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Abstract— Phase variable control based on global tibia kine-
matics holds promise for predicting gait cycle progression to
continuously control robotic transtibial prostheses. Calibration
of the phase variable is critical to ensure its monotonic behavior,
to approach a linear relationship with gait percentage, and to
accurately predict the percentage of gait. This paper compares
four calibration approaches using data from 22 able-bodied
subjects walking at 14 speeds [1]. The typical pure centering
(PC) approach employed for thigh-based phase variables is not
viable, yielding monotonic phase progression in fewer than half
of the cases. An optimization (OPT) approach found monotonic
calibrations in 305/308 cases with high linearity (average R2

of 0.91). Critical point centering (CPC) approximates the
OPT performance, with 274/308 monotonic calibrations and
an average R2 of 0.85, whereas the related vertical weighted
average (VWA) approach was only slightly better than PC.
All four approaches are similarly accurate in predicting gait
percentage, staying within 5% at least 92.7% of the time.

I. INTRODUCTION

Compared to passive prosthetic legs, robotic lower-limb
prostheses have the potential to increase the mobility and
functionality of individuals with amputation. Advancing the
control of these prostheses is key to realizing their potential.
Traditional control of such prostheses using finite-state ma-
chines (FSMs) subdivides the gait cycle into discrete states,
each with unique control laws based on a series of predefined
transition rules [2]. While FSM controllers are highly reliable
and repeatable, their discrete nature can result in either
sudden actuation that may feel unnatural or misclassifications
of the current state that yield improper actuation [3].

Control that is continuous with respect to gait progression
has the potential for smoother, more natural feeling actuation.
Central pattern generator (CPG) controllers aim for this by
applying the CPG phenomena observed in cyclic locomotion
in nature [4] to coordinate prosthesis control with either
detected gait events [5] or sound-limb motion [6]. Machine
learning approaches have also achieved smooth rhythmic
control by training neural networks to predict gait progres-
sion and output appropriate joint control [7], [8]. While
they do provide continuous control throughout gait, these
approaches often involve many sensors located off-board the
prosthesis [5]–[7] and/or large training data sets [7], [8].

Bipedal robot research introduced a control scheme that
characterizes gait progression based on a time-independent
phase variable [9], which was later adopted to control lower-
limb prostheses [10]–[13]. A phase variable, denoted herein
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Fig. 1: Global tibia angle (blue) with respect to vertical (white
dashed line), calculated from pelvis, hip, & knee kinematics (red).

as φ, should progress monotonically from 0 to 100% of the
gait cycle, and can be used for continuous position [12], [13]
or impedance [14] control. The approach relies on accurate
estimation of gait progression, as errors in gait percentage
prediction can result in poorly timed control, which could
lead to higher energy expenditure [15] or falls [16].

Candidate phase variables include the foot center of pres-
sure [17], [18] (only able to monitor gait progression in
stance) and various hip and thigh kinematics [19], [20].
For transfemoral prostheses, thigh kinematics are preferred,
as only sensors onboard the prosthesis are required. For
transtibial prostheses, however, thigh-based phase variables
require additional sensors on the user’s body, increasing
donning/doffing requirements. Therefore, a phase variable
defined by the global kinematics of the tibia, such as θtib
in Fig. 1, is desirable for transtibial prostheses since sensors
onboard the prosthesis could measure it directly [12] (without
the need to measure the other kinematic quantities shown in
Fig. 1). Here, the global tibia angle is defined as measured
in the sagittal plane relative to the gravity-fixed vertical.

Regardless of the phase variable selected, phase-based
control requires calibration to determine its relationship to
gait progression. Monotonicity in this relationship is critical
to avoid one phase variable value φ representing multiple
gait percentages. Linearity is also important to minimize
sensitivity to sensor noise since a linear relationship reduces,
across the gait cycle, the change in gait percentage corre-
sponding to a given change in φ. To achieve monotonicity
and maximize linearity, the phase portrait, which exists on
the phase plane defined by global tibia angle (horizontal axis)
and tibia angular velocity (vertical axis), must be shifted and
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Fig. 2: Average tibia-based phase portrait for subject AB06 walking
at 1.8 m/s. Gait cycle begins with heel strike (a), reaches critical
point (b) when knee returns to full extension after weight accep-
tance, enters swing with toe-off (c), & initiates swing leg retraction
(d) before beginning again at next heel strike (a).

scaled. For hip-related phase variables, the phase portrait is
typically centered about the origin and the data are scaled to
ensure that the horizontal and vertical ranges are equal [13].

This paper explores the performance of four calibration
approaches to demonstrate the potential of a tibia-based
phase variable for control of robotic transtibial prostheses.
Two more traditional approaches (pure centering and critical
point centering) are assessed alongside two novel approaches
(vertical weighted average and optimization). Performance is
assessed with data from able-bodied subjects walking on a
flat treadmill at a variety of speeds [1]. The monotonicity,
linearity, and gait percentage prediction resulting from each
calibration approach are compared.

II. METHODS

A. Dataset and Processing

Joint kinematics from 22 able-bodied subjects (AB06 -
AB30, missing numbers 22, 26, and 29) with mean age 21
years (σ = 4.3 years), mean height 1.7 m (σ = 0.007 m), and
mean weight 68.3 kg (σ = 10.83 kg) were collected by [1]
at 200 Hz. While all subjects walked on a treadmill with flat
orientation for 30 seconds at each of 28 speeds, this work
analyzed just the 14 speeds from 0.5 to 1.8 m/s in 0.1 m/s
increments. Each combination of subject and speed is called
herein a condition (308 total conditions). For each condition,
the first half of the strides were used for calibration (Sec. II-
C) and the remaining strides for analysis (Sec. II-D).

The kinematics considered include the absolute pelvis tilt
angle θpelvis (positive with posterior tilt), relative hip angle
θhip (positive with hip flexion), and relative knee angle θknee
(positive for knee flexion), all as rotations about a medial-
lateral axis and measured from the right leg only, as shown
in Fig. 1. The global tibia angle θtib was calculated as

θtib = θpelvis + θhip − θknee. (1)

Thus, θtib is positive when the ankle is in front of the
knee. The absolute tibia angular velocity θ̇tib was determined
by taking the time derivative of θtib via finite difference.

Fig. 3: Average tibia-based phase portrait for subject AB06 walking
at 1.8 m/s reparameterized using four calibration approaches.

Ground-truth gait percentage data from heel strikes occurring
at 0 and 100% of gait cycle were determined when the heel
marker’s linear velocity became zero [1].

B. Tibia-Based Phase Variable

The tibia-based phase portrait exists on the phase plane
consisting of θtib and θ̇tib on the horizontal and vertical
axes, respectively, and exhibits the cardioid shape shown
in Fig. 2. Heel strike occurs in the bottom right quadrant
(Fig. 2(a)), as θtib is positive and θ̇tib is negative due to
swing leg retraction [21] (Fig. 2(d)). After heel-strike, the
phase portrait progresses clockwise until the next heel strike.
Between early- and mid-stance, the tibia velocity decelerates
due to the knee extension that occurs when knee loading is
complete. This leads to a critical point in the bottom half of
the phase portrait (Fig. 2(b)), which is more pronounced at
faster speeds. Toe-off occurs near the global minimum of θ̇tib
(Fig. 2(c)), and swing corresponds to the round portion of
the phase portrait in the positive velocity region. The phase
variable corresponding to the tibia phase portrait is

φuncalibrated(t) = atan2(θ̇tib(t), θtib(t)). (2)

Thus, as gait percentage increases from 0 to 100%, the phase
variable begin s in the fourth quadrant (270-360 degrees)
and progresses clockwise through the phase portrait until
beginning again with heel strike.

C. Calibration

To ensure a monotonic relationship between the phase
variable and gait percentage, the phase portrait must be
scaled and shifted. Calibration parameters x0, y0, and k
transform the tibia angle and velocity into new variables,

Θtib(t) = θtib(t)− x0 (3)
Θ̇tib(t) = k(θ̇tib(t)− y0), (4)

that are used to compute the final phase variable

φ(t) = atan2(Θ̇tib(t),Θtib(t)). (5)

Four approaches to obtain the calibration parameters are
explored herein, with representative results shown in Fig. 3.



1) Pure Centering (PC): The standard calibration ap-
proach for thigh-related phase variables centers the phase
portrait about the origin [13]. Thus, PC calibration shifts the
tibia-based phase portrait based on the average of the max
and min global tibia angles and velocities across all strides.

x0 = (θtib + θtib)/2 (6)

y0 = (θ̇tib + θ̇tib)/2 (7)

k =
|θtib − θtib|
|θ̇tib − θ̇tib|

, (8)

where θtib and θ̇tib are the maximum global tibia angle and
velocity and θtib and θ̇tib are the minimums. Comparing the
light blue phase portrait in Fig. 3 to the darker blue one in
Fig. 2, PC calibration centers the coordinate system origin
within the phase portrait by shifting all values of θtib and
θ̇tib by the magnitudes of their geometric centerpoints. The
scaling factor k merely adjusts the values of θ̇tib such that
the axes are evenly scaled.

2) Critical Point Centering (CPC): The tibia-based phase
portrait’s cardioid shape often prevents monotonicity using
PC calibration. Therefore, CPC calibration shifts the phase
portrait to place the critical point (Fig 2(b)) on the y-
axis [12]. The critical point is defined by the local maximum
of θ̇tib between heel strike (Fig 2(a)) and toe-off (Fig 2(c)).
The corresponding value of θtib at this peak is used to shift
the phase portrait such that the peak lies on the y-axis, as
shown by the red phase portrait in Fig. 3. Explicitly, x0
becomes the value of θtib corresponding to the maximum
global tibia velocity during stance,

x0 = θtib(max(θ̇tibstance)). (9)

Equations 7 and 8 are still used to calculate y0 and k.
3) Vertical Weighted Average (VWA): The phase variable

φ progresses more slowly during stance than swing. Ver-
tically shifting the phase portrait to move the stance region
closer to the origin could reduce the effects of this difference
in speed progression and improve linearity. Therefore, VWA
calibration shifts the phase portrait horizontally, as in CPC
calibration, but it also vertically shifts the portrait by the
weighted average of all θ̇tib points. The calibration parameter
y0 is calculated as

y0 =

∑N
n=0 θ̇tib(n)

n
, (10)

where N is the number of collected θ̇tib values for a given
calibration. By taking the weighted average, y0 decreases
compared to PC and CPC calibrations. Thus, the critical point
is nearer to the origin, as shown by the yellow phase portrait
in Fig. 3. Equations 8 and 9 are used to obtain k and x0.

4) Optimization (OPT): To maximize linearity of the
relationship between gait percentage and phase variable φ
while maintaining monotonicity, x0, y0, and k were obtained
via a grid search optimization. Search ranges were heuristi-
cally determined from results of a larger grid search across
subjects and speeds. The average θtib and θ̇tib trajectories

were computed from the calibration strides. An initial k0 is
calculated by Eq. 6, where the max and min were taken from
the mean trajectory. The grid search spanned 26 candidate
values for k (k0 − 0.1 to k0 + 0.025, increments of 0.005),
51 values for x0 (10 to -40 degrees, increments of 1), and
21 values for y0 (0 to 100 degrees/second, increments of 5).

A monotonicity constraint is enforced so that the derivative
of φ with respect to gait percentage does not change sign.
Linearity is optimized via

min
x0,y0,k

∑100
p=0

∣∣∣dφ(x0,y0,k,p)
dp − dφ

dp

∣∣∣
s.t. dφ

dp < 0, ∀p ∈ [0, 100],
(11)

where dφ(x0,y0,k,p)
dp is the derivative of φ with respect to the

gait percentage p and dφ
dp is the average derivative across

all p. By minimizing the sum of the absolute differences
between the derivative at each gait percentage and the
average derivative across all percentages, φ trajectories are
considered most linear when this cost is closest to 0.

D. Performance Metrics

Once the calibration parameters are determined, the ex-
plicit relationship between phase variable φ and gait pro-
gression is formally established. During subsequent strides,
the real-time measurement of φ is input to this relationship
to yield an output prediction of gait percentage. The utility
of the relationship can be evaluated in terms of monotonicity,
linearity, and stride-to-stride error.

1) Monotonicity: Evaluation of the constraint in Eq. 11
quantified the monotonicity of the relationship for all ap-
proaches. Conditions that violated this constraint were con-
sidered non-monotonic and represented a failed calibration.

2) Linearity: A best fit line generated via a linear least
squares regression assessed the linearity of the relationship
resulting from each calibration. The coefficient of determina-
tion (R2) quantified how well the linear fit model explained
the variation in the data.

3) Gait Percentage Prediction: The remaining half of
strides for each condition were used to assess how well the
calibrated phase variable predicted gait percentage. Differ-
ences between the predicted and true gait percentages were
considered errors, quantified in percentage of gait.

III. RESULTS AND DISCUSSION

Using subject AB06 walking at 1.8 m/s as a representative
example, Fig. 5 shows the progression of phase variable
φ using each calibration approach, and Table I lists the
calibration parameters.

A. Monotonicity

The global tibia phase variable’s monotonicity depended
heavily on the calibration approach. As seen in Fig. 4, PC
calibration resulted in less than 44% of the subject-speed
conditions (135/308) exhibiting monotonic behavior. This
poor performance is due to the critical point in the phase por-
trait (Fig. 2), which is not present in the near-circular phase
portrait of the hip/thigh kinematics often used in control of
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Fig. 4: Monotonicity & linearity. Red squares represent subject & speed conditions without monotonic relationships between phase variable
& gait percentage. All other conditions were monotonic, with darker green indicating relationships having R-squared values closer to 1.

Fig. 5: Progression of calibrated phase variables φ for each cali-
bration approach for subject AB06 walking at 1.8 m/s.

transfemoral prostheses [13]. Therefore, for the tibia-based
phase variable, PC calibration is not practically viable as the
majority of conditions resulted in non-monitinicity, where
one value of φ corresponds to multiple gait percentages.

CPC calibration places the origin directly above the
phase portrait’s critical point (Fig. 2b) at a vertical height
unchanged from PC calibration. This horizontal shifting
resulted in CPC calibration yielding a monotonic relationship
between the phase variable and gait percentage in nearly 89%
of conditions (274/308). This demonstrates the significance
of properly shifting the phase portrait in the horizontal
direction to achieve a monotonic relationship.

VWA calibration maintains the origin’s horizontal center-
ing relative to the cardiod’s critical point as in CPC, but
vertically shifts the origin much closer to the critical point,
especially at slower speeds. This resulted in far fewer condi-
tions with monotonic relationships, down to approximately

TABLE I: Calibration Parameters for AB06 at 1.8 m/s.

Calibration x0 y0 k
None 0 0 1
PC -21.23 95.24 0.1135
CPC -11.78 95.24 0.1135
VWA -11.78 -0.10 0.1135
OPT -13 35 0.0735

50% (155/308). This loss of monotonicity was concentrated
at slower speeds, with 94.3% of conditions being non-
monotonic for speeds between 0.5 and 0.8 m/s. At slower
speeds, there was more variation in the global tibia velocity
throughout stance, resulting in multiple critical points not
always related to knee extension after loading (Fig. 2b).
Therefore, VWA calibration more often resulted in φ briefly
progressing counterclockwise when traversing over the other
local peaks in the phase portrait (Fig. 6), making it more
sensitive to these minor variations in global tibia speed.
While this approach was motivated by improvements in
linearity, this lack of monotonic consistency renders VWA
calibration undesirable.

OPT calibration yielded a monotonic solution in nearly
every condition (98.7%, 304/308). The four conditions with-
out monotonic solutions were at the slowest two speeds, sug-
gesting again that monotonicity is more difficult to achieve at
slower speeds. The OPT-generated y0 was less than the CPC-
generated y0 in 94% of conditions (289/308), but greater
than the VWA-generated y0 for every condition in which
OPT achieved monotonicity (304/308), as in Table I. There-
fore, when seeking to ensure monotonicity and optimize for
linearity, the origin’s vertical location lies between those
produced by CPC and VWA calibrations. In contrast, the
OPT-generated x0 was on average within 2 degrees of the
CPC- and VWA-generated x0 values for the lowest 4 (0.5-



Minor Velocity Variations

Fig. 6: Average phase portrait for AB18 walking 0.5 m/s (lightest
blue) to 1.8 m/s (darkest blue). Low speeds show higher angular
velocity variation, which can lead to non-monotonic φ progression.

0.8 m/s) and highest 5 speeds (1.4-1.8 m/s). This parameter
was within 3 degrees for speeds between 0.9 and 1.3 m/s,
where OPT calibration tended to shift the phase portrait
farther to the right than CPC and VWA calibrations. For
every condition, the OPT-generated scaling parameter k was
less than those found by PC, CPC, and VWA calibrations (all
of which were equivalent). For all speeds, the OPT-generated
k was more than 30% less than that found by PC, CPC, and
VWA, and more than 40% less for the lowest 3 speeds (0.5-
0.7 m/s). Therefore, scaling such that the vertical range of
values is at least 30% less than the horizontal range may be
beneficial for monotonicty and linearity.

B. Linearity

In all conditions for which monotonicity was achieved, the
linearity of the relationship between the phase variable and
gait percentage (Fig. 5) was also assessed. Figure 4 shows the
relative linearity of each approach, with dark green indicating
conditions for which the relationship had an R2 value close
to 1 and red indicating conditions for which the calibration
failed to achieve monotonicity. While PC calibration had
an average R2 value of 0.88, the previously discussed lack
of monototonicity renders this approach unviable. The CPC
calibration’s average R2 value was 0.85, meaning that 85%
of the variation in the relationship could be accounted
for by a linear fit. Figure 4 also suggests a relationship
between linearity and walking speed for CPC calibration.
When comparing linearity and speed, the Pearson correlation
coefficient was 0.71, with a p-value of 1.8E-43, indicating
that faster speeds resulted in a more linear relationship for
CPC calibration.

While like PC calibration in terms of poor monotonicity,
VWA calibration in general yielded quite linear phase vari-
able curves, with an average R2 value of 0.93. This suggests
that moving the critical point of the phase portrait closer
to the origin yields a more linear result than anticipated,
but unfortunately at a high cost to monotonicity. The benefit
of a vertical shift is more successfully realized with OPT
calibration, where the shift lies between that of CPC and

Fig. 7: Frequency of errors between predicted & true gait percentage
for all subjects at all speeds. Only errors from conditions with
monotonic φ progression were considered.

VWA calibrations and results in an average R2 value of
0.92 (also between that of CPC and VWA calibrations). The
speed/linearity relationship observed in CPC calibration is
less pronounced with both VWA (Pearson correlation of 0.50,
p-value 4.7E-11) and OPT (Pearson correlation of 0.61, p-
value 1.8E-32) calibrations. This is likely due to the fact that
most of the speeds that were monotonic showed similarly
high linearity, regardless of speed.

Overall, the location of the critical point is crucial for
achieving both monotonicity and linearity. Shifting the crit-
ical point horizontally to lie on the vertical axis is key
for monotonicity in general. Shifting it vertically toward
the origin can increase linearity, but when too close to the
origin, monotonicity can be compromised. According to OPT
calibration, the optimal vertical shift lies between those of the
CPC and VWA calibrations. Identifying a reliable heuristic
to achieve this optimal shift is a topic of future research.

C. Gait Percentage Prediction

For control purposes, once calibration is complete, the
established relationship between the phase variable and gait
percentage is used to predict the gait percentage of future
strides based on real-time sensor measurement of the phase
variable (likely an IMU on the transtibial prosthesis). Using
only the second half of strides from each condition (not
included for calibration), Fig. 7 shows a histogram of the
prediction errors in gait percentage for all 4 approaches
for conditions that were monotonic. Despite differences in
monotonicity and linearity overall, the four approaches show
similar performance in prediction error. OPT calibration,
for example, has approximately 50% of all errors observed
within ± 1% of the true gait percentage. All approaches have
at least 92.7% of all errors observed within 5% of gait, and
99.9% of errors within 13% of gait. As these errors only
consider conditions that were monotonic, calibrations that
are not monotonic would result in large prediction errors, as
one value of φ corresponds to multiple gait percentages.

Figure 8 shows an example of the predicted gait per-
centage from OPT calibration compared to the true gait



Fig. 8: Predicted (from optimization) versus true gait percentage for
AB06 walking at 1.8 m/s (22 strides). Large errors near 0 & 100%
of gait were treated as small errors relative to adjacent strides.

percentage for 22 strides of subject AB06 walking at 1.8
m/s. Consistent with all subjects, nearly all errors occur
during stance (less than ∼60% of gait cycle), with the largest
magnitudes near 20% of gait cycle, which corresponds to the
location of the critical point of the phase portrait (Fig. 2b).
Echoing the monotonicity and linearity results, this again
highlights the importance of calibration, with the key factor
being the location of the origin relative to the critical point.

IV. CONCLUSIONS

The global tibia kinematics can be used to define a phase
variable for monitoring gait cycle progression for control
of robotic transtibial prostheses. Calibration of this phase
variable can be achieved by having individuals with ampu-
tation walk for 10-20 strides. From such strides, this paper
examines calibration via four approaches across a range of
speeds. Of the four, the optimization (OPT) approach not
surprisingly offers the best combination of monotonicity,
linearity, and error performance. When linearity is less of a
priority, however, the critical point centering (CPC) approach
is an appropriate substitute, especially for speeds above
0.7 m/s. While the pure centering (PC) approach has been
useful for thigh-related phase variables, the cardioid shape
of the tibia-based phase portrait renders it unviable for
tibia-related phase variables. The vertical weighted average
(VWA) approach increased the linearity of the relationship
between the phase variable and gait percentage compared to
CPC calibration, but led to frequent failed calibrations due
to non-monotonicity. Accuracy of gait percentage prediction
was similar across all four calibration approaches. Having
a phase variable calibration curve that is monotonic, nearly
linear, and accurate in prediction is critical for new control
approaches, such as phase-based impedance control within
hybrid volitional control frameworks [22]. Future work will
seek to validate these calibration approaches with hardware.
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