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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Single particle elemental compositions 
were acquired using SP-ICP-TOF-MS. 

• Elemental composition data were trans-
formed using tSNE and Spectral 
clustering. 

• Data transformation allowed extracting 
subclusters not extractable by hierar-
chical clustering. 

• Hierarchical, tSNE-DBSCAN, and spec-
tral clustering approaches were used to 
extract nanoparticle clusters. 

• Spectral clustering is more robust and 
flexible compared to tSNE-DBSCAN and 
hierarchical clustering.  
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A B S T R A C T   

Single particle-inductively coupled plasma-time of flight-mass spectrometers (SP-ICP-TOF-MS) generates large 
datasets of the multi-elemental composition of nanoparticles. However, extracting useful information from such 
datasets is challenging. Hierarchical clustering (HC) has been successfully applied to extract elemental finger-
prints from multi-element nanoparticle data obtained by SP-ICP-TOF-MS. However, many other clustering ap-
proaches can be applied to analyze SP-ICP-TOF-MS data that have not yet been evaluated. This study fills this 
knowledge gap by comparing the performance of three clustering approaches: HC, spectral clustering, and t- 
distributed Stochastic Neighbor Embedding coupled with Density-Based Spatial Clustering of Applications with 
Noise (tSNE-DBSCAN) for analyzing SP-ICP-TOF-MS data. The performance of these clustering techniques was 
evaluated by comparing the size of the extracted clusters and the similarity of the elemental composition of 
nanoparticles within each cluster. Hierarchical clustering often failed to achieve an optimal clustering solution 
for SP-ICP-TOF-MS data because HC is sensitive to the presence of outliers. Spectral clustering and tSNE-DBSCAN 
extracted clusters that were not identified by HC. This is because spectral clustering, a method developed based 
on graph theory, reveals the global and local structure in the data. tSNE reduces and maps the data into a lower- 
dimensional space, enabling clustering algorithms such as DBSCAN to identify subclusters with subtle differences 
in their elemental composition. However, tSNE-DBSCAN can lead to unsatisfactory clustering solutions because 
tuning the perplexity hyperparameter of tSNE is a difficult and a time-consuming task, and the relative distance 
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between datapoints is not maintained. Although the three clustering approaches successfully extract useful in-
formation from SP-ICP-TOF-MS data, spectral clustering outperforms HC and tSNE-DBSCAN by generating 
clusters of a large number of nanoparticles with similar elemental compositions.   

1. Introduction 

Engineered nanoparticles (ENPs) are increasingly used in many 
consumer products and industries due to the novel properties and 
functionalities of ENPs compared to their larger-sized counterparts 
(Leitch et al., 2012; Majestic et al., 2010; Bundschuh et al., 2018). 
Increasing usage of ENPs leads to their release into environmental sys-
tems and subsequently increased environmental exposure to ENPs. To 
determine environmental exposures to ENPs, different methods have 
been used to detect and quantify the concentration of ENPs in the 
environment (Montaño et al., 2014; Zhao et al., 2018; Peters et al., 2018; 
Cheng and Compton, 2014; Benoit et al., 2013). However, the quanti-
fication of ENP concentrations in environmental systems remains chal-
lenging due to the high background concentrations of natural 
nanoparticles (NNPs) with similar properties to ENPs and the limited 
methodologies developed for the quantification of of ENP concentra-
tions in environmental systems (Wiedensohler et al., 2000; Gottschalk 
et al., 2009; Gottschalk et al., 2013). Single particle-inductively coupled 
plasma-time of the flight-mass spectrometer (SP-ICP-TOF-MS) is a 
promising method to differentiate ENPs from NNPs in the environment 
at the single particle level and to determine their number concentration 
(Hendriks et al., 2019; Praetorius et al., 2017). However, analyzing the 
large datasets generated by SP-ICP-TO-MS remains a challenging task 
due to the large amount of the produced data as well as the high 
dimensionality of the data, which calls for taking advantage of big-data 
analytics, such as clustering and dimensionality reduction approaches. 

Unsupervised clustering methods such as HC or K-means clustering 
have been recently implemented to cluster SP-ICP-TOF-MS data (Toka-
lıoğlu et al., 2018; Song et al., 2018; Mehrabi et al., 2021; Baalousha 
et al., 2021; Maione et al., 2017; Bi et al., 2014; Tokalioǧlu, 2012; 
Fathinezhad et al., 2020; Wang et al., 2022). However, clustering 
methods, such as K-means and Density-based spatial clustering of ap-
plications with noise (DBSCAN), do not perform well when clustering 
high dimensional and sparse data such as those generated by SP-ICP- 
TOF-MS. This is because the optimization search and solutions are 
often trapped in local optima (Ding et al., 2010). Therefore, novel and 
complex clustering methods should be considered for the analysis of the 
SP-ICP-TOF-MS high dimensional data in order to overcome the short-
comings of clustering algorithms such as K-means and DBSCAN (Kriegel 
et al., 2009; Weber and Robinson, 2016; Esmin et al., 2015). 

Spectral Clustering (SC) is one of the most powerful clustering 
methods for the analysis of high-dimensional data (Ng et al., 2001). 
Spectral clustering denotes a family of graph-based clustering algo-
rithms which are based on spectral graph theory (Von Luxburg, 2007). 
Thus, the SC technique can find arbitrarily shaped clusters and optimal 
solutions (Wang et al., 2015a). The SC technique has been implemented 
in other fields that require high dimensional data analysis such as single- 
cell RNA-sequencing analysis data (Park and Zhao, 2018), computer 
vision (Ochs and Brox, 2012), Lagrangian vortex detection (Hadjigha-
sem et al., 2016), text document clustering (Janani and Vijayarani, 
2019), and transportation problems (Banisch and Koltai, 2017), but has 
not yet been explored for the analysis of SP-ICP-TOF-MS data (Wu et al., 
2014; Wang et al., 2015b; Borges et al., 2019). For instance, SC has been 
applied to cluster single-cell RNA-sequencing data, which are high 
dimensional and sparse, similar to the SP-ICP-TOF-MS data, to cluster 
different cell types based on gene expression patterns, and has been 
shown to outperform other clustering methods such as K-means, Greedy, 
and FINCH (Qi et al., 2021). In computer vision, SC has been used for 
super-pixel image segmentation has been shown to outperform five 
other super-pixel segmentation algorithms (Li and Chen, 2015). 

Another approach to improve the quality of high dimensional data 
clustering is to reduce the data dimensionality through feature reduction 
techniques such as redundancy maximum relevance (mRMR), principle 
component analysis (PCA) (Ziasabounchi and Askerzade, 2014), and t- 
distributed stochastic neighbor embedding (tSNE). Reducing the num-
ber of dimensions means finding a subset of determining dimensions or 
transforming the data to a lower dimension form without reducing the 
information present in the original data (Chan and Hall, 2010; Yang and 
Sinaga, 2019; Nguyen et al., 2019; Chen et al., 2014). The mRMR al-
gorithm is a feature selection method that finds a subset of features that 
are most correlated with the target variable and the least correlated with 
each other (Ding and Peng, 2005). The PCA is a linear feature trans-
formation algorithm that finds a small set of uncorrelated lines (axes) in 
a way that when the original data are projected on those lines, most of 
the variation in the data is captured (Jolliffe, 1990). The mRMR 
approach has been applied as a feature selection method to create a 
model for the prediction of active sites of enzymes (Gao et al., 2013). 
Pinciple component analysis has been used to reduce the dimensions of a 
heart disease dataset (Ziasabounchi and Askerzade, 2014). While PCA 
and other linear techniques have been applied successfully, they are 
typically unable to preserve the local patterns in the high dimensional 
data, an area in which nonlinear methods excel (Nguyen and Holmes, 
2019). tSNE is a nonlinear feature transformation method that maps the 
high dimensional data into a lower dimensional space, minimizing the 
differences between the probability distributions of proximity (the 
probability of a datapoint being close to another datapoint) in the low 
dimensional, and the same probability distributions in high dimensional 
(original) space (Van der Maaten and Hinton, 2008). The tSNE has been 
shown to be able to better identify local data structures and minimize 
the effect of outliers compared to PCA (Li et al., 2017). The tSNE method 
has been used as a preprocessing step to visualize and cluster high 
dimensional data (Li et al., 2017; Alibert, 2019; Kobak and Berens, 
2019). The tSNE has also been applied as a preprocessing technique 
before performing SC on geological data and tSNE outperformed PCA, 
Kernel PCA, and Locally Linear Embedding (LLE) in extracting more 
distinct data clusters (Balamurali and Melkumyan, 2016). 

Therefore, tSNE is potentially an excellent data reduction technique 
and SC is potentially an excellent clustering approach for the analysis of 
SP-ICP-TOF-MS data. This is because tSNE can reveal local data struc-
tures and reduce the effect of outliers, and SC can extract arbitrarily 
shaped clusters and because it has been implemented successfully to 
extract useful information from similarly complex and sparse data. 
Therefore, this study aims to evaluate the performance of HC, tSNE- 
DBSCAN, and SC techniques for the classification of multi-element 
nanoparticle (mmNP) composition data obtained by SP-ICP-TOF-MS. 
Clustering performance is defined as identifying clusters with a large 
number of members of similar/narrow elemental compositions. For 
detailed information on the interpretation of the extracted mmNP 
clusters, the reader is referred to our previous publication (Wang et al., 
2022). 

2. Materials and methods 

2.1. Data 

A detailed description of the data used in this study, including the 
sampling sites, sample collection, and preparation for SP-ICP-TOF-MS 
analysis, can be found elsewhere (Wang et al., 2022). In summary, the 
elemental composition data of nanoparticles (<1 μm particles) extracted 
from urban rain collected near the Blossom Street Bridge and urban 
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runoff samples obtained from the drains of Blossom Street Bridge were 
acquired using an ICP-TOF-MS instrument (TOFWERK, Thun, 
Switzerland). This instrument allows the simultaneous quantification of 
all isotopes within a single nanoparticle (Hendriks et al., 2017). Each 
replicate was acquired for a duration of 200 s, and the data from three 
replicates were combined to enable a comprehensive analysis due to 
limited detection events for certain elements. Data processing, including 
particle/baseline signal separation and elemental mass calculation, was 
conducted using Tofware software, as described in previous studies 
(Loosli et al., 2019; Tanner, 2010). The dataset comprises 15 samples, 
each containing several thousands of particles. 

2.2. Methods 

This study employed a two-stage clustering approach to analyze the 
elemental composition of nanoparticles. The first stage is an intra- 
sample clustering that aim to seperate mmNPs within each sample 
into clusters of particles with similar elemental composition using three 
distinct clustering methods: Hierarchical Clustering (HC), Spectral 
Clustering (SC), and tSNE-DBSCAN (Fig. S1). These methods differ in 
their approach to determining the number of clusters. The second stage 
is an inter-sample clustering that aims to compare the elemental com-
positions of the clusters generated in the intra-sample clustering across 
all samples, using HC. 

HC relies on a distance cutoff value, determined by visually exam-
ining the cluster dendrogram, to identify major clusters with similar 
elemental compositions in each sample. SC requires the number of 
clusters to be predefined, and for this study, it was set to match the 
number of clusters obtained by HC. Relying alone on performance 
metrics during clustering task, without domain knowledge, may be 
misleading. For this purpose, first, we used experts’ opinion to visually 
inspect the dendrograms and to select the cutoff value based on expert 
judgment for identifying the number of clusters. After selecting the 
cutoff values based on visual inspection, performance metrics has been 
calculated to test the effect of choosing various cutoff values on HC 
clustering performance. Silhouette score has been used here as the 
performance metric for clustering tasks and to examine if the cut off 
value selected by experts’ opinion was actually an optimized value to 
deliver the best clustering performance. The effect of the number of 
clusters in SC was also evaluated similarly. In the case of tSNE-DBSCAN, 
the number of clusters is determined by visually inspecting the tSNE 
plots of the samples to identify meaningful clusters. 

Subsequently, the mean elemental composition of the clusters iden-
tified by HC, tSNE-DBSCAN, and SC methods were compared among the 
different samples. The following sections provide a detailed description 
of the first stage and the second stage of the analysis. 

2.2.1. First stage clustering 

2.2.1.1. Hierarchical clustering (HC). Hierarchical clustering was per-
formed using a method described elsewhere (Baalousha et al., 2021). In 
brief, pairwise correlation distances were calculated between the 
mmNPs, and each datapoint (e.g., mmNP) was paired with its closest 
counterpart. This process resulted in the formation of numerous small 
clusters (consisting of a few members) of mmNPs with similar elemental 
compositions. Subsequently, these small clusters were grouped together 
to form larger clusters based on the average correlation distance be-
tween them. This iterative process continued until all datapoints were 
interconnected, forming a hierarchical tree. The final step involved 
cutting the hierarchical tree using a threshold to identify the major 
clusters of mmNPs. 

Two methods are used in HC to determine the threshold for clus-
tering: prespecifying a distance cutoff value, or setting the maximum 
number of clusters. In this study, a cutoff value of 0.5 was selected. The 
algorithm determined the number of clusters based on the specified 

distance cutoff. Fig. S1-a illustrates the hierarchical clustering process. 

2.2.1.2. Spectral clustering (SC). Spectral clustering is a graph-based 
method that utilizes a similarity matrix calculated from the graph rep-
resentation of the data (Jia et al., 2014). The stepwise algorithm used to 
perform spectral clustering is described below:  

– The first step involves constructing a similarity matrix. If datapoints 
are represented as a set of nodes X = {x1, x2,…, xn}, and the set of 
edges as E, then the similarity matrix W will be a N × N matrix, and 
each element, wij, is calculated as: 

wi,j = exp

(

−d(i, j)2

σ2

)

, (i, j) ∈ E (1) 

The distance between datapoints j and j, d(i, j) is calculated based on 
a specified distance and σ is the scaling factor set to 1. Correlation dis-
tance is used here to estimate d. 

There are three different approaches to form the set of edges: K- 
nearest neighbor (K−NN), maximum radius search, and full graph. In 
the full graph method, it is assumed that all nodes are connected to each 
other. In the K-NN method, each node is only connected to its K nearest 
neighbors, based on a pre-specified parameter K. In the maximum radius 
search, each node is only connected to other nodes within a specified 
distance. The similarities and differences between these approaches will 
be discussed in more detail in the results section.  

– In the next step, Laplacian matrix L should be calculated using the 
similarity matrix W.  

– Next, a n × k matrix V should be calculated, where columns of V are 
the kth smallest eigenvalues of the Laplacian matrix. Here, n denotes 
the number of datapoints, and k is the predefined number of clusters.  

– Finally, using a clustering method, like k-means, the matrix V is 
clustered into a pre-specified number of clusters where each of the 
rows in V is considered as a datapoint and the original datapoints are 
assigned to the same clusters as their corresponding rows in the V 
matrix. Fig. S1-b shows the flowchart of the SC method. 

2.2.1.3. tSNE-DBSCAN. In this method, the number of data dimensions 
is reduced to two using the t-SNE algorithm and the correlation distance 
metric. By plotting the transformed data using t-SNE and inspecting the 
results, natural clusters in the t-SNE space become apparent. To extract 
these clusters, DBSCAN with the Euclidean distance metric was 
employed. Once the transformed data were clustered, the corresponding 
clusters in the original data were extracted. Therefore, this method 
combines a nonlinear feature reduction technique (t-SNE) with DBSCAN 
for clustering purposes (Fig. S1-c). The steps involved in this approach 
are described as follows: 

2.2.1.3.1. t-distributed Stochastic Neighbor Embedding (tSNE). t- 
distributed Stochastic Neighbor Embedding, a variation of Stochastic 
Neighbor Embedding (SNE) (Hinton and Roweis, 2002), is a statistical 
method for reducing high dimensional data. The first step in tSNE is to 
convert the distance, such as correlation distance, between datapoints 
into conditional probabilities. The probability pj|i, the measure of simi-
larity between datapoints, represents the probability of xi being the 
neighbor of xj if the neighbors were selected based on their probability 
density under a Gaussian distribution. pj|i is calculated as: 

pj|i =
exp
(

−
⃦

⃦xi − xj

⃦

⃦

2
/

2σ2
i

)

∑

k∕=iexp
(

− ‖xi − xk‖
2
/

2σ2
i

) (2)  

where σi is standard deviation of the Gaussian distribution centered at xi 
and is found by a binary search in way that produces a fixed perplexity 
value predetermined by the user: 
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Perp(Pi) = 2
−
∑

j

pj|i log2pj|i (3) 
After mapping the datapoints into lower dimensions, the conditional 

probability can also be calculated for these datapoints in low dimen-
sional space, yi. However, in tSNE, instead of using a Gaussian distri-
bution a t-Student distribution is used for the low dimensional space and 
the probability qj|i is calculated as: 

qj|i =

(

1 +
⃦

⃦yi − yj

⃦

⃦

2
)−1

∑

k∕=l

(

1 + ‖yk − yl‖
2
)−1

(4) 

Then, the algorithm tries to minimize the difference between the 
conditional probabilities qj|i and pj|i, by minimizing the Kullback-Leibler 
divergence (KL divergence) between the two distributions. 

2.2.1.3.2. Density-based spatial clustering of applications with noise 
(DBSCAN). DBSCAN is a density-based clustering algorithm that defines 
local density as the total number of datapoints in the neighborhood of a 
given datapoint, denoted as xi. The general steps of the DBSCAN algo-
rithm are as follows:  

– Calculation of the distance between datapoints. 
– The algorithm begins by selecting one of the datapoints, xi, and as-

signs it to cluster 1.  
– The neighboring datapoints should be found. This is done using a 

predetermined epsilon value which controls the radius of search 
around the datapoint xi. Thus, the datapoints that are located within 
the epsilon distance of xi become the new neighbors.  

– The process continues by iteratively searching for neighbors within 
the specified radius until no new neighbors can be found.  

– Once the first cluster is formed, an unlabeled datapoint is selected as 
a new point belonging to the next cluster. The same iterative 
neighbor search steps are then repeated to identify the neighbors of 
the new cluster, and the process continues until no additional 
neighbors can be found.  

– The entire process is repeated, creating new clusters and searching 
for neighbors, until there are no more unlabeled points remaining. 

2.2.2. Second stage clustering 
The objective of the second stage clustering is to conduct cluster 

analysis on the clusters obtained from the first stage (intra-sample 
clusters). To perform this analysis, it is essential to identify a suitable 
representative for each cluster. In this study, the representative of each 
first stage cluster was defined as the mean mass fraction of the most 
frequently occurring element within that cluster, considering only ele-
ments present in >5 % of the particles in the cluster. 

For the three first stage clustering approaches, the HC method was 
employed to perform the inter-sample clustering, as depicted in Fig. S2. 
A cutoff value of 0.2 was utilized for all three clusters. The general 
procedure of the second stage (inter-sample) clustering is illustrated in 
Fig. S2, highlighting the overall process. 

3. Results and discussion 

3.1. First stage clustering 

Fig. S3 shows the effect of various cutoff values for HC and number of 
clusters in SC on average Silhouette score using sensitivity analysis. The 
average silhouette scores for HC and SC tend to be low for low and high 
cutoff values (Fig. S3a) and for low and high number of clusters 
(Fig. S3b). For HC, the average silhouette score is highest for a distance 
cutoff of 0.5 in good agreement with the expert decision based on visual 
inspection of the dendrograms. Similarly, for SC, the average silhouette 
score is highest for the number of clusters that matches the number of 
clusters identified in HC. Therefore, both expert choice and sensitivity 
analysis of the average silhouette scores can be used to identify clusters 

for HC and SC. 
Fig. S4 presents a heatmap displaying the elemental composition of 

each member within the first stage clusters, using sample R1 as an 
example. Hierarchical clustering (HC) yielded clusters with a wide range 
of member counts, including clusters with a large number of mmNP 
members as well as clusters with very few members (considered out-
liers). In contrast, spectral clustering (SC) and tSNE-DBSCAN resulted in 
clusters with a predominantly large number of mmNP members and 
avoided the formation of clusters with very few members or outliers. 
Additionally, SC and tSNE-DBSCAN further divided some of the large 
clusters identified by HC into subclusters. 

Fig. 1 provides a summary of the data presented in Fig. S4, presenting 
the elemental composition (e.g., mean mass fraction) and the number of 
mmNP members for the clusters extracted by the three clustering 
methods in sample R1. Overall, HC extracted five large clusters, each 
containing over 100 mmNPs (e.g., 118 to 2191), as well as eight clusters 
with a small number of mmNPs (e.g., 1 to 12). On the other hand, SC 
identified six clusters with >50 members (e.g., 70 to 2213) and seven 
clusters with fewer than 50 members (e.g., 4 to 47). In contrast, tSNE- 
DBSCAN revealed nine clusters with over 50 mmNPs (e.g., 51 to 2233) 
and only one cluster with three mmNPs. This trend, with HC extracting a 
few large clusters and other small clusters, tSNE-DBSCAN extracting 

Fig. 1. Number of mmNP particles identified in each mmNP cluster in sample 
R1 following first stage clustering using the three clustering approaches. HC 
refers to hierarchical clustering, SC refers to spectral clustering, and tSNE- 
DBSCAN refers to t-distributed Stochastic Neighbor Embedding coupled with 
Density Based Spatial Clustering of Applications with Noise. 
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medium to large clusters, and SC falling somewhere in between the two 
methods, was observed consistently across all other samples as well 
(data not presented). 

Further details regarding the differences observed between the 
clusters extracted by the different methods will be discussed in the 
following sections for a selected set of representative clusters. 

3.1.1. Al-rich cluster 
All clustering methods extracted one large Al–Fe cluster, with a 

mean mass fraction of Al79Fe20 by the HC and SC and Al77Fe22 by the 
tSNE-DBSCAN (Fig. 1). The median Al/Fe in these three clusters are 
4.58, 4.64, and 4.48, respectively. However, tSNE-DBSCAN extracted 
two other smaller (e.g., 3 and 55 members) Al–Fe clusters as well, with 
the mean mass fractions of Al77Cu16Fe9 and Al65Fe20Ti15 (Fig. 1). The 
large Al77Fe22 cluster has a mean Ti mass fraction of only 0.0033, while 
the Al77Cu16Fe9 cluster shows no trace of Ti. Comparatively, in HC and 
SC, the mean mass fractions of Ti in the large Al–Fe cluster are 0.0069 
and 0.0065, respectively. The median Al/Fe in all three Al–Fe clusters 
extracted by tSNE are 4.48, 7.44, and 3.21. 

3.1.2. Fe-rich cluster 
HC identified only one large cluster with a mean mass fraction of 

Fe69Mn18Al3 (1315) (Fig. 1). In contrast, SC identified two clusters with 
mean mass fractions of Mn61Fe37, and Fe79Mn16Ti4 (1028 and 303). The 
tSNE-DBSCAN method identified three clusters with mean mass frac-
tions of Fe85W15, Fe65Mn27Zr2, and Fe49Cu47Ce2 (199, 884, and 51 
members). One notable difference between HC and the other clustering 
methods is that SC and tSNE-DBSCAN were able to extract sub-clusters 
such as Fe–W and Mn–Fe, which were not identified in HC, suggest-
ing that SC and tSNE-DBSCAN are better than HC in extracting clusters 
with subtle differences in their elemental composition. This is because 
tSNE transforms the original data to a lower dimension in which it is 
easier to extract subclusters with subtle differences in their elemental 
compositions. Similarly, SC transforms the data to a graph similarity 
matrix which is less affected by outliers and therefore, identifies sub-
clusters with small differences. Decreasing the cutoff values in HC would 
create a large number of very small clusters since HC first extracts the 
outliers and then place them in separate clusters instead of extracting 
sub-clusters that exist within the large clusters. 

3.1.3. Ce- and Ti-rich cluster 
Both HC and tSNE-DBSCAN methods extracted Ce–La clusters with 

similar elemental compositions and nanoparticle counts (e.g., 118 
Ce46La36Nd14 for HC and 124 Ce45La35Nd13 for tSNE-DBSCAN, Fig. 1), 
while SC extracted two different Ce–La clusters with different mass 
fractions of Nd (70 Ce52La46Pb2 and 32 Ce47Nd29La13). This is because 
tSNE transformation alters the relative distance between datapoints in 
comparison to the distance between the original data, which can disrupt 
the global data structure. Therefore, while tSNE makes it easier to 
differentiate between datapoints within some clusters, it could some-
times make it more difficult to differentiate between other clusters. 
However, SC is sensitive to small differences between subclusters as 
well, while maintaining the global data structure intact. The three 
clustering methods extracted Ti–Fe clusters with similar nanoparticle 
counts but slightly different elemental compositions (285 Ti66Fe31 for 
HAC, 203 Ti77Fe19 for SC, and 346 Ti58Fe40 for tSNE-DBSCAN). The 
slight differences in the mean mass fraction composition of the different 
clusters are attributed to the differences in the way nanoparticles are 
clustered (members of each cluster are identified) by the different 
clustering methods. 

To further understand the similarities/differences between mmNPs 
extracted within each cluster extracted by the different clustering 
methods, the distributions of Al, Fe, and Ti mass fraction are presented 
in Fig. S5 for the extracted clusters. The SC and tSNE-DBSCAN differ-
entiated between mmNPs with low and high mass fractions of Al and Fe, 
whereas HC places them all in one cluster. Nonetheless, tSNE-DBSCAN 

mixed some of the mmNPs with very low traces of Al in the Al77Fe22 
cluster (Fig. S5-a), which makes this cluster less consistent, compared to 
the similar cluster extracted by SC and HC. Fig. S5-b show that HC 
identified only one Fe cluster with a wide Fe mass fraction distribution 
(Fe69Mn18Al3). In contrast, tSNE-DBSCAN identified an additional 
cluster with low traces of W (Fe85W15) and SC differentiated between the 
particles with higher Fe/Mn mass fraction and those with low Fe/Mn 
mass fraction, leading to the formation of Mn61Fe37 cluster. Fig. S5-c 
shows the distribution of Ti mass fraction in Ti-rich clusters. The Ti-rich 
cluster extracted by SC has a narrower mass fraction distribution with 
higher Ti mass fractions compared to those extracted by HC and tSNE- 
DBSCAN, indicating that the Ti-rich nanoparticle cluster extracted by 
SC consists of nanoparticles within tighter (more similar) elemental 
compositions. 

Fig. 2 shows the average Silhouette score calculated for each clus-
tering method and each sample. In most cases, SC performance is better 
or similar to that of HC in terms of Silhouette score, and they both 
outperform (i.e., display a higher Silhouette score) the tSNE-DBSCAN 
significantly. Additionally, two measures—namely, the coefficient of 
variation of the mass fractions within each cluster and the mean distance 
between mmNPs within each cluster—were used to determine the 
quality/performance of the clustering approaches with respect to the 
extraction of clusters with consistent (more similar) elemental compo-
sitions. The similarity of the elemental compositions of mmNPs in the 
clusters extracted by different methods is determined by calculating the 
coefficient of variation of mass fraction for the main elements of each 
cluster (Fig. 3-a). The coefficient of variation of the mass fractions is 
generally lower for the clusters extracted by SC than those extracted by 
HC and tSNE-DBSCAN. This indicates that SC outperforms the other 
clustering methods in generating clusters of mmNPs with similar 
elemental compositions. These differences are attributed to how HC, SC, 
and tSNE-DBSCAN separates clusters and identify cluster members. The 
tSNE-DBSCAN, while highlighting the local structure of data by sepa-
rating some clusters with very narrow differences, sometimes groups a 
number of the mmNPs with very different elemental compositions into 
one cluster. On the other hand, HC is sensitive to outliers, and it sepa-
rates outliers into separate clusters. This leads to the placement of the 
rest of the mmNPs in large clusters that sometimes possess relatively 
diverse elemental compositions. However, SC using a full graph, ac-
counts for both local and global structures of the data. Thus, SC main-
tains a balance between separating clusters with small differences and 
not disrupting the global structure of the data by mixing mmNPs with 
very different elemental compositions in the same cluster. This is why SC 
usually extracts clusters with closely tight mmNP elemental 
compositions. 

As another way of comparing the three clustering methods, Al–Fe 
and Ti–Fe clusters for each sample were tracked and the mean distance 
between cluster members was calculated (Fig. 3-b and -c). In most cases, 
the average “within cluster distance” for Al–Fe and Ti–Fe clusters was 
the smallest for the clusters extracted by SC or tSNE-DBSCAN. However, 
there were a few samples in which the Ti–Fe clusters extracted by HC 

Fig. 2. Average Silhouette score calcualted for the three clustering approaches 
used in this study. 
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have a smaller average “within cluster distance” compared to the other 
clustering methods. This is because SC and tSNE-DBSCAN move addi-
tional nanoparticles that were not identified by HC into Ti–Fe clusters. 
In general, SC generated clusters of mmNPs with tighter elemental 
compositions (less variability in the elemental composition within each 
cluster) than HC and tSNE. 

3.2. Second stage clustering 

Merging all the sample data into a single dataset and performing 
clustering on that merged dataset is typically not feasible due to memory 
constraints on most computers. Consequently, to compare the elemental 
composition of different samples, the clustering process was conducted 
in two stages. In the first stage, clustering was performed individually on 

each sample. Then, in the second stage, HC was employed to cluster and 
compare the representatives of the first stage clusters. Fig. S6 illustrates 
the dendrogram of the cluster representatives generated by each of the 
three clustering methods in the first stage. 

HC classified the first stage clusters obtained from HC, SC, and tSNE- 
DBSCAN into 34, 37, and 18 major clusters, respectively. Similar to the 
first stage, the second stage clusters were tracked, and the number of 
nanoparticles in each cluster is depicted in Fig. 4. Notably, Fig. 4 dem-
onstrates that HC-HC yielded a higher number of very small outlier 
clusters, which was expected as HC tends to separate outliers and assign 
them to their own clusters in the first stage. Moreover, differences be-
tween the SC-HC and HC-HC methods are primarily observed among the 
smaller clusters, specifically the identification of Mn-rich clusters in 
samples R1 and R2 (Fig. 4). 

Fig. 3. Measures of the performance of the three clustering approaches used in this study: (a) coefficient of variation of Ti, Fe, and Al mass fraction in their respective 
main clusters in sample R1, (b) average within cluster correlation distance for Al–Fe clusters, and (c) average within cluster correlation distance of Ti–Fe clusters. 
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Fig. 4. Number of mmNPs in the clusters identified in all samples following the two stage clustering of mmNPs (left) hierarchical- hierarchical, (middle) spectral- 
hierarchical, and (right) tSNE-DBSCAN-hierarchical. The second stage hierarchical clustering distance cutoff value was set to 0.2. The corresponding number of 
mmNPs in clusters identified with a second stage distance cutoff value of 0.05 is presented in Fig. S7. 

Fig. 5. Mean mass fraction of the major elements in mmNPs in Al-rich cluster extracted by the different clustering methods in all samples: (a) hierarchical- 
hierarchical, (b) spectral-hierarchical, and (c) tSNE-DBSCAN-hierarchical. 
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Most of the mmNPs in all samples are clustered into Al–Fe, Fe–W, 
Si–Al, and Ti–Fe clusters. Another noticeable mmNP cluster is Ce–La 
cluster which is almost similar regardless of the first stage method. After 
the second stage, the final outcome of clustering based on all the 
methods is relatively similar. This indicates that evaluating the perfor-
mance of clustering methods and identifying unique clusters in a given 
sample is more useful after the first stage of clustering on individual 
samples. 

Figs. 5-8 show the mean mass fraction of the four most frequent 
second stage clusters. The mass fraction plots are very similar for Al, Si, 
Ti, and Fe clusters which are extracted by HC-HC and SC-HC methods. 

tSNE-DBSCAN-HC method, however, has extracted a more diverse set of 
frequent clusters (Al, Fe, Ti, and Si), especially for Al and Fe-rich 
nanoparticles. tSNE-DBSCAN-HC divided the Al and Fe-rich clusters 
into a number of smaller clusters compared to HC-HC and SC-HC. This is 
consistent with the analysis of the first stage results since tSNE extracted 
clusters such as Fe–W from the Fe-rich clusters. It is worth noting that in 
the second stage, many of these clusters were merged with the rest of the 
Fe-rich clusters since their cluster representatives were relatively 
similar. However, lowering the second stage cut-off (0.05 instead of 0.2) 
may differentiate some of the mmNP clusters identified in the data as 
shown in Fig. S7. 

Fig. 6. Mean mass fraction of the major elements in mmNPs in Si-rich cluster extracted by the different clustering methods in all samples: (a) hierarchical- 
hierarchical, (b) spectral-hierarchical, and (c) tSNE-DBSCAN-hierarchical. 

Fig. 7. Mean mass fraction of the major elements in mmNPs in Ti-rich cluster extracted by the different clustering methods in all samples: (a) hierarchical- 
hierarchical, (b) spectral-hierarchical, and (c) tSNE-DBSCAN-hierarchical. 

M. Erfani et al.                                                                                                                                                                                                                                  



Science of the Total Environment 905 (2023) 167176

9

Even though tSNE-DBSCAN extracted additional clusters from the Al 
and Fe-rich mmNPs in the first stage, they were merged with other 
clusters in the second stage. HC-HC extracted similar major clusters as 
SC-HC, but the rest of the clusters extracted by HC-HC are mostly very 
small (below 10 nanoparticles) (Fig. 4). 

3.3. Overall comparison between the clustering methods 

In order to assess the overall performance of the three different 
clustering approaches used in this study, we focus more on the analysis 
of the first stage clustering phase. Even though HC-HC and SC-HC 
methods generated generally similar clusters after the second stage of 
clustering, SC extracted more consistent large clusters and a higher 
number of relatively large clusters, while HC extracted many outlier 
clusters with very few nanoparticles in them. tSNE-DBSCAN identified 
clusters that existed within the large clusters, which were not detected 
by the other methods. However, tSNE-DBSCAN also generated several 
inconsistent clusters (clusters with large variations in elemental 
composition). It’s worth mentioning that after transforming the data 
using tSNE, the clusters that emerge for the majority of samples have 
arbitrary shapes (Fig. S8). This fact indicates that clustering methods, 
such as K-means, which are suitable for identifying spherical-shaped 
clusters are not appropriate for clustering SP-ICP-TOF-MS data. 
Instead, an algorithm that can identify arbitrary-shaped clusters is 
needed. That is the reason DBSCAN was used as the clustering method 
after tSNE transformation. 

While the difference between the three clustering methods is most 
significant for samples with a higher number of mmNPs, i.e., R1 and R2, 
SC generally outperformed HC and tSNE-DBSCAN across all samples. 
The large clusters extracted by SC in most cases possess a much more 
consistent elemental composition compared to tSNE-DBSCAN. On the 
other hand, since SC is not as sensitive to outliers as HC, it extracted 
informative clusters (relatively large and having a consistent elemental 
composition) not identified by HC. Another important feature of SC is its 
flexibility. Based on the method used for forming the similarity matrix, i. 
e., full graph (the method used in this study), maximum radius search, or 
K-NN, the clustering outcomes may change considerably. Based on 

several tests we performed, it was found that if a maximum radius search 
method is used, considering the specified maximum radius of search, the 
clustering result may become similar to HC. The preliminary tests 
showed that a full graph generates homogeneous clusters and extracts 
more information from the data. Also, the K-NN based SC, similar to 
tSNE-DBSCAN, extracted clusters not extractable by the other methods 
but generated inconsistent clusters as well. In general, K-NN connects 
outlier datapoints to their nearest neighbors, and therefore, it increases 
the probability of separating them from the datapoints which are very 
similar to them. Considering these issues, we conclude that K-NN is not 
appropriate for clustering datasets that may contain outliers such as the 
SP-ICP-TOF-MS data used in this study. 

4. Conclusions 

Spectral clustering demonstrates higher sensitivity towards the 
multi-element associations within nanoparticles, allowing the identifi-
cation of clusters of mmNPs with closer similiraties in their elemental 
compositions to those identified by HC. This enables the differentiation 
of mmNPs with very similar elemental compositions, even with subtle 
differences. Transforming the data using tSNE can sometimes lead to 
inconsistent clusters, as tSNE does not preserve the relative distances 
between datapoints (mmNPs). Additionally, determining appropriate 
values for the perplexity hyperparameter of tSNE and the epsilon 
hyperparameter of DBSCAN can be challenging, as they need to be 
individually determined for each sample. Incorrect parameter selection 
can significantly impact the quality of clustering. Similarly, for SC with 
K-NN or maximum search radius, the selection of hyperparameters 
greatly affects the clustering results. However, SC using a full graph 
method is more robust compared to tSNE-DBSCAN and less sensitive to 
outliers compared to HC. It is worth mentioning that the differences 
between clustering methods are more pronounced when applied to 
larger samples. For smaller samples, the extracted clusters tend to be 
relatively similar across all methods. 

Another characteristic of SC is its flexibility in clustering mmNPs 
based on the chosen method for constructing the similarity matrix. 
Depending on the application and desired outcomes, the appropriate 

Fig. 8. Mean mass fraction of the major elements in mmNPs in Fe-rich cluster extracted by the different clustering methods in all samples: (a) hierarchical- 
hierarchical, (b) spectral-hierarchical, and (c) tSNE-DBSCAN-hierarchical. 
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method can be selected. In our case, the full graph method was chosen as 
it provides more informative results by extracting larger clusters with 
tighter elemental compositions, rather than isolating outlier mmNPs 
into separate clusters as HC does. However, one limitation of SC is that 
the number of clusters needs to be predetermined. This can be addressed 
by initially evaluating the data using HC and determining the number of 
clusters based on the results or through a trial-and-error process. The SC 
framework utilized in this study can be extended to other datasets with 
similar characteristics, as it provides additional insights into the mmNP 
datasets compared to HC. For detailed information on the interpretation 
of the extracted mmNP clusters, the reader is referred to our previous 
publication (Wang et al., 2022). 
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