2022 IEEE 40th International Conference on Computer Design (ICCD) | 978-1-6654-6186-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICCD56317.2022.00083

2022 IEEE 40th International Conference on Computer Design (ICCD)

HPMA-Saber: High-Performance Polynomial
Multiplication Accelerator for KEM Saber

Pengzhou He, Tianyou Bao, Yazheng Tu, and Jiafeng Xie
Deparmtne of Electrical and Computer Engineering, Villanova University, Villanova PA 19085 USA
Email: {phe,tbao,ytul jiafeng.xie} @villanova.edu

Abstract—The recent research in post-quantum cryptography
(PQC) field has gradually switched to efficient implementation of
PQC algorithms on hardware platforms. As polynomial multipli-
cation is typically one of the critical operations within lattice-
based PQC, its hardware acceleration has drawn significant
attention from the research community recently. We propose
a high-speed processing strategy to construct a new High-
performance Polynomial Multiplication Accelerator (HPMA) for
key encapsulation mechanism (KEM) Saber. Firstly, we have
given a detailed mathematical derivation to obtain a low-latency
processing algorithm for Saber polynomial multiplication. Then,
we have innovatively used the derived the proposed algorithm
to construct a new structure HPMA for FPGA implementation.
Lastly, we have demonstrated the superior performance of the
proposed HPMA-Saber by comparing with state-of-the-art works.
The proposed design strategy is highly efficient and the obtained
results can be useful for the PQC research community.

Index Terms—High-performance, key encapsulation mecha-
nism (KEM) Saber, polynomial multiplication accelerator, post-
quantum cryptography (PQC).

[. INTRODUCTION

Along with the rapid progress in quantum computing, more
attention has switched to post-quantum cryptography (PQC)
research and development as the current public-key cryptosys-
tems are proved to be vulnerable to the attacks launched from
powerful quantum computers executing Shor’s algorithm [1].

The learning-with-rounding (LWR) is a variant of the
learning-with-errors (LWE) problem, which obtains the error
term by a rounding operation rather than the random distribu-
tion [2]. The Module-LWR (MLWR) is a module variant of
the LWR and has been used to build cryptosystems for PQC
standardization, e.g., key encapsulation mechanism (KEM)
Saber, one of the NIST 3rd round public-key finalists [2], [3].

Prior Works. As the major arithmetic operation of KEM
Saber, polynomial multiplication plays an essential role in de-
termining the overall performance of the Saber cryptoprocessor.
Recent hardware implementation of polynomial multiplication
for Saber includes (i) an early paper used the Toom-Cook
method to obtain efficient hardware-software co-design [4]; (ii)
a full-hardware polynomial multiplier for the Saber coprocessor
[5]; (iii) optimized hardware polynomial multipliers were then
proposed in [6]; (v) a new cyclic-row originated processing
(CROP) technique based polynomial multiplier was then pre-
sented in [7]; (vi) high-performance polynomial multipliers for
Saber were also presented in [8]; (vii) a dual-CROP based
polynomial multiplier for Saber was introduced in [9].

Major Challenges. Major challenges include: (i) Few alter-
native efforts have been made besides the traditional school-
book algorithm; (ii) the existing hardware structures do not

demonstrate high operational frequency; (iii) some implemen-
tations do not consider the practical application setup, e.g.,
input/output bit-width needs to be set the same as the memory
in/out port and the module scheme feature of Saber.

Major Contributions. In this paper, we propose to design a
new High-performance Polynomial Multiplication Accelerator
for KEM Saber (HPMA-Saber). Main contributions include:

« We have presented a mathematical derivation to obtain a
new polynomial multiplication algorithm for Saber.

e We have designed the proposed polynomial multiplier
accelerator with practical input/output setup.

« We have provided sufficient comparison to demonstrate
the superior performance of the proposed accelerator.

II. PRELIMINARIES

KEM Saber. Saber is an adaptive Chosen Ciphertext Attack
(IND-CCA) secure KEM, which is based on the hardness of the
MLWR problem to achieve both classical and quantum security
[2]. Saber was constructed as a Chosen Plaintext Attack (CPA)
secure public-key scheme. Then, CCA Saber KEM was built
through the Fujisaki-Okamoto transformation [10]. Interested
readers can go to the paper [2] for detailed information.

Polynomial Multiplication for Saber. The most compli-
cated operation within each phase of Saber is the polynomial
multiplication over the ring Z; /(" + 1) (I is either g or p).
Without loss of generality, we can define that the polynomial
multiplication of Saber involves one input polynomial with 13-
bit coefficients and another polynomial has 4-bit coefficients
(sampled secrets), while the output coefficient is 13-bit (the
polynomial with 10-bit coefficients is also covered here).

III. ALGORITHMIC OPERATION

Consideration. Existing polynomial multiplication algo-
rithms include Toom-Cook [4], [11], KA [12], and schoolbook
methods (or similar) [5]. Interestingly, based on reported re-
sults, the schoolbook algorithm probably is the most effec-
tive one since the polynomial multiplication for Saber has
“unbalanced” bit-widths for input polynomials. For instance,
the deploying of fast algorithm such as KA can actually
increase the bit-width due to the addition related pre-processing
operations, i.e., [-4,4] will increase to [-8,8], which is not
favorable for hardware implementation. Therefore, we use
schoolbook algorithm for the proposed polynomial multiplier
in this paper to maintain efficient implementation complexity
on the hardware platform, but with a different algorithmic
operation/strategy.

2576-6996/22/$31.00 ©2022 IEEE 525
DOI 10.1109/ICCD56317.2022.00083
Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 19:34:15 UTC from IEEE Xplore. Restrictions apply.

Proposed Mathematical Derivation Strategy. The existing
polynomial multiplications [5]-[7], deployed the traditional
schoolbook algorithm that one polynomial is used as the
operational operand (combined with modulo operation) while
the other is fed into through serial format. This setup is not ideal
for high-performance applications since it requires N cycles for
accumulation-based computation and then also needs NV cycles
for output delivery [7]. In this work, we do computation and
output delivery at the same time to save processing latency.
Meanwhile, to obtain a high-speed operation, we made the
computation of the polynomial multiplication to be able to
executed through polynomial-wise based operations.

Following the above strategy, we define the polynomial
multiplication for Saber as (the polynomial multiplication with
an input polynomial of 10-bit coefficients is also included):

W =GD mod f(x), €))

where f(z) = 2V +1, W = SN P wiat, G = SN girt,

and D = YN M diat (gi, di, and w; are 13-bit, 4-bit, and
13-bit integers over Z,, respectively). We can have

wo =dogo + (—dn-1)g1 + -+ (—d1)gn—1,
wy =d1go + (do)gj + -+ (—d2)gN717

...... 2)
wN-—g =dN_2g0 + dn—391 + + + (—dN-1)gN-1,

wn—1 =dn-190 + dNn_2g1 + -+ + dogn—1,

where each w; (¢ from N — 1 to 0) is addition result of
circularly shifted coefficients of D (with one coefficient’s sign
inverted) multiplied with the corresponding coefficients of G,
respectively. Then, we can derive the proposed algorithm for
polynomial multiplication of Saber as:

Algorithm 1: Proposed polynomial multiplication algo-
rithm for KEM Saber
Input : G and D are integer polynomials; / where g;
and d; are 13-bit and 4-bit coefficients
according to Saber setup.
Output: W = GD mod (zV + 1); // where w; is
13-bit coefficient over Z,.
Initialization step
1 Make ready the inputs G and D.
Main step
2 fori=N—11 0do
3 for j =0t N —1do
‘ w7=Z;V=_01 D](vl)gj‘
end

4

5

6 end
Final step

7 Serially deliver all the coefficients of output W,

which follows the proposed derivation strategy that the final
output is calculated and delivered out once per cycle. Note that
D=1 can be obtained from D by circular shifting of all the
coefficients with one sign inverted, and the detailed operation
can be seen in the following hardware structure section.

526

IV. ACCELERATOR: HPMA-SABER

Background Overview and Proposed Hardware Design
Strategy. The existing hardware structures for the polynomial
multiplier of Saber calculate the output values in a parallel
format [6], [7], and have to go through a parallel-in serial-
output buffer to deliver these coefficients into the RAM. We
hence decide to propose a new polynomial multiplication where
all the output results can be processed in a serial format to save
the unnecessary delay cycles.

Overall Architecture. The proposed hardware accelerator
(HPMA-Saber) for polynomial multiplication of Saber is shown
in Fig. 1 (based on Algorithm 1). The values sampled from the
sampler are represented by the two’s complement form (refer to
G here), which is different from the ones in the existing designs
[5]-[7]. This setup, however, provides more generality of the
proposed HPMA-Saber for deploying in different application
environments. As seen from Fig. 1, the proposed HPMA-Saber
has three components, namely the input loading component
(highlighted with brown), the main computational component
(highlighted with blue), and the control component (highlighted
with red). The details of these components are described below.

Input Loading Component. The input loading component
consists of two circular shift-registers (CSRs) for inputs D and
G, respectively. As indicated by Algorithm 1 that D¢~1 can
be obtained from D% by circular shifting of all the coefficients
with one sign inverted. Note that the input D is originally
represented in two’s complement format and is transferred
into the sign-magnitude form to facilitate following processing.
Apart from the regular N number of registers, one 2-to-1 MUX
and one sign cell are also included in the proposed CSR,
where the MUX functions to load the input coefficients into the
corresponding registers and then switches to another channel to
circularly shift the positions of the values of D in CSR. The
CSR for G does not need further circular shifting after all the
coefficients are loaded into the CSR, i.e., the N parallel output
values of the CSR remain stable.

Main Computational Component. The main computational
component consists of NV parallel point-wise multipliers, where
each point-wise multiplier (Fig. 2) executes the multiplication
between related output from CSR (for G) and corresponding
output from CSR (for D) according to Step 4 of Algorithm 1.
We have used the MUX-based strategy to design the multiplier
following similar designs in the literature [5], [6].An adder
tree is used to produce the final output in a serial format. To
facilitate the high-performance operation, we can insert layers
of registers into the adder tree, as indicated in Fig. 1.

Control Component. The control component (control unit)
mainly consists of a finite state machine (FSM) to coordinate
the overall operation of the polynomial multiplier, i.e., the oper-
ation can be split into two stages, i.e., loading and computation.
The loading stage ends when all the coefficients are loaded into
two CSRs; while the computation stage starts to produce the
output values after necessary cycles (determined by the adder
tree). Note that the control unit will need to be updated to match
the practical operation, i.e., assumed to be deployed inside the
Saber cryptoprocessor.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 19:34:15 UTC from IEEE Xplore. Restrictions apply.

| external memory

13 4.
operand D: CSR

)
data

transfer

1=

:

operand G: SR

A\ 4 A4 A\ 4

adder tree

o

control unit

{3

i

Fig. 1. The architectural details of the proposed HPMA for KEM Saber. CSR: circular shift-register. Data transfer refers to the transferring of two’s complement

to the sign-magnitude format.

from
S

from
CSR(G)

Fig. 2. The structural details of the point-wise multiplier.

Overall Operation and Discussion of Advantage. The
accelerator presented in Fig. 1 can be very efficient as it
can calculate and deliver the results almost at the same time.
For instance, for N = 256 and every layer is inserted with
registers, the overall computation and output delivery need only
25648 = 264 cycles, while the existing polynomial multipliers
under the ideal setup like the ones proposed in [6] all require
512 cycles. Meanwhile, as the adder tree is fully pipelined,
the proposed polynomial multiplier will have a very small
critical-path (high frequency), which indicates that the proposed
accelerator is suitable for high-performance applications.

Practical Architectural Setup. The architecture shown in
Fig. 1 is an ideal setup, e.g., the two inputs are set as 4-bit and
13-bit, respectively, while the output is set as 13-bit and can be
smoothly delivered out along with the computation process. We
need an extra setup on the input and output processing units
for practical applications where the external memory usually
has single 64-bit in/out ports. As shown in Fig. 3, we have
updated the input and output word-length to 64-bit, and the
original CSR and SR have been updated to the new buffers as
well as the output buffer (the data transfer for D, from two’s
complement to sign-magnitude, is also updated to 64-bit).

The proposed buffer contains 4 x N — 1 register cells, where
each cell is a 1-bit register combined with a 2-to-1 MUX
and each cell is connected with the correct signals for correct
operation. The input data of the first 13 register cells are from
the input or the output of the sign cell (sign inverting according
to Algorithm 1). The input data of the first 14th-64th register

527

[external memory: single-port RAM]

buffer for D: 64-in 4xN-out

¢ ¢ ¢ ¢

3

computational component
(adder tree included)

3

[buffer for G: 64-in 13xN-out
%

13

[control unit] [output buffer: 13-in 64-out]—,g4—

Fig. 3. Practical setup of the proposed HPMA-Saber (based on the single-port
external memory).

cells are from the input or from the previous 13 register cells.
The rest register cells only take data from the previous 13
register cells or the previous 64 register cells. Once all the
input data are loaded into the registers, the values contained
in the registers will be circularly shifted once per cycle based
on the bit-width of 13. The same design strategy applies to the
buffer for G and the output buffer.

Finally, the control unit follows traditional FSM setup to
update the control unit. There are in total five stages involved
within this redesigned FSM, i.e., “reset”, “load”, “calculation”,
“output”, and “done”. Note that the clock cycles are calculated
based on the assumption that each layer of the adder tree is
inserted with registers.

V. IMPLEMENTATION & COMPARISON

In this section, analysis on the impact of inserting register
layers into the adder tree is provided first. Then, we will give
a detailed implementation process for the proposed HPMA as
well as the comparison with the state-of-the-art designs. Finally,
some discussions and future work will be given.

Implementation on the FPGA Platform. We have also
implemented the HPMA-Saber on the FPGA platform with

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 19:34:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
FPGA IMPLEMENTATION RESULTS (ULTRASCALE+ DEVICE)

‘ design H LUT FF ‘ CLB ‘ Fmax ‘ DSPs ‘ latency! ‘ power ‘ delay ‘ ADP?
517 17,406 5,069 2712 250 0 256 - 1.02 17,823.74
[121% 13,735 4,486 - 160 85 83 - 0.52 *
[8] (FIR) 3 16,971 8,755 - 250 0 511 - 2.04 34,688.72
[8] (Fast.2)? 25,831 | 12,850 - 250 0 255 - 1.02 | 26,347.62
[8] (Fast.4)3 35,306 | 19,143 - 250 64 127 - 0.51 *
HPMA-Saber || 26,884 | 14,524 | 4,419 441 0 264 807 0.60 16,093.82

Unit for Fmax (maximum frequency): MHz; unit for power: mW.

'+ latency refers to the computation time. Due to the architectural setup, the adder tree delay time is also included in our proposed HPMA-Saber.

0
1
2
3

*

: ADP refers to area-delay product, which is ADP=#LUT xdelay (since some of the existing designs do not report the CLB usage).

: the CLB is obtained from the released source code, the output delivery cycle is not listed here.

: based on Karatsuba algorithm (involves smaller latency but with larger area usage).

: based on filtering based fast algorithm (Fast.4 has smaller latency but with larger resource usage).

: as these designs use large number of DSPs, we do not calculate their ADP here. For a reference, however, one DSP typically can be seen as equivalent to

102.4 slices [13], which indicates that the designs of [8], [12] have significantly larger CLBs than the proposed one as they need at least 8,704 and 6,554

equivalent CLBs for DSPs.

practical setup. We have coded the final architectural with
VHDL (N = 256) !. The coded design covers all three security
ranks of KEM Saber, i.e., the values of D are set as [-5,+5].
The target device was set to Xilinx UltraScale+ XCZU9EG-
FFVB1156-2 FPGA. To obtain a high frequency, we have
inserted the registers into the adder tree at every layer, i.e.,
for N = 256, we have inserted log, N = 8 layers of registers.

It is clear that the proposed HPMA-Saber obtains the best
area-time performance among all the reported designs. For
instance, when compared with the existing design of [5], the
proposed accelerator has at least 9.71% less ADP than the
one of [5]. Meanwhile, when compared with the designs of
[8], [12], the proposed accelerator involves significantly less
resource usage, especially on the equivalent number of CLBs,
as indicated in Table I. Lastly, one has to mention that due to the
use of pipelining register layers in the adder tree, the proposed
HPMA-Saber achieves highest operational frequency among all
the reported designs, which indicates that the proposed design
suits well high-performance applications.

Discussion. While the primary goal of this paper is to design
HPMA-Saber, other aspects of research, such as side-channel
attacks, are out of the scope of this paper. Nevertheless, the
proposed accelerator has a stable critical-path and hence is
resistant to timing attacks. Future work may focus on the
building of high-performance Saber cryptoprocessors.

VI. CONCLUSION

This paper has presented a new HPMA for KEM Saber on the
FPGA platform. We have conducted three layers of efforts to
obtain the proposed work. First, an algorithmic derivation pro-
cess is provided to formulate the polynomial multiplication into
the desired form. Then, a detailed architectural design process
has been presented to introduce the proposed HPMA. Finally, a
thorough implementation based analysis and comparison have
been given to demonstrate the effectiveness of the proposed
HPMA. Future work will focus on extending the presented
HPMA into high-speed LWR-based cryptoprocessors, and it
is anticipated that the proposed work will be useful for PQC
research and development.

The source code is available at [14]

528

ACKNOWLEDGEMENT
The work of J. Xie was supported by NIST-60NANB20D203
and in part by NSF SaTC-2020625.

REFERENCES

[1]1 P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations of
computer science, pp. 124-134, leee, 1994.

[2] J.-P. D’Anvers, A. Karmakar, S. S. Roy, F. Vercauteren, J. Mera,
M. Beirendonck, and A. Basso, “SABER: Mod-LWR based KEM (round
3 submission),”

[3] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,” in International Conference on Cryptology in Africa,
pp. 282-305, Springer, 2018.

[4] J. M. B. Mera, F. Turan, A. Karmakar, S. S. Roy, and I. Verbauwhede,
“Compact domain-specific co-processor for accelerating module lattice-
based KEM,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1-6, IEEE, 2020.

[51 S. S. Roy and A. Basso, “High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 443-466, 2020.

[6] A. Basso and S. S. Roy, “Optimized polynomial multiplier architectures
for post-quantum KEM Saber,” Design Automation Conference (DAC),
pp. 1-6, 2021.

[7]1 J. Xie, P. He, and C.-Y. Lee, “Crop: Fpga implementation of high-
performance polynomial multiplication in saber kem based on novel
cyclic-row oriented processing strategy,” in 2021 IEEE 39th International
Conference on Computer Design (ICCD), pp. 130-137, IEEE, 2021.

[8] W. Tan, A. Wang, Y. Lao, X. Zhang, and K. K. Parhi, “Low-latency
visi architectures for modular polynomial multiplication via fast fil-
tering and applications to lattice-based cryptography,” arXiv preprint
arXiv:2110.12127, 2021.

[9]1 E. Carter, P. He, and J. Xie, “High-performance polynomial multiplication

hardware accelerators for kem saber and ntru,” Cryptology ePrint Archive,

2022.

D. Hofheinz, K. Hovelmanns, and E. Kiltz, “A modular analysis of the

Fujisaki-Okamoto transformation,” in Theory of Cryptography Confer-

ence, pp. 341-371, Springer, 2017.

A. Karmakar, 1. Verbauwhede, et al., “Saber on ARM. CCA-secure

module lattice-based key encapsulation on ARM,” IACR Transactions

on Cryptographic Hardware and Embedded Systems, pp. 243-266, 2018.

Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and L. Liu,

“LWRpro: An energy-efficient configurable crypto-processor for Module-

LWR,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 68, no. 3, pp. 1146-1159, 2021.

Y. Zhang, C. Wang, D. E. S. Kundi, A. Khalid, M. O’Neill, and W. Liu,

“An efficient and parallel r-lwe cryptoprocessor,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 886-890, 2020.

J. Xie, “Security and Cryptography (SAC) Lab.” https://www.ece.

villanova.edu/~jxie02/lab/.

[10]

(11]

[12]

(13

[14]

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 19:34:15 UTC from IEEE Xplore. Restrictions apply.

