L)

Check for
updates

FPGA Acceleration of Probabilistic Sentential Decision
Diagrams with High-level Synthesis

YOUNG-KYU CHOlI, Inha University, South Korea and University of California, Los Angeles
CARLOS SANTILLANA, YUJIA SHEN, ADNAN DARWICHE, and JASON CONG,

University of California, Los Angeles

Probabilistic Sentential Decision Diagrams (PSDDs) provide efficient methods for modeling and reasoning
with probability distributions in the presence of massive logical constraints. PSDDs can also be synthesized
from graphical models such as Bayesian networks (BNs) therefore offering a new set of tools for performing
inference on these models (in time linear in the PSDD size). Despite these favorable characteristics of PSDDs,
we have found multiple challenges in PSDD’s FPGA acceleration. Problems include limited parallelism, data
dependency, and small pipeline iterations. In this article, we propose several optimization techniques to solve
these issues with novel pipeline scheduling and parallelization schemes. We designed the PSDD kernel with
a high-level synthesis (HLS) tool for ease of implementation and verified it on the Xilinx Alveo U250 board.
Experimental results show that our methods improve the baseline FPGA HLS implementation performance by
2,200X and the multicore CPU implementation by 20X. The proposed design also outperforms state-of-the-art
BN and Sum Product Network (SPN) accelerators that store the graph information in memory.

CCS Concepts: « Computer systems organization — High-level language architectures; Reconfig-
urable computing;

Additional Key Words and Phrases: PSDD, HLS, FPGA

ACM Reference format:

Young-kyu Choi, Carlos Santillana, Yujia Shen, Adnan Darwiche, and Jason Cong. 2023. FPGA Acceleration
of Probabilistic Sentential Decision Diagrams with High-level Synthesis. ACM Trans. Reconfigurable Technol.
Syst. 16, 2, Article 18 (March 2023), 22 pages.

https://doi.org/10.1145/3561514

1 INTRODUCTION

Probabilistic Sentential Decision Diagrams (PSDDs) were recently proposed to model distri-
butions over structured probability spaces that are defined by massive logical constraints [22, 36].
Traditionally, probability distributions are modeled using graphical models such as Bayesian

This research is supported by Inha University Research Grant, National Research Foundation (NRF) Grant funded by
Korea Ministry of Science and ICT (MSIT) (2022R1F1A1074521), US NSF Grant on RTML: Large: Acceleration to Graph-
Based Machine Learning (CCF-1937599), and Xilinx Heterogeneous Accelerated Compute Cluster (HACC) Program.
Authors’ addresses: Y.-k. Choi (corresponding author), Inha University, 100 Inha-ro Hitech 1012, Incheon, South Korea,
22212 and University of California, Los Angeles, 404 Westwood Plaza, Los Angeles 90095, California; email: ykc@inha.ac.kr;
C. Santillana, Y. Shen, A. Darwiche, and J. Cong, University of California, Los Angeles, 404 Westwood Plaza, Los Angeles
90095, California; emails: {csantillana21, syj0614}@gmail.com, {darwiche, cong}@cs.ucla.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1936-7406/2023/03-ART18 $15.00

https://doi.org/10.1145/3561514

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

https://orcid.org/0000-0001-5829-4425
https://orcid.org/0000-0002-5512-6343
https://orcid.org/0000-0002-4350-7720
https://orcid.org/0000-0003-3976-6735
https://orcid.org/0000-0003-2887-6963
https://doi.org/10.1145/3561514
mailto:permissions@acm.org
https://doi.org/10.1145/3561514
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3561514&domain=pdf&date_stamp=2023-03-11

18:2 Y.-k. Choi et al.

networks (BNs) [15, 23, 26, 28]. A BN employs a directed acyclic graph (DAG) to capture
dependencies among random variables. In the presence of massive logical constraints, which
naturally arise in many domains, the DAG can become too highly-connected to allow efficient
reasoning and learning in real-world applications. PSDDs, on the other hand, provide a tractable
representation of probability distributions in this case because they are based on a sophisti-
cated representation of logical constraints known as Sentential Decision Diagrams (SDDs),
which generalize and can be exponentially smaller than Ordered Binary Decision Diagrams
(OBDDs) [2, 16]. The effectiveness of PSDDs has been demonstrated in numerous real-world
applications with massive logical constraints. As an example, a classical Naive Bayesian classifier
of a board game trace requires 362,879 parameters, whereas a PSDD needs 1,793 parameters [10].
Other successful examples of PSDDs include learning user preferences [8], anomaly detection [10],
and route distribution modeling [9, 36]; see [17] for a survey.

PSDDs are normally synthesized from a combination of data and symbolic knowledge in the
form of logical constraints. For example, in [36], PSDDs represent a distribution over routes, which
are modeled as paths in a graph. A path is encoded as a binary instantiation over the edge variables.
The variable is set to 1 if the edge is used on the path and 0 otherwise. Some instantiations of the
variables correspond to invalid paths in the graph (disconnected edges), and this leads to logical
constraints. To learn a probability distribution over the valid paths, one can first construct a PSDD
from the logical constraint among the edge variables. Then we can estimate the weights on the
PSDD from the data that consists of routes that are more frequently taken by the travelers.

PSDDs can also be synthesized from graphical models such as Bayesian networks [35], position-
ing them as an inference tool for such models. Since PSDDs are synthesized, PSDDs can be very
large and exhibit some strong properties in comparison to other tractable circuit representations
such as Sum Product Networks [30] and Cutset Networks [31] (which are normally handcrafted
or learned from data). All these models are variants of Arithmetic Circuit (AC) representations
of probability distributions [14], which allow inference in time linear to the circuit size; see [18]
for a recent survey of these circuit representations.

A field-programmable gate array (FPGA) is a high-performance, energy-efficient reconfig-
urable platform that has accelerated many probabilistic inference problems. Examples include: Sum
Product Network [33, 37, 38], Bayesian Monte Carlo Makov Chain Model Inference [45], Bayesian
Computing Machines [25], Bayesian Neural Networks [3], and Bayesian Inference with Arithmetic
Circuits [19, 27, 43]. But to our knowledge, there is no previous work that accelerates PSDDs.

We accelerate PSDD on the Xilinx Alveo U250 FPGA Acceleration Card [41]. We implemented
the two commonly used PSDD queries: the probability of the most probable explanation (MPE,)
query and the marginal (MAR) query. In order to reduce the development effort, we program in
C and generate the bitstream using a high-level synthesis (HLS) tool [13, 40]. But we found
that accelerating the PSDD kernel in HLS presents a unique set of challenges. As we construct a
PSDD graph from a BN, the sparseness of the node connections leads to each node having only
a small number of child nodes. This property increases the proportion of a loop’s pipeline epi-
logue/prologue compared to the loop’s length (details in Section 3). We could try the edge-centric
processing scheme [32, 44] to solve this problem, but a straightforward implementation in HLS
causes new dependency issues and worsens the initiation interval (II) of the pipelined loops
(details in Section 3). Moreover, in order to perform a query on a real-world application with mas-
sive logical constraints, we process a large graph that may not fit on an FPGA. Thus, we have
to make the processing elements (PEs) configurable for irregular tree connection patterns—but
this complicates the parallelization process.

In this article, we present optimization techniques to solve these problems. We propose a
novel HLS-based edge-centric processing scheme that achieves an II of 1 for a PSDD query with

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:3

dependency issues. The scheduling for this scheme is lightweight and can be done in a few
seconds. Moreover, we exploit multiple levels of parallelism that can be applied even if the entire
graph cannot fit on an FPGA. The proposed optimizations are fully compatible with HLS, and the
design was verified on-board. Compared to related works whose performance largely depends on
the size of the graph, our work better retains the performance for datasets with various sizes.

2 BACKGROUND
2.1 Probabilistic Sentential Decision Diagrams

Figure 1(a) shows an example PSDD, which is based on a Boolean circuit known as a SDD [16]
that is annotated with probabilistic parameters. The PSDD is composed of fragments shown in
Figure 2. In an internal fragment, the OR-gate can have an arbitrary number of inputs. Each child
of the OR-gate is associated with a parameter «;. The AND-gates have precisely two inputs each.
Each left child p; is called a prime, and each right child s; is called a sub. Figure 1(a) highlights
some PSDD fragments.

Each PSDD conforms to a tree of variables, called a vtree [29]. A vtree is a binary tree whose
leave are the circuit variables (Figure 1(b)). The conformity is roughly as follows. For each inter-
nal fragment with primes p; and subs s;, there must exist a vtree node v where the variables of
each prime p; appear in the left child of v, and the variables of each sub s; appear in the right
child of v. For example, the root fragment of the PSDD in Figure 1(a) conforms to vtree node 3 in
Figure 1(b). Each prime of this PSDD fragment, fragments 2 and 4, conforms to vtree node 1. Each
sub, fragments 3 and 5, conforms to vtree node 5.

2.2 PSDD Semantics and Queries

A PSDD represents a probability distribution over the binary variables X that appear in the vtree.
We use a bold letter X to represent a set of variables, and a normal letter X to represent a single
variable.! The semantics of a PSDD can be defined by unfolding it into an AC through replac-
ing each AND-gate with a multiplication operation and each OR-gate with a weighted sum. The
weights are the parameters that annotate the children of the OR-gate. By properly setting the leaf
literals of this AC for a given instantiation x of variables X, the AC will evaluate to the probability
of instantiation x.

To evaluate the AC at a given variable instantiation x, we set each leaf literal in the AC to 1
if it is compatible with instantiation x, and to 0 otherwise. A positive X is compatible with an
instantiation that sets X = 1, and it is not compatible with an instantiation that sets X = 0. The
opposite is true for the negative literal —=X. To evaluate the probability of an instantiation, e.g.,
A=0,B=0C=0,D =0, we compute the value of each fragment in a bottom-up order. The
following table shows the values of the literals:

Literals A -A B -B C -C D =D
Values 0 1 0 1 0 1 0 1.

The value of each fragment is computed using the corresponding arithmetic operations. For
example, the value of the internal fragment 2 is computed as

0.33X0X0+0.67x1X1=0.67,
and the value of fragment 4 is

0.75X0Xx1+0.25x1X0=0.0.

1We abuse the notation X to also represent a positive literal of variable X.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:4 Y.-k. Choi et al.

1
0.6 0.4
; |1 . ; |1 .
2 3 4 5
0.33 0.67 0.75 0.25
1 1
7\ 7 7N
A B -A -B A —-B -A B C -D
6 7
0.2 0.8 0.4 0.6
c =C D =D
(a) PSDD

/\

A B C D

(b) Vtree

Fig. 1. Figure 1(a) shows an example PSDD. Each fragment is boxed. Internal fragments are surrounded by
an empty red box, and leaf fragment is surrounded by shaded boxes. Further, some fragments are indexed
for reference purpose, and the index is indicated on the top left of the box. Figure 1(b) shows the vtree that

the PSDD conforms to.

Given a variable instantiation, the value of each fragment represents the conditional probability
Pr(x | {yo,.-.,yn}, where the conditions {yy,...,y,} are called contexts [22]. The query x cor-
responds to the subset of the input instantiation whose variables appear beneath the fragment.
If the input instantiation is A = 0,B = 0,C = 0,D = 0, the query for fragment 4 corresponds

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:5

p1 st pz 2. Pn Sn X -X X X
(a) (b) (c) (d)

Fig. 2. Four types of PSDD Fragments: internal (2(a)) and boundary, which can be a positive literal (2(b)), a
negative literal (2(c)), or a simple OR-gate (2(d)). A PSDD can also have leaf nodes representing false, but we
omit these as they are not necessary for our acceleration.

to A = 0,B = 0. Roughly speaking, the context consists of a set of input instantiations whose
probability computation depends on the fragment (please refer to [22] for details). The context for
fragment 4 consists of instantiations A = 1,B = 0,C =1,D =0and A =0,B=1,C =1,D = 0.
Then the value of fragment 4 equals to Pr(A=0,B=0|{{A=1,B=0,C=1,D=0},{A=0,B =
1,C =1,D =0, }}), which would have a probability of 0.0 (matches the value of the corresponding
arithmetic operation).

The values of the rest of the labeled fragments are listed in the following:

Fragment ID 7 6 5 4 3 2 1
Value 0.60 0.80 0.00 0.00 0.48 0.67 0.19.

2.3 Most Probable Explanation and Marginal Queries

We have implemented the two commonly used probabilistic queries: the probability of the most
probable explanation (MPE,) and marginal (MAR) queries. The queries are discussed in detail in
this section.

2.3.1 MPE,. The most probable explanation (MPE) query finds the most likely instantiation x
of variables X that is compatible with a given evidence. The evidence is described by an instanti-
ation e over a subset of the PSDD variables E C X. For example, in natural language processing,
we can predict the most likely sentence structure given an observed sentence. We could construct
a model of the sentence that describes the probability distribution over sentences and grammat-
ical structures. The MPE query can be invoked to find the most likely sentence structure that is
compatible with the observed sentence.

The MPE query is computed by evaluating an MPE circuit, which is constructed similarly to
the AC of a PSDD. The difference is that the max operation replaces the OR-gate of AC [4]. For
example, the internal fragment in Figure 2(a) evaluates to

max{a; X value(p;) X value(s;)}, (1)
l
where value(p;) and value(s;) are the values of primes and subs for that fragment.

In this article, we explain the methodology for performing an MPE, query—which computes
the probability of the most likely instantiation by evaluating the MPE circuit. This is the most

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:6 Y.-k. Choi et al.

compute-intensive part of the MPE query. The most likely instantiation can be found by recording
the child node that provides the maximal probability for each node and performing a backward
pass over the MPE circuit to recover the corresponding instantiation (see Section 12.3.2 in [15] for
details). For simplicity, we will refer to MPE, query as the MPE query from now on.

Suppose e is an instantiation of variables E C X. We can compute the probability of an MPE
query by evaluating the AC of a PSDD as discussed earlier. One difference is that both literals of
a variable Y € X \ E will be set to 1 since they are both compatible with the instantiation e. For
example, given evidence B = 1, literal =B is set to 0 and all other literals are set to 1. Evaluating
the AC in Figure 1(a) under this setting yields the following values to fragments:

Fragment ID 7 6 5 4 3 2 1
Value 0.60 0.80 1.00 0.25 0.48 0.33 0.1

Then, the probability of the most likely instantiation that is compatible with B = 1 is 0.1 (the value
of Fragment 1).

2.3.2 MAR. The marginal query (MAR) calculates the probability of an instantiation over a
subset of variables E C X and is one of the most common probabilistic queries. For example, in
medical diagnosis, the model describes a probability distribution that assigns a probability to every
possible symptom and disease. The marginal query can be used to compute the probability of a
particular symptom or the probability of a disease given a symptom (with Bayes conditioning).

For a MAR query, the internal fragment in Figure 2(a) evaluates to

Sila; X value(p;) X value(s;)}. (2)

The difference with the MPE query in Equation (1) is that the summation operation (instead of the
max operation) replaces the OR-gate of AC.

When evaluating the marginal probability at evidence e, leaf literals are set in a similar way as
the MPE query. Every leaf literal compatible with e is set to 1 and every leaf literal incompatible
with e is set to 0. Consider again the PSDD in Figure 1(a). Given evidence B = 1, literal —B is set
to 0 and all other literals are set to 1. Evaluating the AC yields the following values for fragments:

Fragment ID 7 6 5 4 3 2 1
Value 1.00 1.00 1.00 0.25 1.00 0.33 0.29.

Thus the marginal probability of B = 1 is 0.29.

3 BASELINE HLS IMPLEMENTATION AND CHALLENGES

In this section, we present the baseline MPE query implementation in HLS and identify the chal-
lenges in the acceleration. We compute the output of each PSDD fragment (we will simply refer to
this as a node from now on) in the outermost loop (line 1) of Figure 3. As explained in Equations (1)
and (2), each node performs a maximum (MPE) or addition (MAR) operation for OR gates, and a
multiplication for AND gates. We will refer to these operations as the edges for the rest of the arti-
cle. Each node processes its edges in the innermost loop shown in line 3 of Figure 3. For the MPE
query, we use the maximum operation; for the MAR query, we use the addition operation (line 6 of
Figure 3). Since the MPE and MAR queries have a very similar computation pattern (Equations (1)
and (2)), we employ the C ternary operator (which implies a mux in HLS) to choose between the
result of the two different queries. The outermost loop in line 1 traverses through all the nodes in
a bottom-up fashion.

We store ¢; in the array weight[], the value of the node probability for the prime value(p;)
and the sub value(s;) in the array prob[], the number of p; and s; for each node in the array

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:7

1 for(n = ©; n < NODE_NUM; n++){ //bottom-up traversal on all nodes
2 node_prob = 0;

3 for(c = @; c < edge_num[n]; c++){ //edge traversal Loop
4 #pragma HLS pipeline //HLS pipeline pragma
5 edge_prob = prob[prime[c]] * prob[sub[c]] * weight[c];

6 node_prob = (mar == 1) ? node_prob + edge_prob : //add for MAR

{(edge_prob > node_prob) ?
edge_prob : node_prob}; //max for MPE

}
prob[n] = node_prob; //update prob after traversing all edges

}

O 00 N

Fig. 3. Baseline HLS implementation for PSDD acceleration.

edge_num[], and the node index of p; and s; in prime[] and sub[]. The node probability values
are stored in an integer type.

The array prob[] is accessed very frequently—we need to fetch the probability for primes and
subs (line 5) and update the result (line 8). Thus, prob[] is stored in the FPGA internal memory.
Moreover, a considerable amount of memory is required to process large networks. The natural
choice is to assign prob[] to Ultra-RAM (URAM) [42], which is the largest internal memory
resource” in Alveo U250.

The most commonly used optimization techniques for accelerating an HLS kernel are
pipelining and unrolling [40]. One could consider pipelining the loop in line 1 of Figure 3 and
unrolling the loop in line 3, but edge_num[] is a variable that makes it difficult for HLS compilers
to determine the unrolling factor. Another option is to pipeline the loop in line 3—the code after
applying the pipeline compiler directive (#pragma HLS pipeline) is shown in Figure 3. We will
refer to this code as the baseline implementation.

To test the baseline implementation, we utilize a PSDD dataset compiled from the Master-
mind network using the method described in [35]. The Mastermind network is a commonly used
Bayesian network that models the Mastermind game. This network exhibits a local structure [5]
that can be exploited when compiling the PSDD. Unlike general PSDD graphs, each node in the
Mastermind network has at most two children nodes because it is synthesized from a BN [35]. But
we found that such sparsity in the network causes a severe negative effect on the performance of
an HLS-based implementation.

The problem we faced was the low processing rate of the pipelined loop. Even after adding the
pipeline pragma (line 4 of Figure 3), the averaged processing rate in the Mastermind dataset turned
out to be only 0.06 nodes per cycle. This is because, in the Mastermind dataset, each node has only
1.1 prime and sub-child nodes on average. When the innermost loop is invoked, the loop requires
12 cycles of pipeline epilogue/prologue overhead cycles. If the averaged loop iteration is only 1.1,
then the overhead dominates the time spent in actual computation.

To solve this problem, we refactor the code to be edge-centric [32, 44]. That is, we flatten the
outer loop in line 1 of Figure 3 with the inner loop in line 3, and we iterate on the index of the oper-
ations. The modified HLS code is shown in Figure 4. Now there is only a single loop that traverses
through all the edges in a bottom-up fashion (line 1 of Figure 4). Even if each parent node has
only a few child nodes, the loop no longer suffers from the repetitive pipeline epilogue/prologue
overhead cycles.

Although the new processing scheme has the potential to achieve a higher processing rate, the
naive HLS implementation in Figure 4 has several new problems. One of them is the overhead of

2 Alveo U250 has 45 MB of Ultra-RAM (URAM) and 12 MB of Block-RAM (BRAM).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:8 Y.-k. Choi et al.

1 for(e = @; e < EDGE_NUM; e++){ //bottom-up traversal on all edges

2 #pragma HLS pipeline

3 node_prob = prob[parent[e]];

4 edge_prob = prob[prime[e]] * prob[sub[e]] * weight[e];

5 prob[parent[e]] = (mar[e] == 1) ? node_prob + edge_prob : //MAR
{(edge_prob > node_prob) ?
edge_prob : node_prob}; //MPE

6 }

Fig. 4. Naive edge-centric processing in HLS.

(time)

O
(read addr) ;c(oi?yc\ilt)
(write addr) (m

write latency)

Fig. 5. A possible dependency problem for Figure 1(a) after adopting edge-centric processing in Figure 4.

storing more data. We need the index parent to keep track of the parent of each edge (lines 3 and
5 of Figure 4). This is a minor issue, and it can be easily solved with additional memory.

The next issue is the dependency problem. Reading probability, performing the multiplication
and the max/add operations, and writing probability take several cycles of latency—for an integer
variable, it took 12 cycles. This is a true dependency, because a probability written to a parent node
may be read as a child prime/sub node probability in subsequent iterations. Forcing the HLS tool
to ignore this dependency results in a read-after-write (RAW) hazard. An example is illustrated
in Figure 5— for the PSDD in Figure 1(a), the output (node 2) after processing nodes 6 and 7 will
be written 12 cycles later. The RAW hazard occurs if the probability for node 3 is read before the
updated value is written. This challenge will be addressed in Section 4.1.

Moreover, the naive edge processing scheme has a local memory port limitation problem. Even if
the dependency problem is somehow solved, the loop in Figure 4 cannot be pipelined to 1 because
the probability (colored red) is read three times (from addresses prime[e], sub[e], and parent[e])
and written once (to address parent[e]) every iteration. We cannot solve this problem with the
true dual-port mode [42] because prime[e] and sub[e] addresses may be different; the true dual-
port mode only supports two independent addresses. The array partitioning technique [12, 40]
also does not help because we cannot guarantee that the read addresses and the write address will
always be different. We will discuss the solution to this local memory port problem in Section 4.2.

The last issue is the lack of adequate parallelism. To increase parallelism, we could consider par-
tial unrolling [11] of the loop in line 1 of Figure 4. But such an approach also causes a dependency
problem because the primes and subs of an iteration may be written in the next iteration. For a
small graph, we can resolve this issue by exploiting the operation-level parallelism—that is, we
could map the entire AC onto the FPGA similar to [37, 43]. But this is not feasible for Mastermind
because we operate on a large graph with 42,558 nodes. It is possible to implement a part of the
graph on the FPGA, but the irregularity of the graph makes it difficult to supply the operands to
each OR/AND-gate without stalling. We will explain how to solve this problem in Section 5.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:9

(read stalled) (time)
Al

(read addr)

bubble
bubble

3 [(no conflict)

1 1

(write addr)

w

(mul&max&URAM
write latency)

Fig. 6. Removing the inter-depth dependency problem in Figure 5 with bubble insertion.

4 PROCESSING RATE OPTIMIZATION IN HLS

In this section, we propose an HLS-based method to improve the processing rate and the II of the
edge-centric processing scheme.

4.1 Depth-Batched Static Scheduling

We will describe how to solve the dependency issue (Section 3) that emerged from the edge-centric
processing scheme. There are two approaches to this problem. One is a dynamic solution that
detects nodes with data hazards. An example can be found in [44] which employs a complex mutex-
based locking mechanism on the target node. But this increases the hardware cost. Instead, we take
a static approach. This is a hardware-friendly solution exploiting the fact that the PSDD structure
of a dataset is fixed, even for different queries. This characteristic allows us to explicitly manage
the scheduling in an offline compilation.

A related static approach was proposed for sum-product network (SPN) in [24], where they
formulate an Integer Linear Programming (ILP) problem for the modulo scheduling and the
binding of arithmetic operators. In this article, we take a more lightweight approach to quickly
determine the static schedule. We first perform a topological sorting of the nodes starting from
the head node of PSDD tree, and we assign a tree level (depth of a tree) to each node. For the
example in Figure 1(a), node 1 is assigned depth 0, nodes 2, 3, 4, and 5 are assigned depth 1, and
nodes 6 and 7 are assigned depth 2. Then we batch-process all nodes in the same depth. Since we
take a bottom-up approach, the nodes with the largest level (deepest depth) are first processed in
a batch, and then the nodes in the upper level are batch-processed, and so on.

After this process, all the primes and subs writing to a common parent node will have the same
depth and can be easily controlled to avoid the dependency problem (more details in the com-
mon parent clustering approach in Section 4.2). The only RAW hazard now remaining is the inter-
depth RAW hazard—an example was illustrated in Figure 5 where node 3 (depth 1) is read before
the probability write in-depth 2 is completed. This issue is resolved by adding bubbles (no-op)
into the computation slots that have inter-depth dependency problems (Figure 6). PEs will wait
until the conflicting write operation to node 3 is resolved. The computation pipeline is stalled as a
result, but because we batch-process each depth, the proportion of the stall is small compared to
the number of nodes processed in each depth. In the Mastermind dataset, the proportion of bubble
cycles is only 0.11%.

Figure 7 presents the HLS kernel code after applying static scheduling. We pack the bubble
instruction, the node index of primes/subs, and weights into the array edge_schedule[]. Then
the array is read and decoded in the PEs (lines 6-7 of Figure 7). The bubble instruction stops the
probability storage from being updated (lines 9-12 of Figure 7). Also, we add the “dependency inter
false” pragma on array prob[] in line 4 of Figure 7 to inform the HLS tool that the dependency is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:10 Y.-k. Choi et al.

node_prob = 0; //initialize node probability
for(e = ©; e < EDGE_NUM; e++){ //bottom-up traversal on all edges
#pragma HLS pipeline
#pragma HLS dependency inter false var=prob
//programmer manages dependency
schedule = edge_schedule[e]; // reads static schedule from DRAM
{bubble, mar, node_end, parent, prime, sub, weight} = schedule;
// decode schedule

NOuvuh wNnER

[04]

edge_prob = prob[prime] * prob[sub] * weight;
9 if(bubble == false){ //no-op if there is a bubble instr
10 node_prob = (mar == 1) ? node_prob + edge_prob : //MAR
{(edge_prob > node_prob) ?

edge_prob : node_prob}; //MPE
11 prob[parent] = node_prob; //store updated prob
12
13 if(node_end == true){ node_prob = 0; } //init for next node
14 }

Fig.7. The HLS code after applying the depth-batched static scheduling (Section 4.1) and the common parent
clustering (Section 4.2) [blue variables are the decoded static schedule, red variables are the accesses to the
probability array, and green directive allows a programmer to manage dependency].

now managed by the programmer. The static schedule is accessed once per edge per query,” so it
is stored in the external DRAM and passed to the processing elements in a streaming fashion.

The order of processing is the same for the same dataset, so we can generate the static schedule
offline and reuse it for various different PSDD queries. Since it is determined offline, the proposed
solution does not increase the hardware cost. Also, whereas the ILP-based approach [24] typically
takes tens of minutes to determine the schedule, our approach can be finished in a matter of a few
seconds because assigning a depth to all nodes in a tree has a low complexity (more details to be
presented in Sections 5.1 and 6.2).

In addition to resolving the dependency problem, the static scheduling scheme provides another
benefit of reducing the probability of storage. Rather than allocating one node’s probability to each
address space in the array prob[], we time-share the array. This is possible because the address
space for nodes that will be no longer be accessed can be reused to store other nodes’ probabilities.
For the example in Figure 1(a), the probability for node 3 only needs to be stored in a memory
space from the clock cycle when nodes 6 and 7 are processed to the clock cycle when node 1 is
processed. The space allocated for node 3 can be used for other nodes in all other clock cycles. This
technique reduces the node storage for the Mastermind dataset by 81%.

If the MPE and MAR queries are implemented on separate PEs, we can insert fewer bubbles to
an MPE query because the max operation is simpler than addition (6 vs. 12 cycles latency). But
instead, we apply the same static schedule for both types of queries. This is because we utilize
the same pipeline architecture. We wanted to quickly switch between different types of queries
without reprogramming the FPGA. This helps decrease the computation latency even if there is a
diverse type of incoming queries.

4.2 Resolving Memory Port Limitation in HLS

As demonstrated in Section 3 and Figure 4, we cannot achieve an IT of 1 in the naive edge processing
scheme because of the internal memory port limitation problem. We will detail how to solve this
problem in the HLS syntax.

3The schedule is reused in the query-level parallelism that will be explained in Section 5.2.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:11

1 node_prob = 0; //initialize node probability
2 for(e = ©; e < EDGE_NUM; e++){ //bottom-up traversal on all edges
3 #pragma HLS pipeline
4 #pragma HLS dependency inter false var=p_prob, s_prob
5 //programmer manages dependency
6 schedule = edge_schedule[e]; // reads static schedule from DRAM
7 {bubble, mar, node_end, parent, prime, sub, weight,
parent_is_prime} = schedule; // decode schedule
8 edge_prob = p_prob[prime] * s_prob[sub] * weight;
9 if(bubble == false){ //no-op if there is a bubble instr
10 node_prob = (mar == 1) ? node_prob + edge_prob : //MAR
{(edge_prob > node_prob) ?
edge_prob : node_prob}; //MPE
11 if(parent_is_prime == 1){ p_prob[parent] = node_prob;} //store
12 else { s_prob[parent] = node_prob;} //prob
13}
14 if(node_end == true){ node_prob = 0; } //init for next node
15 }

Fig. 8. Il reduction to 1 after applying the probability array separation technique (Section 4.2).

The first part of the solution consists of clustering the edges of a common parent. If we adjust
the static schedule so that an edge that shares the same parent is processed immediately after
one another, the updated probability value (the maximum value in MPE and the summation value
in MAR) can be read from a temporary register. This can be observed in line 10 of Figure 7—a
temporary register node_prob is read and written in the same line (the value is also written to
the probability URAM in line 11). There is no RAW hazard because the addition to node_prob is
serialized and can be done in a single cycle. When we process an edge that does not have the same
parent as the previous edge, we can initialize node_prob using a flag from the static schedule
(line 13). By adopting this technique, one probability array read is removed. This approach can
naturally be combined with the depth-batched processing in Section 4.1 because the child of a
common parent has the same depth in a tree.

The second part of the solution is the probability array separation. We exploit the fact that a
node is either a prime node or a sub node, and it cannot be both. We separate the node probability
storage for primes and subs. The revised HLS code is shown in Figure 8. One data is read from
the prime node probability storage (p_prob[]), and one data is read from the sub node probability
storage (s_prob[]). They are used for the computation in line 8. If the parent node is a prime,
the output of each iteration is written to p_prob[] (line 11). It is a sub, the output is written
to s_prob[] (line 12). With this code modification, p_prob[] and s_prob[] have one read and
one write per iteration, and we can reduce the II to 1. This approach does not double the URAM
consumption because there are approximately the same number of primes and subs, and the size
of p_prob[] and s_prob[] are each about the half of prob[].

5 PARALLELIZATION

The work in [37, 43] achieves a large operation-level parallelism by mapping the entire graph
on the FPGA. But this approach has two limitations. First, the amount of available parallelism
decreases when the graph size is small. Second, it is difficult to parallelize a large graph that cannot
fit on the FPGA. The Mastermind dataset suffers from the second problem since it is composed of
42,558 nodes. Therefore, we need other types of parallelism to increase the throughput. In this
section, we describe two solutions to overcome this problem.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:12 Y.-k. Choi et al.

«—-p/s_prob|,_ _ _ _ _ _____ node_ | __ _ _ _
£z1 ax |7 prob |*
i f T | PLMmux e,
(to PE 1,2,3) . n
TX_PE_ID node_en : o @
(from DRAM) e e d - - =

1
I
1
1
I
1
.
_,schedule 1 ___@__
decoder : I
1
1

use_local_mem

! |

prime, sub, parent, _:_ p_prob ! s_prob !

bubble, is_parent_prime 1 LLURAM) : (URAM) I

fomPE123)R* PEIG ¥ __f l

- = >p/s_prob|l _ _ _ _____._ L :
- -—{ (RX) PEO

Fig. 9. PEO architecture when the subtree-level parallel factor is four.

5.1 Subtree-level Parallelism

We increase the throughput of the PSDD accelerator by processing multiple subtrees in parallel.
We split the prime and the sub probability memory (p_prob and s_prob) into multiple subtrees
and attach OR/AND-gate operators to each memory. The architecture is illustrated in Figure 9. The
address of the memory (prime, sub, parent) is read from the schedule decoder (the decoded control
signals are colored in blue). The probability of the prime and sub nodes can be directly fed into
the operators if the data exists in the local memory. If not, it will be read from the local memory of
other PEs. Prime and sub node probability can be sent to other PEs as well. The data will be selected
based on the schedule-decoded signal use_local_mem, and the target ID of the PEs are selected
with signals TX_PE_ID and RX_PE_ID (these control signals were omitted in Figure 8 for simplicity).
After we compute the AND gate (multiplication) with weights, we calculate a new temporary node
probability node_prob with addition or max, depending on the type of the query (selected with
the control signal mar). Register node_prob may be initialized by the signal node_end if the child
nodes no longer share a common parent node (Section 4.2). Register node_prob will be written to
p_prob or s_prob depending on the control signals bubble and is_parent_prime. They may be
sent to other PEs if the result is read in other PEs.

Since each PE needs to read a separate schedule from DRAM, we attach a DRAM access module
per PE. Alveo U250 has four DRAM channels, and thus we employed the subtree parallel factor
of four.

Next, we need to determine how to assign the nodes to different PEs. Initially, we have equally
partitioned the nodes in each level and assigned them to different PEs. However, we found that
68% of the instructions in the Mastermind’s static schedule were either sending or receiving data
from other PEs. Even though equal load balancing was achieved, the parent nodes in a different
level were not guaranteed to be in the same PE.

We solved this problem with a graph coarsening technique. The new PE assignment process
is shown in Algorithm 1. Given a PSDD graph, we first determine the tree depth of each node
with topological sorting (line 3). Then we traverse in a bottom-up fashion (lines 4 and 5) and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:13

ALGORITHM 1: PE assignment of nodes
1 Input: PSDD graph
2 Output: List of nodes assigned to each PE: ITO, P_El, o ,m
3 Assign depth to all nodes
4 Capax < All nodes with the largest depth (dMAX)
5 for d = dMAX, ..., 1do
6 Cyq <0
7 for each cluster Cfi € Cy do

8 coarsened «— false
9 size_limited < false
10 for each cluster Cfi—l € Cy_1 do
11 if Any nodes in Parent(Cl"i) exists in C{i_l then // share common parent nodes
12 if |C), | UCL| < N/S then
J J i
13 Cioi e Cvey
14 coarsened «— true
15 else // cannot be coarsened since it will exceed the cluster size limit
16 L size_limited « true
17 break
18 if coarsened == false then
19 if size_limited == false then
20 L Append {C};, U Parent(C})} to Cg—y
21 else
22 L Append C); to Cy—;

// The below is a multi-way partitioning based on LPT scheduling
3 sort(Co) // in a descending order of the cluster size
forcg,Cé,...,e C_odo
25 L Insert all the nodes in Cé into one of PEy, PEq, ..., PEs bins if the number of nodes in the bin is the
smallest after insertion.

Iy

N}
=

try to coarsen the cluster of nodes that share the same parent node (lines 6-22). For each cluster
in-depth d (line 7), we look up the clusters in-depth d — 1 for common parent nodes (lines 10
and 11). If found, the common parent node and the child nodes are grouped together (line 13).
This process can naturally be combined with the common parent clustering method described in
Section 4.2. The coarsening continues until the size of the cluster reaches the limit N/S (line 12),
where N is the number of all nodes and S is the subtree level parallelism factor. If the size limit
is reached, the cluster is appended to the next depth cluster vector without further coarsening
(line 22). If a cluster can find no other clusters with a common parent node, the parent nodes are
merged with the cluster and appended to the next depth cluster vector (line 20).

After obtaining a list of coarsened clusters for depth 0, we perform multi-way partitioning. Simi-
lar to the largest processing time (LPT) algorithm [20], we sort the clusters in a descending order
of its size (line 23). The nodes in the sorted clusters are inserted into one of the S bins where the
sum of nodes after insertion is the smallest (line 26). All nodes are assigned a PE after this process.

If the nodes with an edge connection are assigned different PEs, inter-PE communication of
probability is needed. For the Mastermind dataset, we discovered that most of the communication

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:14 Y.-k. Choi et al.

Table 1. Resource Consumption and Performance After Increasing
Subtree Parallel Factor

Par. Intercon. | LUT/FF/DSP/BRAM/URAM | CLK GOPS
1 Full 2.3 K/4.4 K/3/3/16 300 0.86
2 Cross 4.3 K/8.3 K/6/9/16 300 1.7
4 bar 8.5 K/16 K/12/33/16 234 2.6
4 Chain+[21] 12 K/22 K/12/33/16 300 3.2

occurs near the top part of the tree using the proposed algorithm, and the proportion of inter-PE
communication instruction is reduced to 2%. But we also noticed that the proportion of inter-PE
communication worsens to 30% for certain datasets (more details in Section 6.2). It remains as a
future work to further improve the node assignment strategy.

Table 1 shows the resource consumption for various configurations. The amount of computa-
tion resources (LUT and DSPs) grows almost proportionally as the subtree parallel factor increases.
The URAM consumption, on the other hand, stays approximately the same because the number
of nodes processed by each PE decreases as the subtree parallel factor increases. This can be con-
firmed in the table which reveals that the URAM consumption stays at 16 even though the parallel
factor increases from 1 to 2 to 4. The BRAM consumption grows rapidly (3 to 9 to 33) with a
larger subtree parallel factor because the number of connections increases quadratically with a
full crossbar structure.

An important observation from Table 1 is the significant drop in the kernel clock frequency
down to 234 MHz when the subtree parallel factor is 4. In Alveo U250, the four DRAM channels
are located in a physically separated Super Logic Region (SLR) [41], and 16 (=4 X 4) inter-PE
FIFOs’ SLR crossings have a negative impact on the routing process.

To solve this problem, we changed the inter-PE communication architecture to a 1D chain (thus
reducing the number of FIFOs crossing the SLR), and we added signal relay modules in the FI-
FOs using Autobridge [21]. The frequency is improved to 300 MHz as a result. Even though the
inter-PE FIFOs are now partially shared among multiple PEs, the performance is not significantly
degraded by the data congestion because of the small proportion of inter-PE communication in
the Mastermind dataset. The cost of the improved frequency is the larger LUT consumption (from
8.5 K to 12 K). This is due to the inter-PE chain modules and the signal relay modules. We obtain
a speedup of 3.7 (=3.2/0.86 GOPS) when using a subtree parallel factor of four.

5.2 Query-level Parallelism

The BRAM and the LUT consumption of the inter-PE interconnect for subtree-level parallelism
increases rapidly as we add more PEs. Also, each PE requires a separate DRAM access module to
fetch the static scheduling information.

In order to increase the parallelism even with a limited number of DRAM channels, we propose
query-level parallelism. As the name suggests, we compute multiple queries in parallel. The static
schedule from DRAM is shared among all different queries. The probability storage, AND/OR
gates, max operations, and node_prob storage in Figure 9 are kept separate for each query (these
variables are duplicated in the HLS code). Therefore, increasing the level of parallelism increases
the LUT/FF/URAM usage of PEs, not the complexity of the inter-PE interconnect nor the DRAM
channel usage.

Since the static schedule is shared among different queries, no modification is required for the
schedule data. But we need to change the ordering of the literal values in the DRAM so that they
can initialize the probability storage in parallel. The vector of input literal values for a query is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:15

90.0 89

80.0

70.0

60.0

50.0

40.0

30.0

20.0 13

10.0
0.0

46
26

Performance (GOPS)

1 2 4 8 16 32
Query-level parallel factor

Fig. 10. Speedup after increasing query-level parallelism in the Mastermind dataset.

Table 2. Datasets used for Experiment

Dataset FS-04 Mastermind Students Blockmap
of nodes 52,789 42,558 6,921 3,548
of leaf literal nodes | 528 2328 687 1,218
of edges 73,048 45,272 7,582 2,334
of edges per node 1.4 1.1 1.2 1.0

originally placed next to the literal values of another query. After reading the literal values for
multiple queries (that correspond to the query-level parallel factor) from the DRAM, the accelera-
tor transposes the literal input data so that different queries’ values for the same literal are placed
adjacent to each other. This allows the probability storage to be initialized in a SIMD style (the ini-
tialization timing is the same and the value is different) at the beginning of the query computation.

Figure 10 presents the effect on the performance after increasing the query-level parallelism. It
shows that the performance improves from 3.2 GOPS to 89 GOPS when we increase the query-
level parallel factor from 1 to 32. The improvement is slightly sub-linear because it is more dif-
ficult to close the timing as the resource utilization is increased. The clock frequency dropped
from 300 MHz to 273 MHz for the design with a 32 query-level parallel factor. The LUT/FF/URAM
consumption of PEs and the BRAM consumption of the inter-PE chain increase approximately
linearly with the query-level parallelism factor. The storage for transposing the literal values occu-
pies about 16 K LUTs and 32 K FFs when the subtree-level parallel factor is 4 and the query-level
parallel factor is 32 (the resource breakdown will be presented in Section 6.3).

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup

For development, we used the Xilinx Vitis 2019.2 unified software platform [39]. The kernel was
programmed in C++ and compiled with Vivado HLS 2019.2 [40]. The tests were run on-board, us-
ing the Xilinx Alveo U250 [41] platform. The probability is stored in 32b integers. The performance
is measured in Giga Operations per Seconds (GOPSs).

In addition to the Mastermind dataset (which has been used for the optimization and paral-
lelization process), we also tested our accelerator with three more datasets from [6]: FS-04 (friends
and smokers), Students (and professors), and (random) Blockmap datasets (shown in Table 2).
Each dataset is a grounded relational Bayesian network, which is a very challenging problem for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:16 Y.-k. Choi et al.

Table 3. Schedule Generation Time (in Seconds)

Dataset | FS-04 Mastermind Students Blockmap | AVG
Time 2.5 0.60 0.088 0.036 0.81

Table 4. Performance and Cumulative Speedup with
Proposed Optimizations (Mastermind dataset)

Base Proc.rate Subtree Query
line opt. paral. paral.
GOPS 0.041 0.86 3.2 89
Speedup - 21X 3.7X 28X
Cum SpdUp | 1.0X 21X 78X 2,200X

classical inference methods. Like Mastermind, these datasets exhibit a vast amount of local struc-
ture, and PSDD can exploit this characteristic and achieve exact, tractable inference. The datasets
contain 3,548—52,789 nodes, and we cannot fit all the operators for the entire graph on the FPGA.
The datasets have a sparse connection—having 1.0-1.4 edges per node (excluding leaf literal nodes).
We also list the number of the leaf literal nodes and edges in the datasets.

6.2 Acceleration Results

The time required to generate the schedule for depth-batched processing (Section 4.1), common
parent clustering (Section 4.2), and subtree-level parallelism (Section 5.1) is shown in Table 3. The
scheduling can be performed in seconds due to its low complexity. Also, the scheduling only needs
to be done once per dataset, and it can be reused across many different queries.

We have already analyzed the effect of increasing the subtree-level parallel factor and the query-
level parallel factor in Sections 5.1 and 5.2, respectively. In this section, we present the cumula-
tive effect of each optimization starting with the baseline HLS code in Figure 3. After applying
the edge-centric processing with the static scheduling, the common parent clustering, and the
probability array separation, the processing rate no longer suffers heavily from the long pipeline
epilogue/prologue cycles (12 cycles) even though there are only a small number of child nodes
(average:1.1). Also, we can achieve II of 1. The performance is improved by 21X (Table 4). The
subtree-level parallelism of four improves the performance by 3.7X (refer to the explanation in Sec-
tion 5.1), and the query-level parallelism of 32 leads to a speedup of 28X as observed in Figure 10.
After applying all optimization steps, we achieved a cumulative speedup of 2,200X compared to
the baseline code. The clock frequency of the final design is 273 MHz.

After applying all the proposed optimizations, we have measured the performance in various
datasets. The result is presented in Table 5—the first row is calculated after considering the FPGA
execution time only, and the second row is calculated after considering both the FPGA execution
time and the PCIE transfer time (of the graph processing static schedule and the literal values
of each query). Compared to other works that assume the entire graph can fit on the FPGA, our
design architecture is scalable and retains a relatively high performance for datasets of various
sizes (see Section 7 for quantitative comparison). This is because the proposed design reads the
graph structure information from the DRAM and the performance does not depend on the size of
the graph that is mapped to the FPGA.

The maximum FPGA-only performance is 89 GOPS (Mastermind), and the averaged FPGA-only
performance is 59 GOPS. But there is some performance variance among the datasets. For the
Blockmap dataset, the low performance is due to the high proportion (34%) of leaf literal nodes

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:17

Table 5. Performance in Various Datasets (in GOPS)

Dataset FS-04 Mastermind Students Blockmap | AVG
Performance (FPGA only) 62 89 56 30 59
Performance (FPGA+PCIE) | 61 77 45 17 50

Table 6. Performance Comparison Between 32-Thread Multicore CPU
and Proposed FPGA Implementation (in GOPS)

Dataset | FS-04 Mastermind Students Blockmap | AVG
CPU 1.9 2.2 4.2 3.3 2.9
FPGA 62 89 56 30 59

Speedup | 32X 41X 13X 9X 20X

(Table 2)—much of the execution time is spent on fetching and transposing the value of literal
nodes rather than processing an edge. Apart from this factor, the performance difference is mostly
due to the effectiveness of the subtree parallelization step. The amount of inter-PE communication
(Section 5.1) is 2% for Mastermind, 23% for Students, 27% for Blockmap, and 30% for FS-04, and the
data congestion due to the simple 1-D chain architecture is further degrading the performance.
Moreover, the coarsening step explained in Section 5.1 introduces an unbalanced workload, which
accounts for the rest of the performance difference. It remains as a future work to reduce these
overheads without severely complicating the inter-PE communication architecture.

The performance drops to an average of 50 GOPS if we consider the PCIE transfer time in
addition to the FPGA execution time. The static schedule is fetched from the DRAM and sent to
the FPGA for each batch of queries, but it only needs to be transferred once through the PCIE
because the same schedule is reused in the DRAM. The literal values for each query, on the other
hand, are transferred through both the PCIE and the DRAM only once—they are not reused in the
DRAM. This leads to a larger performance drop for the Blockmap dataset (30—17) compared to
FS-04 dataset (62—61)—the Blockmap dataset has a larger proportion of literal nodes compared
to the FS-04 dataset (34% vs. 1%, Table 2). This causes more time to be spent on transferring the
literal values through the PCIE.

Table 6 compares the performance between a multicore CPU implementation and the proposed
FPGA implementation. We use a two-socket Intel Xeon Gold 6244 server class node,* and we par-
allelize the loop that processes the queries with 32 OpenMP threads (the parallel factor is the
same as the FPGA query-level parallelism). To avoid contention, prob[] has been separated for
each OpenMP thread (the memory allocation time is excluded from the execution time). The CPU
implementation has been optimized with O3 flag. The experimental result shows that the average
performance is 2.9 GOPS—so even though we use 2X CPUs, the performance is 20X slower than the
proposed FPGA implementation. The reason is mainly related to how fast the data can be supplied
to the computation units. The proposed FPGA static scheduling provides operands to the OR/AND-
gate in almost every cycle. In a CPU, this is not guaranteed since the data for thousands of nodes
and multiple threads cannot fit into the L1/L2 cache (notice that, unlike the FPGA performance,
the CPU performance is generally higher in smaller datasets). Also, the superior performance is
attributed to the customized computation/memory pipeline.

We will present a quantitative comparison with related works in Section 7.

4Xeon 6244 and Alveo U250 are based on a comparable technology (14 nm vs. 16 nm) and have the same release year (2019).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:18 Y.-k. Choi et al.

Table 7. Post-PnR Resource Consumption on Alveo U250

LUT FF DSP BRAM URAM
DRAM Access 40K 50K 12 21 0
PEs 42K 66K 256 0 256
Inter-PE Chain | 33K 76K 0 684 0
Total Res. Cons. | 115K 193K 268 705 256
Util. Ratio 77% 62% 2.2% 31% 20%

6.3 Accuracy and Resource Consumption

As mentioned in the experimental result, the bitwidth of the probability variables is 32b. After
comparing with the MPE and the MAR results of the floating-point-based CPU implementation,
we found that the signal-to-quantization-noise ratio (SQNR) is 66 dB-97 dB, with an average
of 85 dB. We can conclude that there is almost no accuracy loss in employing the fixed-point arith-
metic because this SQNR value exceeds the typically expected fixed-point representation accuracy
(around 30 dB or more).

Table 7 details the post-PnR resource consumption of the PSDD acceleration kernel. We ex-
clude the resource used in the static region and the DRAM controller. The table reveals that the
PEs consume most of the DSPs (96%) for the computation. The PEs also require a large amount
of URAM (256) to store the node probability. The inter-PE chain (introduced in Section 5.1 for
the subtree-level parallelism) consumes several BRAMs (684) because of the FIFO buffers among
the PEs. It also consumes a large portion of LUTs to implement its control circuits. About half
of the LUTs/FFs in the DRAM access modules are used for transposing the literal values for the
query-level parallelism (Section 5.2).

Among all the FPGA resources, the one with the highest utilization is BRAM. But even the
highest utilization ratio is relatively small (31%). This is because we wanted to ease the PnR process
by keeping the consumption under 50% for all resources. Thus the subtree-level parallelism and
the query-level parallelism were limited to 4 and 32, respectively.

7 RELATED WORKS

There are several recent articles that accelerate graph applications (e.g., sparse matrix-vector mul-
tiplication) on an FPGA. HitGraph [44] is a high-performance edge-centric graph accelerator with
several performance optimization techniques such as node buffer and data layout optimization.
ThunderGP [7] is an HLS-based graph processing framework that automatically builds FPGA ac-
celerators based on its high-level APIs. It supports several efficient memory access patterns such
as scatter/gather, coalescing, and prefetching. However, these articles target general graph appli-
cations and cannot exploit unique characteristics that exist in graph models such as BN, SPN, or
PSDD.

In the remainder of this section, we will review related FPGA acceleration works for the BN and
the SPN.

The Bayesian Computing Machine (BCM) has been presented in [25]. It supports the sum-
product algorithm and the max-sum algorithm. Their hardware is composed of a network of proces-
sors and memory connected through a switching crossbar. They propose an optimal scheduling of
computation and memory units to minimize the execution time. This work has been implemented
on the Berkeley Emulation Engine FPGA platform [1].

The work in [43] uses a high-level synthesis tool chain similar to our work. They accelerate the
Arithmetic Circuit on the Xilinx Zynq embedded platform. They provide an option to reconfigure
the network parameters with the data fetched through the AXI bus. The parallelism is achieved by

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

FPGA Acceleration of PSDDs with High-level Synthesis 18:19
Table 8. Graph Size, Platform, Resource Consumption, and Performance Comparison with
Related Works Implemented on FPGA
HitGraph [44] ThunderGP [7] | BCM [25] [37] [24] Our work
Model General General BN SPN SPN PSDD
of nodes 0.7M-41 M 45K-21 M N/A 11-287 63-2,699 3,548-52,789

Graph Info DRAM DRAM DRAM On-chip N/A DRAM

Num Repr. N/A 32b int float double [38] 32b int
Platform Vvusp VCU1525 Virtex-5 VC709 Ultra%6 U250
CLK (MHz) 200 250 N/A 200 205-350 273
LUT 380 K 1,100 K N/A 78 K-346 K 27 K-59K 115K
DSP 62 150 N/A 60-1.5K 54-342 268
GOPS N/A N/A 20 2.1-57 1.9-13 30-89
GTEPS 1.0-3.4 1.7-6.4 N/A N/A N/A 10-30

compiling the entire network onto the FPGA, but such an approach limits the network size to no
more than 511 nodes. Also, their accelerator achieves a performance of only about 0.01 GFLOPS,
possibly due to the data transfer overhead.

The work in [37] accelerates the SPN inference problem on a Virtex-7 FPGA. They map the SPN
tree to a hardware datapath composed of pipelined functional units and shift registers. Similar to
[43], the entire SPN tree is implemented on-chip. In a separate work [24], they present an archi-
tecture where the operators are time-shared—which makes it possible to process larger graphs.
The number representation in a SPN graph can be efficiently optimized based on the histogram
of the variables—readers are referred to [38] for an automated method that finds the best number
representation.

The work in [34] converts a PSDD graph to a SPN graph by replacing AND with products and
OR with sums. The resulting SPN graph is accelerated with a tree of customized processors, each
with private registers. Their simulation result reports a peak performance of 11.6 operations/cycle.

Compared to these works, our work concentrates on developing an HLS-friendly optimization
method to improve the processing rate and parallelism in PSDD graphs. A quantitative comparison
is shown in Table 8. Since each work uses a different graph structure, number representation,
and dataset, it is difficult to make a direct comparison. Instead, the performance is provided in
either GOPS or Giga Edges Traversed Per Second (GTEPS). The table also presents the graph
size, resource consumption, platform, and performance. The performance of [37] is estimated by
multiplying the number of add/mul operations by the reported throughput (FPGA time only).

Our work can outperform accelerators that do not assume a particular graph model (e.g., [44] or
[7]) because our processing engine can exploit PSDD-specific characteristics—such as each node
having a small number of child nodes or being connected to prime and sub nodes. Our work also
outperforms related BN [25] and SPN work [24] by 3.0X and 9.0X on average, respectively. These
works read the graph information from memory similar to our work. It is unclear if our work
significantly outperforms [37]—it is possible that the higher frequency (273 MHz vs. 200 MHz)
may have been achieved due to more advanced FPGA technology (Alveo U250 vs. VC709). This
may have led to the better performance (59 GOPS vs. 31 GOPS, on average). It is also difficult to
make a direct comparison on the LUT/DSP consumption, because our work is operating on 32b
integers. But it is still worth noting that [37] can only process relatively smaller graphs with the
entire SPN tree being mapped to the FPGA operators—whereas our work can process larger graphs
efficiently with the proposed static scheduling method. Also, our work has relatively less variance
on the performance with a different graph size because of the processing rate optimizations in
Section 4.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

18:20 Y.-k. Choi et al.

8 CONCLUSION

We presented an HLS-friendly accelerator design for PSDD. We found that changing the processing
scheme from node-centric to edge-centric helps maintain a high processing rate even if there are
only a few number of children per parent node. This led to a dependency problem, which was
solved with static scheduling. The throughput of the PSDD pipeline was improved to II of 1 with
common parent clustering and array separation techniques. We also proposed subtree-level and
query-level parallelization methods that can be used to improve the computation speed of a large
tree that cannot fit on an FPGA. Experimental results show that the optimizations improve the
performance of the baseline implementation by 2,200X. The proposed architecture has a speedup
of 20X over CPU implementation, and it outperforms the BN and SPN FPGA acceleration work that
stores the graph information in the memory by 3.0X-9.0X. As a future work, we plan to further
reduce the performance variance among different datasets with load balancing improvement and
inter-PE communication reduction. This PSDD acceleration project has been open-sourced at https:
//github.com/carlossantillana/psdd/tree/alveo250.

ACKNOWLEDGMENTS

We thank Yuze Chi, Vidushi Dadu, Licheng Guo, Jason Lau, Michael Lo, Tony Nowatzki, and Yizhou
Sun for the discussion and the help with the experiments. We also thank Marci Baun for proof-
reading this article.

REFERENCES

[1] Berkeley. 2008. BEE3 (Berkeley Emulation Engine). Retrieved 24 July, 2022 from https://www.microsoft.com/en-us/

research/project/bee3/.
[2] Simone Bova. 2016. SDDs are exponentially more succinct than OBDDs. In Proceedings of the AAAI Conference on
Artificial Intelligence. AAAI Press, 929-935.

[3] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud Pedram, and Yanzhi Wang. 2018.
VIBNN: Hardware acceleration of Bayesian neural networks. ACM SIGPLAN Notices 53, 2 (2018), 476-488.

[4] Hei Chan and Adnan Darwiche. 2006. On the robustness of most probable explanations. In Proceedings of the 22nd
Conference in Uncertainty in Artificial Intelligence.

[5] Mark Chavira and Adnan Darwiche. 2008. On probabilistic inference by weighted model counting. Artificial Intelli-
gence 172, 6 (2008), 772-799.

[6] Mark Chavira, Adnan Darwiche, and Manfred Jaeger. 2006. Compiling relational Bayesian networks for exact infer-
ence. International Journal of Approximate Reasoning 42, 1-2 (2006), 4-20.

[7] X. Chen, H. Tan, Y. Chen, B. He, W. Wong, and D. Chen. 2021. ThunderGP: HLS-based graph processing framework

on FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 69-80.

Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. 2015. Tractable learning for structured probability spaces:

A case study in learning preference distributions. In Proceedings of the 24th International Joint Conference on Artificial

Intelligence. AAAI Press, 2861-2868.

Arthur Choi, Yujia Shen, and Adnan Darwiche. 2017. Tractability in structured probability spaces. In Proceedings of

the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems.

3477-3485.

[10] Arthur Choi, Nazgol Tavabi, and Adnan Darwiche. 2016. Structured features in naive bayes classification. In Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence. AAAI Press, 3233-3240.

[11] Young-kyu Choi and Jason Cong. 2018. HLS-based optimization and design space exploration for applications with
variable loop bounds. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE, 1-8.

[12] J. Cong, W. Jiang, B. Liu, and Y. Zou. 2011. Automatic memory partitioning and scheduling for throughput and power
optimization. ACM Transactions on Design Automation of Electronic Systems 16, 2 (2011), 1-25.

[13] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang. 2011. High-level synthesis
for FPGAs: From prototyping to deployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 4 (2011), 473-491.

[14] Adnan Darwiche. 2003. A differential approach to inference in Bayesian networks. Journal of the ACM 50, 3 (2003),
280-305.

[15] Adnan Darwiche. 2009. Modeling and Reasoning with Bayesian Networks. Cambridge University Press.

8

—

[

—

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

https://github.com/carlossantillana/psdd/tree/alveo250
https://www.microsoft.com/en-us/research/project/bee3/

FPGA Acceleration of PSDDs with High-level Synthesis 18:21

[16] Adnan Darwiche. 2011. SDD: A new canonical representation of propositional knowledge bases. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence. 819-826.

[17] Adnan Darwiche. 2020. Three modern roles for logic in AL In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. ACM, 229-243.

[18] Adnan Darwiche. 2022. Tractable boolean and arithmetic circuits. In Proceedings of the Neuro-symbolic Artificial In-
telligence: The State of the Art, Pascal Hitzler and Md Kamruzzaman Sarker (Eds.), Vol. 342, Frontiers in Artificial
Intelligence and Applications. IOS Press, Chapter 6.

[19] Johannes Geist, Kristin Y. Rozier, and Johann Schumann. 2014. Runtime observer pairs and bayesian network rea-
soners on-board FPGAs: Flight-certifiable system health management for embedded systems. In Proceedings of the
International Conference on Runtime Verification. Springer, 215-230.

[20] R. L. Graham. 1966. Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 9 (1966),
1563-1581.

[21] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang, and J. Cong. 2021. AutoBridge: Coupling coarse-grained
floorplanning and pipelining for high-frequency HLS design on multi-die FPGAs. In Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays.

[22] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. 2014. Probabilistic sentential decision diagrams.
In Proceedings of the 14th Conference on the Principles of Knowledge Representation and Reasoning. AAAI Press.

[23] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles and Techniques. MIT Press.

[24] Hanna Kruppe, Lukas Sommer, Lukas Weber, Julian Oppermann, Cristian Axenie, and Andreas Koch. 2021. Efficient
Operator Sharing Modulo Scheduling for Sum-Product Network Inference on FPGAs. Retrieved 24 July, 2022 from https:
/Iwww.esa.informatik.tu-darmstadt.de/assets/publications/materials/2021/2021_SAMOS_HK.pdf.

[25] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. 2010. High-throughput Bayesian computing machine with reconfig-
urable hardware. In Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. 73-82.

[26] Kevin P. Murphy. 2012. Machine Learning - A Probabilistic Perspective. MIT Press.

[27] Xie Pan and Yu Jinsong. 2017. Diagnosis via arithmetic circuit compilation of Bayesian network and calculation on
FPGA. In Proceedings of the 13th IEEE International Conference on Electronic Measurement & Instruments. 35-41.

[28] Judea Pearl. 1989. Probabilistic Reasoning in Intelligent Systems - Networks of Plausible Inference. Morgan Kaufmann.

[29] Knot Pipatsrisawat and Adnan Darwiche. 2008. New compilation languages based on structured decomposability. In
Proceedings of the 23rd AAAI Conference on Artificial Intelligence. AAAI Press, 517-522.

[30] Hoifung Poon and Pedro M. Domingos. 2011. Sum-product networks: A new deep architecture. In Proceedings of the
27th Conference on Uncertainty in Artificial Intelligence. AUAI Press, 337-346.

[31] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. 2014. Cutset networks: A simple, tractable, and scalable ap-
proach for improving the accuracy of chow-liu trees. In Proceedings of the Machine Learning and Knowledge Discovery
in Databases - European Conference. Springer, 630—645.

[32] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-centric graph processing using streaming
partitions. In Proceedings of the 24th ACM Symposium on Operating Systems Principles. 472-488.

[33] N. Shah, L. Olascoaga, W. Meert, and M. Verhelst. 2020. Acceleration of probabilistic reasoning through custom pro-
cessor architecture. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition. 322-325.

[34] Nimish Shah, Laura L. Galindez Olascoaga, Wannes Meert, and Marian Verhelst. 2020. Acceleration of probabilistic rea-

soning through custom processor architecture. In Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition. IEEE, 322-325.

Yujia Shen, Arthur Choi, and Adnan Darwiche. 2016. Tractable operations for arithmetic circuits of probabilistic

models. In Proceedings of the Advances in Neural Information Processing Systems. 3936-3944.

Yujia Shen, Arthur Choi, and Adnan Darwiche. 2018. Conditional PSDDs: Modeling and learning with modular knowl-

edge. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 6433-6442.

[37] Lukas Sommer, Julian Oppermann, Alejandro Molina, Carsten Binnig, Kristian Kersting, and Andreas Koch. 2018.
Automatic mapping of the sum-product network inference problem to FPGA-based accelerators. In Proceedings of the
IEEE 36th International Conference on Computer Design. 350-357.

[38] Lukas Sommer, Lukas Weber, Martin Kumm, and Andreas Koch. 2020. Comparison of arithmetic number formats for

inference in sum-product networks on FPGAs. In Proceedings of the IEEE 28th Annual International Symposium on

Field-Programmable Custom Computing Machines. 75-83.

Xilinx. 2020. Vitis Unified Software Platform. Retrieved 24 July, 2022 from https://www.xilinx.com/products/design-

tools/vitis/vitis-platform.html.

Xilinx. 2020. Vivado High-Level Synthesis (UG902). Retrieved 24 July, 2022 from https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf.

—_

(35

—

(36

=

(39

—

[40

—

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

https://www.esa.informatik.tu-darmstadt.de/assets/publications/materials/2021/2021_SAMOS_HK.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf

18:22 Y.-k. Choi et al.

[41] Xilinx. 2021. Alveo U250 Data Center Accelerator Card. Retrieved 24 July, 2022 from https://www.xilinx.com/products/
boards-and-kits/alveo/u250.html.

[42] Xilinx. 2021. UltraScale Architecture Memory Resources. Retrieved 24 July, 2022 from https://www.xilinx.com/
support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf.

[43] S.Zermani, C. Dezan, H. Chenini, J. Diguet, and R. Euler. 2015. FPGA implementation of Bayesian network inference
for an embedded diagnosis. In Proceedings of the 2015 IEEE Conference on Prognostics and Health Management. 1-10.

[44] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu. 2019. Hitgraph: High-throughput graph processing
framework on FPGA. IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019), 2249-2264.

[45] Stephanie Zierke and Jason D. Bakos. 2010. FPGA acceleration of the phylogenetic likelihood function for Bayesian
MCMC inference methods. BMC Bioinformatics 11, 1 (2010), 1-12.

Received 20 December 2021; revised 24 July 2022; accepted 19 August 2022

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 18. Pub. date: March 2023.

https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf

