

1 Designing Nanoparticles for Sustainable Agricultural Applications

2 Beza Tuga¹, Tana O'Keefe^{1,†}, Chaoyi Deng^{2,†}, Andrea Ligocki¹, Jason C. White²,
3 Christy Haynes^{1,*}

4 ¹Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455,
5 United States

8 [†]Denotes co-authorship
9 *Corresponding author: chaynes@umn.edu

10 **Keywords:** nanoparticles, sustainable agriculture, plants, foliar application, nanoparticle design

11 **Abstract**

12 Progress towards achieving global food security continues to be hindered by several economic,
13 geo-political and environmental variables which has led the United Nations to place emphasis on
14 achieving Zero Hunger by 2030. Thus, it is important to invest in novel, eco-friendly, cost-
15 effective solutions that will increase agricultural productivity. For this reason, nanoscale
16 materials are increasingly being developed for use in agriculture with attention on controlling
17 various properties such as size, shape, surface modifications and transformations for improved
18 impact in plants. With continued interdisciplinary and collaborative efforts among nanoparticle
19 experts and plant scientists, the research area will evolve to identify the best nanoparticle
20 properties for foliar application to plants.

21 **Nanoscale materials to alleviate global food insecurity**

22 Engineered nanoparticles (NPs) have drawn special attention for various medical, commercial,
23 and now, agricultural, applications due to their emergent chemical and physical properties that
24 are distinct from their bulk counterparts [1]. These properties can lead to enhanced ion dissolution
25 and transformation as the large surface areas facilitate foliar attachment, chemical tunability, and
26 plant uptake and transport [2-4]. In recent years, the use of NPs in agriculture has grown
27 significantly, where NPs are being developed as sensors for monitoring plant health and pathogen
28 detection [5-8], carriers to deliver beneficial cargo [9-13] and as disease-suppressing agents
29 against various plant pathogens [14-19] with the overall goal of finding solutions to global food
30 insecurity (**Box 1**) [20]. The synthetic flexibility during NP design and synthesis enables
31 scientists to use fundamental chemistry to design NPs with a desired size, surface charge, shape,
32 surface coating and roughness, and the ability to transform (**Figure 1, Key Figure**) [21-23] .
33 Depending on the NP type, plant, and the desired application (i.e., sensing, delivery, or pathogen
34 control, etc.), certain NP design expectations can be set with the goal of improving their
35 performance within the plant [5, 24].

36 In this review, we have assessed the recent literature to present the most promising design
37 parameters that improve nanoparticle uptake and translocation as well as any notable increases
38 in agricultural yield measures. We have limited the scope to foliar applied metal, non-metal,
39 metal oxide and metalloid-based NPs that are likely to be successful in agricultural applications.

40 Metallic NPs, like gold- and silver-based NPs, are extensively used due to their established and
41 tunable synthesis methods that allow for control over size and surface functionality, high mass
42 contrast during analysis, and plasmonic features that allow for effective *in planta* characterization
43 with low background signal in plants [25, 26]. Several metalloid and metal oxide NPs are
44 similarly drawing attention for their tunable synthesis and because they appear to be
45 outperforming conventional commercial products specifically in plant disease suppression [4,
46 27]. Farmers are being encouraged to incorporate various micro- and secondary macronutrients
47 to better protect crops against disease and improve crop production [16, 27]. Using nanoscale
48 forms of these nutrients (ZnO, CuO, and SiO₂ NPs) has been key to their success due to the
49 increased, and in some cases controlled, ion dissolution as well as improved uptake and
50 translocation in various plant species as is highlighted throughout this review. Since the field of
51 nano-enabled agriculture is relatively new, it is challenging to be comprehensive and draw clear
52 conclusions in this topic as the literature continues to develop. However, considerations of NP
53 design rules prior to implementing experimentation can be invaluable towards propelling the
54 field forward.

55 **Plant considerations for nanoparticle use in agriculture**

56 Before designing NPs for agricultural applications, it is critical to understand the application
57 scenario and system of interest. Agriculture is an exceptionally broad field, including animal-
58 based production, annual and perennial plant agriculture and aquaculture. The growth conditions
59 and nutrient requirements can be orders of magnitude different depending on the specifics of the
60 system and the mode of application. The use of inappropriate NPs, or perhaps use of appropriate
61 NPs in inappropriate application regimens, could lead to low efficiency of use or even harm to
62 target and non-target species. Importantly, this review will focus exclusively on plant-based
63 agriculture and potential effective and sustainable strategies that can be designed according to
64 the decision tree shown in **Figure 1**. Moreover, when designing NPs to interact with plants, it is
65 important to recognize that these species have evolved strategies over tens of millions of years
66 to minimize the impact of foreign materials and xenobiotic particles. As such, some subtlety and
67 thoughtful design is warranted. Also, efforts should always be made to minimize dose and
68 exposure, for both economic and health (human, environmental) reasons. Importantly, the design
69 rules will always be a direct function of the exposure route, the intended target, and the desired

70 material. Each exposure route presents unique barriers that must either be bypassed or perhaps
71 taken advantage of, and how that advantage can be incorporated will depend on what is being
72 delivered (**Box 2**) [28-34]. The final plant growth conditions will be important as well; indoor or
73 greenhouse-based, urban agriculture is distinct from acres of field production. Ultimately, only
74 after a systems-level understanding is achieved (or at least recognized), can the desired material
75 be appropriately designed.

76 **Nanoparticle Size**

One common design strategy for controlling NP uptake involves tuning NP size. There are two main uptake mechanisms following foliar application of NPs: cuticular and stomatal pathways, with size limits of < 5 nm and 10-80 microns, respectively (**Box 2**) [31, 35]. Thus, NP size can dictate both the uptake mechanism and the amount taken up before translocation within plants.

77 *Metal Nanoparticles*

78 The uptake, translocation, and transformations of silver nanoparticles (AgNPs) has been
79 previously reviewed and suggests that leaves can take up AgNPs in the size range of 10-40 nm,
80 although precise size limitations for different plant species remains relatively unknown [36]. Su,
81 *et al.* investigated AgNP foliar application in citrus trees [37]. Six weeks after application, the
82 Ag recovered from the roots, branches, trunk, and leaves indicated uptake and translocation of
83 the AgNPs with various coatings: polyvinylpyrrolidone (PVP), citrate (Ct), or gum Arabic (GA).
84 The AgNPs sizes ranged from 9 to 29 nm for the metal cores [37], agreeing with previous reports
85 that were within the 10-40 nm range [36].

86 To further probe this effect, Zhang, *et al.* applied PVP- and Ct-coated AgNPs to spinach leaves
87 and found that leaf penetration was more dependent on size than surface coating [38]. The 40-
88 nm-diameter AgNPs had a deeper penetration than the 100-nm-diameter AgNPs. Additionally,
89 the estimated percentage of internalized AgNPs, 0.2-0.8%, was significantly smaller than that of
90 the total Ag applied (9-12%), suggesting transformation of the NPs inside the plant. This agrees
91 with previous studies which indicate that smaller AgNPs undergo greater dissolution, allowing
92 Ag⁺ ions to translocate or complex with other ions or biomolecules within the plant [36, 39-42].

More recent studies have suggested that AuNPs larger than 40-nm-diameter can enter through plant leaves. To explore AuNP transport, Avellan *et al.* synthesized AuNPs, coated with either Ct or PVP, that had diameters of 3, 10, and 50 nm and foliarly applied them to wheat [43]. For both coatings, 3-nm-diameter AuNPs had the best adhesion to the leaf surface after rinsing, followed by the 10-nm-diameter AuNPs, and then the 50-nm-diameter AuNPs. Hyperspectral microscopy images suggest all NPs sizes could enter the plant leaves via cuticular uptake pathways which was impacted by the coating used. Additionally, once inside the plant, similar transport to various plant compartments was observed for coated NPs of the same size. Another study led by Zhang *et al.* revealed that when AuNPs of various sizes (5 – 20 nm) were infiltrated into model *Nicotiana benthamiana* plant leaves, smaller NPs were able to travel through plant tissue and associate with cells [44]. Surprisingly, this study revealed that none of the spherical NPs were able to enter the intracellular plant space, noting that NP shape, rather than size, was integral for uptake. From these studies, it is evident that AgNP and AuNP size impacts the uptake within various plant models, with 50 nm or smaller NPs being ideal for plant uptake and transport.

93 *Metalloid, Metal Oxide and Non-metal NPs*

94 Metal oxides, carbon dots, and metalloid NPs follow similar trends as those observed for AgNPs
95 and AuNPs, with smaller NPs improving leaf adhesion and plant uptake. In one of the most
96 systematic studies published to date, Hu *et al.* synthesized hydrophilic carbon dots (CDs), cerium
97 oxide nanoparticles (CeO₂ NPs), and silica nanoparticles (SiO₂ NPs) with hydrodynamic
98 diameters ranging from 1.7 to 18 nm, and applied them to cotton (a dicot) and maize (a monocot)
99 leaves [45]. NPs up to 18 nm penetrated cotton leaves via stomatal and cuticular pathways,
100 whereas up to 8 nm NPs entered maize leaves entered using the stomata. This suggests a species-
101 dependent and leaf anatomical difference for initial NP uptake and translocation. Additionally,
102 NPs up to 16 and 8 nm had higher association with the leaf guard cells for cotton and maize,
103 respectively. This size-based difference in guard cell penetration is likely due to the cell wall size
104 exclusion limit that is also plant species-dependent. The authors also developed a nanoparticle-
105 leaf interaction empirical model, based on hydrodynamic size and zeta potential, that predicts a
106 20 nm and 11 nm hydrodynamic diameter size limit for efficient NP delivery into cotton and
107 maize guard cells, respectively [45]. However, other factors such as concentration, surface
108 chemistry, and hydrophobicity would impact model outcomes; thus, there is a need for more

109 systematic analyses of NP and leaf interactions to better model and predict the role of size in NP
110 uptake.

Several related studies also provide evidence for NPs outperforming their bulk counterparts upon plant application. A study performed by Zhu *et al.* found that large 200 nm and 500 nm zinc oxide (ZnO) bulk particles were more easily removed from wheat leaves with washing than their 40 nm counterparts. Additionally, the 40 nm ZnO NPs were taken up through the stomatal pathway for leaf entry, excluding the larger particles. Once inside the leaves, the 40 nm ZnO NPs were also able to cross the cell wall into the cytoplasm, demonstrating the small size needed to readily cross the cell wall [46]. In a similar study, Zhang *et al.*, compared 20 nm ZnO NPs to ZnSO₄, an ionic control. The concentration of Zn within the wheat grain was increased significantly and to a greater extent than ZnSO₄-treated plants. Higher uptake efficiency is likely due to the smaller size increasing adhesion on the leaf surface and slow dissolution of the ZnO NPs that provide a sustained Zn pool as a nutrient for plant growth [47].

Similar trends were observed when comparing 8 nm CeO₂ NPs to a 5-micron cerium acetate control [48]. Lastly, El-Shetehy *et al.*, investigated SiO₂ NPs with a size range of 50 to 70 nm that entered the leaf through the stomata and were able to distribute within the large extracellular air spaces of the mesophyll. Successful uptake induced bacterial pathogen resistance in *Arabidopsis* plants by activating the plant's natural defense response [49]. While several mechanisms remain unknown for NP uptake and for improving plant health and yield, smaller NPs (often <50 nm) have beneficial impacts on several plant species.

111 NPs have relatively large surface areas that impact their leaf adhesion, uptake, and translocation
112 and transformation within the plant. NP sizes in the range of 1-40 nm are ideal for foliar
113 application; however, some studies do indicate that larger NPs (~50-70 nm) may still enter plant
114 leaves through the stomata. Still, more systematic studies are needed for modeling and predicting
115 NP uptake and translocation based on a NP's chemical and physical properties to allow for
116 optimal design of NPs for various plant species. NP shape [19, 50-57] and surface charge [33,
117 45, 58-60] are also design factors to consider because they can impact NP adhesion, uptake,
118 translocation, and dissolution when applied to plants. Overall, these two factors appear to have a
119 smaller impact than size; detailed analysis can be found in the Supporting Information.

120 ***Nanoparticle Surface Modifications***

121 NP surface modifications may be incorporated to introduce new chemical or physical properties
122 for a desired purpose. As the NP surface is the first point of contact with plant leaves, surface
123 coatings have the potential to drive the impact and performance of NP in the context of transport
124 and overall impact on plant yield. This section will analyze recent literature trends on the
125 intentional surface coatings of metal, metal oxide, metalloids, and non-metallic nanoparticles
126 with a continued analysis presented in the SI [61-64].

127 ***Metal Nanoparticles***

128 As discussed above, PVP, an amphiphilic coating, and Ct, a hydrophilic coating, have been
129 commonly used to modify Au and Ag NPs to evaluate their uptake, translocation, and
130 biodistribution in plants as a function of surface hydrophobicity. For example, when Avellan *et*
131 *al.* applied PVP- and Ct-coated AuNPs to wheat leaves, the hydrophobic moieties present in PVP
132 allowed for better adhesion and improved interaction with the hydrophobic cuticle, making
133 uptake more likely because the amphiphilic PVP-coated Au NPs are able to diffuse within the
134 cuticle. On the other hand, the Ct-coated AuNPs were easily rinsed off the leaf surface; yet, even
135 with the limited contact time, some uptake occurred via stomatal openings. Interestingly, the
136 performance of PVP- and Ct-coated nanoparticles is reversed in the context of translocation,
137 where the PVP-coated nanoparticles were trapped in the mesophyll while the Ct-coated
138 nanoparticles had better translocation which improved overall plant health [43]. This more
139 efficient delivery of Ct-coated NPs was also seen in a study that used AgNPs in the distinct plant
140 system of citrus trees. Foliarly applied NPs allowed for uptake and translocation to various parts
141 of the tree such as leaves (other than dosed leaves), branch/trunk, and roots based on the coating
142 type. In terms of transport, the Ct coating allowed for more delivery to the tree branch/trunk than
143 the PVP coating [65].

144 The success of Ct coatings for internal transport seems promising; however, a similar study by
145 Spielman-Sun *et al.* found that the Ct-AuNPs applied to broad bean leaves were randomly
146 distributed around the leaf surface rather than achieving stomatal association as reported by
147 Avellan *et al.* [66]. Both studies used the same design and synthesis strategy but show contrary
148 results, which could be due to differences in the plant models used. In addition to the Ct-coated

149 NPs, Spielman-Sun *et al.* also employed NPs coated with an anti-pectic polysaccharide antibody
150 (LM6-M), which has specific affinity to, and can thus target, the stomata of broad bean leaves.
151 This work reports the successful design of NPs with specific targeting moieties that were able to
152 strongly adhere to the stomata [66]. Herein, we can infer that a targeted delivery approach, rather
153 than surface hydrophobicity, may be more effective; however, follow-up translocation studies of
154 LM6-M-coated NPs would further test this claim.

The complex biological environments within plants make it difficult to extract definitive reasons for translocation differences for Ct vs PVP coatings. Hence, identifying potential biomolecules that could interact with nanoparticles and their respective coatings can enable a better understanding of NP transport. Like the studies above, PVP- and Ct-coated AgNPs were used in a study that used surface-enhanced Raman spectroscopy mapping to identify the amino acid cysteine as a significant biomolecule that interacts with AgNPs in spinach leaves [38]. The Ct coating showed a rapid interaction with cysteine while the PVP coating had a delayed interaction due to the bulkier nature of PVP preventing access to the Ag surface which caused it to mask the NP surface from cysteine. Future studies need to focus on elucidating the unique role of biomolecular corona on plant uptake and translocation.

155 *Metalloids and Metal Oxides Nanoparticles*

156 As the usage of metalloid- and metal oxide-based NPs increases, new application-driven surface
157 modifications of NPs have emerged with a focus on tailoring NP uptake and localization as well
158 as controlled release of target ions and other beneficial cargo for disease suppression and
159 improved plant health.

160 For instance, Buchman *et al.* coated mesoporous silica nanoparticles (MSNs) with chitosan to
161 aid in suppressing *Fusarium wilt* in watermelon through the dual delivery of beneficial silicic
162 acid and chitosan [18]. Chitosan-coated MSNs resulted in a 70% increase in watermelon yield in
163 healthy plants which is an exciting outcome toward increasing global food supply. The well-
164 developed and versatile synthesis methods for SiO₂ NPs allowed them to also serve as a NP
165 coating in two similar studies that used SiO₂ NPs to encapsulate the pesticide azoxystrobin [67]
166 and ZnO NPs [68]. Both studies showed that the presence of a silica coating allowed for a slow
167 and continuous release of azoxystrobin and Zn²⁺ ions that were distributed towards the stem >
168 leaves > roots of tomato plants, in each study. More interestingly, both studies characterized the

169 uptake and translocation of nanoscale forms of SiO_2 and ZnO , and both NPs were present in
170 stems, roots, and other leaves. In both cases, the silica coating was regarded as the source of
171 success where Gao *et al.* concluded preferential uptake for SiO_2 -coated nanoparticles (as the
172 uncoated nanoscale ZnO nanoparticles remained in the leaf).

173 *Nanoparticle Surface Roughness*

174 Strength and number density of NP adhesion onto leaf surfaces can greatly influence leaf entry
175 by NPs and the overall impact NPs may have on plants. While not widely studied, tuning the
176 NPs' surface roughness has been investigated to improve leaf adhesion.

177 Li *et al.*, investigated sea urchin-like micro-nanostructured hollow silica spheres (SUH-Si) that
178 had a 500-nm-thick uniform shell that was covered with a large number of silica urchin-like
179 nanotubes (**Figure 2C & 2F, top panel**), increasing their surface roughness [69]. Compared with
180 traditional foliar nitrogen fertilizers, the nitrogen fertilizer-loaded SUH-Si increased the adhesion
181 on peanut and maize leaves by 5.9 times and 2.2 times, respectively. This increased adhesion
182 allowed for a more efficient delivery of the nitrogen fertilizer and promoted the maize plants
183 growth and development [69]. The same group also designed a pompon-like magnesium foliar
184 fertilizer (**Figure 2B, bottom panel**) that consisted of thin fold-like curled nanosheets on a
185 hollow silica structure to increase leaf adhesion [70]. The pompon-like structure resulted in a
186 sustained release of magnesium and the foliar adhesion efficiency on tomato leaves was
187 improved by 10.4 times when compared to traditional magnesium foliar fertilizers [70]. Both
188 studies indicate that increasing surface roughness positively impacts leaf adhesion and can result
189 in more efficient delivery of common nitrogen- and magnesium-based fertilizers.

190 **Uptake, translocation, and biodistribution is dependent on NP properties**

191 NPs encounter a complex biotic and redox-sensitive environment within plants, The literature
192 has shown that the uptake, translocation, and distribution of NPs in plant tissues are highly related
193 to the NP properties discussed above. In addition, exposure time [61, 71, 72], aging and/or
194 transformation processes NPs [73, 74], and species [75, 76] all affect uptake processes.

195 When designing NPs, the role of exposure time to plants is an important consideration. Questions
196 such as how fast the NPs should dissolve or release their ions, and what is the optimum interaction

197 time between NPs and the plant after the application are important factors that control NP usage
198 efficiency. Wang *et al.* reported that the uptake and translocation of sulfur nanoparticles was
199 highly time dependent, highlighting a time-sensitive window of physiological opportunity where
200 these nanoscale crop protection strategies were successful [61, 62]. Importantly, surface
201 functionalization of the material could be used to optimize activity as that impacts dwell time on
202 and in plants. The effect of NP residence time or aging must also be considered when designing
203 NPs. For example, rutile titanium dioxide nanoparticles (nTiO₂) were weathered in field soil for
204 four months prior to planting carrots for cultivation to full maturity [74]. The aging of nTiO₂ was
205 highly dependent on the initial NP chemical properties, especially the surface charge, and the
206 resulting differences in transformation processes can have overt impacts on biota. Specifically,
207 the increases in taproot biomass, leaf fresh biomass, plant height, and nutrient element
208 accumulation in the roots and leaves highlight the age-dependent loss of phytotoxicity as a
209 function of nTiO₂ surface properties [63, 74].

210 After accumulation in plant tissues, NPs encounter a complex chemical environment that may
211 vary greatly in terms of pH, moisture, metabolite contents, and endophytic microbiome activity.
212 For example, the accumulation of Cu content after nanoscale CuO exposure in Rosie bok choy
213 was correlated with its higher anthocyanin than Green bok choy. Similarly, more Cu was
214 translocated to the grain of wild rice than cultivated rice after nCuO exposure [76]. If the
215 mechanisms behind these plant-specific differences could be understood, nanomaterials could be
216 specifically synthesized to take advantage of the differences.

217 **Biotransformation is dependent on NP properties**

218 The biotransformation of NPs after plant uptake is largely dependent on the chemical
219 composition of the NPs. With high surface-area-to-volume ratios, NPs such as nanoscale Ag,
220 ZnO, CuO, and CeO₂ are thermodynamically unstable, as the Gibbs energies of synthesis
221 reactions are often positive [77]. Therefore, these materials may undergo biologically driven
222 dynamic transformations including aggregation, dissolution, adsorption, recrystallization, and
223 redox reactions; these processes will be critical to controlling NP fate and distribution.

224 For example, the partial oxidation of AgNPs in the root tissues of ryegrass was attributed to two
225 possible pathways: direct uptake by roots followed by oxidative transformation in root tissues or
226 dissolution outside the root surface followed by the uptake of ionic species by roots [78]. With

227 hydroponic ZnO NP exposure, Lv *et al.* found that the majority of Zn accumulated in maize roots
228 and shoots was in forms such as ZnPO₄, primarily due to the enhanced dissolution of ZnO NPs
229 in the rhizosphere and plant uptake and translocation in the ionic form [79]. It has been reported
230 that for ZnO NPs, the uptake, transport and accumulation of Zn is primarily in the form of
231 dissolved Zn²⁺ from the NPs. Consequently, surface modification could be employed to minimize
232 rapid dissolution of ZnO, as well as to potentially control the rate of uptake and translocation.
233 Interestingly, the *in planta* reduction of Cu(II) to Cu(I) has been reported in soil-cultivated rice
234 and maize. Peng *et al.* found that CuO NPs were transported from rice roots to shoots and that
235 dissolved Cu(II) was mainly combined with cysteine, citrate, and phosphate ligands, but
236 importantly, a fraction of the Cu(II) was reduced to Cu₂O [80].

237 Conversely, Au and SiO₂ NPs are present largely in their pristine form within plants [81].
238 However, Kang *et al.* used synthesis conditions to control the SiO₂ NP dissolution (**Figure 3**);
239 greater dissolution correlated with enhanced activity against *Fusarium* wilt in watermelon [17,
240 18, 82]. This correlated with higher Si concentrations in the roots of plants that had been treated
241 with faster dissolving NPs, indicating more effective silicic acid delivery. These findings suggest
242 that NPs can be intentionally designed to control and take advantage of subsequent *in planta*
243 transformation processes.

244 **Concluding remarks and future perspectives**

245 The motivation for this review is clear: our society continues to suffer from lack of global food
246 security, and we need to invest in long-term and sustainable solutions to mitigate this impact.
247 Innovations such as nano-enabled agriculture is providing us with an opportunity to overcome
248 food insecurity. As with biomedical applications, NPs in agriculture require careful attention to
249 NP properties that will determine their impact. Some properties include size, shape, surface
250 modifications and transformations of example metal, non-metal, metal-oxide, and metalloid-
251 based NPs that are applied to plant leaves, many of which are outlined in **Table S1**.

252 This assessment of the current field of research reveals that it is difficult to identify optimal NP
253 characteristics, but we can draw some conclusions that may guide future research. In terms of
254 NP size and surface charge, the studies presented here show that smaller NPs (generally < 50
255 nm) and positive surface charge seem to improve NP uptake into leaves. Perhaps surprisingly,

256 novel analytical tools have revealed that NPs larger than 50 nm can travel throughout the plant
257 vasculature. On the other hand, studies that systematically evaluate the role of NP shape are
258 lacking, but changing morphologies seems to improve disease and stress tolerance in some plants
259 with no clear understanding (yet) of the underlying mechanism. Surface coatings add another
260 layer of complexity as hydrophobic coatings may improve leaf adhesion and thus uptake, but
261 once inside the plant, the impact of NP hydrophobicity on translocation is nuanced due to the
262 complex biological environment present within plants. When incorporating coatings, it is
263 important to include the coatings as part of the control treatments for greenhouse and field studies
264 to properly elucidate any individual impact of the NP and/or coating. Lastly, NP transformations
265 are generally considered a post-synthesis characteristic, yet the design properties mentioned
266 throughout this review can facilitate a desired transformation. Future researchers should consider
267 NP residence time within the plant when considering intentional control over transformations.

268 Despite the wide array of NPs available to us, it is important to account for the difficulty of
269 synthesizing some novel NP systems with controlled properties as well as the need for efficient
270 characterization methods to understand the system before plant application. Additionally, several
271 studies highlighted in Table S1 show commercial nanoparticles that often lack extensive material
272 characterization which eventually leads to no clear method of determining which property had
273 the most valuable impact. Once inside the plant, there are several complex questions (see
274 Outstanding Questions) related to plant biology, growth and plant species variation that need to
275 be accounted for, and unfortunately, is the part of this challenge we do not currently have much
276 control over. Lastly, for future commercialization, the cost, scalability, and acceptance of
277 nanotechnology within the public needs to be taken into careful consideration. Towards these
278 efforts, life cycle assessments (LCA) of NPs, with a focus on the material parameters mentioned
279 above, can help us better identify the datapoints needed to conduct a complete analysis of NPs in
280 agriculture and thereby inform insights towards the sustainable implementations of these
281 systems. Figure 4 shows some steps that need to be considered which range from data collected
282 from scientists at the bench to social scientists interfacing with the public that would consume
283 the agricultural products. In conclusion, we hope this work emphasizes the need for more
284 cohesive and systematic studies and thoughtful collaboration among researchers focused on
285 nanoparticle preparation and the plant sciences.

286 **Glossary**

287 **Biotransformation:** changes to nanoparticles in complex biological environments.

288 **Dicot:** flowering plants that contain two cotyledons (embryonic leaf).

289 **Foliar application:** spraying formulations directly to plant leaves as opposed to the soil.

290 **Food insecurity:** lack of consistent access to enough food for every person in a household.

291 **Food security:** always having physical and economic access to enough food.

292 **Monocot:** flowering plants that contain one cotyledon.

293 **Nanoparticle:** particle with one dimension with a size of 1–100 nm.

294 **Protein corona:** biomolecules adhering to the nanoparticle surface.

295 **Transformation:** changes to nanoparticles when introduced to different media

296 **Acknowledgements**

297 This work is supported by the National Science Foundation under grant no. CHE2001611, the
298 NSF Center for Sustainable Nanotechnology (CSN). The CSN is part of the Centers for Chemical
299 Innovation Program. B.S.T acknowledges support from the University of Minnesota Graduate
300 School's Interdisciplinary Doctoral Fellowship.

References

1. Baig, N., *et al.* (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. *Materials Advances* 2, 1821-1871
2. Kah, M., *et al.* (2019) Nano-enabled strategies to enhance crop nutrition and protection. *Nat Nanotechnol* 14, 532-540
3. Rodrigues, S.M., *et al.* (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. *Environmental Science: Nano* 4, 767-781
4. Wang, D., *et al.* (2022) Nano-enabled pesticides for sustainable agriculture and global food security. *Nature Nanotechnology* 17, 347-360
5. Giraldo, J.P., *et al.* (2019) Nanobiotechnology approaches for engineering smart plant sensors. *Nature Nanotechnology* 14, 541-553
6. Ibrahim, H., *et al.* (2022) Wearable Plant Sensor for In Situ Monitoring of Volatile Organic Compound Emissions from Crops. *ACS Sensors* 7, 2293-2302
7. Voke, E., *et al.* (2021) In Planta Nanosensors: Understanding Biocorona Formation for Functional Design. *ACS Sensors* 6, 2802-2814
8. Wu, P., *et al.* (2022) A Universal Bacterial Catcher Au–PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. *Analytical Chemistry* 94, 4277-4285
9. Sigmon, L.R., *et al.* (2021) Biodegradable Polymer Nanocomposites Provide Effective Delivery and Reduce Phosphorus Loss during Plant Growth. *ACS Agricultural Science & Technology* 1, 529-539
10. Santana, I., *et al.* (2022) Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts. *ACS Nano* 16, 12156-12173
11. Xu, T., *et al.* (2022) Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core–Shell Nanostructures. *ACS Nano* 16, 6034-6048
12. Gao, Y., *et al.* (2020) A Bioresponsive System Based on Mesoporous Organosilica Nanoparticles for Smart Delivery of Fungicide in Response to Pathogen Presence. *ACS Sustainable Chemistry & Engineering* 8, 5716-5723
13. Ali, Z., *et al.* (2022) DNA–Carbon Nanotube Binding Mode Determines the Efficiency of Carbon Nanotube-Mediated DNA Delivery to Intact Plants. *ACS Applied Nano Materials* 5, 4663-4676
14. Elmer, W.H. and White, J.C. (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. *Environmental Science: Nano* 3, 1072-1079

15. Pérez, C.D.P., *et al.* (2020) Metalloid and Metal Oxide Nanoparticles Suppress Sudden Death Syndrome of Soybean. *Journal of Agricultural and Food Chemistry* 68, 77-87
16. Servin, A., *et al.* (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. *Journal of Nanoparticle Research* 17, 92
17. Kang, H., *et al.* (2021) Silica nanoparticle dissolution rate controls the suppression of fusarium wilt of watermelon (*Citrullus lanatus*). *Environmental Science and Technology* 55, 13513-13522
18. Buchman, J.T., *et al.* (2019) Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of *Citrullus lanatus* (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes. *ACS Sustainable Chemistry and Engineering* 7, 19649-19659
19. Borgatta, J., *et al.* (2018) Copper Based Nanomaterials Suppress Root Fungal Disease in Watermelon (*Citrullus lanatus*): Role of Particle Morphology, Composition and Dissolution Behavior. *ACS Sustainable Chemistry & Engineering* 6, 14847-14856
20. FAO (2021) The State of Food and Agriculture 2021. In *The State of Food and Agriculture (SOFA)*
21. Sadigov, R. (2022) Rapid Growth of the World Population and Its Socioeconomic Results. *The Scientific World Journal* 2022, 1-8
22. (2022) The Sustainable Development Goals Report 2022
23. Ristaino, J.B., *et al.* (2021) The persistent threat of emerging plant disease pandemics to global food security. *Proceedings of the National Academy of Sciences* 118, e2022239118
24. Squire, H.J., *et al.* (2023) The emerging role of nanotechnology in plant genetic engineering. *Nature Reviews Bioengineering* 1, 314-328
25. Kang, H., *et al.* (2019) Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. *Chemical Reviews* 119, 664-699
26. Rycenga, M., *et al.* (2011) Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. *Chemical Reviews* 111, 3669-3712
27. Elmer, W. and White, J.C. (2018) The Future of Nanotechnology in Plant Pathology. *Annual Review of Phytopathology* 56, 111-133
28. Hong, J., *et al.* (2021) Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. *Environmental Science: Nano* 8, 1196-1210
29. Yeats, T.H. and Rose, J.K.C. (2013) The Formation and Function of Plant Cuticles. *Plant Physiology* 163, 5-20

30. Su, Y., *et al.* (2019) Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. *Environmental Science: Nano* 6, 2311-2331

31. Jordan, G.J., *et al.* (2015) Environmental adaptation in stomatal size independent of the effects of genome size. *New Phytologist* 205, 608-617

32. Avellan, A., *et al.* (2021) Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and *in Planta* Translocation. *Environmental Science & Technology* 55, 13417-13431

33. Delsart, C. (2016) Plant Cell Wall: Description, Role in Transport, and Effect of Electroporation. In *Handbook of Electroporation*, pp. 1-22

34. Zhao, Y., *et al.* (2019) Advances in Imaging Plant Cell Walls. *Trends in Plant Science* 24, 867-878

35. Eichert, T. and Goldbach, H.E. (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces - Further evidence for a stomatal pathway. *Physiologia Plantarum* 132, 491-502

36. Huang, D., *et al.* (2022) Uptake, translocation, and transformation of silver nanoparticles in plants. *Environmental Science: Nano* 9, 12-39

37. Su, Y., *et al.* (2020) Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. *ACS Nano* 14, 2966-2981

38. Zhang, Z., *et al.* (2021) In situ and real time investigation of foliarly applied silver nanoparticles on and in spinach leaves by surface enhanced Raman spectroscopic mapping. *Analytical Methods* 13, 2567-2574

39. Yang, Q., *et al.* (2020) Transformation and uptake of silver nanoparticles and silver ions in rice plant (*Oryza sativa L.*): The effect of iron plaque and dissolved iron. *Environmental Science: Nano* 7, 599-609

40. Pradas Del Real, A.E., *et al.* (2017) Silver Nanoparticles and Wheat Roots: A Complex Interplay. *Environmental Science and Technology* 51, 5774-5782

41. Li, W.Q., *et al.* (2020) Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (*Lactuca sativa L.*) under different exposure pathways. *Chemosphere* 258, 127349

42. Savassa, S.M., *et al.* (2021) Ag nanoparticles enhancing *Phaseolus vulgaris* seedling development: understanding nanoparticle migration and chemical transformation across the seed coat. *Environmental Science: Nano* 8, 493-501

43. Avellan, A., *et al.* (2019) Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. *ACS Nano* 13, 5291-5305

44. Zhang, H., *et al.* (2022) Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. *Nat Nanotechnol* 17, 197-205

45. Hu, P., *et al.* (2020) Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. *ACS Nano* 14, 7970-7986

46. Zhu, J., *et al.* (2021) Role of Charge and Size in the Translocation and Distribution of Zinc Oxide Particles in Wheat Cells. *ACS Sustainable Chemistry & Engineering* 9, 11556-11564

47. Zhang, T., *et al.* (2018) Using Synchrotron-Based Approaches To Examine the Foliar Application of ZnSO₄ and ZnO Nanoparticles for Field-Grown Winter Wheat. *J Agric Food Chem* 66, 2572-2579

48. Adisa, I.O., *et al.* (2018) Role of Cerium Compounds in Fusarium Wilt Suppression and Growth Enhancement in Tomato (*Solanum lycopersicum*). *J Agric Food Chem* 66, 5959-5970

49. El-Shetehy, M., *et al.* (2020) Silica nanoparticles enhance disease resistance in *Arabidopsis* plants. *Nat Nanotechnol* 16, 344-353

50. Barker, B.T.P. and Gimingham, C.T. (1911) The Fungicidal Action of Bordeaux Mixtures. *The Journal of Agricultural Science* 4, 76-94

51. Ma, C., *et al.* (2019) Time-Dependent Transcriptional Response of Tomato (*Solanum lycopersicum L.*) to Cu Nanoparticle Exposure upon Infection with *Fusarium oxysporum f. sp. lycopersici*. *ACS Sustainable Chemistry & Engineering* 7, 10064-10074

52. Shen, Y., *et al.* (2020) Copper Nanomaterial Morphology and Composition Control Foliar Transfer through the Cuticle and Mediate Resistance to Root Fungal Disease in Tomato (*Solanum lycopersicum*). *Journal of Agricultural and Food Chemistry* 68, 11327-11338

53. Ma, C., *et al.* (2020) Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. *Nat Nanotechnol* 15, 1033-1042

54. Djanaguiraman, M., *et al.* (2018) Cerium Oxide Nanoparticles Decrease Drought-Induced Oxidative Damage in Sorghum Leading to Higher Photosynthesis and Grain Yield. *ACS Omega* 3, 14406-14416

55. Chen, L., *et al.* (2022) CeO₂ nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. *Chemosphere* 299, 134474-134474

56. Liu, Y., *et al.* (2022) Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. *Environ Pollut* 299, 118900-118900

57. Zhang, H., *et al.* (2019) Metabolomics Reveals the "Invisible" Responses of Spinach Plants Exposed to CeO₂ Nanoparticles. *Environ Sci Technol* 53, 6007-6017

58. Zhu, J., *et al.* (2020) Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. *Environmental Science: Nano* 7, 3901-3913

59. Zhu, J., *et al.* (2021) Role of Charge and Size in the Translocation and Distribution of Zinc Oxide Particles in Wheat Cells. *ACS Sustainable Chemistry & Engineering* 9, 11556-11564

60. Sun, H., *et al.* (2022) Surface charge affects foliar uptake, transport and physiological effects of functionalized graphene quantum dots in plants. *Sci Total Environ* 812, 151506

61. Wang, Y., *et al.* (2022) Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. *ACS Nano* 16, 11204-11217

62. Wang, Y., *et al.* (2022) Surface Coated Sulfur Nanoparticles Suppress Fusarium Disease in Field Grown Tomato: Increased Yield and Nutrient Biofortification. *Journal of Agricultural and Food Chemistry*

63. Wang, Y., *et al.* (2021) Effects of different surface-coated nTiO₂ on full-grown carrot plants: Impacts on root splitting, essential elements, and Ti uptake. *J Hazard Mater* 402, 123768

64. Soliman, M., *et al.* (2022) Engineered zinc oxide-based nanotherapeutics boost systemic antibacterial efficacy against phloem-restricted diseases. *Environmental Science: Nano* 9, 2869-2886

65. Su, Y., *et al.* (2020) Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. *ACS Nano* 14, 2966-2981

66. Spielman-Sun, E., *et al.* (2020) Protein coating composition targets nanoparticles to leaf stomata and trichomes. *Nanoscale* 12, 3630-3636

67. Bueno, V., *et al.* (2021) Uptake and Translocation of a Silica Nanocarrier and an Encapsulated Organic Pesticide Following Foliar Application in Tomato Plants. *Environmental Science and Technology* 56, 6722-6732

68. Gao, X., *et al.* (2021) Uptake and Translocation of Mesoporous SiO₂-Coated ZnO Nanoparticles to *Solanum lycopersicum* following Foliar Application. *Environmental Science and Technology* 55, 13551-13560

69. Li, W., *et al.* (2020) Improving the utilization rate of foliar nitrogen fertilizers by surface roughness engineering of silica spheres. *Environmental Science: Nano* 7, 3526-3535

70. Li, W., *et al.* (2023) In situ construction of a magnesium foliar fertilizer with pH-controlled release and high adhesion capacity. *Environmental Science: Nano* 10, 115-128

71. Rawat, S., *et al.* (2019) Differential physiological and biochemical impacts of nano vs micron Cu at two phenological growth stages in bell pepper (*Capsicum annuum*) plant. *NanoImpact* 14, 100161-100161

72. Wang, Y., *et al.* (2021) Evaluation of the Effects of Nanomaterials on Rice (*Oryza sativa L.*) Responses: Underlining the Benefits of Nanotechnology for Agricultural Applications. *ACS Agricultural Science & Technology* 1, 44-54

73. Rawat, S., *et al.* (2018) Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. *Current Opinion in Environmental Science & Health* 6, 47-53

74. Wang, Y., *et al.* (2021) Soil-aged nano titanium dioxide effects on full-grown carrot: Dose and surface-coating dependent improvements on growth and nutrient quality. *Science of The Total Environment* 774, 145699-145699

75. Tan, W., *et al.* (2018) Foliar Exposure of Cu(OH)₂ Nanopesticide to Basil (*Ocimum basilicum*): Variety-Dependent Copper Translocation and Biochemical Responses. *J Agric Food Chem* 66, 3358-3366

76. Deng, C., *et al.* (2021) Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (*Oryza sativa L.*) grains. *Science of The Total Environment*, 152260-152260

77. Cai, X., *et al.* (2020) Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. *Small* 16, 1907663-1907663

78. Yin, L., *et al.* (2011) More than the ions: The effects of silver nanoparticles on *lолium multiflorum*. *Environmental Science and Technology* 45, 2360-2367

79. Lv, J., *et al.* (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. *Environmental Science: Nano* 2, 68-77

80. Peng, C., *et al.* (2015) Translocation and biotransformation of CuO nanoparticles in rice (*Oryza sativa L.*) plants. *Environmental Pollution* 197, 99-107

81. Lv, J., *et al.* (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. *Environmental Science: Nano* 6, 41-59

82. Kang, H., *et al.* (2022) Effect of (3-aminopropyl)triethoxysilane on dissolution of silica nanoparticles synthesized *via* reverse micro emulsion. *Nanoscale* 14, 9021-9030