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Abstract—Algorithms play an essential and expanding role
in public policy decisions, including those in criminal justice.
This short paper reports on the first author’s summer research
project characterizing the tradeoff between accuracy and fairness
in parole decision predictions. The dataset employed in this
study contains over 30,000 parole decisions made by the New
York State Division of Criminal Justice Services. Each decision
contains information on the subject, such as sex, race/ethnicity,
and parole decision, as well as predictive features describing the
crime committed by the subject and the parole interview held.
Logistic regression, decision tree, support vector machine, and
random forest models are trained and utilized to analyze parole
decision predictions based on the available features. Most models
fail to pass standard fairness tests for most fairness metrics.
Moreover, while there may be an overall tradeoff between fairness
and accuracy, the obtained differences in accuracy are too small
to make a well-supported claim. Future research may enhance
the preliminary work introduced in this paper by using multiple
real-world datasets to investigate the tradeoff between accuracy
and fairness.

Index Terms—Machine Learning, Parole Decisions, Accuracy,
Fairness, Tradeoff

I. INTRODUCTION

Artificial intelligence and machine learning (AI/ML) play a
crucial role in decision-making for public policy [1]. They play
an increasingly essential role in many branches of government
in the United States and worldwide. Meanwhile, standards for

II. METHODOLOGY
A. Dataset and Preprocessing

The Parole Hearing dataset released by the New York State
Parole Board is utilized to analyze the potential tradeoff be-
tween fairness and accuracy. The dataset was initially scraped
from the Parole Hearing Data Project repository as described
on the project’s GitHub page [3]. As the original dataset was
taken off the internet, the dataset used in this paper has instead
been pulled from a copy available on Kaggle [4]. The dataset
contains parole hearings from 2012 to 2016. In addition to
parole interview decision, the available features are:

o The housing or interview facility: where the subject in
question is housed or interviewed for parole (one of 69
possible locations)

o The crime of conviction: the type of crime the subject
committed to sentence the subjects time in prison (one
of more than 200 types of crime such as animal fight-
ing, bail jumping, bribery, grand larceny, identity theft,
manslaughter, robbery, stalking, welfare fraud)

o The class of crime: the class of the crime the subject
committed (A, B, C, D, or E based on the maximum
term of imprisonment for the offense)

o The parole interview type: the type of interview the
subject is given for parole (11 different types such as
initial, merit time, reappear, and medical)

accountability and societal concerns have fallen behind the use o Race/ethnicity = (American  Indian/Alaska  Native,
and influence of AI/ML. Asian/Pacific, Black, Hispanic, Other, Unknown,
Two concerns relating to critical decision-aiding systems, and White)

such as those in the criminal justice system, are accuracy
and fairness. Accuracy concerns whether an AI/ML model has
acceptable levels of predictive accuracy so that the errors made
by the model and, consequently, the potentially erroneous
decisions are minimized. Fairness, in general, is concerned
with whether the decisions from an AI/ML are fair across
different groups or individuals, usually based on sensitive
group membership such as race or sex. However, tradeoffs
usually exist between fairness and accuracy [2].

Using a real-world parole decision dataset from the state
of New York, this work aims to identify and characterize
any tradeoff between accuracy and fairness for the machine
learning-based parole decision prediction models.

o Sex (Female, Male)
o Crime count: the number of crimes the subject has been
charged for

The target variable, parole interview decision, may have one
of several decisions as its value. The decisions are encoded as
binary by assigning decisions such as “granted” and “paroled”
to the positive class and decisions such as “denied” and “not
granted” to the negative class. Instances with missing data
or unclear decisions such as “or earlier/postponement” and
“rescind original release date/new date” are removed.

To allow different machine learning models to train and test
on the dataset, categorical variable encoding methods were
utilized for categorical variables. Target encoding replaces a
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categorical value with the average target value of all instances
in the same category [5]. Target encoding was used for the
housing or interview facility, the crime of conviction, the
parole interview type, and the class of crime. Another encod-
ing method, k-1 encoding, which represents each categorical
value with a new variable except for the reference value, was
also utilized. Specifically, k-1 encoding was utilized for the
race/ethnicity feature using white as the reference group. The
sex feature was also processed to indicate female with O and
male with 1.

The distributions of the target variable and the sensitive
group memberships are as follows (with corresponding fre-
quencies provided inside parentheses) Parole Decision: No
Parole (25,082), Parole (7,849); Ethnicity/Race: American In-
dian/Alaskan (362), Asian/Pacific (162), Black (14,269), His-
panic (6,213), Other (390), Unknown (433), White (11,102);
Sex: Male (30,878), Female (2,053).

B. Machine Learning Models

Several machine learning models were implemented to an-
alyze the New York State Parole dataset. Specifically, logistic
regression [6], decision tree [7], random forest [8], and support
vector machine [9] were used.

As no training/test data split was initially provided, the
dataset was randomly split into 80/20 training/test sets. For all
models, the same learning procedure was followed. First, the
best hyperparameter configuration was found via a grid search
strategy employing a 5-fold cross-validation on the training
set. The models were then trained on the whole training
set with their best hyperparameter configurations. Finally, the
trained models were analyzed for their accuracy and fairness
performance on the test set.

C. Evaluation

Accuracy. Table I describes the confusion matrix for binary
classification tasks, as is the task in this paper. The four cells
denote true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) based on whether predictions
are true for each class of actual values.

TABLE 1
CONFUSION MATRIX FOR BINARY CLASSIFICATION
Prediction
Positive | Negative
Actual [ Positive TP FN
| Negative FP TN

Based on the confusion matrix, the following metrics can
be computed to assess predictive accuracy.

o Accuracy— (TP + TN) / (TP + FN + TN + FP)

e Precision— TP / (TP + FP)

o Recall— TP / (TP + FN)

e Fl-score— (2 * Precision * Recall) / (Precision + Recall)

All scores range from O to 1, with 1 indicating the perfect
score. A perfect accuracy indicates that all predictions were
correct. A perfect precision indicates that all positive predic-
tions were positive. A perfect recall indicates that all actual
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positive classes were correctly predicted as positives. F1-score
is the harmonic mean of precision and recall. While accuracy
provides a general view of predictive accuracy, other metrics
offer more insights into the types of errors made.

Fairness. Fairness in machine learning concerns the unjust
treatment of groups or individuals, usually based on sensitive
characteristics. This paper focuses on group fairness based
on race and sex. Aequitas [10], a fairness audit toolkit for
classification tasks, is employed to analyze fairness. The
available disparity tests are for the following metrics: predicted
positive rate (PPR), predicted positive group rate (PPGR), false
positive rate (FPR), false discovery rate (FDR), false negative
rate (FNR), and false omission rate (FOR). For each metric,
the scores are desired to be on par across different sensitive
groups. The test results are with respect to a reference group.
For instance, a value of 1.3 for a specific group and a metric
indicates that the said group has a 30% larger value for the said
metric relative to the reference group. Detailed descriptions
can be found in the tool’s original documentation [10].

III. RESULTS
A. Accuracy

Table II presents the predictive accuracy results for each
model. Metrics are computed by treating parole and no parole
decisions separately as the positive class. The accuracy metric
does not depend on the positive class and thus has the same
value in both cases. Overall, all models have similar predictive
performance. An observation is that the algorithms achieve a
better performance for no parole cases in comparison to parole
cases. This may be due to the fact that the data set includes
larger number of no parole decisions than parole decisions.
In general, the random forest model performs slightly better
than the other models, followed by the logistic regression,
decision tree, and support vector machine models. Such slight
differences imply that the available predictor features may not
be informative enough. Alternatively, the dataset, as is, may
not have complicated relationships between predictor variables
and the target variable. Hence the problem does not require
more complex models such as random forests to learn better.

B. Fairness

The results from the Aequitas bias and fairness audit toolkit
are reported in Tables III, IV, V, and VI for the logistic
regression, decision tree, random forest, and support vector
machine models, respectively. For race and ethnicity, the
reference baseline group is set as white. For sex, the reference
group is set as female. The values lower than 0.80 or greater
than 1.25 are generally considered problematic [11], whereas
the value of 1 corresponds to the perfect parity with the
reference group, i.e., the group has the same value as the white
group for the corresponding metric.

The fairness results in Tables III, IV, V, and VI rarely meet
the standard criteria for fairness tests, i.e., the figures are not
usually within the 0.80 to 1.25 range. For instance, in Table
III, the black group has a PPR parity score of approximately
half the same as the white group. Similarly, the black group’s
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TABLE 11
ACCURACY RESULTS

Model Positive Class | Precision | Recall | Fl-score | Accuracy
Logistic Regression Ig;)m[izrole 8;3 8?1 82; 0.7692
Decision Tree E;r (5:r016 gzg 8?2 822 0.7686
Random Forest E;(ﬁzmle 8:;? 8:?; 8:2; 0.7712
Support Vector Machine Iljaoroﬁzmle 823 8?2 822 0.7660
PPGR, FPR, and FOR parity scores are also low. On the other TABLE IV

hand, the parity between the black and white groups is satisfied
in terms of FDR and FNR metrics, as scores for those metrics
fall within the acceptable range.

There are also some outlier values, such as zero values for
the American Indian/Alaska Native group in Table V for FDR
and FPR metrics or very large values for the Asian/Pacific
group in Table VI for the FPR metric. Such large deviations are
caused by the lower number of instances in those groups since
the smaller sample size increases the variance of statistics.

To compare the overall fairness performances of the models,
average statistics are computed for each model across all
fairness metrics. Considering the outlier cases in certain groups
due to the small available sample sizes, a weighted average
computation strategy is utilized. First, the absolute distance
between the metric value and the reference group value (a
reference group’s value is always 1 by definition) is computed
for each metric. Then, a weighted average is computed over
sensitive groups using corresponding group sample sizes as the
weights. The resulting values represent the average distances

DECISION TREE FAIRNESS AUDIT RESULTS (PARITY SCORES)

[Group [ PPR [ PPGR | FDR | FPR | FOR [ FNR |

Amer Ind/ATsk | 0.02 | 047 [ 0.77 | 034 | 0.84 [ 1.07

Asian/Pac 005 | 320 0.77| 525 | 264 | 0.89

Race/ | BIEK 0.76 | 060 1.09| 0.60 | 0.76 | 1.05
Ethnicity | Hispanic 051 | 001 087 0.76 | 0.89 | 098
Y [Other 0.03| 0.5 093] 069 098 | 1.04
Unknown 0.02| 040 155 0.62] 1.08| I.I5

White 1,00 | 1.00 | 1.00 | 1.00| 1.00 | 1.00

Sox | Female [1.00 [ 1.00 ] 1.00] 100 1.00] 1.00]
[ Male [ 173 0.12 ] 0.87] 008 0.70 | \

TABLE V

RANDOM FOREST FAIRNESS AUDIT RESULTS (PARITY SCORES)

Group [PPR [ PPGR | FDR | FPR | FOR | FNR |

from the perfect parity with respect to the corresponding Amer Ind/Alsk | 0.01 ] 0.19] 0.00 | 0.00 | 0.86 | 1.10
models and fairness metrics. The results are provided in Table Asian/Pac 0111 7121 080 ] 1204] 2.52 | 0.61
; ‘ p . Race/ Black 071 056| L.IT| 057 ] 0.76 | 1.05
VII for race and in Table VIII for sex. The best values (i.e., E?hC:icit Hispanic 053 095 084 0771 089 098
minimum distances from the perfect parity) are shown in bold. ¥ [Other 004 TI3] 128] 142] 099 10I
. . Unknown 0.01 033 128 042] 1.05| I.12
When models are compared fot their falrngss performange White 00100 T oo 100 oo T 00
based on the weighted average distance metric, no model is
consistently the best for all metrics or all types of sensitive Sex [ Female [ 1.00] T1.00] 1.00 [ 1.00[ 1.00] 1.00 |
categories (i.e., both based on race or sex). Simpler models | Male [143] 0.10] 092] 007[ 076 [ 1.89]
such as decision tree and logistic regression rank better for
fairness. The former obtains better fairness scores for race-
based groups, while the latter obtains better fairness scores
for sex-based groups.
TABLE VI
TABLE III SUPPORT VECTOR MACHINE FAIRNESS AUDIT RESULTS (PARITY
LOGISTIC REGRESSION FAIRNESS AUDIT RESULTS (PARITY SCORES) SCORES)
[ Group [ PPR [ PPGR | FDR | FPR | FOR | FNK | [ Group [PPR | PPGR | FDR | FPR | FOR | FNR |
Amer Ind/Alsk | 0.01 0.17 | 0.00 | 0.00 | 0.86 | 1.12 Amer Ind/Alsk | 0.04 1.06 | 1.19 | 1.19| 0.82 | 0.99
Asian/Pac 0.13 843 | 0.84 | 1498 | 2.77 | 0.46 Asian/Pac 0.16 | 1030 | 0.84 | 18.39 | 2.58 [ 0.58
Race/ Black 0.53 042 ] 097 | 037 | 0.77 | 1.08 Race/ Black 0.47 037] 1.02] 034 0.76 | 1.06
Et“kfe 1y | Hispanic 049 088 093] 079 090 | 1.00 Ethnicity | Fispanic 049 087] 094 078 | 091 1.00
MY "Other 0.06 | 1.62[ 069 LIT| 082 08I Y [Other 010 256 1.19] 3.01| 090 0386
Unknown 0.01 0.14 | 000 | 000 | 1.04 | 1.14 Unknown 0.08 1.82 | 1.19| 2.16 | 096 | 0.93
White 1.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00 White 1.00 1.00 | 1.00 | 1.00| 1.00] 1.00
Sex [ Female [ 1.00 [ 1.00] 1.00 [ 1.00] 1.00 [ 1.00 | Sex [ Female [1.00] 1.00] 1.00] 1.00] 1.00] 1.00 |
[ Male [ TOT [ 0.13[ 099 0.10 | 0.71 | 1.66 | [ Male 094 0.06[ 0.72] 0.04| 0.66| 1.58]
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TABLE VII
AVERAGE MODEL FAIRNESS FOR RACE AND ETHNICITY
(WEIGHTED AVERAGE STATISTIC)

Model PPR | PPGR | FDR | FPR | FOR | FNR
Logistic Regression 051 ] 052 | 0.09 | 0.62 | 0.20 | 0.07
Decision Tree 036 | 033 | 0.12 | 0.39 | 0.20 | 0.04
Random Forest 0.39 | 038 | 0.15 | 047 | 0.20 | 0.05
Support Vector Machine | 0.55 | 0.57 | 0.04 | 0.70 | 0.20 | 0.05
TABLE VIII
AVERAGE MODEL FAIRNESS FOR SEX
(WEIGHTED AVERAGE STATISTIC)
Model PPR | PPGR | FDR | FPR | FOR | FNR
Logistic Regression 091 | 0.87 | 0.01 | 0.90 | 0.29 | 0.66
Decision Tree 0.73 | 0.88 0.13 | 0.92 | 0.30 | 0.82
Random Forest 043 | 090 | 0.08 | 0.93 | 0.24 | 0.89
Support Vector Machine | 0.06 | 0.94 | 0.28 | 0.96 | 0.34 | 0.58

C. Accuracy Fairness Tradeoff

While a tradeoff between accuracy and fairness is generally
existent, it is not fully obvious due to the small differences in
observed accuracy values. For the race and ethnicity grouping,
predictive accuracy (see Table II) and fairness performance
(based on being a top model as shown in bold in Table VII)
are compared as follows.

The random forest model has an accuracy of 77.12% and
is a top choice in only one of the parity tests.

The logistic regression model has an accuracy of 76.92%
and is a top choice in only one of the parity tests.

The decision tree model has an accuracy of 76.86% and
is a top choice in five parity tests.

The support vector machine model has an accuracy of
76.60% and is a top choice in two parity tests.

The findings are similar for the sex-based groups, as can be
observed in Table VIII.

The random forest model is a top choice in only one of
the parity tests.

The logistic regression model is a top choice in three of
the parity tests.

The decision tree model is never a top choice in any of
the parity tests.

The support vector machine model is a top choice in two
of the parity tests.

While not perfectly consistent, models with better predictive
accuracy (e.g., random forest) have relatively worse outcomes
in the fairness audit.

IV. CONCLUSION

This short paper aims to characterize the tradeoff between
accuracy and fairness in parole decision predictions. All ma-
chine learning-based models employed in this study obtained
similar predictive performances but varied in their performance
in different fairness metrics. The tradeoff between accuracy
and fairness is not very obvious. However, the results hint at
a tradeoff where improved accuracy may come at the cost of
reduced fairness. When predictive performance is comparable
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across different models, as with the models in this work, fairer
models can be preferred over other slightly more accurate
models.

This work serves as a preliminary analysis and has many
limitations. Specifically, the limitations of this study include
the following. First, only a single dataset from a specific
region is utilized. Second, judging by the obtained predictive
accuracy, the dataset does not appear to contain all relevant
variables for a parole decision. This limitation also hindered
obtaining any meaningful accuracy differences between dif-
ferent models. Third, the binarization of the target variable
may be too simplistic. Therefore, rather than presenting con-
clusive evidence, this paper motivates future work to further
investigate the research question tackled in this work.
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