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I ndividuals with autism spectrum disorder (ASD) often 
face barriers in accessing opportunities across a range 
of educational, employment, and social contexts. One of 

these barriers is the development of effective communication 
skills sufficient for navigating the social demands of every-
day environments. Fortunately, researchers have established 
evidence-based practices (EBP) for teaching critical commu-
nication skills to individuals with ASD [1]. One EBP that has 
received a great deal of attention over the last few decades is 
technology-aided instruction and intervention (TAII) [1],[2]. 
TAII is an instructional practice in which technology is an es-
sential component and is used to facilitate behavior change. 
Further, it encompasses a wide range of applications including 
computer-assisted instruction, virtual and augmented reality, 
augmentative and alternative communication, and robot-as-
sisted intervention [2].

Over the last two decades, there has been increased inter-
est in the application of robot-assisted interventions (RAI) for 
teaching social skills to learners with ASD [3]. RAI involves 
the use of robots to deliver, augment, or support intervention 
practices. Researchers have employed robots to teach a myr-
iad of social skills including joint attention [4], text messaging 
[5], interpreting and making gestures [4], and emotion recog-
nition [6]. During RAI, robots can serve as direct instructional 
agents, emitting directives or modeling targeted behaviors. 
For example, Pennington and colleagues used an autonomous, 
programmable humanoid (NAO) robot to verbally direct stu-
dents how to generate text messages [5]. The robot provided 
a directive to the participant, waited for the participant to in-
dicate they were finished prior to emitting the next directive, 
and then offered to perform a dance at the end of the session. 
Similarly, another study used an NAO robot to assist in facil-
itating game scenarios during pivotal response training [7]. 
During sessions, therapists controlled the robot to present 
stimuli, prompt participants to respond, and provide rein-
forcing feedback. The application of robots as change agents 
during social skills intervention may offer several benefits in-
cluding increasing the reinforcing properties of intervention 
packages, limiting human errors in implementation fidelity, 

and reducing social requirements of interpreting subtle social 
cues emitted by the human instructors (e.g., facial expression, 
changes in intonation).

The majority of investigations in which a robot served as 
an instructor involved the programming of one-way (e.g., ro-
bot presents a directive and the child responds) and two-way 
(e.g., robot presents a vocal directive, the child responds, the 
robot detects response and provides feedback or emits next di-
rective) interactions, or a Wizard of Oz approach in which the 
instructor directs the actions of the robot. These approaches are 
limited in that they rely on an external human change agent to 
observe, detect, and respond to subtle changes in the learner’s 
attention; attention is essential to skill acquisition and may be 
difficult for some learners with ASD. This reliance on an ad-
ditional human change agent to facilitate attention during 
robot-learner interactions ultimately serves as a barrier to the 
autonomous application of robots to support student learning.

A way to address this issue is by incorporating software 
to detect and respond to physiological correlates for atten-
tion within RAI packages. Physiological signals can be an 
especially useful communication link for children with ASD, 
whose outward expressions of affect may not be as apparent 
as developmentally typical children [8]. However, the im-
plicit physiological signals of children with ASD do indicate 
emotional changes to stimuli, including during social inter-
actions [8].

Researchers in affective computing have reported physio-
logical signals to be a reliable source of objective information 
related to users’ emotional reactions, because of the signals’ 
connections to the autonomic nervous system [8]–[12]. How-
ever, conducting affective computing research presents 
challenges in data collection. For example, although com-
puter vision could be used to process video streams of users 
and their reactions [13], this signal presents privacy issues and 
poses a challenge of collecting video from certain (e.g., prefer-
ably head-on) angles at all times [13],[14], whereas privacy is 
less of a concern with wrist-worn devices [15]. Additionally, 
some physiological signals are more cumbersome to collect 
than others and lead to less adoption rates by users [16], such 
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as electroencephalogram which can involve skull caps and 
conductive gel on a user’s head or respiratory data collected 
from a strap wrapped around a user’s upper chest. Some sig-
nals may be slow to change as compared to others, such as 
respiratory signals compared to heart rate variability, and 
therefore limit a closed-looped system’s ability to respond 
quickly to a user’s change in emotion [14]. Although these 
signals may provide informative data that can be related to 
emotions [11],[14], their data collection techniques may limit 
the type of natural user interactions that can be studied [15] 
and may preclude the adoption of these sensors in a user’s 
daily life [13],[16], thus limiting the future capacity of affective 
computing to be applied to everyday life. Therefore, ambula-
tory measurement from sensors with a high adoption rate by 
users is preferable [8],[17]. Collecting physiological signals 
from a wristband device addresses many of the data collection 
challenges in affective computing research.

Empatica’s E4 is a commercially available wearable device 
with embedded sensors that was developed by affective com-
puting researchers [18] and has been used in several studies 
to examine affect and physiological signals [11],[19]. The E4 is 
one example of how much physiological-sensing equipment 
has evolved in the last decade [8],[16] and matches the char-
acteristics of an appropriate wearable sensor suggested for 
use with the ASD population [20]. Wires have been reduced 
or eliminated, and sensors covering several fingertips (which 
limited the types of activities a user could do and therefore an 
experimenter could study) have been rendered unnecessary 
with advancements in the ability to collect robust data from 
the wrist and transmit it wirelessly. These improvements have 
greatly increased our capacity for measuring on-the-go.

The E4 collects signals produced by the body’s electro-
dermal activity (EDA), skin temperature (SKT), and blood 
volume pulse (BVP) and provides a feature calculated from 
BVP as a continuous signal: heart rate (HR) [11]. These signals 
have been studied in related research [10], [20]. Based on pre-
vious research [9],[12], we extract several features from these 
four signals, as described further in the feature extraction pro-
cess section.

Analyzing physiological correlates requires the use of ma-
chine learning algorithms that can detect changes in these 
correlates with high levels of accuracy. Direct correlation anal-
ysis that detects only linear relationships between signals and 
affect, and static rules defining when a threshold is crossed, 
limit the type of patterns that can define an affective state of 
interest [17]. However, machine learning algorithms can rec-
ognize non-linear patterns and leverage high-dimensional 
dataspaces [9],[10],[13],[17]. An effective algorithm would: 
predict between affective states of interest with accuracy bet-
ter than chance; have an area under the curve (AUC) as close 
to one as possible; and have a variance between training and 
testing results as close to zero as possible. The purpose of the 
current case study was to evaluate algorithms in the context of 
RAI to determine their potential efficacy in determining when 
students are attentive during RAI-related tasks. We addressed 
the following two research questions: Do physiological signals 

indicate different affective states of children with ASD dur-
ing RAI? And How accurate are machine learning algorithms, 
built from physiological signals, at matching expert coders 
when differentiating between levels of attention by children 
with ASD?

In this investigation, we sought to evaluate algorithms 
in the context of RAI to determine their potential efficacy in 
determining when students with ASD are attentive during 
RAI-related tasks. We calculated features from physiological 
signals collected by an E4 and compared the performance of 
four machine learning algorithms commonly used in affective 
computing. Our findings indicated the E4 data were useful for 
categorizing states of attentiveness in children with ASD.

Method

Participants and Setting
We recruited participants through a university-affiliated au-
tism clinic that regularly conducted social skills groups for 
children with ASD. We obtained parental consent and partic-
ipant assent prior to the study. Two children with ASD (i.e., 
Cody and Max), age 11 years, participated in the investigation. 
Both participants were diagnosed as having ASD, using the 
Autism Diagnosis Observation Schedule-2, and identified to have 
difficulties in initiating and maintaining social interactions. 
Both participated in a social skills group at the autism clinic.

We observed and collected data samples during 5-min ob-
servations of social skills group activities that took place over 
several weeks. Due to the availability of only two E4s, we only 
included two participants in the study. Specifically, we col-
lected data during a pilot evaluation of RAI and unstructured 
social interaction probes. During RAI, the children with ASD 
were seated in front of an NAO robot (Fig. 1) and directed to 
engage in scripted interactions. During the social interaction 
probes (SIP), the children with ASD were seated around a table 
and directed to talk with each other.

Fig. 1. An NAO robot sits on a cart, ready to interact with children during the 
social skills intervention.
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Materials and General Procedures
During the investigation, the participants wore the E4 on their 
nondominant wrist, with the EDA electrodes on the underside 
of the wrist and in line between the middle and ring fingers. 
We used the E4 to collect data during RAI and SIP that oc-
curred at the onset of each meeting of a 12-week social skills 
group. Upon arrival at the autism center, social skills group 
members, including the two participants, were brought to a 
multipurpose room. We placed the E4s on the participants’ 
wrists and similar but nonfunctional devices on the other chil-
dren’s wrists. Next, we implemented RAI and SIP sessions, 
and then the children attended their social skills group. At 
the end of each group meeting, we collected E4 data during a 
3-min period of quiet sitting. This daily baseline recording was 
gathered for use in the normalization step of processing the 
physiological signals. We also collected behavioral observa-
tion data from video recordings of the sessions.

Measurement
We collected data on whether participants were attentive or 
inattentive during sessions using both behavioral observa-
tion and physiological signals. For behavioral observations, 
attentiveness was defined as on-task, attending to the activ-
ity, and responding to directions. Inattentive was defined as 
the subject being off-task, inattentive to the activity at hand, 
and not responding to directions. We divided observation pe-
riods into 20-s intervals of our video recordings, and observers 
scored participants as being attentive or inattentive for each 
interval collected. They based their score on their observa-
tion for the majority of each 20-s interval. For example, for a 
given 20-s video clip, if a participant exhibited a moment of be-
ing on-task but was otherwise not responding to directions for 
the majority of the 20-s interval, then the sample was scored 
as inattentive. Observers were trained coders from a univer-
sity research center with extensive experience in classroom 
observation of children with disabilities. In addition, the first 
author also coded a sample of 30% of the intervals to assess 
interrater reliability. These randomly selected intervals were 
selected from an equal number of samples across participants 
and sessions. We used Cohen’s Kappa to calculate reliability. 
The Cohen’s Kappa statistic is commonly used to test interra-
ter reliability and is advantageous in that it accounts for chance 
agreement between raters [21]. We calculated interrater reli-
ability to be 81.7%.

Feature Extraction Process and Data Analysis
Using the E4, we processed 20-s intervals to extract features 
that could indicate changes in affect. The features are derived 
from physiological signals using signal-processing tech-
niques employed in previous work [12]. Data vectors were 
made of 12 normalized physiological features extracted from 
four signals. The peaks of the BVP signal were detected, and 
two features were calculated: mean of the peak amplitudes 
and maximum peak amplitude. Two features, the mean and 
standard deviation of HR, were calculated. For EDA, the 
tonic and phasic components were processed [22], and five 

features extracted: mean of tonic skin activity, slope of tonic 
activity, peak rate of phasic activity as peaks per minute, 
mean of phasic peak amplitudes, and maximum peak am-
plitude of phasic activity. Three features from SKT are mean, 
standard deviation, and slope of SKT. These features showed 
significant responses in previous research [9],[11],[19], and 
are therefore well vetted in the study of physiological signals 
in relation to affective computing. Moreover, previous re-
search included social interaction activities for children with 
ASD [12], and therefore, these features are likely for consider-
ation to indicate affective states during similar activities and 
populations.

The feature extraction process provides feature vectors, 
each a length of 12 features. To account for day variability in 
physiological signals, the intervals were adjusted using the 
baseline from each meeting. After calculating the mean abso-
lute deviation, the interval with the least variability for a given 
meeting day, per signal, was chosen to serve as the baseline re-
cording for day variability correction of the feature vectors. 
The feature vectors were then min-max normalized across vec-
tors, per subject and feature-wise. After accounting for day 
variability and normalizing the data, subject Cody had 293 fea-
ture vectors, and subject Max had 250 feature vectors. These 
feature vectors were sent to machine learning algorithms for 
classification.

The feature vectors for each subject were used as inputs into 
machine learning algorithms, which were trained to differenti-
ate between the affective states of attentive and inattentive. We 
compared four algorithms commonly used in affective com-
puting: Logistic Regression (LR), Support Vector Machines 
(SVM), ensemble-based Random Forest (RF), and ensemble-
based Gradient Boosted Regression Trees (GBRT) algorithms. 
All of the machine learning models were implemented in Py-
thon using scikit-learn 0.24.2.

Before we built models, we split the dataset into separate 
training and test sets. We created sets of a typical percent-
age split of 80/20 for training/test sets, after taking steps to 
maintain as much of the natural data as possible while also 
over-sampling with synthetic data to balance the classes. The 
test set was created by randomly shuffling and selecting 50% of 
the data points from the minority class, in this case the inatten-
tive class. Another random shuffle selected an equal amount 
of data points from the majority class, in this case the atten-
tive class, to create a balanced test set with natural data. Table 1 
summarizes the class distributions between the original, train-
ing, and test sets sent to the algorithms.

The four models were fit to the training data, and we used a 
stratified 5-fold cross-validation scheme to prevent overfitting 
the model and ensuring generalization to the test data. To com-
bat the class imbalance, we applied the Smote+Tomek-link 
(Smote+TL) over- and under-sampling technique to the train-
ing split. We fit the model to the resampled training split and 
measured the performance using the validation split. We re-
peated this process k times (i.e., 5) and averaged the results to 
get a performance metric. Smote+TL was implemented in Py-
thon using the imbalanced-learn 0.8.0 package [23].
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Several performance metrics can be used in a binary clas-
sification problem, but it was important to use a metric that 
would capture the performance of both classes. The receiver 
operating characteristic (ROC) is a common method to visu-
alize the performance of a binary classifier and is a reliable 
measure when dealing with imbalanced data. The area under 
the ROC curve (AUC) is a way to summarize its performance 
in a scalar value. AUC ranges between zero and one and indi-
cates how well a classifier can separate between two classes, 
with closer to one indicating more accurate separation. We 
used AUC to evaluate the four models. Additionally, we re-
ported F1-scores for each class, along with percent variance 
to illustrate individual class performance as well as general 
performance.

Results
The classification performances of the four models are shown 
in Table 2. Each was evaluated following the criteria of 
choosing the model with the highest AUC and with the low-
est percent variance, as well as with high F1-scores for both 
classes. Based on these criteria, results from the best perform-
ing models are shown in bold, namely LR for Cody and SVM 
for Max.

Unfortunately, due to the low amount of data, it was not 
possible to create a model that was able to perform better than 

71.4% on at least one subject, represented by the LR model of 
Cody’s data. Max has two models with an AUC of 0.712, LR 
and SVM; however, the SVM model is chosen over the other 
due to the lower variance of 2.979%.

In general, the highest AUC will correlate with high 
F1-scores; however, it may not be indicative of acceptable per-
formance for both classes. For example, looking at the results 
from the RF model for Cody, the AUC is higher than that of 
the SVM model due to the higher F1-score of 0.74 for the at-
tentive class. Conversely, the F1-score for the inattentive class 
is 0.5, which is not accurate enough to be useful in practice. 
Model performance is specific to each subject since they were 
analyzed independently. Testing multiple models also proved 
advantageous since different models performed better for 
each subject.

Discussion
Overall, our findings indicated that E4 data are useful in cat-
egorizing states of attentiveness in children with ASD and 
extend the available literature by evaluating the predictive 
effectiveness of several algorithms when applied to RAI. Fur-
ther, our findings suggest that a one size fits all approach may 
not be effective when selecting algorithms for use with phys-
iological signals. The best performing model varied across 
participants, highlighting the need for individualization when 

Table 1 – Class distributions in the data sets are described for each subject

Data Set

Class

Cody Max

Attentive Inattentive Attentive Inattentive

Original 222 71 197 53

Test 35 35 26 26

Training sets available
187

36 171
27

Over- and Under-sampling
Training sets to
balance classes

140
(140 Natural
0 Synthetic)

under-sampling

140
(36 Natural

104 Synthetic)
over-sampling

104
(104 Natural
0 Synthetic)

under-sampling

104
(27 Natural

77 Synthetic)
over-sampling

80/20
Training/Test

140/35 140/35 104/26 104/26

Total data sets
sent to algorithms

175 175 130 130

Table 2 – Performance outcomes are given for four different machine learning models

Cody Max

Model
Attentive
F1-score

Inattentive
F1-score

AUC % Variance
Attentive
F1-score

Inattentive
F1-score

AUC % Variance

LR 0.74 0.69 0.714 6.060 0.69 0.73 0.712 36.378

SVM 0.72 0.51 0.643 -5.007 0.73 0.69 0.712 2.979

RF 0.74 0.50 0.657 -3.547 0.70 0.40 0.596 -18.106

GBRT 0.71 0.43 0.614 -4.176 0.64 0.37 0.538 -24.464
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processing a subject’s physiological data as well as selecting 
classifying algorithms.

In the current investigation, we studied 12 features ex-
tracted from signals collected by the E4. This approach 
balances between extracting over 100 features [9] and study-
ing a single feature [10],[20] and is grounded in years of study 
supporting that these 12 are significant to affective computing 
research applied to children with ASD [8],[12]. Further anal-
ysis, such as principal component analysis, could be used to 
test how much each feature impacts the classification metrics. 
The current offline analysis did not have to face bandwidth 
constraints that may arise with real-time transmission and 
processing of data; thus, reducing the number of signals col-
lected and/or features extracted may be necessary as we move 
to real-time processing and closed-loop feedback during RAI. 
Therefore, ranking features will be part of our future work.

Challenges remain for collecting enough samples, and 
accurate samples, for the algorithms to learn more precise 
thresholds between one affective state and another. Since in-
dividually-designed models are often shown to outperform 
group-designed models, we would like to continue to collect 
data with these subjects. However, a limitation is the models 
trained for an individual can only assist that subject.

The algorithms were able to produce better-than-chance 
accuracy for our affective states of interest. Furthermore, the 
models have F1-scores > 0.67 for both classes; therefore, these 
models would match a human coder on predicting attentive-
ness or inattentiveness over two-thirds of the time. During 
future interventions, the models could be used by a robot to 
test a new sample of physiological data, return a prediction of 
affect (e.g., attentiveness or inattentiveness), and make a de-
cision about actions to take during RAI. For example, if the 
model predicts the subject’s signals indicate attentiveness, 
the robot can choose to continue with practicing a social skill. 
However, if the model predicts inattentiveness, the robot can 
remind the subject about the directions and about staying on 
task. The current investigation lays the groundwork for future 
research on the use of an affect-sensitive robot to develop so-
cial skills in learners with ASD.
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