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Abstract—Criminal recidivism models are tools that have
gained widespread adoption by parole boards across the United
States to assist with parole decisions. These models take in large
amounts of data about an individual and then predict whether an
individual would commit a crime if released on parole. Although
such models are not the only or primary factor in making the final
parole decision, questions have been raised about their accuracy,
fairness, and interpretability. In this paper, various machine
learning-based criminal recidivism models are created based on
a real-world parole decision dataset from the state of Georgia
in the United States. The recidivism models are comparatively
evaluated for their accuracy, fairness, and interpretability. It is
found that there are noted differences and trade-offs between
accuracy, fairness, and being inherently interpretable. Therefore,
choosing the best model depends on the desired balance between
accuracy, fairness, and interpretability, as no model is perfect or
consistently the best across different criteria.

Index Terms—Machine Learning, Criminal Recidivism, Accu-
racy, Fairness, Interpretability

I. INTRODUCTION

When considering individuals for parole, many parole

boards are now using machine learning (ML) models as

a factor in their decision. Over time, these models have

seen an increase in adoption. An early example is the state

of Pennsylvania in 2010, where the state created a model

that would predict criminal recidivism (whether or not an

individual would commit a crime again while on parole) [1].

This model was not the sole deciding factor in whether an

individual would be granted parole but was seen as another

piece of evidence by the parole board that could be used in

their decision-making. Arnold PSA [2] and COMPAS [3] are

two popular examples of decision-aiding systems employed in

different criminal justice agencies across the United States.

As expected with any ML model used for public policy,

questions arise about accuracy, fairness, and interpretability

in criminal recidivism models. Is the predictive performance

acceptable? Is the model fair across protected groups and

statuses (e.g., gender, race)? Can people understand why
a decision was made? Moreover, there needs to be some

measure of trust in the model. The “black-box” approach—

data plugged in and a prediction made with no explanation of

what happened in between— is insufficient for policymakers

and the general public to understand and trust the decisions

made by the model.

There are also ethical issues involved that could be better

addressed with improved fairness and interpretability in re-

cidivism models. For example, it would be unethical to have

a model decide that someone should be granted parole while

someone else should not if all things are equal other than

gender or race. Individuals must feel confident that the model

is ethical across protected statuses. Learning fair models is

often difficult due to the imbalance of protected classes going

through the parole board or historical biases. Moreover, if the

model decides that someone should be granted parole and

commit a serious crime, is the model to blame? Is the parole

board? It is easier to explain why someone was granted parole

if the parole board can explain why a model made the decision

it did.

To help tackle the fairness problem, the National Institute

of Justice (NIJ), a United States government agency, cre-

ated a challenge. The challenge’s goal was for each team

to submit a model trained on provided training data that

aimed to be fair and accurate, hopefully helping to advance

scientific knowledge in creating fair and accurate criminal

recidivism models. The NIJ would then evaluate the model

based on a private training set and select the winning teams

for accuracy and fairness [4]. However, the challenge itself did

not place emphasis on interpretability. It was possible that the

winning models did not make predictions based on factors one

would typically expect. Some groups did use interpretability

methods to analyze their models, but interpretability was not

the primary objective and was not explored in depth. One

winning team admitted to having “gamed” the fairness metric

to win one of the fairness categories, ignoring the model’s

interpretability [5].

This paper presents several ML models that are trained on

the NIJ data and then are subsequently analyzed for accuracy,

fairness, and interpretability. The models are then compared

and contrasted to examine the trade-offs between accuracy,

fairness, and interpretability.

II. PRIOR WORK

As part of the challenge, many ML-based recidivism predic-

tion models were created [5]–[7] with the same data that this

work utilizes. However, the models developed in this paper

target an overall recidivism prediction, while the challenge
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models target a recidivism prediction for a particular year of

the data [6].

As previously mentioned, interpretability was not a focus

for teams creating models using the same data. The only

top-placing team that included any significant interpretability

analysis only included feature importances, accumulated local

effects plots, and Shapley values for their top performing

model as a retrospective analysis [6]. The interpretability of

their model was not a factor in whether to choose their model,

as they were attempting to optimize the accuracy and the

NIJ challenge’s fairness metric. In this paper, further methods

to analyse interpretability are provided than those previously

mentioned and model selection considers interpretability.

Additionally, the fairness metric used in the NIJ challenge,

as previously mentioned, can be “gamed” and therefore op-

timized to have non-meaningful results [5]. We present a

more comprehensive fairness analysis that employs multiple

perspectives and metrics of fairness.

Berk [1] studied a retrospective analysis of the impact

of criminal recidivism models in Pennsylvania. The analysis

made no definite conclusions because the criminal recidivism

models are not the sole factor in making the parole decisions.

However, based on the data the paper analyzed, it is stated

that there is no evidence to indicate that the use of the model

harmed public safety overall.

Wang et al. [8] developed interpretable and black-box crim-

inal recidivism models on two different recidivism datasets.

They then compared the fairness and interpretability of the

models created against two models that are currently used in

the justice system: Arnold PSA [2] and COMPAS [3]. They

found that interpretable models can perform similarly to non-

interpretable models and the two currently used models.

III. METHODOLOGY

A. Data

The data provided by the NIJ contains information about

individuals from the state of Georgia who were granted

parole from 2013–2015 [4]. A wide variety of information

is provided about these individuals. Criminal records, drug

testing, employment, prior parole, and demographic data are

some groups of available variables. The target variable of

interest in this work is Recidivism Within 3years. This binary

variable indicates whether an individual committed a crime

again after being released on parole during the three-year

window being studied. It is important to note that this variable

is slightly unbalanced, with 58% of the individuals committing

a crime in the three years following the granted parole. Three

other target variables are provided for the challenge prizes,

where participating teams are asked to predict if someone

would commit a crime each year. These yearly target variables

are not considered in this paper. Finally, the NIJ provided an

approximately 70/30 training/test split.

In this work, the data was preprocessed to be usable across

various ML models. Missing data was a prevalent issue in the

dataset, with 45% of rows having at least one missing value.

Missing data were imputed using various methods, both naive

and informed. Naive imputation strategies (i.e., imputation

using descriptive statistics such as mean, median, and mode)

were employed when there was a low correlation between vari-

ables and when other variables could not accurately predict the

variable with the missing values. For example, the majority of

missing values were from Avg Days per DrugTest: how often

an individual was tested for drugs. Despite other drug-related

features, there was little correlation to other features, and a

fitted linear regression model was not statistically significant.

Therefore, missing values of Avg Days per DrugTest were

imputed using the median value. For informed imputation, one

of the following strategies is used: (i) assumption and (ii) ML

models. Some missing values could be assumed. For example,

if Jobs Per Year was 0, logically Percent Days Employed
should be 0 and vice versa. Some missing values may be

predicted from other features using an ML model. For ex-

ample, Supervision Level First was correlated with Supervi-
sion Risk Score First (ρ = 0.53), and a K-Nearest Neighbors

model could predict Supervision Level First from Supervi-
sion Risk Score First with 0.70 accuracy. Therefore, missing

values of Supervision Level First were imputed using the

predictions of the K-Nearest Neighbors model.

Ordinal variables were encoded numerically where the

lowest ranked category is assigned 0, the second lowest is

assigned 1, and so on. Boolean variables were encoded using

0 for False and 1 for True. Non-binary categorical variables

were converted to multiple binary variables by using k-1 one-

hot encoding.

Further, some features were removed because they would

have no use in the analysis: ID and unused target variables.

Before preprocessing, the dataset contained 25,835 individuals

(18,028 in the training set, 7,807 in the test set) and 54 vari-

ables. After preprocessing, the dataset contains 62 variables

used as predictors and a single binary target variable indicating

recidivism status within the three years following the parole

decision.

B. Models

The objective is to create a wide variety of ML models, both

inherently interpretable and not inherently interpretable, to

allow for comparison. The two inherently interpretable models

implemented are a decision tree [9] and a logistic regression

model with L1 regularization (LASSO) [10]. The implemented

models that are not inherently interpretable are an adaptive

boosting classifier [11], a gradient boosting classifier [12], an

XGBoost classifier [13], a random forest classifier [14], a sup-

port vector machine (SVM) [15], and a multilayer perceptron

neural network [16]. The best hyperparameter configuration

for each model was found using a grid search over the

parameter space with 5-fold cross-validation on the training

set. Then, each model with its best hyperparameter values

was trained on the entire training set. Sequentially, the model

predictions were obtained for the test set.
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C. Fairness

Multiple tools can be used to assess the fairness, one of

the most popular being the Aequitas Bias and Fairness Audit

Toolkit [17], an open-source software developed and hosted by

the University of Chicago. The Aequitas audit was conducted

for all models using gender and race information, models’ test

set predictions, and the corresponding ground-truth values. All

bias tests provided by Aequitas are included in the analysis.

The tests are:

1) Predicted Positive Rate Disparity (PPRD), whether the

numbers of positive predictions are on par across groups.

2) Predicted Positive Group Rate Disparity (PPGRD),
whether the rates of positive predictions are on par

across groups.

3) False Discovery Rate Disparity (FDRD), whether the

ratios of false positives to predicted positives are on par

across groups.

4) False Positive Rate Disparity (FPRD), whether the ratios

of false positives to actual negatives are on par across

groups.

5) False Omission Rate Disparity (FORD), whether the

ratios of false negatives to predicted negatives are on

par across groups.

6) False Negative Rate Disparity (FNRD), whether the

ratios of false negatives to actual positives are on par

across groups.

D. Interpretability

As indicated before, a mix of inherently and not inherently

interpretable models were implemented in this work. Being

inherently interpretable means it is feasible to see precisely

why a decision was made by just looking at the model

itself [18]. Decision trees and generalized linear models are

inherently interpretable.

Decision trees make their prediction by creating decision

boundaries based on what minimizes the degree of uncertainty

of the model. Therefore, the decisions made at the nodes of

a tree can be examined to see how the nodes partition the

dataset until the tree reaches a terminal node. Thus, it is trivial

to track how an individual prediction is made and to see why a

prediction was made (and what would change it). The typical

explanation is a visualization of a tree with the corresponding

decision rule indicated on each node. Alternatively, feature

importance methods such as Gini importance [9] can be used

to understand the model’s decision-making. Gini importance

measures the average gain of purity by splits of a given

variable. The larger the Gini importance value for a variable,

the more its contributions to the model.

LASSO, the other inherently interpretable model employed

in this paper, is a regularized generalized linear model. The

optimization procedure learns coefficients for all features.

Each feature coefficient indicates the extent of influence of the

one unit change in that feature on model predictions. Hence,

such coefficients can be read to understand how a LASSO

model arrives at its decisions.

Not inherently interpretable models are too complicated to

reasonably interpret by inspection or impossible to interpret in

the same way as inherently interpretable models. Therefore,

additional methods are needed to interpret these models,

which are more complicated than just observing the models’

coefficients or Gini feature importances. The methods that are

used in this paper are global surrogate models [18], permuta-

tion feature importance [19], Shapley Additive Explanations

(SHAP) [20], and Accumulated Local Effects (ALE) plots

[21].

A global surrogate model [18] is an interpretability method

that attempts to explain the predictions of a black-box model

by using an inherently interpretable model as a surrogate

model. However, the surrogate model is trained to learn the

black-box model’s predictions rather than the ground-truth val-

ues. Then, the surrogate model, being inherently interpretable,

can explain the original black-box model’s predictions in

general. However, the reliability of the surrogate explanations

depends on the extent the surrogate model can reproduce the

black-box model’s predictions.

Permutation feature importance [19] is a model-agnostic

way to measure feature importance. It works by observing

the change in the model’s prediction error after permuting the

values of a feature. A feature is more important if shuffling

its values increases the model error more, implying that the

model depends on that feature for making its predictions. A

feature is not important if shuffling its importance does not

significantly change the model error.

SHAP [20] is a game theory-based method that uses Shapley

values to explain a model’s individual predictions. It works

by explaining the prediction of an instance by computing

how much each feature contributes to that prediction. A

collective overview of the Shapley values enables the global

interpretability of the model. Also, the absolute values of

the Shapley values can serve as feature importance metric.

Then, each feature’s effect on the model can be fully explored

by examining a SHAP summary plot, which plots individual

observations’ Shapley values for the most critical features and

indicates outcomes with different colors. This broad, global

view is still in terms of Shapley’s values. To get a deeper

look at what these values exactly mean, a SHAP dependence

plot can be examined to see a single feature’s effect on

model predictions. Further, the dependence plot allows for

the visualization of feature interactions. SHAP automatically

detects which feature has the most significant interaction and

colors by that feature in the dependence plot: interactions can

be specified for any feature or excluded altogether. Overall,

SHAP enables a deeper look into the explanations regarding

individual features and predictions, as well as the whole.

ALE [21] plots depict how a feature influences the model’s

predicted probabilities as well as the distribution of the feature

values. This enables gaining more information about how the

feature values affect the models’ predictions: essentially a

simpler version of SHAP’s dependence plot. ALE is similar to

the traditional partial dependence plot but is generally faster,

unbiased, and less problematic with correlated features [18],
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[21], [22].

IV. RESULTS AND FINDINGS

A. Accuracy

The predictive performance results obtained on the test set

are provided in Table I, with the best values are shown in bold

for each metric. Among the eight machine learning models,

the best performing model is XGBoost, with an AUC score

of 0.81, an F1 score of 0.73, and overall accuracy of 0.74.

The best performing inherently interpretable model is LASSO,

with an AUC score of 0.77, an F1 score of 0.70, and overall

accuracy of 0.71. This difference in performance is notable,

although not as stark of a difference as one may expect for

the loss in interpretability.

TABLE I
PREDICTIVE PERFORMANCE RESULTS

Model Metric
Accuracy F1 Score AUC Score

Decision Tree 0.69 0.68 0.74
Random Forest 0.73 0.71 0.79
LASSO 0.71 0.70 0.77
Adaptive Boosting 0.72 0.71 0.79
Gradient Boosting 0.73 0.72 0.80
XGBoost 0.74 0.73 0.81
SVM 0.71 0.69 0.77
Neural Network 0.71 0.69 0.76

B. Fairness

1) Introduction: In the NIJ recidivism data, two protected

classes must be examined for fairness: gender and race. The

NIJ data provides binary variables for both: male or female

for gender and White or Black for the race. Unfortunately,

the dataset is already imbalanced concerning gender and race,

having more males than females (88% male, 12% female) and

more Black individuals than White individuals (57% Black,

43% White). As a result, the data may already have inherent

issues before models are trained on it.

The results of the bias audits are provided in Table II for

gender and Table III for race, with males and White as the

reference groups, respectively. The best score for each test

is denoted in bold. Each score represents relative position of

the model with respect to the parity for the corresponding

test. A score of 1 means perfect parity, but it is standard to

have an acceptable fairness interval from 0.80 to 1.25 [23].

While reading the scores, it should be remembered that the

reference groups are male and White. Then, each metric score

can be read as a percentage; for example, a score of 1.2 for

False Positive Rate Disparity for race indicates that the False

Positive Rate for Black individuals is 120% of the value of the

False Positive Rate for White individuals (reference group),

which falls within the acceptable fairness range. The final

column in the tables, Average Distance From Reference, is

the mean of the entire row for each model, representing the

average disparity across the different bias tests. This metric

can find the “overall” least biased model. However, it does

not capture the entire picture because some tests have more

egregious bias than others, depending on the objective of the

ML task at hand.

2) Gender: In terms of gender unbiasedness, the best-

performing model is the decision tree, as it has the closest

value to parity for four out of six tests and has the lowest

overall distance to the reference. Although it is the clear

winner, only two of the scores fall within the acceptable

fairness range, meaning that even the best model with respect

to gender fairness has serious problems.

The decision tree is also the worst performing model overall

regarding the accuracy and the most interpretable, leading to

questions about the trade-off between accuracy, fairness, and

interpretability. The best overall performing model, XGBoost,

has an average distance of 0.49 from the reference, which is

the same average value for the interpretable LASSO and the

worse performing but still less interpretable SVM, indicating

that the trade-off is not clear-cut. The rest of the models have

an average distance from reference significantly larger than

the decision tree, but all around the same amount.

Overall, if a model needs to be selected that optimized

gender fairness, interpretability, and accuracy, a good choice

would be the random forest. The random forest is compar-

atively simpler to interpret than most black-box methods as

it makes its predictions based on a simple majority vote of

independent decision trees rather than the more complicated

methods that other black-box models use. Further, the random

forest has close to the best accuracy and is the second most

fair model overall with respect to gender.

3) Race: Unlike gender unbiasedness, there is no clear

winner for the race, as three models have an average distance

of 0.18 from the reference: the random forest, LASSO, and

SVM. Each of the models has a different distribution across the

six test metrics, which makes the “winner” for bias concerning

race dependent on whatever metric is deemed the most relevant

for the task at hand.

SVM would likely be eliminated, if a model must be

selected, due to the comparatively lower accuracy and the more

complex interpretation. The decision between the random

forest and LASSO would then depend on whether accuracy or

interpretability matters more to the user. If accuracy matters

more, select the random forest. If interpretability matters more,

select LASSO.

4) Overview: Overall, the disparities for the race are

smaller than the disparities for gender: perhaps because there is

more of a gender imbalance in the data than a race imbalance.

The disparities are also different among models for both

protected classes; if one ordered the models based on average

distance from reference scores, the only model in the same

order for gender and race would be adaptive boosting with

the worst overall distance.

If a model needs to be selected to account for gender and

race bias, the random forest would be a good choice. It is

tied for the best model concerning race fairness and the clear

runner-up concerning gender fairness. Further, the random

forest model still has a good accuracy and while not inherently
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TABLE II
BIAS AUDIT RESULTS, GENDER

Model Metric Avg. Dist.
From Ref.PPRD PPGRD FDRD FPRD FORD FNRD

Decision Tree 0.11 0.80 1.31 0.78 0.74 1.31 0.37
LASSO 0.08 0.61 1.01 0.46 0.83 1.93 0.49
Random Forest 0.10 0.73 1.24 0.67 0.84 1.74 0.44
Adaptive Boosting 0.08 0.59 1.00 0.44 0.88 2.08 0.52
Gradient Boosting 0.09 0.66 1.13 0.55 0.88 1.89 0.47
XGBoost 0.09 0.64 1.09 0.53 0.89 1.98 0.49
SVM 0.09 0.63 1.04 0.49 0.83 1.92 0.49
Neural Network 0.09 0.61 0.98 0.45 0.81 1.93 0.50
Average 0.09 0.66 1.10 0.55 0.84 1.85

TABLE III
BIAS AUDIT RESULTS, RACE

Model Metric Avg. Dist.
From Ref.PPRD PPGRD FDRP FPRD FORD FNRD

Decision Tree 1.58 1.14 1.06 1.26 0.99 0.78 0.21
LASSO 1.52 1.10 1.05 1.20 1.02 0.84 0.18
Random Forest 1.52 1.10 1.05 1.20 0.99 0.80 0.18
Adaptive Boosting 1.57 1.13 1.08 1.27 0.98 0.77 0.22
Gradient Boosting 1.52 1.10 1.08 1.24 1.04 0.86 0.19
XGBoost 1.55 1.12 1.11 1.30 1.01 0.81 0.21
SVM 1.52 1.10 1.06 1.21 1.03 0.85 0.18
Neural Network 1.53 1.11 1.08 1.25 1.05 0.84 0.20
Average 1.54 1.11 1.07 1.24 1.01 0.82

explainable, its interpretations are simpler than boosting-based

tree models or neural networks.

C. Interpretability

1) Inherently Interpretable: Unfortunately, the decision tree

fitted was too large to fit onto this paper as it has 64 leaf nodes.

Instead, Gini importances were analyzed. In the decision tree

fitted, the most important features are:

a) Percent Days Employed, the percentage of days an in-

dividual was employed while on parole.

b) Jobs Per Year, the number of different jobs held while

on parole.

c) Prior Arrest Episodes PPViolationCharges, whether

an individual was previously arrested for violating their

parole or probation conditions.

d) Gang Affiliated True, if an investigation verified a gang

affiliation.

These four features account for 76.4% of the overall feature

importance in the decision tree, meaning they are the most

meaningful out of the 62 features used. Further, the top

11 features (provided in Figure 1) account for more than

99% of the total feature importance. Therefore, a decision

tree with fewer variables, rather than the entire 62, would

be even easier to interpret and perform similarly. Around

30 features have importances smaller than 0.0001 meaning

that they provided virtually no additional information to the

decision tree’s learning.

Unfortunately, decision tree feature importances cannot re-

veal how much each feature contributed to each outcome. If

having a model where this is mathematically clear is desired,

LASSO can be used. The 11 largest coefficients in the LASSO

Fig. 1. Gini feature importances for the most critical 11 features in the
decision tree.

model (to loosely compare to the 11 most important features

in the decision tree) are provided in Table IV. Although most

features’ value ranges are similar, they are neither the same

nor standardized. Thus, while LASSO coefficients are helpful,

they do not directly correspond to the feature importances.

LASSO makes its decisions by creating a threshold bound-

ary at the probability of 0.5, the midpoint between 0 (False)

and 1 (True). If the value for an individual’s probability is

less than 0.5, they will be classified as False, meaning that
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TABLE IV
LASSO MODEL COEFFICIENTS (TOP 11)

Feature Coefficient
DrugTests Meth Positive 2.12
Percent Days Employed -1.57
Age at Release 48 or older -1.54
Age at Release 43-47 -1.22
Age at Release 38-42 -1.04
Age at Release 33-37 -0.93
DrugTests THC Positive 0.78
Gang Affiliated True 0.76
Age at Release 28-32 -0.63
DrugTests Cocaine Positive 0.51
Jobs Per Year 0.47

the model predicts that they will not commit a crime. The

opposite is true for values greater than or equal to 0.5. The

coefficients (c) come into play by changing the estimated odds

for an individual by a factor of ec. Thus, for example, a one

unit increase in DrugTests Meth Positive results in an increase

in the estimated odds for the individual by e2.12. Therefore,

it can be observed in what direction and by how much each

feature affects the final prediction.

It is interesting to compare the features in the two

interpretable models. Among the 11 most important

features/largest coefficients, the two models shared

Percent Days Employed, Age at Release 48 or older,

Gang Affiliated True, and Jobs Per Year. LASSO learned

more from drug-related features as LASSO emphasized

DrugTests Meth Positive, DrugTests THC Positive, and

DrugTests Cocaine Positive which all indicate the proportion

of drug tests taken that were positive for a certain drug. The

decision tree gave almost no importance to all drug-related

features. Similarly, LASSO assigned larger coefficients to

several age-related features, while the decision tree only found

considerable importance in the oldest age-related feature. The

decision tree also found more importance in crime-related

features such as Prior Arrest Episodes PPViolationCharges
and Prior Arrest Episodes Property, which LASSO did not

assign high coefficient values for.

Based on the above analysis, it appears that the two inher-

ently interpretable models rely on a different set of features

from each other in making their predictions. As can be seen

in Table I, LASSO has better performance metrics than the

decision tree, but not by a very large margin. The predictive

performances of the not inherently interpretable models are not

much better, although they are a noticeable improvement over

the inherently interpretable models. Is this slight improvement

worth the loss in interpretability?

2) Not Inherently Interpretable: In this subsection, XG-

Boost, the overall best performing model, will be interpreted

using various interpretability methods. XGBoost is a tree-

based boosting method, meaning it uses many small trees that

build off each other to make a decision. Therefore, general

interpretability methods fail.

First, a LASSO model is trained to serve as a global

surrogate model and is examined. The R2 value between

the XGBoost predictions and the surrogate model predictions

on the test set is 0.38. The surrogate model only explains

38% of the variance in the XGBoost model’s predictions.

Therefore, the surrogate model is considered a poor explainer

for XGBoost. However, the surrogate model is still interpreted

to see what it suggests. The five most significant coefficients

for the surrogate model are provided in Table V.

TABLE V
MODEL COEFFICIENTS FOR THE SURROGATE LASSO MODEL (TOP 5)

Feature Coefficient
DrugTests Meth Positive 5.82
Percent Days Employed -4.02
Age at Release 48 or older -2.63
Gang Affiliated True 1.96
Age at Release 43-47 -1.88

In the surrogate LASSO model, each feature also had a

high coefficient value in the original LASSO model, although

not in the same order and with different magnitudes. The

interpretation is the same as the original LASSO model;

for example, a one unit increase in DrugTests Meth Positive
increases the estimated odds of the individual committing a

crime while on parole by e5.82. Therefore, the surrogate model

suggests that XGBoost may rely on many of the same features

as the LASSO model, although with a higher emphasis on a

few. However, this interpretation should be taken with caution

since the R2 value for the surrogate model is low.

Next, permutation feature importances are examined. The

five most important found features are shown in Figure 2.

Both Percent Days Employed and Gang Affiliated True also

appeared in the five highest coefficients in the surrogate model.

Avg Days Per DrugTest and Delinquency Reports are two

features that have not shown up in top features for importances

or significant coefficients up to this point. The former feature

describes how often a parolee is tested for drugs, and the latter

describes how many parole delinquency reports (for minor

violations) have been received for a parolee.

Fig. 2. The five largest permutation feature importances for the best
performing model, XGBoost.
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An interpretability analysis is also conducted via SHAP. The

five most important features based on absolute SHAP values

are provided in Figure 3. The corresponding summary plot

is provided in Figure 4. Each point is colored for outcome:

fuchsia for predicted recidivism and blue otherwise. The points

for a specific feature are jittered vertically for visualization

purposes. Any overlap of points with different colors indicates

the lack of a sharp distinction for that range of Shapley

values. A clear pattern can be seen for most features: Shapley

values on either side of the zero point are correlated with a

specific outcome. For example, positive Shapley values for

Jobs Per Year are correlated with recidivism.
The SHAP dependence plot for Jobs Per Year is given in

Figure 5. A non-linear but generally monotonically increasing

pattern can be observed. This implies that the larger the value

of Jobs Per Year, the higher its Shapley value in general.

Then, it is possible to go back to the summary plot in Figure

4 and observe that the negative Shapley values correspond

to having relatively fewer jobs in a year. This is, then,

correlated with not committing a crime again. This is perhaps

an “expected” pattern for the Jobs Per Year feature: having

a large number of jobs per year could indicate instability in

a parolee’s life which common sense suggests would be a

risk for recidivism. Figure 5 also provides feature interactions

for Percent Days Employed. The points are colored by the

value of Percent Days Employed across two bins: values less

than 0.5 and greater than or equal to 0.5. In the figure, it

can be observed that for the lower range of Jobs Per Year,

Percent Days Employed values of less than 0.5 increases the

risk of recidivism as blue-colored points are above the fuchsia-

colored points, resulting in larger SHAP values for blue-

colored points for the same values of Jobs Per Year.

Fig. 3. The five largest SHAP feature importances for the XGBoost model.

Finally, Accumulated Local Effect (ALE) plots are exam-

ined. Throughout the analyses on the feature importances

and coefficients seen with the surrogate model, SHAP, and

permutation feature importance, certain features are more

frequently identified as contributing the most to the model

predictions. ALE plots can be created for those features.
Figure 6 shows the ALE plot for Percent Days Employed.

The bottom of the plot is shaded to show the distribution of

the feature: in this case, there is a fairly even distribution. As a

result, the confidence interval on the plot is pretty narrow. The

plot shows that, for its values from around 0 to 0.2, the feature

strongly affects the prediction probability of recidivism. Then,

Fig. 4. The SHAP summary plot for the five most important features (based
on SHAP feature importances) for the XGBoost model.

Fig. 5. The SHAP dependence plot for Jobs Per Year. The points are colored
based on the values for Percent Days Employed.

from 0.2 to 1, the effect on the prediction probability shifts

towards an individual not committing a crime on parole in a

roughly negative, quadratic trend.

Figure 7 shows the ALE plot for DrugTests Meth Positive.

Unlike the ALE plot for Percent Days Employed in Figure 6,

the data is not evenly distributed, so the confidence interval

is relatively wide, but the feature still has a noticeable effect

on the prediction. The plot is also largely positive, showing

that having positive tests for meth only increases the chance

that the prediction will be that the parolee commits a crime.

Further, the relationship has two different linear trends: a

steeper linear trend for where the data is concentrated and

a less steep linear trend for where the data is scattered.

Fig. 6. The ALE plot for the variable Percent Days Employed.
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Fig. 7. The ALE plot for the variable DrugTests Meth Positive.

V. CONCLUSION

Criminal recidivism models are used as a factor in parole

boards’ decision-making in parole hearings; however, these

models still have many unanswered questions about their

accuracy, fairness, and interpretability. This paper created

several recidivism models using real-world data from the state

of Georgia. Subsequently, it examined their accuracy, fairness,

and interpretability to provide insights into the characteristics

of recidivism models beyond predictive performance.

This work has some limitations. First, missing data impu-

tation methods may have impacted the results, particularly

the interpretability analysis. Second, the generalizability of

the findings depends on similar studies conducted on other

datasets. Third, a detailed exploration into features that are

found to be less critical merits consideration. Removing these

features would improve the ease of interpretability but may

also affect accuracy and fairness. Given the importance of such

critical systems, future work may tackle these limitations and

improve real-world decision-aiding systems in criminal justice.

There are noted differences between the machine learning

models employed in this paper regarding accuracy, fairness,

and interpretability. No model is found to be consistently

the best in all three aspects, but several general trends are

identified. Regarding accuracy, tree-based boosting methods

(which are not inherently interpretable and are considered

black-box) performed very well, with the overall best be-

ing XGBoost. However, LASSO, an inherently interpretable

model, performed better than two black-box methods, SVM

and neural network. These findings indicate that the accuracy-

interpretability trade-off is not always clear-cut.

Moreover, black-box models showed many of the same

tendencies as the inherently interpretable models in terms of

feature importance and coefficients, a focus on features related

to employment, drug use, prior arrests, gang affiliation, and

age. In regards to fairness, none of the models would meet

the standard criteria for fairness. This is possibly due to the

imbalance in the data: gender, which was more imbalanced

than race, fell further outside the standard metric. Regardless,

the most “fair” model for gender was the decision tree,

followed by the random forest. The most “fair” models for

the race were the random forest, SVM, or LASSO. The more

accurate and less interpretable models tended to perform worse

for fairness: no boosting model (i.e., the most accurate models)

performed comparatively well in fairness. Therefore, it can be

concluded that all models have shortcomings, and the suitable

criminal recidivism model for the policymakers in Georgia

to choose is a question of desired balance between accuracy,

fairness, and interpretability.
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