arXiv:2201.12380v5 [cs.LG] 29 Dec 2022

GStarX: Explaining Graph Neural Networks with
Structure-Aware Cooperative Games

Shichang Zhang' Yozen Liu?> Neil Shah? Yizhou Sun'
!University of California, Los Angeles 2Snap Inc.
!{shichang, yzsun}@cs.ucla.edu 2?{yliu2, nshah}@snap.com

Abstract

Explaining machine learning models is an important and increasingly popular
area of research interest. The Shapley value from game theory has been proposed
as a prime approach to compute feature importance towards model predictions
on images, text, tabular data, and recently graph neural networks (GNNs) on
graphs. In this work, we revisit the appropriateness of the Shapley value for
GNN explanation, where the task is to identify the most important subgraph and
constituent nodes for GNN predictions. We claim that the Shapley value is a
non-ideal choice for graph data because it is by definition not structure-aware. We
propose a Graph Structure-aware eXplanation (GStarX) method to leverage the
critical graph structure information to improve the explanation. Specifically, we
define a scoring function based on a new structure-aware value from cooperative
game theory proposed by Hamiache and Navarro (HN). When used to score node
importance, the HN value utilizes graph structures to attribute cooperation surplus
between neighbor nodes, resembling message passing in GNNs, so that node
importance scores reflect not only the node feature importance, but also the node
structural roles. We demonstrate that GStarX produces qualitatively more intuitive
explanations, and quantitatively improves explanation fidelity over strong baselines
on chemical graph property prediction and text graph sentiment classification.'

1 Introduction

Explainability is crucial for complex machine learning (ML) models in sensitive applications, helping
establish user trust and providing insights for potential model improvements. Many efforts focus
on explaining models on images, text, and tabular data. In contrast, the explainability of models on
graph data is yet underexplored. Since explainability can be especially critical for many graph tasks
like drug discovery, and interest in deep graph models is growing rapidly, further investigation of
graph explainability is warranted. In this work, we study graph ML explanation with graph neural
networks (GNNs) as the target models, given their popularity and widespread use for graph machine
learning tasks [42, 29, 38, 34, 33, 45].

In ML explainability, important features are identified, and the Shapley value [30] has been deemed as
a “fair” scoring function for computing feature importance. Originally from cooperative game theory,
many values, including the Shapley value, have been proposed for allocating a total payoff to players
in a game. When used for scoring the feature importance of a data instance, the model prediction is
treated as the total payoff and the features are considered as players. In particular, for an instance with
n features {1, ... x,}, the Shapley value of its ith feature x; is computed via aggregating m(i, S),
which are the marginal contributions of x; to sets of other features g C {x1,...,@,} \ {x;}. Each
xg is called a coalition. Each m(i,.S) is computed as the difference between model outputs for

!Code available at https://github.com/ShichangZh/GStarX

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/ShichangZh/GStarX

Ti .‘@“@ “is still quite good — natured and not
Shapley Marginal Contributions HN a bad way to spend an hour”
weights TsU {w} Ts weights
£ i <
113 [. J_{ J 112 [s |_. still_ | [quite |
» @0 J)-Co) et
@ /4 | and bad H not |
16 [. @} _{ @J 0 [a / spend [way |
I
113 [.‘@‘@J _{ @‘@} 1/4 [t [Lhow H an]

Figure 1: Explanations on graphs with structure-aware values (like HN) offers advantages over
non-structure-aware values (like Shapley). (a) Synthetic graph (left): The Shapley value assigns
weights to m(i,.5) only based on size of xg, while the HN value assigns weights considering
structures and in particular gives zero weight to the disconnected xs. (b) Text graph (middle): For
a sentence classified as positive, the {"not", "good"} coalition shouldn’t be considered when they
are not connected by "bad". (¢) Chemical graph (right): For a chemical graph with mutagenic
functional group -NO2, the importance of the atom N (node 1) is better recognized if decided locally

within the functional group.

xs U {x;} and xg, e.g., difference of probability belonging to a target class for these two set of
features, and it is meant to capture the interaction between x; and xg. The Shapley value is widely
used for explaining ML models on images, text, and tabular data, when the features are pixels, words,
and attributes [22, 24].

The Shapley value has recently been extended to explain GNNs on graphs through feature importance
scoring as above, where features are nodes [9] or supernodes [44]. We argue that the Shapley value
is a non-ideal choice for (super)node importance scoring because its contribution aggregation is
non-structure-aware. The Shapley value aggregation assumes no structural relationship between x;
and x g even though they are both parts of the input graph (a review of the Shapley value is in Section
2.2). Since the graph structure generally contains critical information and is crucial to the success of
GNNs, we consider properly leveraging the structure with a better structure-aware scoring function.

We propose Graph Structure-aware eXplanation (GStarX), where we construct a structure-aware node
importance scoring function based on the Hamiache-Navarro (HN) value [15] from cooperative game
theory. Recall that GNNs make predictions via message passing, during which node representations
are learned by aggregating messages from neighbors. Message passing aggregates both feature and
structure information, resulting in powerful structure-aware models [5]. The HN value shares a
similar idea to message passing by allocating the payoff surplus generated from the cooperation
between neighboring players (nodes). When used as a scoring function to explain node importance,
the HN value captures both features and structural interactions between nodes (details in Section 4).
Figure 1(a) shows an example comparing the Shapley value and the HN value. In this example, their
difference boils down to different aggregation weights of marginal contributions, where the former is
uniform and the latter is structure-aware (details in Section 3.2). In summary, our contributions are:

* Identify the non-structure-aware limitation of the Shapley value for GNN explanation.

* Introduce the structure-aware HN value from cooperative game theory to the graph machine
learning community and connect it to the GNN message passing and GNN explanation.

* Propose a new HN-value-based GNN explanation method GStarX, and demonstrate the superiority
of GStarX over strong baselines for explaining GNNs on chemical and text graphs.

2 Preliminaries

2.1 Graph neural networks

Consider a graph G with (feature-enriched) nodes and edges £. We denote G as G = (V, X, A),
where X € R"*4 denotes d-dimensional features of 7 nodes in V, and A € {0, 1}"*" denotes the
adjacency matrix specifying edges in £. GNNs make predictions on G by learning representations
via the message-passing mechanism. During message passing, the representation of each node u € V
is updated by aggregating its own representation and representations (messages) from its neighbors.
We denote the set of neighbors as /(). This aggregation is recursively applied, so u can collect

messages from its multi-hop neighbors and produce structure-aware representations [5]. With hEl)
denotes the representation of node ¢ at iteration [, and AGGR(-, -) denotes the aggregation operation,
e.g. summation, the representation update is shown in Equation 1.

h") = AGGR(R(=V {R{!V]i € N(u)}) M

2.2 Cooperative games

A cooperative game denoted by (NN, v), is defined by a set of players N = {1,...,n}, and a
characteristic function v : 2N 5 R. v takes a subset of players S C N, called a coalition, and maps
it to a payoff v(.9), where v(Q) := 0. A solution function ¢ is a function maps each given game (N, v)
to ¢(N,v) € R™. The vector ¢(NN, v), called a solution, represents a certain allocation of the total
payoff v(IN) generated by all players to each individual, with the ith coordinate ¢;(V,v) being the
payoff attributed to player i. ¢(N, v) is also called the “value” of the game when it satisfies certain
properties, and different values were proposed to name solutions with different properties [30, 35].

The Shapley value is one popular solution of cooperative games. The main idea is to assign each
player a “fair” share of the total payoff by considering all possible player interactions. For example,
when player ¢ cooperates with a coalition S, the total payoff v(S U {i}) may be very different from
v(S) + v({i}) because of i’s interaction with S. Thus the marginal contribution of 7 to S is defined as
by m(i,S) = v(SU{i}) —v(S). Then the formula of the Shapley value for 4 is shown in Equation 2,
where marginal contributions to all possible coalitions S C N\{i} are aggregated. The first identify
in Equation 2 shows that the aggregation weights are first uniformly distributed among coalition sizes
k (outer average), then uniformly distributed among all coalitions with the same size (inner average).

Average over k

e Average over S s.t. |S| =k
—_——~

k=0

() ‘) n!
k J SCN\{i} SCN\{i}
|S|=Fk

Games with communication structures. Although the Shapley value is widely used for cooperative
games, its assumption of fully flexible cooperation among all players may not be achievable. Some
coalitions may be preferred over others and some may even be impossible due to limited communica-
tion among players. Thus, [26] uses a graph G as the communication structure of players to represent
cooperation preference. A game with a communication structure is defined by a triple (N, v, G), with
N being the node set of G. This game formulation is more practical than fully flexible cooperation
when cooperation preference is available. Several values with different properties have been proposed
for such games [26, 2, 13, 18] including the HN value [15].

3 GNN explanation via feature importance scoring

3.1 Problem formalization

A general approach to formalize an ML explanation problem is through feature importance scoring
[24, 6], where features may refer to pixels of images, words of text, or nodes/edges/subgraphs
of graphs. Let f(-) denote a to-be-explained GNN, G = (V, X, A) denote an input graph, and
0 < v < 1 denote a sparsity constraint to enforce concise explanation. GNN explanation via
subgraph scoring is aimed to find a subgraph g that maximizes a given evaluation metric EVAL (-, -, -),
which measures the faithfulness of g to G regarding making predictions with f(-), i.e.

*

g* = argmax EVAL(f(-),G,g) 3)
9CG,19<vIG]

When the task is graph classification and f(-) outputs a one-sum vector f(G) € [0, 1]¢ containing
probabilities for G belongs to C' classes, an example EVAL can be the prediction probability drop for
removing g from G, i.e. EVAL(f(-),G,g) = [f(9)].. — [f(G\g)].. with ¢* = argmax,[f(G)]..

In practice, since the number of subgraphs is combinatorial in the number of nodes, the objective
is often relaxed to finding a set of important nodes or edges first and then inducing the subgraph

[41, 25, 9]. A more tractable objective of finding the optimal set of nodes S* C V' ? is given by

S* = argmax ZSCORE(f(-),Q,i) 4)
SCV.isi<yvl s

Existing methods often boil down to Equation 4 with different scoring functions (SCORE), and
finding a proper SCORE is non-trivial. One example of SCORE is to evaluate each node 7 directly
as SCORE(f(+),G,4) = [f({i})].~. However, this choice misses interactions between nodes and
corresponds to a trivial case in GNNs where no message-passing is performed for {i}. Another
possibility is to use EVAL as SCORE, e.g., SCORE(f(-),G,i) = [f(G)].. — [f(G\{i})]... However,
this again fails to capture interactions between nodes; for example, two nodes ¢ and j may be both
important but also complimentary, so their contribution to G can only be observed when they are
missing simultaneously.

3.2 Scoring functions from cooperative games

Given the challenges for defining a proper SCORE, solutions to cooperative games, like the Shap-
ley value, have been proposed with f(-) as the characteristic function, i.e. SCORE(f(:),G,i) =
#:(|G|, f(-)) [44, 9]. However, existing works only use the non-structure-aware Shapley value. In
contrast, values defined on games (N, v, G) with communication structures G are naturally structure-
aware but were never considered GNN explanation. Below we discuss the non-structure-aware
limitation of the Shapley value in detail and motivating structure-aware values with practical exam-
ples in GNN explanation.

The Shapley value is defined on games (NN, v), which by definition takes no graph structures. It
assumes flexible cooperation between players and uniform distribution of coalition importance that
only depends on |S| (see Equation 2). Even if a G is given and the game is defined as (N, v, G),
the Shapley value will overlook G when aggregating m (¢, .5). In contrast, structure-aware values on
(N, v,G) can be interpreted as a weighted aggregation of coalitions with more reasonable weights.
Although different solutions ¢(N, v, G) have their nuances in weight adjustments [13, 15, 26, 18],
they share two key properties: (1) the weight is zero if ¢ and S are disconnected because they are
interpreted as players without communication channels [26], and (2) the weight is impacted by the
nature of connections between ¢ and .S because it is easier for better-connected nodes to communicate.

A synthetic example. We take the HN value (definition in Section 4.1) as an example structure-aware
value and compare it to the Shapley value in a simple graph in Figure 1(a). To compute ¢4 (N, v, G),
both values aggregates m(1,5) for S € {0,{2},{3},{2,3}}. The Shapley value first assigns a
uniform weight % to three different |.S|, and then splits weights uniformly for the |S| = 1 case to

be %. However, the HN value assigns weight zero for S = {3} because 1 and 3 are disconnected
in coalition {1, 3} and are assumed to be two independent graphs that shouldn’t interact (property
(1)). Their interaction is rather captured in the S = {2,3} case, when 1 and 3 are connected by
the bridging node 2, and this case is also downweighted from % to i, as 3 is relatively far from 1

(property (2)).

A practical example. The good properties of structure-aware values can help explain graph tasks.
The example in Figure 1(b) is from GraphSST2 (dataset description in Section 5.1), where the
graph for sentiment classification is constructed from the sentence “is still quite good-natured and
not a bad way to spend an hour” with edges generated by the Biaffine parser [12]. Assuming a
model can correctly classify it as positive. Intuitively, “good” and “not a bad” are central to the
human explanation. To compute the Shapley value of the word “good”, the coalition “not good” will
diminish the positive importance of “good”, despite the two words lacking any direct connection.
A structure-aware value can instead eliminate the {“not”, “good”} coalition, and only consider
interactions between “not” and “good” (in fact, “not” and any other word) when the bridging “bad”
appears, hence better binding “not” with “bad” and improving the salience of “good”. In Section 5.2,
we revisit this example to observe impacts of structure-awareness empirically.

2A similar objective can be defined as S over edges £. We define it over nodes as nodes often contain richer
features than edges and are more flexible. One advantage of this choice will be made clear in Section 5.2

4 GStarX: Graph Structure-aware eXplanation

We propose GStarX, which uses a structure-aware HN-value-based SCORE to explain GNNs. We
first state the definition of the HN value in cooperative game theory (4.1), and then connect it to the
GNN message passing (4.2), and finally give the GStarX algorithm for GNN explanation (4.3).

4.1 The HN value

Let (N, v,G) be a game with a communication structure G and S C N be a coalition. Let S =

Uies{N ()} US to be the union of S and its neighbors in G. Let S/G be the partition of S containing
connected components in G, i.e., S/G = {{i|i = j or i and j are connected in S by £ of G}|j € S}.
Let G[S] be the induced subgraph of S in G. For example, in Figure 1(b), when S ={“is”, “an”,
“hour”}, S will be {“is”, “good”, “an”, “hour”, “spend”}, S/G will be {{“is”}, {“an”, “hour”}} and

G[S] will be the subgraph with a two-node component [an) @—m and a single node component a
Definition 4.1 (Surplus). The surplus p(j, S) generated by a coalition .S cooperating with its neigh-

bor j is defined as
p(7,8) = v(SU{j}) —v(S) —v({j}) (5)

Intuitively, p(j, S) is generated because S is actively cooperating. Thus, when evaluating a fair
payoff to .S, a portion of p(j, S) should be added to its own payoff v(.S). This idea leads to the next
definition of associated games regarding the original games, where surplus allocation is performed.

Definition 4.2 (HN Associated Game). Given 0 < 7 < 1 representing the portion of surplus that
will be allocated to a coalition .S for its cooperation with other players. The HN associated game
(N, v, G) of (N,v,G) is defined as

y Yo

() +7 Y p(G.S) if [9/G]=1 (©)
vi() = o

Z vi(T) otherwise (7

TeS/g

The HN value is a solution on (N, v, G). It is computed by iteratively constructing a series of HN
associated games until it converges to a limit game (N, ¥, G). In other words, we first construct v
from v by surplus allocation. Then we construct v}* from v} by allocating the surplus generated from
the v} and so on. The convergence of the limit game is guaranteed and the result v is independent of
7 under mild conditions as shown in [15]. The HN value of each player is uniquely determined by
applying o to that player, i.e. ¢;(N,v,G) = 9({i}). We state the formal definitions of the limit game
and the uniqueness theorem of the HN value in Appendix E.2.

4.2 Connecting GNNs and the HN surplus allocation through the message passing lens

Both the GNN message passing (MP) and the associated game surplus allocation (SA) are iterative
aggregation algorithms, with considerable alignment. In fact, SA on each singular node set S = {i}
is exactly MP: Equation 6 becomes an instantiation of Equation 1 with AGGR(a,b) =a+ 73, b;
on a scalar node value @ and a neighbor set b. These algorithms differ in that SA applies more broadly
to |S|>1 cases; it treats S as a supernode when nodes in .S form a connected component in G, and
handles disconnected S component-wise via Equation 7.

We illustrate SA using a real chemical graph example. The molecule shown in Figure 1(c) is taken
from MUTAG (dataset description in Section 5.1). It is known to be classified as mutagenic because of
the -NO2 group (nodes 1, 2, and 3) [8]. When we compute v ({1}), the surplus p(2, {1}), p(3, {1}),
and p(4, {1}) are allocated to node 1 (like messages passed to a central node in GNN). Then surplus
are aggregated together with v({1}) following Equation 6 to form v({1}).

For graphs, the SA approach has two advantages over the uniform aggregation approach used in
the Shapley value: (1) The aggregated payoff in each v} is structure-aware, like representations
learned by GNNs [5], and (2) the iterative computation preserves locality, which is preserved by
GNN s [3]. In other words, these two properties mean close neighbors heavily influence each other
due to cooperation in many iterations, while far away nodes less influence each other due to little

Algorithm 1 GStarX: Graph Structure-Aware Explanation Algorithm 2 The Compute-HN Function

Input: Graph G with nodes V = {u1, ..., u,}, trained
GNN f(-), empirical expectation f°, hyperparameter 7,
max sample size m, number of samples .J, sparsity .
Get the predicted class ¢* = argmax,[f(G)].
Define characteristic function v(S) = [f(gs)].- — f>
if n < m then

¢ = Compute-HN(G, V, v(-),T)
else

¢ = Compute-HN-MC(G, V, v(-), 7,m, J)
end if
Sort ¢ in descending order with indices {71, ...

k= |yV)]

T}

Input: Graph instance G with nodes
V = {ui,...,u,}, characteristic
function v, hyperparameter 7.
for S in 2V do

Compute payoff v(S) {Eq.(8)}
end for
Construct matrix Hy, ,, gy {Eq.(16)}
repeat

H=HH
until H converges
Get the limit game v = Hv {Eq.(17)}
Assign the first n entries of ¥ to ¢

Return: S* = {ur,,..., Uz, } Return: ¢

cooperation. In the MUTAG example, since the local -NO2 generates a high payoff for the mutagenicity
classification, locally allocating the payoff helps us better understand the importance of the nitrogen
atom and the oxygen atoms. Whereas aggregating over many unnecessary coalitions with far-away
carbon atoms can obscure the true contribution of -NO2. We will revisit this example in Section 5.2.

4.3 The GStarX algorithm

We now state our algorithm for explaining GNNs with GStarX. Notice that GStarX scores nodes
in a graph but not each dimension of node features. Feature dimension importance explanation is
an orthogonal perspective that can be added on top of GStarX. We leave this extension as a future
work. GStarX formulates the GNN explanation problem as a feature importance scoring problem,
where nodes are scored to find the optimal node-induced subgraph as we introduced in Section 3.1.
It essentially implements and solves the objective in Equation 4, where an HN-value-based SCORE
is used. To use such SCORE, we need to define the players and the characteristic function of the
game, and then apply the formula in Equation 6 and 7. Suppose the inputs are a graph G with nodes
V = {uy,...,u,}andlabely € {1,...,C},aGNN f(-) outputs a probability vector f(G) € [0,1]¢,
and the predicted class ¢* = argmax,[f(G)].. Let V be players, and let the normalized probability
of the predicted class be the characteristic function v:

v(8) = [F(G[SD]e. — f& VS CV ®)

Here the normalization term f2. = E[[f(G)]...] is the expectation over a random variable G represent-
ing a general graph. In practice, we approximate it using the empirical expectation over all G in the
dataset. SCORE will be the HN value of the game, i.e., SCORE(f(-),G,1) = ¢;(V,v,G) = 0({i}).

Given SCORE, we solve the objective by first computing the scores ¢ € R"™ then selecting the top
|7|V|] scores greedily as in Algorithm 1. Practically, like other game-theoretic methods, the exact
computation of the HN value is infeasible when the number of players 7 is large. We thus do an
exact computation for small graphs (the if-branch) and Monte-Carlo sampling for large graphs (the
else-branch). The Compute-HN function is shown in Algorithm 2, where the H stands for a matrix
form of the associated game defined in Definition 4.2.(See Appendix E.2 and E.3 for details of the
matrix form and algorithms for Compute-HN-MC). Also, even though the algorithm is stated for graph
classification, GStarX works for node classification as well. This can be easily seen since GNNs
classify nodes u; by processing an ego-graph centered at u;, so the task can be converted to graph
classification with the label of u; used as the label of the ego-graph. We focus on graph classification
in the main text for simpler illustration and discuss more about node classification in Appendix B.

S Experiments

5.1 Experiment settings

Datasets. We conduct experiments on datasets from different domains including synthetic graphs,
chemical graphs, and text graphs. A brief description of the datasets is shown below with more
detailed statistics in Appendix A.1

* Chemical graph property prediction. MUTAG [8], BACE and BBBP [39] contain chemical molecule
graphs for graph classification, with atoms as nodes, bonds as edges, and chemical properties as
graph labels.

» Text graph sentiment classification. GraphSST2 and Twitter [43] contain graphs constructed
from text. Nodes are words with pre-trained BERT embeddings as features. Edges are generated
by the Biaffine parser [12]. Graphs are labeled as positive or negative sentiment.

* Synthetic graph motif detection. BA2Motifs [25] contains graphs with a Barabasi-Albert (BA)
base graph of size 20 and a 5-node motif in each graph. Node features are 10-dimensional all-one
vectors. The motif can be either a house-like structure or a cycle. Graphs are labelled in two classes
based on which motif they contain.

GNNs and explanation baselines. We evaluate GStarX by explaining GCNs [19] on all datasets
in our major experiment in Section 5.2. In the ablation study in Section 5.3, we further evaluate on
GIN [40] and GAT [36] on certain datasets following [44]. All models are trained to convergence
with hyperparameters and performance shown in Appendix A.2. We compare with 5 strong baselines
representing the SOTA methods for GNN explanation: GNNExplainer [41], PGExplainer [25],
SubgraphX [44], GraphSVX [9], and OrphicX [21]. In particular, SubgraphX and GraphSVX use
Shapley-value-based scoring functions.

Evaluation metrics. Evaluating explanations is non-trivial due to the lack of ground truth. We follow
[44, 43] to employ Fidelity, Inverse Fidelity (Inv-Fidelity), and Sparsity as our evaluation metrics.
Fidelity and Inv-Fidelity measure whether the prediction is faithfully important to the model prediction
by removing the selected nodes or only keeping the selected nodes respectively. Sparsity promotes fair
comparison by controlling explanations to have similar sizes, since including more nodes generally
improves Fidelity and Inv-Fidelity, and explanations with different sizes are not directly comparable.
Ideal explanations should have high Fidelity, low Inv-Fidelity, and high Sparsity, indicating relevance
and conciseness. Equations 9-11 show their formulas.

Fidelity(G, g) = [f(9)],. — [(G\g)].. ®)
Inv-Fidelity(G, g) = [f(9)].- — [£(9)].- (10)
Sparsity(G,g) =1 — |g|/|9| (11)

Fidelity and Inv-Fidelity are complementary and are both important for a good explanation g. Fidelity
justifies the necessity for g to be included to predict correctly. Inv-Fidelity justifies the sufficiency of a
standalone g to predict correctly. As they are analogous to precision and recall, we draw an analogy
to the F1 score to propose a single-scalar-metric “harmonic fidelity” (H-Fidelity), where we normalize
them by Sparsity and take their harmonic mean; see Appendix A.3 for the formula.

Hyperparameters. GStarX includes three hyperparameters: 7 for the allocated surplus in the
associated game, m as the maximum graph size to perform exact HN value calculation, and J as
the number of samples for the MC approximation. In our experiments, we choose 7 = 0.01 since
we need 7 < % for convergence (Appendix E.2) and all graphs in the datasets above have less than
200 nodes. For m and J, bigger values should be better for the MC approximation, and we found
m = 10 and J = n work well empirically.

5.2 [Evaluation results

Quantitative studies. We report averaged test set H-Fidelity in Table 1. We conduct 8§ different runs
to get results with Sparsity ranging from 0.5-0.85 in 0.05 increments (Sparsity cannot be precisely
guaranteed, hence it has minor variations across methods) and report the best H-Fidelity for each
method. GStarX outperforms others on 4/6 datasets and has the highest average. We also follow [44]
to show the Fidelity vs. Sparsity plots for all 8 sparsity in Appendix A.4.

Qualitative studies. We visualize the explanations of graphs in GraphSST2 in Figure 2 and compare
them qualitatively. We show explanations selected with high and comparable Sparsity on a positive
(upper) graph and a negative (lower) graph. GStarX concisely captures the important words for
sentiment classification without including extraneous ones for both sentences. Baseline methods
generally select some-but-not-all important sentiment words, with extra neutral words as well. Among
baselines, SubgraphX gives more reasonable results. However, it cannot cover two groups of important
nodes with a limited budget because it can only select a connected subgraph as the explanation; e.g.

title Hlameness s | !

i\ title Hlameness s
[[

{[oitle HumnewH_s] | [title HumenewH_s]| [title Fommones s] | [title_{lameness}[_s

i
\ the | [should] | on] [_the] [should] | on \U the] [should] [_on m the] [should] [o \“ the | [should] | on 1! the] [should] [o \
;‘ clue H you H in \;‘ cluie H you H in \H clue H you H in ‘“ cluie H you H in \“ cluie H you H in ‘;‘ clue H you H in “
H bad H i‘s Hmovic\“ bad H iL Hmovie\“ bad H s Hmuvie‘!‘ bad H iL Hmovie\‘\ bad H iL Hmuvie\i\ bad H i‘s Hmovie\i
o 0 [5 i o [
GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

Figure 2: Explanations on sentences from GraphSST2. We show the explanation of one positive
sentence (upper) and one negative sentence (lower). Red outlines indicate the selected nodes/edges
as the explanation. GStarX identifies the sentiment words more accurately compared to baselines.

GNNExplamer PGExplamer SubgraphX

o
o ; \c
s

! 1 e :

! y ! S S
| ¢ 1 A—e” 1 fide: -0.102, inv-fide: -0.143, h-fide: 0.481!
lo—el ¢ fo—e ¢ ‘

c;/?‘-:;' —— .ﬁk\c\v

(N
Q/ﬁ Q/ﬁ « %
,, C/c\c/ :
iﬁde -0.185, inv-fide: 0.764, h-fide: 0. 422 fide: -0.163, inv-fide: 0.180, h-fide: 0.457 de 0.758, inv-fide: -0.234, h-fide: 0. 632 \Cf—’c\C H
o 1 '\ﬁ : .\(. 3 oG
- : : - t .’% :
| e C\C | c :\c | e] ! :
: P : ® P : I
lo O ¢ ! —e L o—el ¢ i & »
: C\Q,d‘c\ @ ©<c,_—‘c : c\c,_,c\ : Ground Truth
¢ @, | o SO0, o :
./(,\C/C/ e e 1
GraphSVX OrphicX GStarX

Figure 3: Explanations on a mutagenic molecule in MUTAG. Carbon atoms (C) are in yellow, nitrogen
atoms (N) are in blue, and oxygen atoms are in red (O). Dark outlines indicate the selected nodes/edges
as the explanation. We report the explanation Fidelity (fide), Inv-Fidelity (inv-fide), and H-Fidelity
(h-fide). GStarX gives a significantly better explanation than other methods in terms of these metrics.

to cover the negative word “lameness” in the lower sentence, SubgraphX needs at least three more
nodes along the way, which will significantly decrease Sparsity while including undesirable, neutral
words. Moreover, we discussed in Section 3.2 that the Shapley value will downgrade the positive
importance of the word “good” for the upper sentence. Comparing the normalized contribution scores
of our HN-value-based method GStarX and the Shapley-based method GraphSVX, contribution of
“good” is higher in ours: 0.1152 vs. 0.0371.

We visualize explanations selected with high and comparable Sparsity of a mutagenic molecule
from MUTAG in Figure 3. Explanations on chemical graphs are harder to evaluate than text graphs
as they require domain knowledge. MUTAG has been widely used as a benchmark for evaluating
GNN explanations because human experts recognize -NO2 as mutagenic [8], which makes MUTAG
a dataset with “ground truth™®. Surprisingly, we found that GStarX generates much better H-
Fidelity/Fidelity/Inv-Fidelity than other methods and even the “ground truth” by only selecting the
-O in -NO2 as explanations. In particular, the -0.234 Inv-Fidelity of GStarX means the selected
subgraph has an even better prediction result than the original whole graph (0 Inv-Fidelity) and the
ground truth (-0.143 Inv-Fidelity) because nodes not significant to the GNN prediction are removed.
Fidelity metrics of baselines are inferior to GStarX because they include other non-discriminative
carbon atoms despite they capture -NO2 to some extent. This suggests that even though human
experts identify -NO2 as the “ground truth” of mutagenicity, the GNN only needs -O to classify
mutagenic molecules. With the goal being understand model behavior, GStarX explanation is better.
Moreover, SubgraphX is the only baseline that has better H-Fidelity than the “ground truth”, but it

3Carbon rings were also claimed as mutagenic by human experts, but we found it is not discriminative as
they exist in both mutagenic and non-mutagenic molecules in MUTAG.

Table 1: The best H-Fidelity (higher is better) of 8 different Sparsity for each dataset. GStarX shows
higher H-Fidelity on average and on 4/6 datasets.

Dataset GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

BA2Motifs 0.4841 0.4879 0.6050 0.5017 0.5087 0.5824
BACE 0.5016 0.5127 0.5519 0.5067 0.4960 0.5934
BBBP 0.4735 0.4750 0.5610 0.5345 0.4893 0.5227
GraphSST2 0.4845 0.5196 0.5487 0.5053 0.4924 0.5519
MUTAG 0.4745 0.4714 0.5253 0.5211 0.4925 0.6171
Twitter 0.4838 0.4938 0.5494 0.4989 0.4944 0.5716
Average 0.4837 0.4934 0.5569 0.5114 0.4952 0.5732

Table 2: GStarX shows higher H-Fidelity for both GAT on GraphSST2 and GIN on MUTAG.
Dataset GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

GraphSST2 0.4951 0.4918 0.5484 0.5132 0.4997 0.5542
MUTAG 0.5042 0.4993 0.5264 0.5592 0.5152 0.6004

can only capture one -NO?2 because its search algorithm requires the explanation to be connected,
so its Inv-Fidelity is not optimal. In fact, GNNExplainer, PGExplainer, and SubgraphX can never
generate explanations including only disconnected -O without -N like GStarX, because the former
two solve the explanation problem by optimizing edges (as opposed to Equation 4), and the latter
requires connectedness. More MUTAG explanation visualizations are in Appendix H.

5.3 Ablation study and analysis

Model-agnostic explanation. GStarX makes no assumptions about the model architecture and can
be applied to explain various GNN backbones. We use GCN for all datasets in the major experiment
above for consistency, and we now further investigate performance on two more popular GNNs: GIN
and GAT. We follow [44] to train GIN on MUTAG and GAT on GraphSST24, and show results in Table
2. For both settings, GStarX outperforms the baselines, which is consistent with results on GCN.

Efficiency study. The GStarX algorithm scales in O(.J) with practical J |V|. Following [44], we
study the empirical efficiency of GStarX by explaining 50 randomly selected graphs from BBBP. We
report the average run time in Table 3. Our results for the baselines are similar to [44]. GStarX is not
the fastest method, but it is more than two times faster than SubgraphX. Since explanation usually
doesn’t have strict efficiency requirements in real applications, considering GStarX generates higher-
quality explanations than the baselines, we believe the time complexity of GStarX is acceptable.

Explanation sparsity study. To further study whether the obtained scores by GStarX are sparse,
we follow [11] to evaluate an entropy-based sparsity measure on model output scores. We show the
average GStarX entropy-based sparsity on all datasets, and compare them with three reference score
distributions on all n nodes in a graph. 1) An upper bound: Uniform(n), which represents the least
sparse output. 2) A practical lower bound: Uniform(0.25%n) which represents very sparse outputs
with only top 25% of nodes. 3) Poisson(0.25*n), which is a more realistic version of case 2). Results
in Table 4 show the average entropy-based sparsity of GStarX is much lower than Uniform(n) and
close to Poisson(0.25%*n), which justifies the GStarX outputs are indeed sparse. A more detailed
discussion of this metric and these three reference distributions is in Appendix A.5.

6 Related work

GNN explanation aims to produce an explanation for a GNN prediction on a given graph, usually as
a subgraph induced by important nodes or edges. Many existing methods work by scoring nodes or
edges and are thus similar to this work. For example, the scoring function of GNNExplainer [41]
is the mutual information between a masked graph and the prediction on the original graph, where
soft masks on edges and node features are generated by direct parameter learning. PGExplainer
[25] uses the same scoring function as [41] but generates a discrete mask on edges by training an
edge mask predictor. SubgraphX [44] uses the Shapley value as its scoring function on subgraphs

*As some baselines take over 24 hours on full GraphSST2, we randomly select 30 graphs for this analysis.

Table 3: Average running time on 50 graphs in BBBP
Method GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

Time(s) 11.92 0.03 (train 720) 75.96 3.06 0.15 (train 915) 31.24

Table 4: The entropy-based sparsity scores of GStarX vs. three reference distributions, which shows
GStarX outputs are indeed sparse.

Dataset BA2Motifs BACE BBBP GraphSST2 MUTAG Twitter
GStarX 2.1352 24481 23290 2.3282 22434 22114
Uniform(n) 3.2189 3.5080 3.0728 2.8698 2.8612 2.9833
Uniform(0.25*n) 1.8326 2.1217 1.6893 1.4855 1.4749 1.5970
Poisson(0.25*n) 2.3204 24686 22416 2.1336 2.1323 2.1945

selected by Monte Carlo Tree Search (MCTS), and GraphSVX [9] uses a least-square approximation
to the Shapley value to score nodes and their features. While SubgraphX and GraphSVX were
shown to perform better than prior alternatives, as we show in Section 3, the Shapley value they
try to approximate is non-ideal as it is non-structure-aware. Although SubgraphX and GraphSVX
use L-hop subgraphs and thus technically they use the graph structure, such structure usage are
very limited in achieving structure-awareness as we show in Appendix G. While there are many
other GNN explanation methods from very different perspectives, i.e. gradient analysis [28], model
decomposition [1], surrogate models [37], and causality [20, 21], we defer their details to Appendix
C given their lesser relevance.

Cooperative game theory originally studies how to allocate payoffs among a set of players in a
cooperative game. Recently, certain ideas from this domain have been successfully used in feature
importance scoring for ML model explanation [22, 32, 24]. When used for model explanation, data
features becomes players in the game, e.g. pixels for images, and the value of the game gives feature
importance scores. The vast majority of works in this line, like the ones cited above, deem the Shapley
value [30] to be the only choice. In fact, there are many other values with different properties and
used in different situations in cooperative game theory. However, to the best of our knowledge, only
[4] mentions the Myerson value [26] in the context of proposing a connected Shapley (C-Shapley)
value for explaining sequence data, and it is not directly comparable to ours for graph data. A detailed
discussion of the Myerson value and the C-Shapley value can be found in Appendix F. Our work
follows the cooperative game theory approach to explain models on graph data using the HN value
[15], which as we show is a better choice than the Shapley value given its structure-awareness.

7 Conclusion and future work

In summary, we study GNN explanation on graphs via node importance scoring. We identify the
non-structure-aware challenge of existing Shapley-value-based approaches and propose GStarX to
assign importance scores to each node via a structure-aware HN value. We also build connections
between the HN value surplus allocation and GNN message passing. GStarX demonstrates its
superiority over strong baselines on chemical and text graph classifications. A limitation of GStarX is
that the importance of different node feature dimensions is not explained. One future work is to add
this extension, which could be done by scoring a subset of nodes together with a subset of features
each time. Another future direction is to exploit the rich cooperative game theory literature. Beyond
the Shapley value, more values are possible for explaining ML models. For graph data, edge-based
values like [2] can potentially be applied to an alternative edge-based objective like Equation 4. Other
values may be appropriate to more data types beyond graphs.

Acknowledgement

This work was partially supported by NSF III-1705169, NSF 1937599, NSF 2119643, Okawa
Foundation Grant, Amazon Research Awards, Cisco research grant USAOOOEP280889, Picsart Gifts,
and Snapchat Gifts.

10

References
[1] Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks, 2019.

[2] Peter Borm, Guillerom Owen, and Stif Tijs. On the position value for communication situations.
SIAM Journal on Discrete Mathematics, 5(3):305-320, 1992.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[4] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. L-shapley and c-shapley:
Efficient model interpretation for structured data. In International Conference on Learning

Representations, 2019.

[5] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? arXiv preprint arXiv:2002.04025, 2020.

[6] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. arXiv
preprint arXiv:1705.07857, 2017.

[7] Morton Davis and Michael Maschler. The kernel of a cooperative game. Naval Research
Logistics Quarterly, 12(3):223-259, 1965.

[8] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
medicinal chemistry, 34(2):786-797, 1991.

[9] Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph
neural networks. arXiv preprint arXiv:2104.10482, 2021.

[10] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[11] Thorben Funke, Megha Khosla, and Avishek Anand. Zorro: Valid, sparse, and stable explana-
tions in graph neural networks. arXiv preprint arXiv:2105.08621, 2021.

[12] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson Liu, Matthew
Peters, Michael Schmitz, and Luke Zettlemoyer. Allennlp: A deep semantic natural language
processing platform. arXiv preprint arXiv:1803.07640, 2018.

[13] Gérard Hamiache. A value with incomplete communication. Games and Economic Behavior,
26(1):59-78, 1999.

[14] Gérard Hamiache. Associated consistency and shapley value. International Journal of Game
Theory, 30(2):279-289, 2001.

[15] Gérard Hamiache and Florian Navarro. Associated consistency, value and graphs. International
Journal of Game Theory, 49(1):227-249, 2020.

[16] S Hart and A Mas-Colell. Potential, value, and consistency. Econometrica, 57(3):589-614,
1989.

[17] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang. Graphlime:
Local interpretable model explanations for graph neural networks, 2020.

[18] Atsushi Kajii, Hiroyuki Kojima, and Takashi Ui. A refinement of the myerson value. IMS
Preprint Series, 25, 2006.

[19] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[20] Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks.
In International Conference on Machine Learning, pages 6666—6679. PMLR, 2021.

[21] Wanyu Lin, Hao Lan, Hao Wang, and Baochun Li. Orphicx: A causality-inspired latent variable
model for interpreting graph neural networks. arXiv preprint arXiv:2203.15209, 2022.

[22] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory approach. Applied
Stochastic Models in Business and Industry, 17(4):319-330, 2001.

11

[23] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao
Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora M Oztekin, Xuan Zhang,
and Shuiwang Ji. DIG: A turnkey library for diving into graph deep learning research. Journal
of Machine Learning Research, 22(240):1-9, 2021.

[24] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 4765-4774. Curran
Associates, Inc., 2017.

[25] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 19620-19631. Curran Associates, Inc., 2020.

[26] Roger B Myerson. Graphs and cooperation in games. Mathematics of operations research,
2(3):225-229, 1977.

[27] Bezalel Peleg. On the reduced game property and its converse. International Journal of Game
Theory, 15(3):187-200, 1986.

[28] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoff-
mann. Explainability methods for graph convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10772-10781,
2019.

[29] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking
in large-scale social platforms. In Proceedings of the Web Conference 2021, pages 2535-2546,
2021.

[30] Lloyd Shapley. A value fo n-person games. Ann. Math. Study28, Contributions to the Theory
of Games, ed. by HW Kuhn, and AW Tucker, pages 307-317, 1953.

[31] AI Sobolev. Characterization of the principle of optimality for cooperative games through
functional equations. Mathematical Methods in the Social Sciences, Vipusk, 6:92—-151, 1975.

[32] Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and information systems, 41(3):647-665, 2014.

[33] Xianfeng Tang, Yozen Liu, Xinran He, Suhang Wang, and Neil Shah. Friend story ranking with
edge-contextual local graph convolutions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 1007-1015, 2022.

[34] Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang. Knowing
your fate: Friendship, action and temporal explanations for user engagement prediction on
social apps. In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 2269-2279, 2020.

[35] Lester G Telser. The usefulness of core theory in economics. Journal of Economic Perspectives,
8(2):151-164, 1994.

[36] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[37] Minh Vu and My T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 12225-12235. Curran
Associates, Inc., 2020.

[38] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys (CSUR), 2020.

[39] Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513-530, 2018.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

12

[41] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32:9240, 2019.

[42] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974-983, 2018.

[43] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. arXiv preprint arXiv:2012.15445, 2020.

[44] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 12241-12252. PMLR, 18-24 Jul 2021.

[45] Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. A synergistic approach for graph
anomaly detection with pattern mining and feature learning. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work?
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL?
(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Experiment details

A.1 Dataset statistics
In Table 5, we provided the statistics of all datasets used in our experiments.

Table 5: Dataset Statistics.

Dataset # Graphs # Test Graphs # Nodes (avg) # Edges (avg) # Features # Classes

MUTAG 188 20 17.93 19.79 7 2
BACE 1,513 152 34.01 73.72 9 2
BBBP 2,039 200 24.06 25.95 9 2
GraphSST2 70,042 1821 9.20 10.19 768 2
Twitter 6,940 692 21.10 40.20 768 3
BA2Motifs 1,000 100 25 25.48 10 2

A.2 Model architectures and implementation

In Table 6, we provided the hyperparameters and test accuracy for the GCN model used in our major
experiments. In Table 2, we provided the hyperparameters and test accuracy for the GIN and GAT
model used in our analysis experiment. Most parameters are following [44], with small changes to
further boost the test accuracy.

We run all experiments on a machine with 80 Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz CPUs, and
a single NVIDIA V100 GPU with 16GB RAM. Our implementations are based on Python 3.8.10,
PyTorch 1.10.0, PyTorch-Geometric 1.7.1 [10], and DIG [23]. We adapt the GNN implementation
and most baseline explainer implementation from the DIG library, except for GraphSVX and OrphicX
where we adapt the official implementation. For the baseline hyperparameters, we closely follow the
setting in [44] and [9] for a fair comparison. Please refer to [44] Section 4.1 and [9] Appendix E for
details.

Table 6: GCN architecture hyperparameters according to results in Table 6
Dataset #Layers #Hidden Pool Test Acc

BA2Motifs 3 20 mean 0.9800
BACE 3 128 max 0.8026
BBBP 3 128 max 0.8634
MUTAG 3 128 mean 0.8500
GraphSST2 3 128 max 0.8808
Twitter 3 128 max 0.6908

Table 7: GIN and GAT architecture hyperparameters according to results in Table 2. For GAT, we
use 10 attention heads with 10 dimension each, and thus 100 hidden dimensions.

Dataset #Layers #Hidden Pool Test Acc
GraphSST2(GAT) 3 10 x10 max 0.8814
MUTAG(GIN) 3 128 max 1.0

A.3 Exact formula for evaluation metrics

Formulas for Fidelity, Inv-Fidelity, and Sparsity are shown in Equation 9, 10, and 11. In Equation
12, 13, and 14, we show formulas for normalized fidelity (N-Fidelity), normalized inverse fidelity
(N-Inv-Fidelity), and harmonic fidelity (H-Fidelity). Both the N-Fidelity and N-Inv-Fidelity are in [—1, 1].
The H-Fidelity flips N-Inv-Fidelity, rescales both values to be in [0, 1], and takes their harmonic mean.

N-Fidelity(G, g) = Fidelity(G, g) - (1 — ||é||) (12)

14

NJnV-HdeMy(Q,g)::IanﬁdeMy(g,g)-(“gu) (13)
Let m1 = N-Fidelity(G, g), m2 = N-Inv-Fidelity(G, g)
2
() T+ (T2)
(I+ml) (1 —-m2)

T2+ ml—m2) 14

H-Fidelity(G, g) =

A.4 Fidelity vs. sparsity plots

In Table 1, we report the best H-Fidelity among 8 different sparsities for each method on each dataset.
We also follow [44] to show the Fidelity vs. Sparsity plots in Figure 4 row1. Note that GraphSVX
tends to give sparse explanations on some datasets, we still pick 8 different sparsities for it but mostly
on the higher end. We also show the / - Inv-Fidelity vs. sparsity plots and the H-Fidelity vs. sparsity
plots. Curves in all three plots are the higher the better.

method
0 GStarX V GraphSvX I SubgraphX @ GNNExplainer 4= PGExplainer A OrphicX
dataset = ba_2motifs dataset = bace dataset = bbbp dataset = graph_sst2 dataset = mutag dataset = twitter
0 e, 0.6 o, ~, ~, N
" . 0.75 e
. T o N 0.4 ‘\\\ .,
Zos . s 0.4 " : Ny 0.50 —
3 = \ .,
] \ 0.2 \.
= 02 ,_ 0.2 . 0.25 = = Sa
0.0 ey U0 e BTN e el U= e o —
e X 0.0 0.0 0.00 - g
0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8
sparsity sparsity sparsity sparsity sparsity sparsity

dataset = ba_2motifs dataset = bace dataset = bbbp dataset = graph_sst2 dataset = mutag dataset = twitter

1 e ——— G evev NS EEETEceee e
2 10 T
T .
2
E 0.8
-
0.6 =
. 0.6 0.8 X 0.6 0.6 0.8 0.6 0.8
sparsity sparsity sparsity sparsity sparsity sparsity
dataset = ba_2motifs dataset = bace dataset = bbbp dataset = graph_sst2 dataset = mutag dataset = twitter
06 as-—= - 0.550 ‘wmi= ~ 0. == o
z S © 0525
]
o5 0.500 05
< e
= 0475
0.6 0.8 0.6 0.8 0.6 0.8 R 0.6 0.8
sparsity sparsity sparsity sparsity sparsity sparsity

Figure 4: Fidelity (rowl), 1 - Inv-Fidelity (row2), and H-Fidelity (row3) vs. Sparsity on all datasets
corresponding to the results shown in Table 1. All three metrics are the higher the better. We see that
GStarX outperforms the other methods

A.5 Detailed entropy-based sparsity evaluation

In Section 5.2 we study whether the obtained scores by GStarX are sparse and follow [11] to apply an
entropy-based sparsity measure on scores. We now provide a more detailed discussion of this study.

The entropy-based sparsity, as defined in Definition 2 in [11], is shown in the Equation 15 below.
Here ¢ is the model output scores for a data instance, and ¢; = Z‘éi 3; represent normalized scores.

H(@Z—Z@log@ (15)

S

The entropy-based sparsity helps us to understand how sparse an explanation is, before the scores
are turned into hard explanation by thresholding or selecting top k. In Table 4, we show the average
scores for GStarX on all datasets, and compare them with three reference cases. 1) The entropy of
uniform distribution over all n nodes in a graph, i.e., Uniform(n), which represents the least sparse
output and is an upper bound of entropy-based sparsity. 2) The entropy of uniform distribution over
the top 25% nodes in a graph, i.e., Uniform(0.25%n), where probabilities of the bottom 75% nodes

15

are set to zero. This case is very sparse since 75% of nodes are deterministically excluded, which can
be treated as a practical lower bound of entropy-based sparsity. 3) The entropy of Poisson distribution
with mean 0.25%n, i.e. Poisson(0.25*n), which is a more realistic version of the sparse output in
case 2). Instead of setting all 75% of nodes to have probability zero, we assume the probabilities
for tail nodes decrease exponentially as a Poisson distribution while the mean is kept the same as
in case 2). Results in Table 4 show that the average entropy-based sparsity of GStarX is between
Uniform(0.25*n) and Uniform(n) and close to Poisson(0.25*n), which justifies the GStarX outputs
are indeed sparse.

B GStarX for node classification

Even though the GStarX algorithm is stated for graph classification, it works for node classification
as well. This can be easily seen as the GNN node classification can be covert to classify an ego-graph.
Given a graph G with V = {uy,...,u,}. Node classification on u; with an L-layer GNN can be
converted to a graph classification. The target graph to classify will be the L-hop ego-graph centered
at u;, because this is the receptive field of the GNN for classifying u; and nodes further away won’t
influence the result. The label of the graph will be the label of w;. In this case, the final readout layer
of the GNN will be indexing w; instead of pooling. Given this kind of conversion, everything we
showed in Section 4 follows.

C More related work

GNN explanation continued Besides the perturbation-based method we mentioned in Section
6, there are several other types of approaches for GNN explanation. Gradient-based methods are
widely used for explaining ML models on images and text. The key idea is to use the gradients as the
approximations of input importance. Such methods as contrastive gradient-based (CG) saliency maps,
Class Activation Mapping (CAM), and gradient-weighted CAM (Grad-CAM) have been generalized
to graph data in [28]. Decomposition-based methods are a popular way to explain deep NNs for
images. They measure the importance of input features by decomposing the model predictions and
regard the decomposed terms as importance scores. Decomposition methods including Layer-wise
Relevance Propagation (LRP) and Excitation Backpropagation (EB) have also been extended to graphs
[28, 1]. Surrogate-based methods work by approximating a complex model using an explainable
model locally. Possible options to approximate GNNs include linear model as in GraphLIME [17],
additive feature attribution model with the Shapley value as in GraphSVX [9], and Bayesian networks
as in [37]. GNN explainability has also been studied from the causal perspective. In [20, 21],
generative models were constructed to learn causal factors, and explanations were produced by
analyzing the cause-effect relationship in the causal graph.

D Properties of the Shapley value

The Shapley value was proposed as the unique solution of a game (/V, v) that satisfies three properties
shown below, i.e. efficiency, symmetry, and additivity [30]. These three properties together are
referred as an axiomatic characterization of the Shapley value. The associated consistency properties
introduced in Section 4.1 provides a different axiomatic characterization.

Property D.1 (Efficiency).
> 6i(N,v) = v(N)

ieN
Property D.2 (Symmetry). If v(S U {i}) = v(SU{j}) forall S € N\{4, j}, then
(bi(Nv’U) = ¢j(N’ U)

Property D.3 (Additivity). Given two games (N, v) and (N, w),
O(N,v+w) = ¢(N,v) + (N, w)

16

The efficiency property states that the value should fully distribute the payoff of the game. The
symmetry property states that if two players make equal contributions to all possible coalitions
formed by other players (including the empty coalition), then they should have the same value. The
additivity property states that the value of two independent games should be added player by player.
It is the most useful for a system of independent games.

E Properties and calculation of the HN value

E.1 Consistency and associated games

One reason for the Shapley value’s popularity is its axiomatic characterization, indicating that it is
the unique solution that satisfies a set of desirable properties (see Appendix D). Then [14] proposed
a new axiomatic characterization of the Shapley value based on a different associated consistency
property. The consistency property is a common analysis tool used in game theory [16, 7, 31, 27].
The idea is to analyze a game (N, v) by defining other reduced games (S, vg) for S C N, and a
solution function ¢ is called consistent when ¢(N, v) yields the same payoff as ¢ (S, vg) on each S.
When (5, vg) is defined with desired properties, these good properties can be enforced for a solution
by requiring consistency. The associated consistency in [14] is a special case of consistency between
(N, v) and only one other game (N, v*), which is called the associated game. [14] shows that a
carefully designed associated game uniquely characterizes the Shapley value. Associated consistency
is also the key idea of the HN value.

E.2 Limit game and the axiomatic characterization

The HN value is established on a special associated game as we discussed in Section 4.1. We can
actually write this associated game in a more compact matrix form, where we slightly abuse notation
and use v and v} to represent vectors of payoffs for all S C N under the original and associated
game respectively. In other words, v(.S), which is used to represent evaluating the coalition S using
the characteristic function v, now can also be interpreted as indexing the vector v with index S.

Lemma E.1. A matrix form of the associated game (N, v, G) is given by

s YUro

vi = H{.,.m_’g}v (16)

The matrix H, ,, g} depends on the hyperparameter 7, number of players n, and the graph G. When
these variables are clear from the context, we drop them and write v7 = Hwv. Please refer to [15] for
the proof of Lemma E.1.

With the matrix form, we can define the limit game.
Definition E.2. Given a game (N, v, G), its limit game (N, 9, G) is defined by

o= lim HPv (17)

p—o0

Notice that although the matrix H is constructed from the associated game and depends on 7, the
powers of H actually converge to a limit independent from 7, when 7 is sufficiently small. The
general condition depends on the actual graph, but 0 < 7 < % is proven to be sufficient for the
complete graph case [14]. As we discussed in Section 4.1, the limit game can be seen as constructing
associated games repeatedly until the characteristic function converges.

An axiomatic characterization of the HN value regarding its uniqueness is given by the following
theorem based on the limit game. The associated consistency is the core property related to this work.
We encourage the readers to check [15] for the other two properties.

Theorem E.3. There exists a unique solution ¢ that verifies the associated consistency, i.e.
®i(N,v,G) = ¢;(N, v, G), inessential game, and continuity. ¢ is given by

¢i(N,v,G) = ({i}) (18)
E.3 The algorithm for computing the HN value

We show the algorithm for Compute-HN-MC (Algorithm 3) mentioned in Section 4.3. The algorithm
is a combination of Equation 16, 17, and 8.

17

Algorithm 3 The Compute-HN-MC Function

Input: Graph instance G with nodes V = {uq, ..., u,}, characteristic function v, hyperparameter
T, maximum sample size m, number of samples J
Let ¢, ...,%, be n empty lists
for) = 1to J do
Sample gg; from G s.t. S7 = {uj,,...,u;,}andl <m
@’ = Compute-HN(gg;, 57, v(-),)
fork=1toldo
Append ¢, to 1,
end for
end for
Set ¢; to be the mean of v;
Return: ¢

F The Myerson value and the C-Shapley value

F.1 The Myerson value

In the study of cooperative games, [26] proposed to characterize the cooperation possibilities between
players using a graph structure G, which leads to the communication structure introduced in Section
2.2 and the Myerson value as a solution for this special type of games (N, v, G). The Myerson value
is closely related to the Shapley value. In fact, it is the Shapley value on a transformed game where
players are partitioned by the graph. We now formally introduce the partition and the transformed
game.

Definition F.1 (Partition). Given a set of players IV and a graph G. For any coalition S C N, the
partition of S is denoted by S/G and defined by
S/G = {{ili and j are connected in S by G}|j € S}

and a member of the set S/G is called a component of S.

Definition F.2 (Transformed Game). Given a game (N, v, G), we can transform it to a new game
v/G such that forall S C N

(0/G)(S)= Y o(T)

TeS/G

Intuitively, given a coalition S, the transformed game treats each connected component of S as
independent, evaluates them separately, and sums their payoff as the payoft of S.

The Shapley value has an axiomatic characterization that uniquely determines it as we introduced
in Appendix D. Likewise, the Myerson value was proposed to be a unique solution that satisfies the
component efficiency and the fairness property defined below.

Property F.3 (Component Efficiency). For a game (N, v, G) and any connected component S €
N/G, a solution is component efficient if

> 6i(N,v,G) =v(S)

ies
Property F.4 (Fairness). For a game (N, v,G) and any edge (4, j) in G, let G be G with the edge
(i, 4) removed, a solution is fair if

¢i(N7vvg) —¢1(N,1),g~) = qu(N,v,g) _¢j(N7vag~)

The component efficiency property is an extension of the regular efficiency property to games with a
communication structure. It requires efficiency to hold for each disconnected piece because these
pieces are assumed as independent from each other. The fairness property states that if breaking an
edge (i,) changes the value of player i, then the value of player j should be changed by the same
amount.

18

Theorem F.5 (Myerson Value). There exists a unique solution ¢ of game (N,v,G) satisfying

component efficiency and fairness. With gg represents the Shapley value, the solution is given by the
formula

¢(N7U7 g) = QS(N’ (’l}/g))

For games with a communication structure, the Myerson value is a better choice than the Shapley
value as it uses the graph structure. However, it also suffers from some criticisms. For example, the
fairness assumption may not be realistic. When an existing edge is broken, the value changes for
players on the two edge ends can be asymmetric. Intuitively, if the edge connects a popular hub
player < to a leaf player j, then the change of ¢ can be less significant than j since j becomes isolated
when (1, j) is removed. This is also the case when the game value is used for model explanation. For
example in Figure 1 (b), when the edge ("good", "quite") is broken, the value of "quite" should change
a lot. It used to contribute positively together with "good", and thus gets some payoff allocation, but
it now becomes an isolated node, which is neutral by itself. On the other hand, the word "good" can
still contribute positively by itself and interact with other nodes through its other edges, and thus its
value shouldn’t change too much. Because of such criticisms, we choose to use the HN value as our
scoring function, which characterizes the value by associated consistency rather than fairness.

F.2 The C-Shapley value

The Myerson value was also mentioned in [4] for the model explanation on text, where the C-Shapley
value was proposed as an approximation of the Shapley value, and it was claimed to be equal to
the Myerson value. We have discussed why Shapley value and Myerson are not-ideal choices for
explaining graph data in Section 3 and Appendix F.1. These are partially the reason why our HN-
value-based method is better than the C-Shapley value. However, the major reason why we don’t do
a direct comparison to the C-Shapley value as a baseline is that its formula only works for line graphs
like sequence data, and not even all nodes in line graphs. In contrast, our target task is general graph
prediction for graphs with possibly complicated topological structures.

We now clarify a mistake of the C-Shapley value formula and explain why it won’t work for general
graphs. The notations are following the [4], where d is the number of players corresponding to n in
our notation, and [d] corresponding to N.

The formula for the C-Shapley value is given in Equation 6 in Definition 2 in the paper, and it is
stated for "a graph G" without mentioning any assumptions of the graph. However, from the proof of
this formula in Appendix B.2 in the paper, the line graph assumption can be seen in two places. The
first place is Equation 20, where the set C is explicitly defined only for subsequences. The second
place is Equation 22, the first line converts > A:Us(A)=U 1O Z;i:—(I)UI—{ which is implicitly saying
Vs(A) can be picked from all d but |U| — 2 nodes. However, this conversion is only possible when
there are exactly 2 edges between U and [d]\U, i.e. the middle part of a line graph. If there are [
edges between U and [d]\U, then the summation should go up to d — |U| — I. When! = 0,i.e. U
equals [d] or a connected component of [d], no partition is needed and the coefficient simply evaluates
to 1. By correcting all these cases, the final formula for the C-Shapley value coefficients of marginal
contributions thus becomes

d—|U|—1

1 <d —|U| - z)
— . (19)
; (i+TU|171) v
= d (20)
(U1 + 0 (7
_ dl e

U+ DU +1=1)---|U]

for! > 0, and 1 forl = 0.

19

i[.)= | 13 1/3 1/2 @ -) 3 1/3 1/3
[.—@ - ®) us 112 16| @@ -0) e 112 1/6
i{. @J_{ @} 1/6 0 0 : : { .—@J—[@J 1/6 1/12 1/6 ‘
{.—@-@}—[OQ 13 130 13 @@0-0© &3 1 13

Figure 5: A toy 3-node graph example for comparing the mariginal contribution coefficients between
the Shapley, the C-Shapley, and the Myerson value. (a) Value computation for node 0 (left). (b)
Value computation for node 1 (right).

The correct formula for the C-Shapley value of general graphs will be

N e mmx(ai) if 1 >0
d)X(z)_{i il =0
(22)

with [represents the edges between U and [d]\U and C represents all connected subgraphs in [d]
containing i.

To verify this formula with the 3-node toy graph in Figure 5. When computing the value of node 0
(left), the three connected components containing 0 are C = {{0},{0,1},{0,1,2}}. Since 0 is an
end node and has no leaf nodes to its left, [for these three components will be 1, 1, and 0 respectively.
According to our new formula in Equation 22, the coefficients will be 3, ¢, and # respectively, with
the disconnected {0, 2} case removed. This matches the original idea of Myerson value, where
the {0,2} — {2} case is reduced to the {O} @ case, which turns the Shapley coefficients from
.46 3]l05+4, 85— &3, whichi 1s [3.%.0, 3]. However, the original C-Shapley formula

3767673 630 2’6’
from Equation 6 in the [4] evaluates to [3> 12 ,0, 30] Wthh doesn’t match the Myerson value and not

even sum up to 1. Another example of computing the value of node 1 is shown in Figure 5 right.

The C-Shapley, even with the correct formula, eventually boils down to an approximation of the
Shapley value or the Myerson value, which as we discussed are less ideal than the HN value. Also,
the correct formula in Equation 22 requires generating all possible subgraphs U containing the node ¢
and specify the edges between U and [d]\U. This makes the computation very complicated, we thus
skip the comparison to the C-Shapley value.

G Use the graph structure via an L-hop cutoff

Although the Shapley value itself is not structure-aware, we do note the existing Shapley-value-
based GNN explanation methods use an L-hop cutoff to help approximate the Shapley value [44, 9].
Technically, this operation uses the graph structure, so we can’t strictly refer to these explanation
methods as not structure-aware. However, we argue that the L-hop cutoff is a naive way of utilizing
the graph structure. It has several concerns, and it is not the same structure-aware as the HN value.

The L-hop cutoff approximates the Shapley value of node 7 by considering only the L-hop neighbors
of ¢ when explaining an L-layer GNN. The rationale of this operation is that an L-layer GNNs only
propagate messages within L-hops so a node more than L-hop away from 7 has never passed any
messages to ¢ which means no interactions are possible. In existing Shapley-value-based GNN
explanation methods, this L-hop cutoff operation was meant for reducing the exponentially growing
computations of the Shapley value, and the ultimate goal is still to compute the Shapley value. The
L-hop cutoff operation has several issues making it a less desirable choice. 1) Even meant to save
computation, there are still many nodes involved in the computation after applying the L-hop cutoff
since the number of nodes grows exponentially as L grows. For advanced GNNs, the L can be large.
When L is larger than the diameter of the graph, which is actually the case for many recent deep
GNNGs, the L-hop cutoff is not effective anymore. 2) When constructing coalitions of nodes within the
local graph of L-hops, the computation still follows the Shapley value formula. This means the useful

20

graph structure information among these nodes is forfeited which causes the structure-awareness
concern of Shapley value as we discussed in Section 3,

H More explanation visualizations

Under the same setting as Figure 3, we visualize more explanations in 6.

| fide: 0.073, inv-fide: 0.791, h-fide; 0,450 fide: 0.053, inv-fide: 0.779, h-fide: 0.471fide: 0.520, inv-fide: 0.932, h-fide: 0.505 | fide: -0.062, inv-fide: 0.932, h-fide: 0.431 fide: -0.028, inv-fide: 0.549, h-fide: 0.448 |fide: 0.714, inv-fide: -0.066, h-fide: ule

%T’ﬁf

e:-0.022, inv-fide: 0.669, h-fide: 0.451

P— : g : e—q
SN : VRN : d N

‘] o0 —
Eéi} ‘ ; ‘ b o
LS 1 gy 1 ' 1 'S

o oo ' e \q o ' o g ' o0

I 7 1 : D! : \ : I 1T 1

- 'SP | | : Loy b b b

c—¢

ifide: 0.574, inv-fide: -0.057, h-fide: 0.
| c
— T
i /
‘ l
e \/c/

GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

Figure 6: Explanations on a mutagenic molecule from the MUTAG dataset. Carbon atoms (C) are
in yellow, nitrogen atoms (N) are in blue, and oxygen atoms (O) are in red. We use dark outlines
to indicate the selected subgraph explanation and report the Fidelity (fide), Inv-Fidelity (inv-fide),
and H-Fidelity (h-fide) of each explanation. GStarX gives a significant better explanation than other
methods in terms of these metrics.

“occasionally funny , always very colorful and enjoyably overblown in the traditional almodévar style.”

oty | [funny][, ccasionay | [funny][,]}
\ 3
always H colorful [{ very | !

[T\ ‘
e .
/

S o S]|

il.wmwunny\ —]:[mmnau)ﬂfunny 1

(i) [y] [| [| Ty |
: ! : [w

' [always H col(Trful H very | | [always H colorful [{ very | | [always H colorful |{ very | | } [atways H colorful [{ very
! [Cand] oo] Tt [Cand J fovrion] =] | [Cand J [omionn]] | [and] [ovoion] |

: I] : |

! [enioyaty [[in] [the] : [enioyabty [in__] [the] ! [enioyabiy [[in][the | i [enjoyanly | | il‘”l | [the
! [wadiionat H_style | smodsvar] | [wadiionat H_style | ammodovar] | [wadiionst H_style | aimodovar | i [irionat H{_style | simodovar
! ! : |

always H colorful [{ very
/ \
and_| [overbiown | {

vadional H_style | smodsvar | | [radionst H_style JH atmodovar] |

GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

Figure 7: Explanations on sentences from GraphSST2. The sentence is predicted to be positive
sentiment. Red outlines indicate the selected nodes/edges as the explanation. GStarX identifies the
sentiment words more accurately compared to baselines.

21

	1 Introduction
	2 Preliminaries
	2.1 Graph neural networks
	2.2 Cooperative games

	3 GNN explanation via feature importance scoring
	3.1 Problem formalization
	3.2 Scoring functions from cooperative games

	4 GStarX: Lg
	4.1 The HN value
	4.2 Connecting GNNs and the HN surplus allocation through the message passing lens
	4.3 The GStarX algorithm

	5 Experiments
	5.1 Experiment settings
	5.2 Evaluation results
	5.3 Ablation study and analysis

	6 Related work
	7 Conclusion and future work
	A Experiment details
	A.1 Dataset statistics
	A.2 Model architectures and implementation
	A.3 Exact formula for evaluation metrics
	A.4 Fidelity vs. sparsity plots
	A.5 Detailed entropy-based sparsity evaluation

	B GStarX for node classification
	C More related work
	D Properties of the Shapley value
	E Properties and calculation of the HN value
	E.1 Consistency and associated games
	E.2 Limit game and the axiomatic characterization
	E.3 The algorithm for computing the HN value

	F The Myerson value and the C-Shapley value
	F.1 The Myerson value
	F.2 The C-Shapley value

	G Use the graph structure via an L-hop cutoff
	H More explanation visualizations

