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Abstract—Algorithms play an essential and expanding role
in public policy decisions, including those in criminal justice.
This short paper reports on the first author’s summer research
project characterizing the tradeoff between accuracy and fairness
in parole decision predictions. The dataset employed in this
study contains over 30,000 parole decisions made by the New
York State Division of Criminal Justice Services. Each decision
contains information on the subject, such as sex, race/ethnicity,
and parole decision, as well as predictive features describing the
crime committed by the subject and the parole interview held.
Logistic regression, decision tree, support vector machine, and
random forest models are trained and utilized to analyze parole
decision predictions based on the available features. Most models
fail to pass standard fairness tests for most fairness metrics.
Moreover, while there may be an overall tradeoff between fairness
and accuracy, the obtained differences in accuracy are too small
to make a well-supported claim. Future research may enhance
the preliminary work introduced in this paper by using multiple
real-world datasets to investigate the tradeoff between accuracy
and fairness.

Index Terms—Machine Learning, Parole Decisions, Accuracy,
Fairness, Tradeoff

I. INTRODUCTION

Artificial intelligence and machine learning (AI/ML) play a

crucial role in decision-making for public policy [1]. They play

an increasingly essential role in many branches of government

in the United States and worldwide. Meanwhile, standards for

accountability and societal concerns have fallen behind the use

and influence of AI/ML.

Two concerns relating to critical decision-aiding systems,

such as those in the criminal justice system, are accuracy

and fairness. Accuracy concerns whether an AI/ML model has

acceptable levels of predictive accuracy so that the errors made

by the model and, consequently, the potentially erroneous

decisions are minimized. Fairness, in general, is concerned

with whether the decisions from an AI/ML are fair across

different groups or individuals, usually based on sensitive

group membership such as race or sex. However, tradeoffs

usually exist between fairness and accuracy [2].

Using a real-world parole decision dataset from the state

of New York, this work aims to identify and characterize

any tradeoff between accuracy and fairness for the machine

learning-based parole decision prediction models.

II. METHODOLOGY

A. Dataset and Preprocessing

The Parole Hearing dataset released by the New York State

Parole Board is utilized to analyze the potential tradeoff be-

tween fairness and accuracy. The dataset was initially scraped

from the Parole Hearing Data Project repository as described

on the project’s GitHub page [3]. As the original dataset was

taken off the internet, the dataset used in this paper has instead

been pulled from a copy available on Kaggle [4]. The dataset

contains parole hearings from 2012 to 2016. In addition to

parole interview decision, the available features are:

• The housing or interview facility: where the subject in

question is housed or interviewed for parole (one of 69

possible locations)

• The crime of conviction: the type of crime the subject

committed to sentence the subjects time in prison (one

of more than 200 types of crime such as animal fight-

ing, bail jumping, bribery, grand larceny, identity theft,

manslaughter, robbery, stalking, welfare fraud)

• The class of crime: the class of the crime the subject

committed (A, B, C, D, or E based on the maximum

term of imprisonment for the offense)

• The parole interview type: the type of interview the

subject is given for parole (11 different types such as

initial, merit time, reappear, and medical)

• Race/ethnicity (American Indian/Alaska Native,

Asian/Pacific, Black, Hispanic, Other, Unknown,

and White)

• Sex (Female, Male)

• Crime count: the number of crimes the subject has been

charged for

The target variable, parole interview decision, may have one

of several decisions as its value. The decisions are encoded as

binary by assigning decisions such as “granted” and “paroled”

to the positive class and decisions such as “denied” and “not

granted” to the negative class. Instances with missing data

or unclear decisions such as “or earlier/postponement” and

“rescind original release date/new date” are removed.

To allow different machine learning models to train and test

on the dataset, categorical variable encoding methods were

utilized for categorical variables. Target encoding replaces a
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categorical value with the average target value of all instances

in the same category [5]. Target encoding was used for the

housing or interview facility, the crime of conviction, the

parole interview type, and the class of crime. Another encod-

ing method, k-1 encoding, which represents each categorical

value with a new variable except for the reference value, was

also utilized. Specifically, k-1 encoding was utilized for the

race/ethnicity feature using white as the reference group. The

sex feature was also processed to indicate female with 0 and

male with 1.

The distributions of the target variable and the sensitive

group memberships are as follows (with corresponding fre-

quencies provided inside parentheses) Parole Decision: No

Parole (25,082), Parole (7,849); Ethnicity/Race: American In-

dian/Alaskan (362), Asian/Pacific (162), Black (14,269), His-

panic (6,213), Other (390), Unknown (433), White (11,102);

Sex: Male (30,878), Female (2,053).

B. Machine Learning Models

Several machine learning models were implemented to an-

alyze the New York State Parole dataset. Specifically, logistic

regression [6], decision tree [7], random forest [8], and support

vector machine [9] were used.

As no training/test data split was initially provided, the

dataset was randomly split into 80/20 training/test sets. For all

models, the same learning procedure was followed. First, the

best hyperparameter configuration was found via a grid search

strategy employing a 5-fold cross-validation on the training

set. The models were then trained on the whole training

set with their best hyperparameter configurations. Finally, the

trained models were analyzed for their accuracy and fairness

performance on the test set.

C. Evaluation

Accuracy. Table I describes the confusion matrix for binary

classification tasks, as is the task in this paper. The four cells

denote true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) based on whether predictions

are true for each class of actual values.

TABLE I
CONFUSION MATRIX FOR BINARY CLASSIFICATION

Prediction
Positive Negative

Actual
Positive TP FN
Negative FP TN

Based on the confusion matrix, the following metrics can

be computed to assess predictive accuracy.

• Accuracy— (TP + TN) / (TP + FN + TN + FP)

• Precision— TP / (TP + FP)

• Recall— TP / (TP + FN)

• F1-score— (2 * Precision * Recall) / (Precision + Recall)

All scores range from 0 to 1, with 1 indicating the perfect

score. A perfect accuracy indicates that all predictions were

correct. A perfect precision indicates that all positive predic-

tions were positive. A perfect recall indicates that all actual

positive classes were correctly predicted as positives. F1-score

is the harmonic mean of precision and recall. While accuracy

provides a general view of predictive accuracy, other metrics

offer more insights into the types of errors made.

Fairness. Fairness in machine learning concerns the unjust

treatment of groups or individuals, usually based on sensitive

characteristics. This paper focuses on group fairness based

on race and sex. Aequitas [10], a fairness audit toolkit for

classification tasks, is employed to analyze fairness. The

available disparity tests are for the following metrics: predicted

positive rate (PPR), predicted positive group rate (PPGR), false

positive rate (FPR), false discovery rate (FDR), false negative

rate (FNR), and false omission rate (FOR). For each metric,

the scores are desired to be on par across different sensitive

groups. The test results are with respect to a reference group.

For instance, a value of 1.3 for a specific group and a metric

indicates that the said group has a 30% larger value for the said

metric relative to the reference group. Detailed descriptions

can be found in the tool’s original documentation [10].

III. RESULTS

A. Accuracy

Table II presents the predictive accuracy results for each

model. Metrics are computed by treating parole and no parole

decisions separately as the positive class. The accuracy metric

does not depend on the positive class and thus has the same

value in both cases. Overall, all models have similar predictive

performance. An observation is that the algorithms achieve a

better performance for no parole cases in comparison to parole

cases. This may be due to the fact that the data set includes

larger number of no parole decisions than parole decisions.

In general, the random forest model performs slightly better

than the other models, followed by the logistic regression,

decision tree, and support vector machine models. Such slight

differences imply that the available predictor features may not

be informative enough. Alternatively, the dataset, as is, may

not have complicated relationships between predictor variables

and the target variable. Hence the problem does not require

more complex models such as random forests to learn better.

B. Fairness

The results from the Aequitas bias and fairness audit toolkit

are reported in Tables III, IV, V, and VI for the logistic

regression, decision tree, random forest, and support vector

machine models, respectively. For race and ethnicity, the

reference baseline group is set as white. For sex, the reference

group is set as female. The values lower than 0.80 or greater

than 1.25 are generally considered problematic [11], whereas

the value of 1 corresponds to the perfect parity with the

reference group, i.e., the group has the same value as the white

group for the corresponding metric.

The fairness results in Tables III, IV, V, and VI rarely meet

the standard criteria for fairness tests, i.e., the figures are not

usually within the 0.80 to 1.25 range. For instance, in Table

III, the black group has a PPR parity score of approximately

half the same as the white group. Similarly, the black group’s
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TABLE II
ACCURACY RESULTS

Model Positive Class Precision Recall F1-score Accuracy
No parole 0.78 0.97 0.86

Logistic Regression
Parole 0.59 0.14 0.22

0.7692

No parole 0.78 0.96 0.86
Decision Tree

Parole 0.57 0.15 0.24
0.7686

No parole 0.78 0.97 0.87
Random Forest

Parole 0.61 0.13 0.22
0.7712

No parole 0.78 0.96 0.86
Support Vector Machine

Parole 0.57 0.15 0.24
0.7660

PPGR, FPR, and FOR parity scores are also low. On the other

hand, the parity between the black and white groups is satisfied

in terms of FDR and FNR metrics, as scores for those metrics

fall within the acceptable range.

There are also some outlier values, such as zero values for

the American Indian/Alaska Native group in Table V for FDR

and FPR metrics or very large values for the Asian/Pacific

group in Table VI for the FPR metric. Such large deviations are

caused by the lower number of instances in those groups since

the smaller sample size increases the variance of statistics.

To compare the overall fairness performances of the models,

average statistics are computed for each model across all

fairness metrics. Considering the outlier cases in certain groups

due to the small available sample sizes, a weighted average

computation strategy is utilized. First, the absolute distance

between the metric value and the reference group value (a

reference group’s value is always 1 by definition) is computed

for each metric. Then, a weighted average is computed over

sensitive groups using corresponding group sample sizes as the

weights. The resulting values represent the average distances

from the perfect parity with respect to the corresponding

models and fairness metrics. The results are provided in Table

VII for race and in Table VIII for sex. The best values (i.e.,

minimum distances from the perfect parity) are shown in bold.

When models are compared for their fairness performance

based on the weighted average distance metric, no model is

consistently the best for all metrics or all types of sensitive

categories (i.e., both based on race or sex). Simpler models

such as decision tree and logistic regression rank better for

fairness. The former obtains better fairness scores for race-

based groups, while the latter obtains better fairness scores

for sex-based groups.

TABLE III
LOGISTIC REGRESSION FAIRNESS AUDIT RESULTS (PARITY SCORES)

Group PPR PPGR FDR FPR FOR FNR

Race/
Ethnicity

Amer Ind/Alsk 0.01 0.17 0.00 0.00 0.86 1.12
Asian/Pac 0.13 8.43 0.84 14.98 2.77 0.46
Black 0.53 0.42 0.97 0.37 0.77 1.08
Hispanic 0.49 0.88 0.93 0.79 0.90 1.00
Other 0.06 1.62 0.69 1.11 0.82 0.81
Unknown 0.01 0.14 0.00 0.00 1.04 1.14
White 1.00 1.00 1.00 1.00 1.00 1.00

Sex
Female 1.00 1.00 1.00 1.00 1.00 1.00
Male 1.91 0.13 0.99 0.10 0.71 1.66

TABLE IV
DECISION TREE FAIRNESS AUDIT RESULTS (PARITY SCORES)

Group PPR PPGR FDR FPR FOR FNR

Race/
Ethnicity

Amer Ind/Alsk 0.02 0.47 0.77 0.34 0.84 1.07
Asian/Pac 0.05 3.20 0.77 5.25 2.64 0.89
Black 0.76 0.60 1.09 0.60 0.76 1.05
Hispanic 0.51 0.91 0.87 0.76 0.89 0.98
Other 0.03 0.75 0.93 0.69 0.98 1.04
Unknown 0.02 0.40 1.55 0.62 1.08 1.15
White 1.00 1.00 1.00 1.00 1.00 1.00

Sex
Female 1.00 1.00 1.00 1.00 1.00 1.00
Male 1.73 0.12 0.87 0.08 0.70 1.82

TABLE V
RANDOM FOREST FAIRNESS AUDIT RESULTS (PARITY SCORES)

Group PPR PPGR FDR FPR FOR FNR

Race/
Ethnicity

Amer Ind/Alsk 0.01 0.19 0.00 0.00 0.86 1.10
Asian/Pac 0.11 7.12 0.80 12.04 2.52 0.61
Black 0.71 0.56 1.11 0.57 0.76 1.05
Hispanic 0.53 0.95 0.84 0.77 0.89 0.98
Other 0.04 1.13 1.28 1.42 0.99 1.01
Unknown 0.01 0.33 1.28 0.42 1.05 1.12
White 1.00 1.00 1.00 1.00 1.00 1.00

Sex
Female 1.00 1.00 1.00 1.00 1.00 1.00
Male 1.43 0.10 0.92 0.07 0.76 1.89

TABLE VI
SUPPORT VECTOR MACHINE FAIRNESS AUDIT RESULTS (PARITY

SCORES)

Group PPR PPGR FDR FPR FOR FNR

Race/
Ethnicity

Amer Ind/Alsk 0.04 1.06 1.19 1.19 0.82 0.99
Asian/Pac 0.16 10.30 0.84 18.39 2.58 0.58
Black 0.47 0.37 1.02 0.34 0.76 1.06
Hispanic 0.49 0.87 0.94 0.78 0.91 1.00
Other 0.10 2.56 1.19 3.01 0.90 0.86
Unknown 0.08 1.82 1.19 2.16 0.96 0.93
White 1.00 1.00 1.00 1.00 1.00 1.00

Sex
Female 1.00 1.00 1.00 1.00 1.00 1.00
Male 0.94 0.06 0.72 0.04 0.66 1.58
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TABLE VII
AVERAGE MODEL FAIRNESS FOR RACE AND ETHNICITY

(WEIGHTED AVERAGE STATISTIC)

Model PPR PPGR FDR FPR FOR FNR
Logistic Regression 0.51 0.52 0.09 0.62 0.20 0.07
Decision Tree 0.36 0.33 0.12 0.39 0.20 0.04
Random Forest 0.39 0.38 0.15 0.47 0.20 0.05
Support Vector Machine 0.55 0.57 0.04 0.70 0.20 0.05

TABLE VIII
AVERAGE MODEL FAIRNESS FOR SEX

(WEIGHTED AVERAGE STATISTIC)

Model PPR PPGR FDR FPR FOR FNR
Logistic Regression 0.91 0.87 0.01 0.90 0.29 0.66
Decision Tree 0.73 0.88 0.13 0.92 0.30 0.82
Random Forest 0.43 0.90 0.08 0.93 0.24 0.89
Support Vector Machine 0.06 0.94 0.28 0.96 0.34 0.58

C. Accuracy Fairness Tradeoff

While a tradeoff between accuracy and fairness is generally

existent, it is not fully obvious due to the small differences in

observed accuracy values. For the race and ethnicity grouping,

predictive accuracy (see Table II) and fairness performance

(based on being a top model as shown in bold in Table VII)

are compared as follows.

• The random forest model has an accuracy of 77.12% and

is a top choice in only one of the parity tests.

• The logistic regression model has an accuracy of 76.92%

and is a top choice in only one of the parity tests.

• The decision tree model has an accuracy of 76.86% and

is a top choice in five parity tests.

• The support vector machine model has an accuracy of

76.60% and is a top choice in two parity tests.

The findings are similar for the sex-based groups, as can be

observed in Table VIII.

• The random forest model is a top choice in only one of

the parity tests.

• The logistic regression model is a top choice in three of

the parity tests.

• The decision tree model is never a top choice in any of

the parity tests.

• The support vector machine model is a top choice in two

of the parity tests.

While not perfectly consistent, models with better predictive

accuracy (e.g., random forest) have relatively worse outcomes

in the fairness audit.

IV. CONCLUSION

This short paper aims to characterize the tradeoff between

accuracy and fairness in parole decision predictions. All ma-

chine learning-based models employed in this study obtained

similar predictive performances but varied in their performance

in different fairness metrics. The tradeoff between accuracy

and fairness is not very obvious. However, the results hint at

a tradeoff where improved accuracy may come at the cost of

reduced fairness. When predictive performance is comparable

across different models, as with the models in this work, fairer

models can be preferred over other slightly more accurate

models.

This work serves as a preliminary analysis and has many

limitations. Specifically, the limitations of this study include

the following. First, only a single dataset from a specific

region is utilized. Second, judging by the obtained predictive

accuracy, the dataset does not appear to contain all relevant

variables for a parole decision. This limitation also hindered

obtaining any meaningful accuracy differences between dif-

ferent models. Third, the binarization of the target variable

may be too simplistic. Therefore, rather than presenting con-

clusive evidence, this paper motivates future work to further

investigate the research question tackled in this work.
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