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Abstract—The personalization of therapy for children with
Autism Spectrum Disorder (ASD) has been found to be crucial
in comparison to a universal approach. This personalization in
therapy demands the ability to adapt to the individual’s needs
and engagement levels to avoid disinterest or meltdowns. This
paper proposes the first step towards forecasting engagement of
children with ASD during therapy sessions using Blood Volume
Pulse (BVP). The BVP data is collected from an interactive
session between two children with ASD in the presence of a
NAO robot, and the forecast is made using a Deep Learning
architecture combining Convolutional Neural Networks (CNNs)
and Long-short term Memory (LSTM). Out of the three networks
tested: LSTM, CNN and CNN+LSTM, the latter was found to
outperform the others and gave a coefficient of determination of
0.955. The forecast was done using less than 3 minutes of prior
BVP data to forecast 3 minutes into the future time steps.

Index Terms—autism spectrum disorder, robotics, engagement
forecast, Deep Learning, CNN, LSTM, affective computing

I. INTRODUCTION

Social robots have substantiated the evidence of more
positive outcomes of intervention for children with ASD as
compared to a human therapist [5], [7], [16]. This hypothesis
has further been extended to having a personalized approach
to therapy with children with ASD which has been highlighted
by the authors in [2], [17], [21]. This personalization has been
spread across various activities including perspective taking,
puzzle solving, etc. [20].

Personalized robotic intervention gives an opportunity to
adapt to the affective states of the child with ASD in order to
reciprocate appropriately [13], [20]. This is important because
meltdowns, challenging behaviors, non-compliance, etc. are
common behaviors observed in ASD which might effect the
growth and development of the individual [10], [12], [14].
This personalized adaptation in a therapy session becomes
even more challenging if the intervention is done with the
help of a robot in any of the possible modes of operation:
1) teleoperated or Wizard of Oz approach where the robot is
controlled completely by the therapist [15], [27], 2) robotic
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Fig. 1: Interactive session of children with ASD with robot as
prompter.

therapy where a robot is semi-autonomous in the sense that
decisions can be overridden by the human therapist [8], [25],
and 3) fully autonomous solution with the robot acting on its
own [13], [18], [20].

In this paper, we have proposed a method that takes the
first step towards forecasting engagement during the robotic
intervention of children with ASD. This is done using physi-
ological signals collected during intervention of children with
ASD. This approach leverages physiological signals as implicit
indicators of affective states, which children with ASD may
have difficulty expressing outwardly in ways similar to de-
velopmentally typical children [28]. The signals are collected
during an interactive session between two children with ASD
in the presence of a NAO robot as prompter as can be
seen from Figure 1. The approach is motivated by the idea
of time-series forecasting of physiological signals using the
CNN+LSTM literature.

This paper has been arranged in the following manner: Sec-
tion II describes the related works in the literature, followed
by Section III on data acquisition. Further, the problem formu-
lation is described in Section IV followed by the methodology
to achieve it. The results have been presented in Section VI
followed by the limitation of this paper in Section VII. Finally
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Section VIII presents the concluding remarks of this paper.

II. RELATED WORKS

The authors in [17] have used a deep learning network called
‘PPA-Net’ for finding the engagement of participants using
their affective states. In addition, the authors used multiple
modalities: audio, facial expressions, body movement, and
physiological signals for making this estimation of engage-
ment in individuals from different cultural backgrounds. The
major limitation of this work is that all of the predictions were
done offline.

Further, modeling engagement has been approached as a
binary classification problem by the authors in [11]. They
have applied this classification problem for a long-term and
in-house intervention using the Kiwi robot for the human-
robot interaction, which provides feedback to the child. The
scope of this work spans across both individualized and group
models for engagement classification and aims at a more real-
time classification.

Another example where physiological signals have been
used to model different emotions based on the valence and
arousal dimensions can be found in [19]. Based on these
emotions, the authors presented promising evidence towards
engagement perception in autism therapy to overcome the
limitations of using self-reports of emotional experiences from
children with ASD.

Other works that involve the use of physiological signals for
emotion recognition include approaches from the Autoregres-
sive literature. This approach has been followed by the authors
in [26] where they have used a Non-linear Autoregressive
Integrative model based on the point process model. This paper
was an attempt to model the heartbeat in terms of non-linear
dynamics as compared to the approach in [4] where the heart
rate variability was modelled as a linear model.

A more recent work for detecting challenging behaviors of
children with ASD have been proposed by the authors in [1]
where they have focused on real-time detection of challenging
behaviors using physiological signals using wearable sensors
(i.e., Empatica E4 wrist band). These signals were used
to classify the behavior of the child as challenging or not
challenging.

Unlike the works mentioned in the literature, the authors
in [9] have proposed a method using a variation of Logistic
Regression to predict the challenging behaviors by extracting
the features from the physiological signals collected. These
extracted features then are used to predict the onset of aggres-
sive behaviors 1 minute prior to it based on 3 minutes of data
collected prior to it.

This work is different from [9] in forecasting using physi-
ological signals in the way that instead of extracting features
from time series to predict the onset of challenging behaviors,
we propose to forecast the time series itself. This method
of time series-forecast is more robust as compared to the
approach in [9] in the sense that it is not limited to the
domain of challenging/non-challenging behavior classification
but can be used for forecasting engagement by attaching a

classification model as in [11] or by forecasting different
emotions by attaching the classification model used in [19]
at the end of our forecast model respectively. In addition, our
use of Deep Learning networks allows to forecast much longer
sequences ahead in time.

III. DATA ACQUISITION

A. Participants

Six subjects completed this study. All were male and aged
between 10.4-11.9 years (M = 11.4 years, SD = 0.86). Subjects
were recruited from the population of a university-affiliated
autism center. All participants and their caregivers completed
consent forms approved by the University’s Internal Review
Board. All subjects had a diagnosis of ASD, based on Diagnos-
tic Statistical Manual 5! edition [3] completed by a clinical
provider at the center or a referring physician/psychologist.

B. Physiological data

The data was acquired using the Empatica E4 wristband for
collecting physiological signals from children with ASD. The
motivation behind using the E4 device is that it is portable and
hence does not restrict any major physical constraints for the
movement of children during therapy. Data was collected dur-
ing an interactive session in which participants were grouped
as a pair of two children with ASD and instructed to get to
know each other (refer to Figure 1). During this session, the
robot acts as the prompter to facilitate the conversation in case
of silence for more than 30 seconds or if one participant has
dominated the conversation for more than 1 min. The session
considered for this paper lasts for approximately 7 minutes;
hence, the BVP data used represents 7 minutes of univariate
time series data collected at a frequency of 64 Hz. Data from
one participant was fully analyzed for this paper.

IV. PROBLEM FORMULATION

The forecast of the univariate Blood Volume Pulse (BVP)
data is given by equation 1 which is similar to the approach
used in [6].

F([sj-a>Sj—q+1 -+ 85]) = [Sj41, -+ Sjr] (D

where f(.) is the forecast function, j is the number of data
point, ¢ is the number of previous data points used to forecast
the BVP signals s for future time steps. A Deep Neural
Network is used to estimate this function f(.) using Mean
Squared Error (MSE) loss and Coefficient of Determination
(R2 score) as the metric as given by equation 2:

N . _ 772
R2 -1 Zévzo(yl 2)2 (2)
>ico(yi = Ui)

where y; is the actual value of the signal ([s;y1,...,5j4)),
y; is the predicted value by the function f(.) i.e.
([Sj+15---,8j+r]), and N is the total number of data points.
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Fig. 2: Network architectures used in this paper.
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Fig. 3: Number of data points for an Interbeat Interval (IBI).

V. METHODOLOGY

Once the BVP data is collected, we convert into the training
and test data in the form that can be used by our Deep Learning
model to be used in training. The input dimension of the data is
equal to the number of prior data points that are used to make
the prediction for the future time steps. Similarly, the output
dimension is equal to the number of data points into the future
that the model is predicting. More details have been mentioned
in Algorithm 1. The training process for this work has been
done offline from the data collected during the sessions. The
data collected from the Emaptica E4 wrist band is first stored
in Empatica’s web portal, and then later the data is fetched
for offline analysis. The computations are done using Google
Colab’s premium version that provides decent computational
power for the work described in this paper. In addition, the
framework used was Tensorflow and Keras for all parts of this
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Fig. 4: Results on test data.

project that involved elements of Deep Learning.

Algorithm 1 Forecasting algorithm pseudocode
Require: 'Xtraim y train, 'Xtesta y test
Collect BVP data: Xgvp
nin = input dimension
Nyt = output dimension
for i in range(number of data points) do
Xgata = Xpvp[i 1 1+ Ny
Vaata = Xpve[i + Nin 1 1 + Ny, + Noud]
end for
Xirains Virain=SPlit(Xdata; Viata, train split = 80%)
)(testa ytest=split(Xdala» ydataa test Split = 20%)
MOdel('Xtraim yt.ra.in) (training Step)
Evaluate(&Xieg, Viest) (evaluate using test data)

VI. RESULTS AND DISCUSSIONS
A. Model 1: Using LSTM only

Since BVP data is a time-series data, a sequential model
(here LSTM) was initially employed for the forecasting of
the time series (see Figure 2a for model architecture). The
duration ‘¢’ of the training data used to make the forecast

was 2 < t < 3 minutes. This training data was then used to
forecast the time for the next ¢ where ¢ € [2,3] minutes. In
Figure 2a, the dimension of the input is [ x 1 where ‘I’ is the
dimension of the input and ‘o’ is the dimension of the output
which is the number of steps to predict in the future. We have
the value of ‘I’ as 30 in this paper since that is approximately
the Interbeat Interval (IBI) as is shown in Figure 3. The reason
for using an input dimension comparable to the value of the
IBI is based on previous research in the literature that has
shown the merit of using IBI for emotion recognition [26] and
heart-rate variability [4]. We evaluated the performance of the
model keeping the input dimension the same and varying the
output dimension to see our model performance. Figure 4a
shows the R2 scores (coefficient of determination) on the test
data of different output dimensions being used for the LSTM
model. Further, Figure 4d shows how the R2 score decreases
with increasing output dimensions.

B. Model 2: Using CNN only

From the previous section (Section VI-A), the max R2 score
obtained was found to be 0.856. So, we tried a CNN approach
to extract features from the univariate BVP data to make
forecasts. The model architecture has been shown in Figure 2b.
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Fig. 5: Forecast visualization on subset of test data.

Further, the model’s R2 score on test data for different output
parameters can be seen from Figure 4c, and the variation of
the output dimension on the R2 score can be seen in Figure
4e. Since the data used is a univariate time series data, we
have used ConvlD layers from Keras to extract features from
the BVP data [24]. The motivation behind using CNN for time
series data can be attributed to their ability to extract spatial
features well [29]. Hence, the formulation of forecasting used
in this paper allows us to leverage this property of the CNNs.
The training data used for our CNN model is the same as for
the LSTM case too. The training constitutes data from the first
‘t” minutes where ¢ € [2, 3] and can forecast the series for the
next three minutes. However, in this case, the use of CNNs
boosts up the R2 score for the forecasts to 0.915 as compared
to just 0.856 for the best choice of output dimension for the
LSTM network.

C. Model 3: Using CNN+LSTM network

The architecture used for this network has been shown
in Figure 2c. As can be seen from the figure, it combines
the architecture of both Model 1 and Model 2. This has an
advantage as the CNN captures the spatial features of the
univariate BVP data and the LSTM layers capture the temporal
sequence of the data. This advantage can be seen from the
increased R2 score (0.955) for the output dimension two as
compared to the other models used. This R2 score is calculated
over the forecasted data for the next 3 minutes given ‘¢’
minutes of training data where ¢ € [2, 3].

To further compare the predictions of the forecast models
discussed above on the subset of the test data, the outputs of
each of the models has been shown in Figure 5 and their best
R2 scores have been shown in Figure 6.

It can be clearly seen from Figure 6 that the CNN+LSTM
model performs the best as a forecast model for the data set
considered in this paper since its R2 score is higher than the
other models used.

VII. LIMITATIONS AND FUTURE WORK

This paper has focused only on a univariate time series
data, which in this case is the Blood Volume Pulse signal.
In future work, we would like to use multivariate time series
data for the forecast model. This would include the use of

mmm CNN+LSTM, r2=0.955
CNN only, r2=00915
LSTM only, r2=0.856

gQ®

180°

270°

Fig. 6: Comparing the best R2 scores of each model.

other signals from the E4 (Electrodermal Activity (EDA) for
the Skin Conductance Level (SCL)), the temperature of the
body, and accelerations.

In addition to the use of physiological signals, we would
like to extend our current work to video frame predictions
and concatenate it with the physiological signal forecast. This
is because the visual modality has been incorporated to general
engagement perception as in [11], [17] and also has been
linked to heart rate measurement as has been shown in [22]
[23]. Lastly, we would like to incorporate the Transformers
network architecture for time series forecast and compare it
to our current approach [30].

VIII. CONCLUSION

In this paper, we presented three network architectures
that provided the first step towards engagement forecast in
the context of therapy using social robots for children with
ASD. The motivation for this work is based on the need
for a real-time engagement feedback as has been mentioned
by the authors in [17], [20], [28] and from the need to
predict challenging or non-compliant behaviors during therapy
[9], [18] so as to make interventions more personalized and
adaptable [11], [13], [17], [18], [20].
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Our current approach can take in less than three minutes
of Blood Volume Pulse data amd can forecast the values of
BVP for the next three minutes. Three deep learning model
architectures were used to achieve this: LSTM, CNN and a
combination of both. Among these models, it was found that
the CNN+LSTM model outperformed the other approaches
where just LSTM or just CNN was used. This work forms the
basis of our future work on forecasting engagement in real
time during a live therapy session in the presence of socially-
assistive, adaptive robot.
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