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Abstract—This work uses non-adaptive probabilistic group
testing to find a set of L defective items out of n items. In
contrast to traditional group testing, in the considered setup each
item can hide itself (or become inactive) during any given test
with probability 1 − α and is active with probability α. The
authors of [Cheraghchi et al.] proposed an efficiently decodable
probabilistic group testing scheme which requires O

(
L log(n)

α3

)
tests for the per-instance scenario (where the group testing matrix
works for any arbitrary, but fixed, set of L defective items)
and O

(
L2 log(n/L)

α3

)
tests for the universal scenario (where the

same group testing matrix works for all possible defective sets
of L items). The contribution of this work is two-fold: (i) with a
slight modification in the construction of the group testing matrix
proposed by [Cheraghchi et al.], the corresponding bounds on
the number of sufficient tests are improved to O

(
L log(n)

α2

)
and O

(
L2 log(n/L)

α2

)
for the per-instance and universal scenarios

respectively, while still using their efficient decoding method; and
(ii) it is shown that the same bounds also hold for the fixed pool-
size probabilistic group testing scenario, where in every test a
fixed number of items are included for testing.

I. INTRODUCTION

Group testing, introduced back in 1943 by Dorfman [1], has
numerous applications ranging from medicine [2] to computer
science [3]. It is a well studied methodology used to identify
L defective items among n items whenever L << n, by
incorporating efficient strategies of testing groups of items at
a time, instead of testing the items one by one. Two principal
types of group testing methodologies, namely probabilistic and
combinatorial group testing are prevalent in the literature. In
combinatorial group testing, the goal is to identify the set
of L defective items among n items for any size n with a
zero probability of error [4]. In probabilistic group testing, the
probability of error goes to 0 as n→∞ [5]–[8]. The results of
a group test can be noisy in mainly two ways: (i) unreliable
items, i.e., among the items that are selected in any given
test, some items can choose to hide themselves (or become
inactive) with a certain probability [9]–[12] and hence, they
do not contribute in that specific test; or (ii) noisy/unreliable
tests, i.e., the result can itself be noisy, that is, the test results
can themselves get flipped [5], [13], [14].

In this work, we focus on the first case of unreliable items,
where in any given test, each item selected for that test is
active with probability α and inactive with probability 1− α.

This research was supported in part by the U.S. National Science
Foundation under Grant CCF-1907785. The authors would also like to thank
Dr. M. Cheraghchi for discussing the improved bound, and his encouragement
to submit this work.

This effect is often referred to as the dilution effect in the
literature [9], [10], because of its relevance in biological
experiments and viral epidemics [15]. Note that in this work
we focus on noise-level-independent test design, where the test
matrix is constructed independently of α. In [12], the authors
derived an achievable bound on the number of tests required
for identifying the L defective items. Their scheme is based on
a noise-level-independent Bernoulli test design and requires
O
(
L log(n)
α2

)
tests for the per-instance scenario (where the

designed group testing matrix works for any arbitrary, but
fixed, set of L defective items) and O

(
L2 log(n/L)

α2

)
tests for

the universal scenario (where the designed group testing matrix
works for all possible defective sets of L items). However,
their scheme uses maximum likelihood decoding and checks
all the

(
n
L

)
sets to see which set is most likely to be defective,

making the decoding computationally expensive. The authors
of [10] proposed an efficiently decodable group testing scheme
based on a distance decoder. However, this scheme requires
more tests, namely, O

(
L log(n)
α3

)
for the per-instance scenario

and O
(
L2 log(n/L)

α3

)
for the universal scenario.

In this work, we still use the efficient distance decoder
of [10] (but with more fine-tuned parameters), and improve
the bound on the number of tests to O

(
L log(n)
α2

)
for the

per-instance scenario and to O
(
L2 log(n/L)

α2

)
for the universal

scenario, by making a few modifications in the group testing
scheme of [10]. Thus, our constructions are both computation-
ally efficient and achieve the same bounds as the maximum
likelihood-based group testing scheme of [12]. Note that
our test matrix construction is noise-level-independent, which
makes our scheme more robust to errors in the estimate of α.
With a noise-level-dependent test construction, the achievable
bounds can be even further improved [16], [17]. Furthermore,
in both [10] and [12], there is no restriction on the pool-size.
For the noiseless case, group testing with pool-size constraints
has been well studied [18]–[20]. In this work, we study a
specific case of pool-size-constrained group testing for the
dilution model. In particular, we extend our achievability result
to the fixed pool-size case, and we show that our achievable
bounds also hold when we want the same number of items to
be selected for testing in each test. The fixed pool size case
is practically relevant, for instance, in distributed computing
settings where the server, in order to retrieve the result of a
computation, might need to aggregate the results received from
a fixed size of worker nodes [3], [21].
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Paper Organization. In Section II, we present the group
testing framework under consideration. In Section III, we
present the achievable bounds for probabilistic group testing
with unreliable items where there is no restriction on the pool-
size. Finally, in Section IV, we show that the same bounds also
hold true for the fixed pool-size case.
Notation. We use uppercase calligraphic letters to represent
sets (example: L), capital serif letters to represent matrices
(example: M), lowercase boldface letters to represent vectors
(example: x), and uppercase boldface letters to denote random
vectors (example: X). For a matrix M, we use Mi,: and M:,j to
represent its ith row and jth column, respectively. Moreover,
for sets A and B, MA,B is the submatrix of M where only the
rows in A and the columns in B are retained. For a vector z,
we define supp(z) , {i : zi 6= 0} and ‖z‖0 = |supp(z)|. For
a positive integer n, we define [n] , {1, 2, . . . , n}.

II. SYSTEM MODEL

We consider n items labeled by integers in [n]. A subset
L ⊆ [n] with |L| = L of the items are defective, while the
remaining [n]\L items are non-defective. Our goal is to iden-
tify the set L. To this end, we can perform tests on individual,
or groups of, items and tell whether the tested group includes
any defective item or not. However, the defective items are
not reliable and may be active (and act as a defective item) or
inactive (and act as a non-defective item) in each test. Hence,
our tests are noisy, and their results will be negative, if all the
defective items in the selected group are inactive. Equivalently,
a test result will be positive if and only if there is at least one
active defective item in the tested group G. The probability of
a defective item being active in a test is α, independent of the
other defective items and other tests.

Let M be the total number of tests. We represent these tests
using a contact matrix M(c) ∈ {0, 1}M×n, where M

(c)
i,j = 1 if

and only if the jth item is included in the ith test. Moreover,
we use a vector x ∈ {0, 1}n×1, to indicate whether or not
each item is defective. More precisely, xj = 1 if and only
if the jth item is defective. In an ideal setting (where all the
defective items are always active, i.e., α = 1), the result of
the tests can be represented by a vector y(c) ∈ {0, 1}M as

y(c) = M(c) � x, (1)

where the multiplication and addition are logical and and or,
respectively. More precisely, we have y

(c)
i =

∨n
j=1(M

(c)
i,j ∧xj).

To account for the unreliable behavior of the defective items,
we adopt the notation used in [10], and define a sampling
matrix M(s) which is obtained from the contact matrix M(c)

as follows. Each non-zero entry of M(c) is flipped with
probability 1−α. In other words, each entry M

(c)
i,j with i ∈ [M ]

and j ∈ [n] is passed through a Z-channel, and we have

M
(s)
i,j =


0 if M(c)

i,j = 0,

1 w.p. α if M(c)
i,j = 1,

0 w.p. 1− α if M(c)
i,j = 1.

(2)

Note that if α = 1, the problem reduces to the classical group
testing problem [1]. So, we focus on a range of α that is

bounded away from 1, i.e., upper bounded by any constant
less than 1, and without loss of generality, we assume α ≤ 1

2 .
The result of the actual tests (in the presence of unreliable
defective items) can be represented as

y = M(s) � x. (3)

Assume that item j is selected to be included in test i. Then,
we have M

(c)
i,j = 1. Now, assume that item j is defective

(xj = 1), but inactive in test i. Since M
(c)
i,j = 1, we have

y
(c)
i = 1. However, the inactive behavior of item j in test i is

captured by flipping M
(c)
i,j and setting M

(s)
i,j = 0. In this case,

the inactive defective item j does not lead to yi = 1.
An example of a contact matrix and a sampling matrix for

n = 5 items and M = 3 tests is given as

M(c) =

1 0 0 1 0
1 1 1 0 0
0 1 0 1 0

 , M(s) =

1 0 0 0 0
1 1 1 0 0
0 0 0 1 0

 . (4)

In this example, the third test consists of testing items {2, 4}.
However, M

(c)
3,2 = 1 and M

(s)
3,2 = 0 imply that item 2 was

selected in test 3, but was inactive. Note that we do not have
access to M(s), and M(s) is only used to model the random
behavior of the defective items.

Remark 1. Note that the tests are always governed by the
contact matrix M(c), but due to the unreliable items, the test
results are given by y in (3) (rather than y(c) in (1)).

The goal of our work is to design M(c) with as few rows
as possible, such that, using M(c) and y, we can identify,
with an arbitrarily small error probability (as n → ∞), the
set L of defective items. In particular, we are interested in
characterizing how the number of tests M should scale with
respect to the underlying parameters, n,L and α, to achieve
a vanishing error probability. As discussed in [10], there are
usually two scenarios of interest: (i) the per-instance scenario;
and (ii) the universal scenario. These are defined as follows,

1) Per-instance scenario: When the contact matrix M(c)

works for any arbitrary, yet fixed, subset L ⊆ [n] of size
L, but the same M(c) may not work for all other subsets
L′ 6= L of size L.

2) Universal scenario: When the same contact matrix M(c)

works for all possible subsets L ⊆ [n] of size L.
In this paper, we assume L = O(nζ) for 0 ≤ ζ < 1 (i.e., sparse
regime), because if L = O(n) (i.e., linear regime), then it has
been shown that the number of tests required is Ω(n), which
is achievable by testing the items individually [22], [5].

III. PROBABILISTIC GROUP TESTING: IMPROVING THE
ACHIEVABLE BOUND

In [10], the authors proposed a probabilistic method to
construct the contact matrix M(c) with O

(
L log(n)
α3

)
and

O
(
L2 log(n/L)

α3

)
rows for the per-instance and universal sce-

narios, respectively, to identify the L defective items, with
vanishing error probability (as n→∞). In this section, we
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improve their bounds by a factor of α by slightly modifying
their proof and show that O

(
L log(n)
α2

)
and O

(
L2 log(n/L)

α2

)
tests

suffice for the per-instance and universal cases, respectively.
Before presenting the construction of M(c), we describe the

decoding rule that is used to identify the defective items from
the test results, or equivalently, to find x̂, an estimate of x,
from M(c) and y.
The e-Distance Decoder: Given a contact matrix M(c) and
test results y, an item j will be marked as defective (i.e.,
x̂j = 1) if and only if the jth column M

(c)
:,j satisfies∣∣∣supp(M(c)

:,j

)
\ supp(y)

∣∣∣ ≤ e. (5)

Lemma 1 below presents sufficient conditions for the matrices
M(c) and M(s) to guarantee a correct reconstruction of x.

Lemma 1. If for some arbitrary parameter e, the contact
matrix M(c) and the sampling matrix M(s) are such that:
(1) In each column j ∈ L, there are no more than e flips

from M(c) to M(s);
(2) For every column j ∈ [n]\L, there exist at least e+1 rows
X = {i1, . . . , ie+1} such that M(c)

X ,j = 1 and M
(s)
X ,L = 0,

then the e-distance decoder correctly identifies all the defective
items in L.

Proof of Lemma 1. We prove that the condition in (5) holds
for every j ∈ L, and is violated for every j ∈ [n] \ L. First,
consider some j ∈ L (i.e., xj = 1). Since yi = 0 occurs only
if M(s)

i,L = 0, and in particular, M(s)
i,j = 0, we can write∣∣∣supp(M(c)

:,j

)
\ supp(y)

∣∣∣ =
∣∣∣{i : M

(c)
i,j = 1,yi = 0}

∣∣∣
(a)
=
∣∣∣{i : M

(c)
i,j = 1,yi = 0,M

(s)
i,j = 0}

∣∣∣
(b)

≤
∣∣∣{i : M

(c)
i,j = 1,M

(s)
i,j = 0}

∣∣∣ (c)≤ e.

where (a) holds since for j ∈ L we have that yi = 0 only
if M

(s)
i,j = 0, (b) holds since the set in the left-hand side is a

subset of the one in the right-hand side, and finally (c) follows
from Condition (1) in Lemma 1.

Next, consider some j ∈ [n] \ L. The fact that M(s)
X ,L = 0

implies that yX = 0. Then, we have that∣∣∣supp(M(c)
:,j

)
\ supp(y)

∣∣∣= ∣∣∣{i :M(c)
i,j =1,yi=0}

∣∣∣≥|X |=e+1,

and thus, the condition in (5) is violated. This completes the
proof of Lemma 1.

Remark 2. Lemma 1 follows from Proposition 3 in [10],
with a minor but important modification. The second condition
in [10, Proposition 3] requires the existence of a set X of
rows with |X | = e + 1 such that M

(c)
X ,j = 1, j ∈ [n] \ L,

and M
(c)
X ,L = 0, instead of M(s)

X ,L = 0. Note that the test result
vector is given by y = M(s)�x, and it is M(s) that determines
whether the inequality in (5) holds or not. Moreover, the Z-
channel from M(c) to M(s) allows for M

(c)
x,` = 1 but M(s)

x,` = 0
for some x ∈ X and ` ∈ L. Therefore, the condition of [10]
is more restrictive that ours. By relaxing this condition, we
improve the achievable bound by a factor of α.

A. Construction of the Contact Matrix M(c)

We consider the following construction for the contact and
sampling matrices. The constructions and the error probability
analysis follow similar lines as [10], with a few modifications,
which are highlighted in the following.
Probabilistic construction for M(c) and M(s): We generate
M(c) randomly, where each entry is drawn from a Bernoulli
distribution with parameter q = θ

L (where the parameter θ
will be determined later), independent of all other entries. We
also generate the sampling matrix M(s) from M(c) by passing
each entry through the Z-channel described in (2).

The following theorem shows that the construction above
can decode the vector x with an overwhelming probability.

Theorem 1 (The per-instance scenario). For every arbitrary,
but a priori fixed, L-sparse vector x, the contact and sampling
matrices M(c) and M(s) with M = O(L log(n)/α2) rows gen-
erated by the probabilistic construction above, can decode the
vector x using the distance decoder with a proper parameter,
and the probability of error Pe = P[X̂ 6= x|X = x] goes to
0 as n→∞.

As a consequence of Theorem 1, the following corollary
presents a similar result for the universal scenario.

Corollary 1 (The universal scenario). Using the contact and
sampling matrices M(c) and M(s) generated by the probabilis-
tic construction above with M = O(L2 log(n/L)/α2) rows,
and the distance decoder with a proper parameter, we get
Pe = P[X̂ 6= x|X = x]→ 0 as n → ∞, for every possible
L-sparse vector x.

Before providing the proof of Theorem 1, we present two
remarks regarding our scheme’s robustness and related works.

Remark 3. Our proposed scheme is robust to over-estimating
L. In other words, if our estimate L̂ is such that L̂ ≥ L, then
the number of tests in Theorem 1 and Corollary 1 still hold
by replacing L with L̂, i.e., by using the exact same scheme
(but with the parameters now designed according to L̂), we
still achieve vanishing error probabilities.

Remark 4. In our design, the construction of M(c) is noise-
level-independent (that is, independent of α). With a noise-
level-dependent design, the bound in Theorem 1 can be further
improved. In particular, by choosing q = log(2)

Lα , the authors
in [16] showed an achievable bound of M = O(L log(n)/α)
tests for the per-instance scenario. However, their scheme
would not work when α ≤ log(2)

L because q ≥ 1 in this
regime. The authors in [17] used a heavy machinery to
provide achievable bounds for a much general noise model,
of which the dilution model is a special case. For the dilution
model, their bound is tighter than M = O(L log(n)/α2) for
all α ∈ (0, 1). However their scheme has a few shortcomings
compared to our work. In particular: (i) their test matrix is
noise-level-dependent, (ii) errors and bounds are sensitive to
small perturbations in the value of L and require an exact
estimate of L (whereas in most practical scenarios only an
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upper-bound for L is known), and (iii) constants associated
with the big-O notation are very high (of the order of 105).

Proof of Theorem 1. Our goal is to show that the randomly
generated matrices M(c) and M(s) satisfy, with high probabil-
ity, the conditions of Lemma 1 for

e , (1 + δ)µ1 = (1 + δ)q(1− α)M, (6)

where δ is a parameter determined later. We denote by Pe,1 and
Pe,2 the probability that Conditions (1) and (2) of Lemma 1
are violated, respectively. We start by analyzing Pe,1. Let Nj
denote the number of flips in column j. More specifically,
for each column j ∈ L, we define P (j)

e,1 = P[Nj>e] to be the
probability that column j has more than e flips from M(c) to
M(s). From the random generation of M(c) and M(s), we have

P[M
(c)
i,j = 1,M

(s)
i,j = 0]=P[M

(c)
i,j = 1] · P[M

(s)
i,j = 0

∣∣ M(c)
i,j = 1]

= q(1− α),

and hence we get µ1 , E[Nj ] = q(1− α)M . Then, by using
the Chernoff bound, we get

P
(j)
e,1 = P[Nj > e] = P[Nj > (1 + δ)µ1]

≤ exp

(
− δ

2µ1

2 + δ

)
= exp

(
−δ

2q(1− α)M

2 + δ

)
. (7)

Therefore, using the union bound, we arrive at

Pe,1 ≤
∑
j∈L

P
(j)
e,1 ≤ L exp

(
−δ

2q(1− α)M

2 + δ

)
. (8)

Next, we bound Pe,2. For every j ∈ [n] \ L, we define Rj as
the number of tests that include item j, but all the defective
items are either not selected or are inactive, that is,

Rj =
∣∣{ i : M

(c)
i,j = 1,M

(s)
i,L = 0

}∣∣ . (9)

Recall that Condition (2) in Lemma 1 requires that Rj ≥ e+1,
for every j ∈ [n] \ L. We define P (j)

e,2 = P[Rj ≤ e]. Since the
entries of M(c) and M(s) are generated independently, we have

P[M
(c)
i,j = 1,M

(s)
i,L= 0] =P[M

(c)
i,j = 1] · P[M

(s)
i,L = 0

∣∣ M(c)
i,j = 1]

= P[M
(c)
i,j = 1] · P[M

(s)
i,L = 0]

= P[M
(c)
i,j = 1] ·

∏
j∈L

P[M
(s)
i,j = 0], (10)

where the second equality follows from independence since
j /∈ L. Now, note that

P[M
(s)
i,j = 0] =P[M

(s)
i,j = 0,M

(c)
i,j = 0] + P[M

(s)
i,j = 0,M

(c)
i,j = 1]

= P[M
(c)
i,j = 0] + P[M

(c)
i,j = 1] · P[M

(s)
i,j = 0|M(c)

i,j = 1]

= (1− q) + q(1− α) = 1− qα. (11)

Plugging (11) into (10), we arrive at

P[M
(c)
i,j = 1,M

(s)
i,L = 0] = q(1− qα)L.

Hence, we have that

µ2 , E[Rj ] = (1− qα)LqM ≥ (1− θα)qM, (12)

where the inequality follows from the Bernoulli’s inequality
(1− qα)L ≥ 1− Lqα and the fact that q = θ

L . Similar to the
previous case, the error probability P (j)

e,2 := P[Rj ≤ e] can be
bounded by the Chernoff bound. However, in order to use the
Chernoff bound for P (j)

e,2 , we should have e < µ2 (where e is
defined in (6)). If we can choose the parameters (δ, θ) such
that β , µ2−e

µ2
> 0, then we have that

P
(j)
e,2 = P[Rj ≤ e] = P[Rj ≤ (1− β)µ2]

(a)

≤ exp

(
−β

2µ2

2

)
= exp

(
− (µ2 − e)2

2µ2

)
(b)

≤ exp

(
− ((1− θα)qM − e)2

2(1− θα)qM

)
(c)

≤ exp

(
−M
L
γ

)
,

where (a) follows from the Chernoff bound, (b) holds
since f(x) = exp

(
− (x−e)2

2x

)
is a decreasing function of x

and µ2 ≥ (1− θα) qM from (12), and finally (c) holds for
γ , θ

2 ((1− θα)− (1 + δ)(1− α))
2 because q = θ

L and
1− θα ≤ 1. Finally, using the union bound, we get

Pe,2 ≤
∑

j∈[n]\L

P
(j)
e,2 ≤ n exp

(
−M
L
γ

)
. (13)

Now, we set1 θ = 1
4 and δ = α

2 . Then, from (12), we obtain

µ2 − e ≥ (1− θα)qM − e

=
((

1−α
4

)
−
(
1+

α

2

)
(1− α)

)
qM=

(
α

4
+
α2

2

)
qM>0, (14)

and thus, we have β > 0, and the Chernoff bound is valid.
Let us analyze the two bounds on the error probabilities

Pe,1 in (8) and on Pe,2 in (13), for M = cL log(n)
α2 , where

c > 128 is a constant. First, note that since α ≤ 1
2 , we have

that
δ2θ(1− α)

(2 + δ)
≥

α2

4 ·
1
4 ·

1
2

9
4

=
α2

72
.

Therefore, since L ≤ n we get

Pe,1≤L exp

(
−δ

2(1−α)

2 + δ
· θ
L
· cL log(n)

α2

)
≤n1− c

72 . (15)

Also, similar to (14), we get γ = 1
8

(
α
4 + α2

2

)2
≥ α2

128 . Thus,

Pe,2 ≤ n exp

(
−cLγ log(n)

α2L

)
≤ n1− c

128 . (16)

From (15) and (16) it can be readily seen that, for c > 128,
both Pe,1 and Pe,2 go to 0 as n → ∞. In other words, the
randomly generated matrices M(c) and M(s) will satisfy the
conditions of Lemma 1, with high probability, and hence, the
e-distance decoder can identify the vector x, with a vanishing
error probability. This concludes the proof of Theorem 1.

Proof of Corollary 1. In Theorem 1, we showed that for
θ = 1

4 and δ = α
2 we have

P[X̂ 6=x|X =x] ≤ L exp

(
− α2

72L
M

)
+n exp

(
− α2

128L
M

)
,

1In [10], the value of θ was set to θ = α
8

.
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for any fixed L-sparse vector x. Now, for the universal
scenario, we need to show that a common pair of (M(c),M(s))
is able to decode all L-sparse vectors x. Since there are

(
n
L

)
of such vectors, using the union bound we obtain∑

x∈{0,1}n
‖x‖0=L

P[X̂ 6=x|X =x]

≤
(
n

L

)[
L exp

(
− α2

72L
M

)
+n exp

(
− α2

128L
M

)]
(a)

≤ n

(
n exp(1)

L

)L [
exp

(
− α2

72L
M

)
+exp

(
− α2

128L
M

)]
(b)

≤ 2n

(
n exp(1)

L

)L
exp

(
− α2

128L

cL2 log(n/L)

α2

)
(c)

≤ 2
(n
L

)L(n exp(1)

L

)L(n
L

)− cL
128

=2

((
n
L

) c
128−2

exp(1)

)−L
, (17)

where in (a) we used
(
n
L

)
≤ (n exp(1)/L)L, in (b) we upper

bounded the first exponential term by the second one, and (c)
holds since f(x) = (n/x)x − n ≥ 0 for 1 ≤ x ≤ n

e , and the
fact that L ≤ n/e (for sufficiently large n, since L = o(n)).
Note that the right-hand side of (17) goes to 0 as n→∞, if
c > 256. This completes the proof of Corollary 1.

IV. PROBABILISTIC GROUP TESTING: TESTS WITH FIXED
NUMBER OF TESTED ITEMS

Here, we seek to design a group testing matrix M(c) such
that: (i) each of its rows has the same number of ones, that
is, |supp(M

(c)
i,: )| = |supp(M

(c)
j,: )| for all i, j ∈ [n], and (ii)

it has the same (order of) number of rows as in Theorem 1
(per-instance scenario) and Corollary 1 (universal scenario).
The following construction guarantees the fixed group size
property, and Theorem 2 shows that the error probability
of identifying the vector x using the resulting matrices is
vanishing.
Probabilistic construction for M(c) and M(s) with fixed-
size groups: Let t be the fixed group size, i.e., the number
of ones in each row of M(c), which will be determined later.
Then, each row M

(c)
i,: of M(c) is chosen uniformly at random

and independent of the other rows, from the
(
n
t

)
possible

rows having exactly t ones. The sampling matrix M(s) is then
generated randomly, by applying the operation in (2) on each
entry of M(c), independent of the other entries.

Theorem 2. Assume the above construction for the contact
and sampling matrices M(c) and M(s). Then, with a fixed
pool size t = Θ

(
n
L

)
, M = O(L log(n)/α2) rows for the per-

instance scenario and M = O(L2 log(n/L)/α2) rows for the
universal scenario suffice to decode the vector x using the
distance decoder with a proper parameter, and the probability
of error Pe = P[X̂ 6= x|X = x] goes to 0 as n→∞.

Proof of Theorem 2. The core of the proof is similar to that
of Theorem 1. However, due to the construction used here, the
entries of M(c) in each row are not independent anymore. Let
q , θ

L and set t = nq = nθ
L , where θ is a design parameter.

We show that with proper choices of θ and e for the distance
decoder, the conditions of Lemma 1 hold with overwhelming
probability. First, for a column j ∈ L, we have that

P[M
(c)
i,j = 1,M

(s)
i,j = 0]=P[M

(c)
i,j = 1] · P[M

(s)
i,j = 0

∣∣ M(c)
i,j = 1]

=

(
n−1
t−1
)(

n
t

) (1− α) =
t

n
(1− α) = q(1− α),

and hence, for µ1 = E[|{i : M
(c)
i,j = 1,M

(s)
i,j = 0}|] we have

µ1 =

M∑
i=1

P[M
(c)
i,j = 1,M

(s)
i,j = 0] = Mq(1− α).

Note that we have used linearity of the expectation to over-
come the correlation between the columns of M(c). Hence, the
inequalities in (7) and (8) also hold for the fixed-group-size
setting.

Next, for every j ∈ [n] \ L, we define µ2 = E[Rj ], where
Rj =

∣∣ {i : M
(s)
i,L = 0,M

(c)
i,j = 1}

∣∣. Then, we obtain

P[M
(s)
i,L=0,M

(c)
i,j =1]=P[M

(c)
i,j =1] · P[M

(s)
i,L=0|M(c)

i,j =1]

= P[M
(c)
i,j =1]

∑
J⊆L

P[M
(s)
i,J =0,M

(c)
i,J =1,M

(c)
i,L\J=0|M(c)

i,j =1]

= P[M
(c)
i,j = 1]

∑
J⊆L

{
P[M

(s)
i,J = 0|M(c)

i,J = 1]

× P[M
(c)
i,J = 1,M

(c)
i,L\J = 0|M(c)

i,j = 1]
}

=

L∑
`=0

∑
J⊂L
|J |=`

{
P[M

(s)
i,J = 0|M(c)

i,J = 1]

× P[M
(c)
i,J∪{j} = 1,M

(c)
i,L\J = 0]

}
(a)
=

L∑
`=0

(
L

`

)
(1−α)`

(
n−L−1
t−1−`

)(
n
t

) (b)

≥
L∑
`=0

(
L

`

)
(1−`α)

(
n−L−1
t−1−`

)(
n
t

)
=
t

n

(
L∑
`=0

(
L

`

)(n−L−1
t−1−`

)(
n−1
t−1
) − L∑

`=0

(
L

`

)
`α

(
n−L−1
t−1−`

)(
n−1
t−1
) )

= q

(
1− αL t− 1

n− 1

L∑
`=1

(
L− 1

`− 1

)(n−L−1
t−1−`

)(
n−2
t−2
) )

= q

(
1− αL t− 1

n− 1

)
(c)

≥ q

(
1− αL t

n

)
= q(1− αθ), (18)

where (a) holds since: (i) there are ` (independent) flips in the
columns in J , and (ii) among the t ones in row i, `+1 of them
should lie in the columns in J ∪{j}, and the remaining t−1−`
ones can be in any position except those in L∪{j}; (b) follows
from the Bernoulli’s inequality; and (c) follows from the fact
that t−1

n−1 ≤
t
n whenever t ≤ n. Using the bound in (18),

we have that µ2 ≥ Mq(1 − αθ) which is the same bound as
in (12). The rest of the proof is therefore the same as the proof
of Theorem 1. Moreover, θ = 1

4 and δ = α
2 still work for this

fixed-size case. This further implies that the random contact
matrix M(c) with t = nθ

L = n
4L ones in each row satisfies the

conditions of Lemma 1, with high probability, and hence M(c)

together with a properly parameterized distance decoder, can
estimate x with an overwhelming probability. The proof for
the universal scenario follows similar lines as those of the per-
instance scenario. This concludes the proof of Theorem 2.
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