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Abstract—Along the rapid development of large-scale quantum
computers, post-quantum cryptography (PQC) has drawn signif-
icant attention from research community recently as it is proven
that the existing public-key cryptosystems are vulnerable to the
quantum attacks. Meanwhile, the recent trend in the PQC field has
gradually switched to the hardware acceleration aspect. Following
this trend, this work presents a novel implementation of a High-
performance Polynomial Multiplication hardware Accelerator for
NTRU (HPMA-NTRU) under different parameter settings, one
of the lattice-based PQC algorithm that is currently under
the consideration by the National Institute of Standards and
Technology (NIST) PQC standardization process. In total, we have
carried out three layers of efforts to obtain the proposed work.
First of all, we have proposed a new schoolbook algorithm based
strategy to derive the desired polynomial multiplication algorithm
for NTRU. Then, we have mapped the algorithm to build a high-
performance polynomial multiplication hardware accelerator and
have extended this hardware accelerator to different parameter
settings with proper adjustment. Finally, through a series of
complexity analysis and implementation based comparison, we
have shown that the proposed hardware accelerator obtains better
area-time complexities than the state-of-the-art one. The outcome
of this work is important and will impact the ongoing NIST PQC
standardization process and can be deployed further to construct
efficient NTRU cryptoprocessors.

Index Terms—High-performance, NTRU, polynomial multipli-
cation hardware accelerator, post-quantum cryptography (PQC)

I. INTRODUCTION

With the rapid progression in quantum computing, it is
proven that most of the existing public key cryptographic
algorithms will no longer be secure as they can be solved by
large-scale quantum computers executing Shor’s algorithm [1]–
[5], i.e., the widely used Rivest Shamir Adleman (RSA) and
Elliptic-Curve Cryptography (ECC) will no longer be secure
within 10-15 years [3], [6], [7]. In response, the National Insti-
tute of Standards and Technology (NIST) has started the PQC
standardization process and the current third round standard-
ization has selected three lattice-based public-key encryption
scheme including NTRU [6]–[8].

NTRU is built on the lattice-based N -th degree truncated
polynomial ring problem, and is the merger of two PQC
candidates NTRUEncrypt and NTRU-HRSS-KEM [8] with dif-
ferent parameter settings. Since the announcement of the NIST
third round PQC finalists, several noticeable work has been

undertaken on NTRU, including cryptanalysis, implementation
techniques, and side-channel attacks [8]–[10].

As the NIST PQC standardization process has progressed,
efficient implementations of PQC schemes, undertaken on var-
ious operating platforms have been reported, especially FPGA-
based hardware acceleration [3], [11]–[27]. Although NTRU is
selected as one of the NIST PQC third round standardization
finalists [7], very limited work is available in the literature for
its hardware implementations. Partly because of its compli-
cated arithmetic operation, partly because a major arithmetic
operation (e.g., polynomial multiplication) has relatively large
parameter setting and its efficient implementation becomes a
bottleneck on the hardware platform [8]. For instance, for
one family of NTRU, NTRU-HPS, requires a polynomial
multiplication with degree of N = 821 with 12-bit point-wise
multipliers, which is challenging to be implemented on the
hardware platform with low-complexity. Consequently, NTRU
generally has a slower operation than the other two lattice-
based NIST public-key finalists [7], [8] and hence its high-
speed implementations with low-complexity cost is lacking and
much needed in the literature.

Based on these considerations, we propose in this work,
a novel high-performance polynomial multiplication acceler-
ator for NTRU (HPMA-NTRU), targeting different parameter
settings. Particularly, we notice that the polynomial multipli-
cation based on schoolbook algorithm can lead to a high-
speed implementation for NTRU yet with optimized area usage.
Towards this optimization in mind, we have made three layers
of coherent interdependent efforts to carry out the proposed
work. Major contributions of this work include:

• We have derived the schoolbook polynomial multiplication
algorithm into a high-speed operation format for acceler-
ator implementation.

• We have carried out a series of optimization techniques
to map the algorithm into a high-performance hardware
accelerator with efficient resource usage, HPMA-NTRU,
which is also extended to different parameter settings.

• We have conducted implementation analysis and compari-
son to demonstrate the efficiency of the proposed HPMA-
NTRU.

Overall, the proposed HPMA-NTRU features high-performance
operation with efficiency in area-complexity, and hence is978-1-6654-5938-9/22/$31.00 ©2022 IEEE20
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desirable for high-speed NTRU cryptoprocessor deployment.
The rest of this paper is organized as follows. The prelim-

inary knowledge is introduced in Section II. The formulation
of the proposed high-speed algorithm is detailed presented in
Section III. The proposed hardware polynomial multiplication
accelerator for NTRU is provided in Section IV. Implementation
analysis and comparison are presented in Section V. Finally,
conclusions are given in Section VI.

II. PRELIMINARIES

In this section, we briefly give the introduction of NTRU
and its polynomial multiplication. Interested readers can refer
to the original material of [8] for details.

NTRU. NTRU is a structured lattice-based key encapsulation
mechanism (KEM) whose security is built on the N th degree
truncated polynomial ring (NTRU) problem, which was origi-
nally defined in 1998 [8], [28]. Due to its long and established
history, The current NIST third round submission of NTRU is
a merger of previous submissions NTRUEncrypt and NTRU-
HRSS-KEM. NTRU is well recognized in the research com-
munity as it is widely analyzed. The current version of NTRU
satisfies the perfect correctness to build the KEM scheme.
The “only disadvantage” is that it requires a relatively slower
operation time than the other two NIST lattice-based finalists.
Consequently, not many high-performance implementations of
NTRU scheme are reported, particularly for its key component,
the polynomial multiplication over rings [7].

Parameter Setting The current NIST third round submission
of NTRU is composed of two families of parameter settings,
i.e., NTRU-HPS and NTRU-HRSS. According to the submis-
sion recommendation [8], one can choose different parameters
as desired. Meanwhile, the NIST third round submission of
NTRU has its own recommended parameters for both families
[8], three parameter sets for NTRU-HPS and one parameter set
for NTRU-HRSS. From the recommended parameter setting,
one can see that the polynomial multiplication of n = 821
and q = 212 mostly can cover almost all the related parameter
sets for both NTRU families (expect that NTRU-HRSS requires
q = 213, but with a smaller n). For the sake of simplicity, we
just use the polynomial multiplication of n = 821 and q = 212

as the representative parameter set for NTRU.
Polynomial Multiplication for NTRU and Prior Works.

Polynomial multiplication over rings is the key arithmetic
operation of NTRU. On the other side, however, very few
hardware implementations for polynomial multiplication of
NTRU are available in the literature. A recent design of [29] has
presented a hardware design for the combined parameter sets.
A very recent report of [30] have presented several hardware
designs but only focus on small q and thus is not comparable
to the proposed design here.

Remark. Note that there also exist other previous designs
of [31]–[36], where the targeted n and q are also not reach
the parameter settings of NIST submission NTRU [8]. Hence,
these reported cannot considered as NTRU related standard
designs and we just mention them here. Besides that, the three
mentioned designs [31]–[33] are non-constant time in execution
and hence are vulnerable to timing attacks.

III. HPMA-NTRU: MATHEMATICAL FORMULATION

This section presents the mathematical background of the
proposed algorithm for polynomial multiplication of NTRU.
For simplicity of discussion, we just use the parameter set of
n = 821 and q = 212 to derive the algorithm, which can be
easily extended to other parameter sets.

Definition 1. Define two polynomials A =
∑n−1

i=0 aix
i and

B =
∑n−1

i=0 bix
i, where both ai and bi are 12-bit integer in Zq .

Meanwhile, we also define C =
∑n−1

i=0 cix
i (ci is also 12-bit

integer in Zq) as the product of A and B. Thus, we have

C = AB mod f(x), (1)

where f(x) = xn − 1. Then, for high-speed operation, we can
have

C =A(b0 + b1x+ · · ·+ bn−1x
n−1) mod f(x),

=Ab0 +Axb1 + · · ·+Axn−1bn−1 mod f(x),
(2)

where we can also define

Ax0 =A = A(0),

Ax =A(1),

· · · · · · · · ·
Axn−1 =A(n−1),

(3)

which can be substituted into (2) to have

C =A(0)b0 +A(1)b1 + · · ·+A(n−1)bn−1,

=
n−1∑
i=0

A(i)bi,
(4)

where the polynomial multiplication becomes the accumulation
of a polynomial (A(i)) with the corresponding bi. In summary,
we can have the algorithmic operation as

Algorithm 1: Proposed high-performance polynomial
multiplication algorithmic operation for NTRU
Input : A and B are integer polynomials; // where ai

and bi are 12-bit coefficients according to
NTRU parameter setup;

Output: C = AB mod (xn + 1); // where ci is 12-bit
coefficient over Zq;

Initialization step
1 Make ready the inputs A and B;
2 C =

∑n−1
i=0 cix

i = 0;
Main step

3 for i = 0 to n− 1 do
4 for j = 0 to n− 1 do
5

∑n−1
j=0 cjx

j=
∑n−1

i=0 A(i)bi; // c0 to cn−1 are
executed in parallel

6 end
7 end
8 C =

∑n−1
i=0 cix

i = C;
Final step

9 Serially deliver all the coefficients of output C;
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Fig. 1. The proposed hardware accelerator for NTRU: HPMA-NTRU.

where also exist the operation of deriving A(i+1) from A(i)

(0 ≤ i ≤ n−2) during the operations in Lines 3-7 of Algorithm
1. For this operation, we can have

A(i) =Axi = (a0 + a1x+ · · ·+ an−1x
n−1)xi,

=a0x
i + a1x

i+1 + · · ·+ an−1x
n+i−1,

=an−i + an−i+1x+ · · ·+ an−1x
i+1

+ a0x
i + · · ·+ an−i−1x

n−1,

(5)

where xn ≡ 1 is being substituted as xn − 1 ≡ 0. From (5),
we can further have

A(i+1) = xA(i) mod f(x)

= x(an−i + an−i+1x+ · · ·+ an−1x
i+1

+ a0x
i + · · ·+ an−i−1x

n−1) mod f(x)

= an−i−1 + an−ix+ · · ·+ an−1x
i+2

+ a0x
i+1 + · · ·+ an−i−2x

n−1,

(6)

where xn ≡ 1 is being substituted again for modulo reduction.
Comparing eq. (6) with eq. (5), we can see that the coefficients
of A(i) are circularly-shifted (while the coefficients’ signs
remain the same) to produce A(i+1), which is recursively
repeated among the rest of i (0 ≤ i ≤ n− 2).

IV. HPMA-NTRU: PROPOSED HARDWARE ACCELERATOR

This section covers the architectural details of the proposed
HPMA-NTRU hardware. As shown in Fig. 1, the proposed
accelerator contains four major components, i.e., the Input
Processing Component, the Multiplication Component, the
Accumulation & Output Component, and the Control Unit.
Details of each individual component will be given in the
following part of this section.

Input Processing Component. The Input Processing Com-
ponent is responsible for loading all the coefficients and deliv-
ering them to the Multiplication Component in a correct form,
as shown in Fig. 1. It consists of a serial-in-serial-out shift-
register and a special serial-in-parallel-out shift-register. The
polynomial multiplication is carried out in three major phases,
loading, multiplication and output phases (as explained in the

ai

<< 1

12
1

<< 2

<< 11

. . .

bi

. . .

bi(0) 

bi(1) 

bi(2) 

. . .

bi(11) 

1

1

1

12

12

12

12

12

12

12
. . .

aibi

Logic-ShiftMultiplication

12
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12

12

12

. . .

Sum-up

Fig. 2. The internal structure of the point-wise multiplier, where q = 212 and
it could be extended to other values of q for NTRU.

subsequent sections). During the loading phase, the two shift-
registers load one 12-bit coefficient every cycle. During the
multiplication phase, the serial-in-serial-out shift-register will
deliver one coefficient to the Multiplication Component at each
cycle. Meanwhile the other shift-register will just output all
the coefficients at the same time. Note that this shift-register
needs to shift circularly in order to deliver correct coefficients,
based on the operation of eq. (6). There is a 2-to-1 MUX
at the input of this serial-in-parallel-out shift-register, which
will close the loop when all the initial coefficients are loaded
into corresponding registers, in order to realize the required
circularly-shifting for the related coefficient according to eq.
(6). The Input Processing Component takes n cycles to load
all the coefficients, and then requires n cycles to deliver all the
necessary coefficients to the Multiplication Component.

Multiplication Component. This Component executes the
point-wise multiplications between related coefficients accord-
ing to Algorithm 1. As is shown in Fig. 1, the Multiplication
Component contains n parallel multiplication Units, with each
unit deals with one 12-bit point-wise multiplication. Each
unit takes the coefficient from the serial-in-parallel-out shift-
register and one of the n coefficients delivered from the other
shift-register as its another input, then calculates the product
of the two coefficients and output it to the corresponding
Acc & Output Unit connected to it. The detailed internal
structure for the point-wise multiplication is shown in Fig. 2:
first, it is designed that the multiplier multiplies one coefficient
by each bit of the other coefficient, which is achieved by
using AND gates; then the multiplier logic-shifts the products
by proper bits the products; after logic-shifting, the multiplier
sums up all the generated numbers by using a log2q-bit adder,
followed by a modulo operation in order to keep the length
of the input and output the same. It takes one cycle for the
multiplication unit to execute the whole process of one point-
wise multiplication.

Accumulation & Output Component. As shown in Fig. 3,
the Accumulation & Output Component is a custom designed
shift-register combined with accumulators, consisting of n
registers, n MUXes, and n 12-bit adders. This component

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 19:37:16 UTC from IEEE Xplore.  Restrictions apply. 



C0

C2

Cn-1

C1

. . . Cn-2

M
U

X

12
12

M
U

X

12
12

M
U

X

12
12

M
U

X

12
12

12

12

12

12

csh_out

csh_out

csh_out

csh_out

Ci

12

12

12

12

w0

w1

w2

wn-1

Fig. 3. The internal details of the Accumulation & Output Component, where
q = 212 and could be extended to other values of q.

operates as both the accumulator of the products of the co-
efficients and the output buffer. The switch between the two
functions is controlled by the MUXes connected to the registers
and the control signal csh out. Wwhen csh out = 0, the
MUXes will select the accumulation of the product of the
coefficients (Wi) and the value stored in the register, which
ensures all the products of the coefficients are stored and
accumulated in the registers. When csh out = 1, the MUXes
will select the output of another register, which transforms the
Accumulation & Output Component into a shift-register so that
the final result can be delivered out serially.

Control Unit. The Control Unit generates control signals
for all operations, timed throughout the multiplication process
such as “load”, “reset”, “shift”, and “output”. To implement the
function, We use a finite state machine (FSM) to deliver the
proper control signals (along with some extra logic gates) to the
corresponding components. In the proposed FSM, there are five
consecutive states, namely “reset” (1 cycle) “load” (n cycles),
“multiplication” (n cycles), “output” (n cycles), and “done”
(1 cycle), where n is the polynomial degree. The proposed
FSM starts with the “reset” state that clears all registers and
all the shift-registers are disabled. When the “reset” signal is
de-asserted, it moves into the “load” state, which lasts for n
cycles. During this phase, the two shift-registers in the Input
Processing Component are fully loaded with the coefficients
of A and B while the registers in the Acc&Component are
still being cleared. Next, the control unit automatically moves
into the “multiplication” state in which the multiplication is
carried out for n cycles. When calculation is done, the control
unit goes to the “output” state, where the result is delivered out

Reset Load Mul Out Done

csh_a
csh_b

csh_a
csh_b

csh_out

csh_out done

clear

n
cycles

n
cycles

n
cycles

1
cycle

Fig. 4. Various states of the FSM for the Control Unit, generating control
signals in each state.

serially. Finally, the HPMA-NTRU moves into the “done” state
indicating that the whole polynomial multiplication process is
completed.

Extension to the Other Parameter Settings. The proposed
accelerator can be easily extended to other parameter settings of
NTRU, based on the adjustment on the point-wise multiplier’s
bit-width (as well as the internal structure), related coefficients’
bit-width log2q, and the polynomial degree n.

V. COMPLEXITY ANALYSIS AND COMPARISON

Complexity Analysis. Overall, the proposed HPMA-NTRU
contains two n-length 12-bit circular shift registers (CSRs,
that can be other bit-width as well), n point-wise multipliers,
and n accumulation units to calculate and deliver the output
coefficients in a serial fashion. The whole accelerator has a
computation latency of n cycles and the critical-path is mostly
determined by the addition propagation period of an adder and
a point-wise multiplier, as shown in Fig. 1. The complexities of
the proposed HPMA-NTRU under different parameter settings
are determined mostly by the specific n and q values. Finally,
a control unit is also needed for the proposed accelerator.

Implementation and Comparison. The proposed hardware
structure was manually coded in VHDL and simulated via
Mentor Graphics ModelSim tool to verify the correctness of its
functionality. When implementing the accelerator, the proposed
HPMA-NTRU was implemented on the targeted device of
AMD-Xilinx FPGA UltraScale+ XCZU9EG-FFVB1156-2 and
Zynq-7000 xc7z100ffg1156-2 devices through Xilinx Vivado
2020.2 toolchain. The post place and route (post-PAR) results,
including the area consumption such as LUT, FF, and CLB,
timing information like number of computation cycles and
maximum frequency (MHz), and dynamic power consumption
(Watts), are listed in Table I. We have also picked all four
parameter sets according to two families of NTRU [8], i.e.,
(n = 509, q = 211), (n = 677, q = 211), (n = 871, q = 212),
and (n = 701, q = 213), for the proposed accelerator to be
implemented on the mentioned FPGA devices to obtain related
performance results. To further demonstrate the efficiency of
the proposed accelerator, we have also listed the state-of-
the-art design [29] in the same table. Note that the early
designs of [31]–[36] used different parameters other than the
current NTRU [8], and hence we do not include them in the
comparison. Meanwhile, the very recent design of [30] used
smaller parameters and we also do not include it here.

Discussions. As we can see from Table I, a larger n results in
a higher area consumption: the number of LUT, FF, and CLB
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TABLE I
COMPARISON OF DIFFERENT POLYNOMIAL MULTIPLIER HARDWARE ACCELERATORS FOR NTRU

NTRU Scheme FPGA Device Latency Cycles1 Freq. (MHz) LUTs FFs CLBs Power (W) ADP
[29] n = 821, q = 212 Zynq-7000 821 70 56,218 21,406 - - 659,356

n = 509, q = 211 Ultrascale+ 509 254 36,976 12,126 5,648 0.110 74,098
n = 677, q = 211 Ultrascale+ 677 248 49,137 16,075 7,745 0.147 132,155
n = 821, q = 212 Ultrascale+ 821 236 72,430 21,172 11,300 0.205 251,970
n = 701, q = 213 Ultrascale+ 701 223 71,028 18,994 11,661 0.232 223,276
n = 509, q = 211 Zynq-7000 509 223 36,999 12,132 6,219 0.239 84,450
n = 677, q = 211 Zynq-7000 677 226 49,261 16,080 8,148 0.123 147,565
n = 821, q = 212 Zynq-7000 821 210 71,990 21,202 11,647 0.210 281,447
n = 701, q = 213 Zynq-7000 701 201 71,321 19,554 20,270 0.282 248,736

1: Latency cycle does not include the input loading and output delivery.
Ultrascale+: Ultrascale+ XCZU9EG-FFVB1156-2 device.
Zynq-7000: Zynq-7000 xc7z100ffg1156-2 device.
ADP: ADP (area-delay product). area: #LUT. Delay: cycles×(1/Freq.).
The design of [29] does not report the CLB and power and is a combined design with another parameter set.

become larger as n increases. The area usage increases with
n linearly, with the highest LUT = 71,979 for n = 821 and
the lowest LUT = 44,429 when n = 509. This is because the
proposed design is computing the point-wise multiplications in
parallel, i.e., n determines the number of point-wise multipliers
and registers involved within the CSRs in the Input processing
Component. Thus, more registers and calculating components,
such as adders and point-wise multiplier, are needed to execute
the multiplication and store corresponding data. Similarly, as
log2q increases, the area consumption becomes greater as well.
Since the length of involved coefficient becomes larger and
more registers, point-wise multipliers, and adders are required
for the calculation.

As mentioned in the last section, the time complexity of the
proposed HPMA-NTRU is strictly linear to the value of n, i.e.,
n cycles of multiplication during the whole process. On the
other hand, the maximum frequency of the proposed design
decreases as n increases, e.g., Freq.= 254 when n = 509
and Freq.= 217 when n = 821. This is also because of the
parallel computation: when n increases, more multiplication
and accumulation units are involved in parallel, which leads
to a longer critical-path (going from the input buffer to the
accumulator) for the signals to propagate. As a result, the
signals take a longer time when propagating along the path
and thus the frequency will drop. Enhancing frequency by
shortening the critical-path in the proposed design can be seen
as our future work.

Meanwhile, considering the comparison with the state-of-the-
art work of [29], the proposed accelerator involves smaller or
equal latency cycles but with much better operational frequency.
Meanwhile, when considering the resource usage, e.g., the
number of LUTs, the proposed accelerator involves comparably
number of LUTs when comparing with [29]. As the proposed
accelerator has much better operational frequency than [29]
(though with slightly larger usage on the LUTs), the proposed
HPMA-NTRU involves at least 57.3% less ADP on the Zynq-
7000 FPGA device, as seen from Table I.

Side-Channel Attacks Consideration. The proposed
HPMA-NTRU has constant time operation, and hence is re-

sistant to the timing attacks [37]. While power side-channel
attacks are out of the scope of this paper, but we can include
that in our future works. Meanwhile, the countermeasures can
also included in the further explorations.

Other Aspects of Future Works. Though the proposed
HPMA-NTRU is efficient in implementation, future works
can be focused more on: (i) develop efficient polynomial
multiplication algorithms for complexity reduction, possibly
following the trend in the binary field polynomial multiplier
[38]–[41]; (ii) design full cryptoprocessors for NTRU, based
on different parameter settings and security levels; (iii) develop
novel hardware design methods, as presented in other PQC
algorithms [19], [42], [43].

VI. CONCLUSION

We have introduced a new hardware accelerator for poly-
nomial multiplication of NTRU in this paper, HPMA-NTRU,
aiming at enhancing the high-speed operation performance
of the polynomial multiplication of NTRU on the hardware
platform. We have carried out three layers of efforts to finalize
the proposed work. Mathematical formulation is provided first
to lay the algorithmic foundation. Then, the proposed hardware
accelerator is detailed presented. Lastly, complexity analysis,
implementation, and comparison are also provided to show
the efficiency of the proposed work. The proposed accelerator
covers different parameter settings of NTRU and is expected to
be useful for the ongoing NIST PQC standardization process.
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