying on
task. The current investigation lays the groundwork for future
research on the use of an affect-sensitive robot to develop so-
cial skills in learners with ASD.
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